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Abstract. This work presents a study about dissimilarity measures for
seismic signals, and their relation to clustering in the particular problem
of the identification of earthquake focal mechanisms, i.e. the physical phe-
nomena which have generated an earthquake. Starting from the assump-
tion that waveform similarity implies similarity in the focal parameters,
important details about them can be determined by studying waveforms
related to the wave field produced by earthquakes and recorded by a seis-
mic network. Focal mechanisms identification is currently investigated by
clustering of seismic events, using mainly cross-correlation dissimilarity
in conjunction with hierarchical clustering algorithm. By the way, it re-
sults that such adoptions have not been sufficiently validated. To shed
light on this we have studied the cross correlation dissimilarity on sim-
ulated seismic signals in conjunction with hierarchical and partitional
clustering algorithms, and compared its performance with a newly one
recently introduced for the purpose called cumulative shape. In particu-
lar, we have properly created synthetic waveforms related to two types
of focal mechanisms, showing that the cumulative shape perform bet-
ter than cross-correlation in the identification of the expected clustering
solution.
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1 Introduction

The seismograms are recordings of ground motion which record how the move-
ments have taken place and how have been transmitted through the ground.
Seismic waves are spread of low-frequency acoustic energy generated by an earth-
quake, an explosion or a volcano eruption. They travel through the different
level of the Earth’s underground where they can be deviated and reflexed by
each layer of the earth’s crust. During a seismic event, it is possible to identify
different groups of waves characterized by several amplitudes and frequencies.
These groups may be of different types depending from the waves and their
propagation. The main types of waves that are identified are:

— Primary waves (P-waves): they are compressional waves orthogonal to ground
motion. These are the first waves to arrive and to be detected by the
instruments.
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— Secondary waves (S-waves): they are shear waves parallel to ground motion
that arrive after the p-waves.

— Surface Love waves: they are a combination of P-waves and S-waves reflec-
tions traveling along the surface which produces entirely horizontal motion.

— Surface Rayleigh waves: combination of P-waves S-waves reflections traveling
along the surface which moves the ground up and down, and side-to-side in
the same direction of the wave.

P and S-waves are called body waves since they travel in the interior of the
Earth as opposed to surface waves. The differences between them are the trans-
mission geometry and velocity. For example, in the upper crust the typical
p-waves velocity is about 6 km/s while s-waves go at 3.5 km/s. The ampli-
tude of the body waves through an homogeneous elastic medium decreases with
the distance and at the same distance the power of the S-waves is greater than
P-waves.

Many research activities are related to seismic waves but two of them are very
interesting and related to data analysis: locating hypocenters and investigating
on focal mechanisms. The first problem tries to give a suitable location to an
unlocated event by the comparison to a well located master event, while the latter
is related to the physical phenomena which have generated an earthquake.

In this work we focus our attention on focal mechanisms. In this case, the
main assumption is that waveform similarity implies similarity in the focal pa-
rameters, so that important details about them can be determined by study-
ing waveforms related to the wave field produced by earthquakes and recorded
by a seismic network. For this purpose, focal mechanisms identification is cur-
rently investigated by clustering of seismic events, using mainly cross-correlation
and/or cross-spectral dissimilarities in conjunction with hierarchical clustering
algorithm.

Indeed, in seismology cross-correlation and/or cross-spectral dissimilarities
seems to be the most used. Barani et al. [I] use the application of cross-correlation
analysis to define groups of dependent events (multiplets) characterized by sim-
ilar location, fault mechanism and propagation pattern. Badaway et al. [2] did
a good analysis on source parameters and fault plane determinations by use of
cross-correlation. They use the cross-correlation distance in a classification phase
before to develop a focal mechanisms solution.

Furthermore, other dissimilarities have been defined and used for the analysis
of seismic signals. In particular, we have recently proposed the so called cumula-
tive shape dissimilarity which is based on the difference between the cumulative
energies of the signals rather than on their original waveforms [3]. Its reliability
has been tested on real seismic data, showing very good result in terms of cluster
homogeneity and computational time.

In this paper we deal with focal mechanism identification, by using hierarchi-
cal and partitional clustering algorithms in conjunction with cross-correlation
and cumulative shape dissimilarities. To this purpose we have generated sev-
eral synthetic dataset which simulate seismic events generated by two kinds of
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focal mechanisms. Results carried out on such simulated data, show that the
cumulative shape is preferable to the cross correlation dissimilarity.

The paper is organized as follows: in the next section we describe the main
components involved in waveform analysis of seismic events, section [B] describe
the software tool used for generating seismic events related to particular focal
mechanism, section @] describe the experiments and shows the computed results,
the last section offers conclusion an future directions.

2  Waveform Analysis

2.1 Data Collection

As described in [4] seismic events can be divided into artificial and natural. The
first are generated by simulation that can be executed in real or in virtually
environment, while the other are generated by natural factor such as tectonic
earthquakes, volcanic earthquakes and storm microseisms.

The artificial events such as explosions or rock bursts are generated by human
activity focusing on scientific aim. These experiments are often a controlled
sequence of bursts used to test a detection grid and the transmission medium.
Another opportunity is to generate synthetic waveforms by simulating virtually
a particular physical model. This allow to test extensively the data analysis
methodologies that can be used in order to infer focal mechanism properties.

The natural events are stored when they occur and the researchers study their
causes and behavior. Due to different sources an event may be localized from few
kilometers of depth up to 700 kilometers. The so called tectonic earthquakes are
the most dangerous and can be very destructive with a magnitude greater than
6. Volcanic earthquakes have a small energy and duration of tremor type, and
some instruments have difficult in recordings this type of events. Miscroseisms
are generated by storms over oceans or large water basins, and are not well
localized nor fixed to an origin time.

2.2 Preprocessing

Seismograms are affected by noise and by a not well identified signal portion
which corresponds to the event of interest. The noise can make complex the use
of a similarity measure between signals because a fine grained measure can look
the noise as a significant component of the seismic event. Two seismic events
may be generated by the same source, but a different noise could change the
waveforms making them quite different. A filtering phase is a mandatory activity
in the data preprocessing and must be executed with care. In particular, a light
filter could not clean the signal in the right way, otherwise an hard filter could
remove a meaningful portion of the signal. Band filters is the common choice to
clean seismic signals. Picking and triggering [5] are other important preprocessing
techniques in seismograms analysis. Picking is devoted to find the event inside a
long seismogram by the identification of P and S-waves, while the main goal of
triggering is the automated recognition of the seismic event regardless the noise
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background. The two techniques are applied together on seismograms analysis
in order to select an event inside a whole signal and to detect the phases on it.
Indeed, a trigger algorithm usually found also the P-phase of the event as start
so that a picking algorithm can find others. A well known triggering algorithm
is the Z-detector [6]. This method uses a standardization Z(i) computed on the
original discrete signal z (i) defined as:

2(0) = "0 e )

Ox
where p, and o, indicates mean and standard deviation of the discrete finite
signal x(i). A great advantage of using Z-detector is a good behaviour in back-
ground noise’s presence. Of course the threshold level required to select the start
and the end of the event depends from the background noise.

2.3 Dissimilarity Measures for Seismic Signals

The cross-correlation is one of the most used proximity measure for clustering
and classification of seismic events. Giving two discrete signals z1(¢) and 2(7)
both of finite length n, the cross correlation dissimilarity is defined as:
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Where R, ., denotes the cross correlation between x; and 2, and is defined
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for k = 1—n,..,n—1. Such dissimilarity is largely used to catch difference in shape
between seismic signals, but in this context it has also shown some drawbacks.
One of the most important, is that for a signal of length n its computational
time is O(n?).

Recently, we have proposed the so called cumulative shape dissimilarity 05 [3].
It is based on on the difference between the cumulative energies of the signals
rather than on their original waveforms. This assures that it fully satisfies three
important properties: (a) it gives high weight to the difference among the initial
part of the signals, (b) it is very low sensitive to background and impulsive noise
and (c) it is capable of detecting where two wave shapes are similar regardless
of magnitude. For completeness, we recall its definition:

Js(w1,m0) =Y [sda(k + 1) — sdra (k)| (4)
k
where sdi2 denote the cumulative sums between x; and xo, that is:
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Fig. 1.

Equation [ defines a normalized non-decreasing curve with values between
0 and 1. Finally, d, in M represents the sum of the derivative of the difference
between the cumulative sums of x; and 5. In some way the cumulative shape
checks that the two cumulative energy curves rise in the same way at the same
time. The value of the measure is higher when the energy curves have the same
shape. Figures [Th-d show four example of seismic events, figure [[k their cumu-
lative sums while figure [T the differences between them. We can observe that
the cumulative energies plot (k) allows to identify the P and S-waves arrivals as
the two concavities of the curves. Moreover, is less sensible in time to amplitude
values of the tail: the curve rises quickly at first, but less when the value of the
initial energy is added to that remaining. The background noise is less evident
because its value is constantly added to the energy curve. Two curve with similar
shape have a similar cumulative energy curve so is more simple to detect close
events (see event 1 and event 6 in figure [I]).

The application of the cumulative shape requires a good cut of the signal
at P-waves arrival. Although a fast alignment can be applied between two sig-
nal on the first part of them, is preferable to have each signal that starts with
P-waves. Note that the cumulative shape is more sensible to signal triggering
than cross-correlation, anyway a good cut is a necessary condition for both.
Cross-correlation dissimilarity is indeed affected by the cut because its value is
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computed on different subpartition of the signal so that an unrequited or a por-
tion miss can affect the computed value in different ways. Finally, it is important
to remark that cumulative shape measure is faster than cross-correlation (O(n)

vs O(n?)).

2.4 Clustering and Validation

Clustering is an unsupervised learning technique used on pattern recognition for
data partitioning [7] that can be seen as a three step process [RI9]: (1) choice
of a distance function; (2) choice of a clustering algorithm and (3) choice of a
methodology to assess the statistical significance of clustering solutions. Regard-
ing point (2), we recall that the main distinction between clustering algorithm
is among hierarchical and partitional methods. Hierarchical algorithms are the
most known, they are simple to implement and to understand also for naive
users. A great advantage of these algorithms is that the cluster solution is com-
posed by a tree structure called dendrogram. Among the hierarchical methods
for clustering, the most used are known as single-linkage, complete linkage and
average linkage. The partitional clustering techniques create a flat configura-
tion, a partitioning, of the data with a desired number of clusters K. The most
well known partitional algorithm is the k-means algorithm. An extension of the
k-means is the k-medoids algorithm [I0], where the medoid is a prototype of a
cluster that can be different from the simple centroid. Generally, the performance
of a clustering algorithm can be established by means of clustering internal and
external indices: the former gives a reliable indication of how well a partitioning
solution captures the inherent separation of the data into clusters [I1], the lat-
ter measures how well a clustering solution agrees with the ground truth for a
given data set. Due to the nature of our supervised experiments, we dispose of a
ground truth so the right choice is the adoption of the external indices, due also
to their superior accuracy compared with internal ones. In this work we have
used the Adjusted Rand index [12] and [I3],

3 Simulation Model

The possibility to generate synthetic waveforms by simulating virtually a par-
ticular physical model allows to test extensively the data analysis methodologies
that can be used in order to infer focal mechanism properties.

The E3D simulation tool developed by the Lawrence Livermore National Lab-
oratory of the University of California, is a software tool which allows to generate
seismic signals following a particular simulation model, based on models defined
by [14], [15], [I6] and [I7]. The software simulates wave propagation by solving
the elastodynamic formulation of the full wave equation on a staggered grid. The
solution scheme is 4th-order accurate in space, 2nd-order accurate in time.

The computation of a simulated dataset requires a long computational time
and lot of resources. Theses simulations are usually executed on high
performance clusters (HPC) because they use a massive parallelism.
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The first step for data simulation is the simulation of the earth structure. To
this purpose, a velocity model composed by five block is a good assumption.
Each block is an horizontal layer over the distance between the detection station
and projection of the source in the earth surface. The hypothesis of an horizontal
layer is used to simplify the model without losing some real characteristics of
the Earth’s crust. Each block is defined by six parameters:

Start depth: starting z position of block element
End depth: ending z position of block element
Gradient: vertical gradient (units per km)

P: P-wave velocity in km/sec

S: S-wave velocity km/sec

r: density g/cm?

The previous parameters are used to describe the physics of the propagation path
in a more realistic way. The values are fixed to simulate a real mean of several
rock types. A fault source is defined by three main parameters: strike, dip and
rake. As described in [I8] we report the definition of the previous parameters:

Strike: it is the direction of a line created by the intersection of a fault plane and
a horizontal surface, 0° to 360°, relative to North. Strike is always defined
such that a fault dips to the right side of the trace when moving along the
trace in the strike direction. The hanging-wall block of a fault is therefore
always to the right, and the footwall block on the left. This is important
because rake (which gives the slip direction) is defined as the movement of
the hanging wall relative to the footwall block.

Dip: it is the angle between the fault and a horizontal plane, 0° to 90°.

Rake: it is the direction a hanging wall block moves during rupture, as measured
on the plane of the fault. It is measured relative to fault strike, £180°. For
an observer standing on a fault and looking in the strike direction, a rake
of 0° means the hanging wall, or the right side of a vertical fault, moved
away from the observer in the strike direction (left lateral motion). A rake
of +180° means the hanging wall moved toward the observer (right lateral
motion). For any rake> 0, the hanging wall moved up, indicating thrust or
reverse motion on the fault; for any rake < 0° the hanging wall moved down,
indicating normal motion on the fault.

Once defined the model for the focal mechanisms, the simulation can occur after
having properly located the source event and the detection station across the
model.

4 Experimental Results

To perform simulation and test we used the E3D simulation tool on a computing
infrastructure based on an high performance cluster. On our simulation we have
chosen a 2D model on a grid of size 30 Km of length and 60km of depth. The
source event are located at length 7.5km from origin while the detection station
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Table 1. Layer of the simulated model

Start depth End depth Gradient P S r
0 5 0.25 3.1 1.5 2.3
5 17 0.05 5.8 3.3 2.67
17 28 0.02 6.7 4.5 2.8
28 31 0.45 6.92 4.7 2.9
31 60 0.01 8.25 5.5 3.2

is at length 22.5km. The blocks which describes the crust structure are reported
on table[Il and have been defined by expert seismologists.

A full 3D model must include the strike, dip and rake parameters but in a
2D model we can use only the first two. In details we have created two different
model of focal mechanisms:

Strike slip: have walls that move sideways, not up or down. That is, the slip
occurs along the strike, not up or down the dip. In these faults, the fault
plane is usually vertical, so there is no hanging wall or footwall. The forces
creating these faults are lateral or horizontal, carrying the sides past each
other.

Reverse: form when the hanging wall moves up. The forces creating reverse
faults are compressional, pushing the sides together.

We have defined two sources located at increasing depths in the range [2040]
km by step of 5 km. We recall that the sources are located at length 7,5 km from
the origin. For each one of the 5 source location, we have generated 20 events of
length 20 seconds in al cloud large about 2 — 3 km around the basic depth. The
simulation defines a ground truth of K = 2 clusters, each one composed by the 20
events generated by the two simulated focal mechanisms. In all the experiments,
we have used the average linkage algorithm as hierarchical clustering method,
while the k-medoid algorithm as partitional. In this latter case, the prototype
for each cluster is represented by the median event of each cluster.

The evaluation index computed on the results is the Adjusted Rand Index. We
recall that the higher its value is, the better the clustering result. In particular,
values closer to 1 shows a clustering solution closer to the ground truth.

Figure 2l summarize results of Adjusted rand for the two considered distance
computed by hierarchical and partitional clustering, for each one of the 5 con-
sidered source locations.

Results show that the Average linkage seems to be the right algorithm for
studying the focal mechanism. This is due to the average values of adjusted
rand computed for both distances by the hierarchical algorithm, that is better
than what obtained for the partitional one (0.88 vs 0.62). Moreover, the cu-
mulative shape has shown to be the right choice in both the hierarchical and
partitional cases (0.84 vs 0.65) . Anyway, the significative difference between the
two distances is in terms of computational time, since cumulative shape is linear
while cross correlation is quadratic.



508 F. Benvegna, G. Lo Bosco, and D. Tegolo

T T
[l Cunmulative Shape
[_ICross Correlation

I |’_‘ | I I I I I I

O Paritional (20) Hierarchical (20) Partiional (25) Hierarchical (25) Paritional (30) Hierarchical (30) Pariiional (35) Hierarchical (35) Parttional (40) Hierarchical (40)
Algorithm (depth)

o
©
T

Adjsuted Rand Index
° °
T

o
N
T

Fig. 2. Results computed by hierarchical and partitional method for 5 source location
at depths 20,25,30,35,40. Hierarchical and Partitionals’ Adjusted rand values are shown
in order for all the 5 considered depths.

5 Conclusion

In this paper we have tested two dissimilarity measures for seismic signals in
the specific problem of focal mechanisms identification. Our interest was to un-
derstand if the common adoption in the seismic data analysis signals framework
to use cross-correlation dissimilarity in conjunction with hierarchical clustering
algorithm can be also used for identifying focal mechanisms of an earthquake. To
this purpose, we have compared the cross correlation dissimilarity on simulated
seismic signals in conjunction with hierarchical and partitional clustering algo-
rithms with a newly one recently introduced for the purpose called cumulative
shape. Results confirm that the hierarchical clustering algorithm (in particular
average linkage) seems to be also the right adoption for focal mechanisms iden-
tification. Moreover, the cumulative shape has shown to be preferable to the
classical cross correlation especially because of the reduced computation time.
Future developments will be devoted to extend this simulation to more than two
sources adopting a full 3D model.
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