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1 Introduction and preliminaries
The fixed point theory is one of the most powerful and fruitful tools in nonlinear anal-
ysis. Its core subject is concerned with the conditions for the existence of one or more
fixed points of a mapping T from a topological space X into itself, that is, we can find
x ∈ X such that Tx = x. The Banach contraction principle [] is the simplest and one of
the most versatile elementary results in fixed point theory. Moreover, being based on an
iteration process, it can be implemented on a computer to find the fixed point of a contrac-
tive mapping. It produces approximations of any required accuracy, and, moreover, even
the number of iterations needed to get a specified accuracy can be determined. Recently,
Samet et al. [] introduced a new concept of α-contractive type mappings and established
various fixed point theorems for suchmappings in completemetric spaces. The presented
theorems extend, generalize and improve several results on the existence of fixed points
in the literature.
In , Matthews [] introduced the concept of a partial metric space and obtained

a Banach-type fixed point theorem on complete partial metric spaces. Later on, several
authors (see, for example, [–]) proved fixed point theorems in partial metric spaces.
After the definition of the partial Hausdorffmetric, Aydi et al. [] proved the Banach-type
fixed point result for set-valued mappings in complete partial metric spaces.
The aim of this paper is to generalize various known results proved by Nadler [],

Kikkawa and Suzuki [], Mot and Petrusel [], Dhompongsa and Yingtaweesittikul []
to the case of partial metric spaces and give one example to illustrate our main results.
We start with recalling some basic definitions and lemmas on partial metric spaces.

The definition of a partial metric space is given by Matthews [] (see also [, , ]) as
follows.
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Definition  A partial metric on a nonempty set X is a function p : X×X → [, +∞) such
that the following conditions hold: for all x, y, z ∈ X,

(P) p(x,x) = p(y, y) = p(x, y) if and only if x = y,
(P) p(x,x)≤ p(x, y),
(P) p(x, y) = p(y,x),
(P) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).

The pair (X,p) is then called a partial metric space.

If (X,p) is a partial metric space, then the function ps : X × X → [, +∞) given by
ps(x, y) = p(x, y) – p(x,x) – p(y, y) for all x, y ∈ X is a metric on X.
A basic example of a partialmetric space is the pair ([,+∞),p), where p(x, y) =max{x, y}

for all x, y ∈ [, +∞).

Lemma  Let (X,p) be a partial metric space, then we have the following:
() A sequence {xn} in a partial metric space (X,p) converges to a point x ∈ X if and only

if limn→+∞ p(x,xn) = p(x,x).
() A sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if the

limn,m→+∞ p(xn,xm) exists and is finite.
() A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in X

converges to a point x ∈ X , that is, p(x,x) = limn,m→+∞ p(xn,xm).
() {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric

space (X,ps).
() A partial metric space (X,p) is complete if and only if the metric space (X,ps) is

complete. Furthermore, limn→+∞ ps(xn, z) =  if and only if

p(z, z) = lim
n→+∞p(xn, z) = lim

n,m→+∞p(xn,xm).

Remark  ([], Lemma ) Let (X,p) be a partial metric space and let A be a nonempty set
in (X,p), then a ∈ A if and only if

p(a,A) = p(a,a),

where A denotes the closure of A with respect to the partial metric p. Note A is closed in
(X,p) if and only if A = A.

Now, we state the following definitions and propositions of a very recent paper of Aydi
et al. [].
LetCBp(X) be a collection of all nonempty closed and bounded subsets ofX with respect

to the partial metric p. For any A ∈ CBp(X), we define

p(a,A) = inf
{
p(a,x) : x ∈ A

}
.

On the other hand, for any A,B ∈ CBp(X), we define

δp(A,B) = sup
{
p(a,B) : a ∈ A

}
,

δp(B,A) = sup
{
p(b,A) : b ∈ B

}
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and

Hp(A,B) =max
{
δp(A,B), δp(B,A)

}
.

Proposition  [] Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X),we have
() δp(A,A) = sup{p(a,a) : a ∈ A}.
() δp(A,A) ≤ δp(A,B).
() δp(A,B) =  implies that A⊆ B.
() δp(A,B) ≤ δp(A,C) + δp(C,B) – infc∈C p(c, c).

Proposition  [] Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X),we have
() Hp(A,A) ≤ Hp(A,B).
() Hp(A,B) =Hp(B,A).
() Hp(A,B) ≤ Hp(A,C) +Hp(C,B) – infc∈C p(c, c).

Lemma  [] Let A and B be nonempty closed and bounded subsets of a partial metric
space (X,p) and h > . Then, for all a ∈ A, there exists b ∈ B such that p(a,b)≤ hHp(A,B).

The following result was proved by Aydi et al. in [].

Theorem  Let (X,p) be a partial metric space. If T : X → CBp(X) is a multi-valuedmap-
ping such that, for all x, y ∈ X,

Hp(Tx,Ty) ≤ kp(x, y),

where k ∈ (, ). Then T has a fixed point.

2 Main results
Now,we characterize the celebrated theoremofKikkawa and Suzuki [] in the framework
of partial metric spaces.

Theorem  Define a strictly decreasing function � from [, ) onto (  , ] by �(r) = 
+r . Let

(X,p) be a complete partial metric space and F : X → CBp(X) be a multi-valued mapping.
Assume that there exists r ∈ [, ) such that

�(r)p(x,Fx)≤ p(x, y) �⇒ Hp(Fx,Fy)≤ rp(x, y) (.)

for all x, y ∈ X. Then there exists u ∈ X such that u ∈ Fu.

Proof Let x ∈ X be arbitrarily chosen. For all x ∈ Fx, we have

�(r)p(x,Fx) ≤ �(r)p(x,x) ≤ p(x,x)

and, by the condition (.), we get

Hp(Fx,Fx) ≤ rp(x,x).

http://www.fixedpointtheoryandapplications.com/content/2013/1/175
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Let h ∈ (, r ), by Lemma , there exists x ∈ Fx such that p(x,x) ≤ hHp(Fx,Fx). Using
the previous inequality, we obtain

p(x,x) ≤ hHp(Fx,Fx) ≤ hrp(x,x).

Now, we have

�(r)p(x,Fx) ≤ �(r)p(x,x) ≤ p(x,x)

and, by the condition (.), we get

Hp(Fx,Fx)≤ rp(x,x).

By Lemma , there exists x ∈ Fx such that

p(x,x) ≤ hHp(Fx,Fx) ≤ hrp(x,x) ≤ (hr)p(x,x).

Continuing in this way, we can generate a sequence {xn} in X such that xn+ ∈ Fxn and

p(xn,xn+) ≤ knp(x,x) (.)

for all n ∈N, where k = hr < .
Now, we show that {xn} is a Cauchy sequence. Using (.) and the triangle inequality for

partial metrics (p), for all n,m ∈N, we have

p(xn,xn+m) ≤ p(xn,xn+) + p(xn+,xn+m) – p(xn+,xn+)

≤ p(xn,xn+) + p(xn+,xn+m)

≤ p(xn,xn+) + p(xn+,xn+) + p(xn+,xn+m) – p(xn+,xn+)

≤ p(xn,xn+) + p(xn+,xn+) + p(xn+,xn+m).

Inductively, we have

p(xn,xn+m) ≤ p(xn,xn+) + p(xn+,xn+) + · · · + p(xn+m–,xn+m)

≤ knp(x,x) + kn+p(x,x) + · · · + kn+m–p(x,x)

≤ (
kn + kn+ + · · · + kn+m–)p(x,x)

≤ kn

 – k
p(x,x) → 

as n→ +∞ since  ≤ k < . By the definition of ps, we get

ps(xn,xn+m)≤ p(xn,xn+m) → 

as n → +∞, which implies that {xn} is a Cauchy sequence in (X,ps). Since (X,p) is
complete, by Lemma , the corresponding metric space (X,ps) is also complete. There-
fore, the sequence {xn} converges to some u ∈ X with respect to the metric ps, that is,

http://www.fixedpointtheoryandapplications.com/content/2013/1/175
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limn→+∞ ps(xn,u) = . Again, by Lemma , we have

p(u,u) = lim
n→+∞p(xn,u) = lim

n,m→+∞p(xn,xm) = . (.)

Next, we show that

p(u,Fx)≤ rp(u,x)

for all x ∈ X\{u}. Since p(xn,u) →  as n→ +∞, there exists n ∈N such that

p(xn,u) ≤ 

p(u,x)

for all n ∈N with n≥ n. Then we have

�(r)p(xn,Fxn) ≤ p(xn,Fxn) ≤ p(xn,xn+) ≤ p(xn,u) + p(u,xn+) – p(u,u)

= p(xn,u) + p(u,xn+)

≤ 

p(u,x) ≤ p(u,x) – p(xn,u)

≤ p(xn,x)

and hence Hp(Fxn,Fx)≤ rp(xn,x). Since

p(u,Fx) ≤ p(u,xn+) + p(xn+,Fx)

≤ p(u,xn+) +Hp(Fxn,Fx)

≤ p(u,xn+) + rp(xn,x),

letting n → +∞, we obtain

p(u,Fx)≤ rp(u,x) (.)

for all x ∈ X\{u}.
Next, we prove that

Hp(Fx,Fu)≤ rp(x,u)

for all x ∈ X with x 
= u. For all n ∈N, we choose vn ∈ Fx such that

p(u, vn) ≤ p(u,Fx) +

n
p(x,u).

Then, using (.) and the previous inequality, we get

p(x,Fx) ≤ p(x, vn)≤ p(x,u) + p(u, vn) – p(u,u)

= p(x,u) + p(u, vn)

≤ p(x,u) + p(u,Fx) +

n
p(x,u)

http://www.fixedpointtheoryandapplications.com/content/2013/1/175
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≤ p(x,u) + rp(u,x) +

n
p(x,u)

=
(
 + r +


n

)
p(x,u)

for all n ∈N. As n→ +∞, we obtain 
+r p(x,Fx)≤ p(x,u). From the assumption, we have

Hp(Fx,Fu)≤ rp(x,u).

Finally, if, for some n ∈ N, we have xn = xn+, then xn is a fixed point of F . Assume that
xn 
= xn+ for all n ∈ N. This implies that there exists an infinite subset J of N such that
xn 
= u for all n ∈ J . From

p(u,Fu) ≤ p(u,xn+) + p(xn+,Fu)

≤ p(u,xn+) +Hp(Fxn,Fu)

≤ p(u,xn+) + rp(xn,u),

letting n → +∞ with n ∈ J , we get

p(u,Fu) =  = p(u,u).

By Remark , we deduce that u ∈ Fu and hence u is a fixed point of F . This completes the
proof. �

It is obvious that Theorem  of Aydi et al. follows directly from Theorem .
The following theorem is a result of Reich type [] aswell as a generalization of Kikkawa

and Suzuki type in the framework of partial metric spaces.

Theorem  Let (X,p) be a complete partial metric space and let F : X → CBp(X) be a
multi-valued mapping satisfying the following:

θp(x,Fx)≤ p(x, y) �⇒ Hp(Fx,Fy)≤ ap(x, y) + bp(x,Fx) + cp(y,Fy) (.)

for all x, y ∈ X, nonnegative numbers a, b, c with a+ b+ c ∈ [, ) and θ = –b–c
+a . Then F has

a fixed point.

Proof Let h ∈ (, 
a+b+c ) and x ∈ X be arbitrary. Let x ∈ Tx. By Lemma , there exists

x ∈ Fx such that

p(x,x) ≤ hHp(Fx,Fx).

Since θp(x,Fx) ≤ θp(x,x) ≤ p(x,x), we have

p(x,x) ≤ hHp(Fx,Fx) ≤ h
(
ap(x,x) + bp(x,Fx) + cp(x,Fx)

)
≤ h(a + b)p(x,x) + hcp(x,x)

≤ h(a + b)
 – hc

p(x,x).

http://www.fixedpointtheoryandapplications.com/content/2013/1/175
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Continuing in a similar way, we can obtain a sequence {xn} of successive approximations
for F , starting from x, satisfying the following:
(a) xn+ ∈ Fxn for all n ∈N;
(b) p(xn,xn+) ≤ knp(x,x) for all n ∈N,

where k = h(a+b)
–hc < . Now, proceeding as in the proof of Theorem , we deduce that

the sequence {xn} converges to some u ∈ X with respect to the metric ps, that is,
limn→+∞ ps(xn,u) = . Moreover, (.) holds by Lemma .
First, we show that

p(u,Fx)≤
(
a +

b
θ

)
p(u,x) + cp(x,Fx)

for all x ∈ X\{u}. Since p(xn,u) →  as n → +∞ under the metric p, there exists n ∈ N

such that

p(xn,u) ≤ 

p(u,x)

for each n≥ n. Then we have

θp(xn,Fxn) ≤ p(xn,Fxn) ≤ p(xn,xn+)

≤ p(xn,u) + p(u,xn+) – p(u,u)

= p(xn,u) + p(u,xn+)

≤ 

p(u,x) ≤ p(u,x) – p(xn,u)

≤ p(xn,x),

which implies that

Hp(Fxn,Fx) ≤ ap(xn,x) + bp(xn,Fxn) + cp(x,Fx)

≤ ap(xn,x) +
b
θ
p(xn,x) + cp(x,Fx)

=
(
a +

b
θ

)
p(xn,x) + cp(x,Fx)

for all n ≥ n. Thus we have

p(u,Fx) ≤ p(u,xn+) + p(xn+,Fx)

≤ p(u,xn+) +Hp(Fxn,Fx)

≤ p(u,xn+) +
(
a +

b
θ

)
p(xn,x) + cp(x,Fx)

for all n ≥ n. Letting n→ +∞, we get

p(u,Fx)≤
(
a +

b
θ

)
p(u,x) + cp(x,Fx)

for all x ∈ X\{u}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/175
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Next, we show that

Hp(Fx,Fu)≤
(
a +

b
θ

)
p(x,u) + cp(u,Fu)

for all x ∈ X with x 
= u. Now, for all n ∈N, there exists yn ∈ Fx such that

p(u, yn) ≤ p(u,Fx) +

n
p(x,u).

From

p(x,Fx) ≤ p(x, yn) ≤ p(x,u) + p(u, yn) – p(u,u)

= p(x,u) + p(u, yn)

≤ p(x,u) + p(u,Fx) +

n
p(x,u)

≤ p(x,u) +
(
a +

b
θ

)
p(u,x) + cp(x,Fx) +


n
p(x,u)

=
(
 + a +

b
θ
+

n

)
p(x,u) + cp(x,Fx)

for all n ∈N, it follows that, as n→ +∞,

( – c)p(x,Fx)≤
(
 + a +

b
θ

)
p(x,u)

and so θp(x,Fx)≤ p(x,u). Thus we have

Hp(Fx,Fu) ≤ ap(x,u) + bp(x,Fx) + cp(u,Fu)

≤
(
a +

b
θ

)
p(x,u) + cp(u,Fu)

for all x ∈ X \ {u}.
Finally, if, for some n ∈ N, we have xn = xn+, then xn is a fixed point of F . Assume that

xn 
= xn+ for all n ∈ N. This implies that there exists an infinite subset J of N such that
xn 
= u for all n ∈ J . Now, for all n ∈ J , we have

p(u,Fu) ≤ p(u,xn+) + p(xn+,Fu)

≤ p(u,xn+) +Hp(Fxn,Fu)

≤ p(u,xn+) +
(
a +

b
θ

)
p(xn,u) + cp(u,Fu).

Letting n → +∞ with n ∈ J , we get

p(u,Fu) =  = p(u,u).

By Remark , we deduce that u ∈ Fu and hence u is a fixed point of F . This completes the
proof. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/175
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The following theorem is a generalization of a result of Dhompongsa and Yingtaweesit-
tikul [] to the setting of partial metric space.

Theorem  Let (X,p) be a complete partial metric space and let F : X → CBp(X) be a
multi-valued mapping such that

θp(x,Fx)≤ p(x, y) �⇒ Hp(Fx,Fy)≤ λ
(
p(x,Fx) + p(y,Fy)

)
+μp(x, y) (.)

for all x, y ∈ X, where θ = 
λ+μ+ with λ, μ nonnegative real numbers and  ≤ λ + μ < .

Then F has a fixed point.

Proof Let h ∈ (, 
λ+μ

) and x ∈ X be arbitrary. Following the same proof of Theorem ,
by replacing θ = –b–c

+a in the proof by θ = 
λ+μ+ , we can obtain a sequence {xn} such that

(a) xn+ ∈ Fxn for all n ∈N;
(b) p(xn,xn+) ≤ knp(x,x) for all n ∈N,

where k = h(λ+μ)
–hλ < .

Now, proceeding as in the proof of Theorem , we deduce that the sequence {xn} con-
verges to some u ∈ X with respect to the metric ps, that is, limn→+∞ ps(xn,u) = . Again,
from Lemma , we have

p(u,u) = lim
n→+∞p(xn,u) = lim

n→+∞p(xn,xm) = . (.)

Next, we show that

p(u,Fx)≤ μp(u,x) + λp(x,Fx)

for all x ∈ X\{u}. Since p(xn,u) →  as n → +∞, there exists n ∈ N such that p(xn,u) ≤

p(u,x) for all n≥ n. We have

θp(xn,Fxn) ≤ p(xn,Fxn) ≤ p(xn,xn+)

≤ p(xn,u) + p(u,xn+) – p(u,u)

= p(xn,u) + p(u,xn+)

≤ 

p(u,x) ≤ p(u,x) – p(xn,u) ≤ p(xn,x).

Now, using the conditions (.) and (.), we obtain

p(u,Fx) ≤ p(u,xn+) + p(xn+,Fx)

≤ p(u,xn+) +Hp(Fxn,Fx)

≤ p(u,xn+) + λp(xn,Fxn) + λp(x,Fx) +μp(xn,x)

≤ p(u,xn+) + λp(xn,xn+) + λp(x,Fx) +μp(xn,x)

for all n ≥ n. Letting n→ +∞, we get

p(u,Fx)≤ λp(x,Fx) +μp(u,x),

as desired.

http://www.fixedpointtheoryandapplications.com/content/2013/1/175
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Next, we show that

Hp(Fx,Fu)≤ λp(x,Fx) + λp(u,Fu) +μp(x,u)

for all x ∈ X \ {u}. By Lemma , for all n ∈N, there exists yn ∈ Fx such that

p(u, yn) ≤ p(u,Fx) +

n
p(u,x).

Clearly, we have

p(x,Fx) ≤ p(x, yn) ≤ p(x,u) + p(u, yn) – p(u,u)

= p(x,u) + p(u, yn)

≤ p(x,u) + p(u,Fx) +

n
p(x,u)

≤ p(x,u) + λp(x,Fx) +μp(u,x) +

n
p(x,u)

≤
(
 +μ +


n

)
p(x,u) + λp(x,Fx)

for all n ∈N. Hence, as n→ +∞, we get

( – λ)p(x,Fx)≤ ( +μ)p(x,u)

and so �p(x,Fx)≤ p(x,u) since � ≤ –λ
+μ

. Now, using the condition (.), we obtain

Hp(Fx,Fu)≤ λp(x,Fx) + λp(u,Fu) +μp(x,u)

for all x ∈ X \ {u}.
Finally, if, for some n ∈ N, we have xn = xn+, then xn is a fixed point of F . Assume that

xn 
= xn+ for all n ∈ N. This implies that there exists an infinite subset J of N such that
xn 
= u for all n ∈ J . From

p(u,Fu) ≤ p(u,xn+) + p(xn+,Fu)

≤ p(u,xn+) +Hp(Fxn,Fu)

≤ p(u,xn+) + λp(xn,Fxn) + λp(u,Fu) +μp(xn,x)

≤ p(u,xn+) + λ
 +μ

 – λ
p(xn,x) + λp(u,Fz) +μp(xn,x),

letting n → +∞ with n ∈ J , we get

p(u,Fu) =  = p(u,u).

By Remark , we deduce that u ∈ Fu and hence u is a fixed point of F . This completes the
proof. �

Now, we give one example to illustrate Theorem .

http://www.fixedpointtheoryandapplications.com/content/2013/1/175
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Example  Let X = {, , } and p : X ×X → [, +∞) be a partial metric on X defined by

p(, ) = p(, ) = , p(, ) =



, p(, ) = p(, ) =


,

p(, ) = p(, ) =


, p(, ) = p(, ) =




.

Let F : X → CBp(X) be defined by

Fx =

{
{} if x ∈ {, },
{, } otherwise.

It is easy to see that {} and {, } are closed in X with respect to the partial metric p. Now,
we have

Hp(F,F) =Hp(F,F) =Hp(F,F) =Hp
({}, {}) = ;

Hp(F,F) =Hp
({, }, {, }) = ;

Hp(F,F) =Hp(F,F) =Hp
({}, {, }) = 


;

p(,F) = p
(
, {}) = ; p(,F) = p

(
, {}) = 


;

p(,F) = p
(
, {, }) = 


.

If we choose a = 
 , b =


 and c =


 , themulti-valuedmapping F satisfies the hypotheses

of Theorem  and so has a fixed point. To such end, it is enough to show that (.) is
satisfied in the following cases.
Case . x =  and y = . Now, θp(,F) ≤ p(, ), where θ = 

 and

Hp(F,F) =



≤ 


≤ 

p(, ) +



p(,F) +




p(,F).

Case . x =  and y = . Now, θp(,F) ≤ p(, ) and

Hp(F,F) =



≤ 


≤ 

p(, ) +



p(,F) +




p(,F).

Case . x =  and y = . Now, θp(,F) ≤ p(, ) and

Hp(F,F) =



≤ 


≤ 

p(, ) +



p(,F) +




p(,F).

Case . x =  and y = . Now, θp(,F) ≤ p(, ) and

Hp(F,F) =



≤ 


≤ 

p(, ) +



p(,F) +




p(,F).

Thus all the conditions of Theorem  are satisfied. Here x =  is a fixed point of F .
On the other hand, the metric ps induced by the partial metric p is given by

ps(, ) = ps(, ) = ps(, ) = , ps(, ) = ps(, ) =


,

ps(, ) = ps(, ) =



, ps(, ) = ps(, ) =



.
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Note that, in the case of an ordinary Hausdorff metric, the given mapping does not
satisfy the condition (.). Indeed, for x =  and y = , the condition θps(,F)≤ ps(, ) is
satisfied. But the condition H(F,F)≤ aps(, ) + bps(,F) + cps(,F) is not satisfied.
In fact, we have

H(F,F) =H
({}, {, }) = 


,

ps(,F) = ps
(
, {, }) = 



and




≥ 


(



)
+


() +




(



)
=




.
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