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Abstract

Data-Driven Decision Support for Low Electricity Access Settings

Sally Simone Rose Flore Lylie Fobi Nsutezo

Universal, affordable and reliable electricity remains a key pillar towards achieving Sustain-

able Development Goals. It is low income countries that find bridging gaps in electricity access

particularly challenging. Making judicious financial investments is critical in a low income setting

as there are multiple competing compelling areas in which to make resource allocations. A data

driven approach that can leverage prior data from electricity service providers can guide decision

making.

This dissertation presents approaches that leverage such data, to assist utilities and national

bodies with insights that could be useful. There are five unique contributions made. These are in

the form of key results about electricity consumption patterns, novel methodologies for electricity

demand prediction and relevant metrics for estimating the cost of a grid connection.

First, this thesis, through in-depth analysis of electricity data from thousands of households,

sheds light on electricity consumption patterns in Rwanda and Kenya. This work revealed that

utilities are increasingly connecting low consuming households whose consumption peaks sooner

and plateaus lower than their peers who were connected earlier. While the previous focus of

research has been on addressing electricity supply-side constraints, this work is the first of it’s kind

to show that electricity consumption for the newly electrified is very low, thereby making capital

cost recovery of a grid connection even harder to achieve. This mismatch between supply and

demand emphasizes the need for utilities to better quantify expected demand upon connection.

Secondly, this thesis makes methodological contributions that support electricity demand pre-

diction for the yet-to-be grid-connected households. Specifically, Convolutional Neural Network

(CNN) models were designed to take as inputs pre-grid-access daytime satellite image patches and

output electricity consumption levels. Results from this work show that the proposed methodolo-

gies perform better than utility based estimates of anticipated demand. This methodology shows

that rapid large scale evaluation of latent demand can be effectively performed using daytime satel-



lite imagery, thereby giving guidance on which sites or regions are more suitable for grid versus

off-grid technologies. Outputs from the models have been utilized by energy planners in Kenya.

The third unique contribution made in this dissertation is in the development of key metrics to

estimate the cost of grid-access. Complementary to the evaluation of electricity demand, this thesis

also develops an electricity grid network optimization model, connecting 9.2 million structures

in Kenya. Given transformer placement and the estimates for low and medium voltage line, an

approximation for the per household wire requirement is obtained. The work shows that traditional

rural/urban classification based on population density may not be enough and is often deceiving in

estimating the cost of grid-access and a new categorization based on our proposed per household

wire requirement metrics provides more relevant estimates on the total cost.

Fourthly, this dissertation also demonstrates methods to re-purpose electricity data in order to

provide insights to new domains such as household wealth. This work illustrates how household

overall expenditure can be obtained from electricity usage data and how electricity usage can be

obtained from daytime satellite imagery. This methodological contribution provides a pathway

for stakeholders to estimate household overall expenditure from daytime satellite imagery. The

work shows the value of electricity data in answering other questions in new domains without the

deployment of additional surveys or hardware.

The final research contribution discussed in this thesis focuses on methods to make smart mod-

ifications to existing machine learning models to support analysis in settings where label avail-

ability is small and label quality is poor. This concept is illustrated with a building segmentation

task given misaligned and omitted building footprints. Our proposed end-to-end learning pipeline

demonstrates how data constrained regions can learn about building characteristics despite having

incomplete and noisy labels. In addition, this work is used to provide explanatory features to the

CNNs used for prediction in the earlier parts of the work.

While the focus of the research was on Kenya and Rwanda, this work transcends multiple

domains such as water and internet access and can be extending to countries seeking evidence-

based approaches to inform sustainable development.
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Preface

Every year, billions of dollars are invested in varying services including but not limited to

water, broadband internet, agriculture and energy. In 2021, annual global energy investments were

expected to hit $1.9 trillion, where approximately 29 % of that investment ($544 billion) was esti-

mated to go to energy infrastructure [1]. For countries yet to attain 100 % electrification, a signifi-

cant portion of the energy infrastructure budget goes towards increasing electricity access through

grid extension or off-grid systems. However, in 2019, finance for electricity access dropped to

$12.9 billion from $32 billion in 2018, while an estimated $41 billion in investments is needed

annually to meet universal access by 2030 [2]. Given the large gulf between required and actual

investments, approaches that support optimized resource allocation can enable electrification of

more people using the same limited resources. In the case of electrification, some opportunities

for optimal resource allocation include asset placement such as where the grid should be extended

to versus which places are better off with off-grid systems, given the anticipated consumption.

Poor allocation of already limited funds implies that fewer people can use electricity given the

same investment. Of equal importance to optimized resource allocation, is quantifying the socio-

economic impacts of these investments to ensure the intended economic growth is achieved. Data

from the International Energy Agency has established the relationship between electricity usage

and economic growth, where higher incomes and economic activity are usually correlated with

more consumption of electricity. Approaches that quantify both the amount of electricity used

given investments and the corresponding socio-economic activity are needed to justify the invest-

ment and for finding opportunities for improved resource allocation.
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Advances in artificial intelligence and deep learning have improved the ability of computers to

find optimal solutions. In recent years, these deep learning optimization algorithms have become

ubiquitous and can be easily developed and used. The goal of deep learning models is to uncover

patterns given the data by minimizing the error between the model and the data. Once a high

performing model is established, the model can be used to infer the behavior for new and unseen

examples. A key metric for deep learning models is their ability to generalize to these new and

unseen examples. This ability to generalize, makes deep learning approaches very desirable within

the energy context as energy providers can use their existing data to learn relevant patterns in

electricity consumption and use insights from the extracted patterns to answer questions across the

large swath of future customers, thereby better allocating their limited resources.

Critical to the performance of deep learning models is the availability of large amounts of

model input data that capture the underlying dynamics of the problem of interest and correspond-

ing groundtruth labels to confirm the predictions from the model. To that effect, the availability of

remote sensed input data from varying satellites has vastly improved the ability of deep learning

algorithms to answer questions around wealth, infrastructure and more, at the sub-national level.

High resolution 50 cm visible 3-band imagery products are available through Maxar though these

products tend to have low temporal cadence on the scale of every few years. Medium resolution

10m 13-band imagery such as free Sentinel2 products are collected at a higher temporal cadence of

every 10-days. While lower resolution (15 arcseconds) products such as VIIRS Nighttime Lights

are available on NOAA’s website for every single day. The variety and volume of remote sensed

products provides an opportunity to leverage deep learning algorithms in order to answer energy

related questions at scale for multiple countries still seeking to offer affordable and reliable elec-

tricity [3].

This five chapter thesis presents a convergence of deep learning and remote sensed data applied

to the electricity sector. In this body of work, I highlight data-driven approaches to understand

electricity usage and growth, and methods for supporting decision making within the electricity

sector.
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Chapter 1: A Data-Driven Descriptive Analysis of Electricity Consumption & Growth in

Kenya and Rwanda - presents an analysis of electricity usage and growth using electricity con-

sumption data from Kenya and Rwanda. This data was obtained from the main providers of elec-

tricity covering over 100,000 utility residential customers in each country. In this chapter, elec-

tricity consumption patterns are teased out revealing how consumption evolves upon grid-access.

From this analysis, a key observation emerged: as more people are electrified, utilities are increas-

ingly adding households that consume less electricity, peak sooner, plateau lower and are more

difficult to connect via grid. This insight is relevant to energy providers as they can better under-

stand the kinds of technologies that can support the seen growth and also quantify the impact of

their investment in electricity access. An analysis of utility revenue is also presented in this chapter

with the aim of understanding the utility’s policies and its impact on electricity consumption.

Given a better understanding of longitudinal electricity consumption amongst varying customer

cohorts, Chapter 2: Predicting Levels of Household Electricity Consumption in Low-Access Set-

tings - presents a method of predicting levels of electricity consumption for future customers given

features present in satellite imagery. This chapter demonstrates that satellite imagery obtained

prior to a building being electrified holds relevant information about the expected consumption

that the household will have within the first few years of an electricity connection. In this chapter

a Convolutional Neural Network (CNN) is developed to learn relevant household characteristics

from images and the learnt features are used to predict levels of household electricity consumption

in Kenya. The CNN model is validated with utility data from Kenya. Results from this work shows

that using non-linear image-based models such as CNNs provides a better approach to estimating

levels of consumption compared to typical methods that an energy provider might rely on. Predic-

tions from the proposed models have been used by energy providers (through an API) to support

electricity access planning in Kenya.

Having provided an approach to predicting consumption levels for future connections, Chap-

ter 3: A scalable framework to measure the impact of spatial heterogeneity on electrification -

presents a methodology to plan large scale grid-extension networks at the resolution of individual
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buildings. Network planning with millions of household or structure nodes remains an NP-hard

problem. However network planning is critical for energy providers to estimate the cost of a grid

connection. In this chapter, we present a methodology to planning a grid extension network for

over 9 million nodes. The nodes reflect locations of buildings obtained via satellite imagery. This

chapter demonstrates how household settlement patterns can heavily influence the cost of a grid

connection and where opportunities for different electrification technologies lay within the land-

scape of Kenya. One such observation from this work is that regions where households are close to

each other but communities are far away from each other, tend to have higher medium voltage line

costs and smaller low voltage line costs. These regions become good candidates for local genera-

tion and distribution (e.g. MiniGrid). This work is complementary to the electricity consumption

prediction problem and methodology discussed in Chapter 2. Combining an understanding of grid

connection costs with expected consumption can help energy planners better determine how to

allocate resources to meet the goal of universal electricity access.

The remaining two chapters present approaches for remote measurement of other indicators

such as household wealth and household characteristics. Electricity usage is often correlated

with measurements of wealth and economic development. Energy provides have access to large

amounts of passively collected electricity usage data from their already electrified customers.

Chapter 4: High resolution estimates of household electricity usage as a proxy for household

overall expenditure - explores the effectiveness of combining electricity usage data and high reso-

lution 50 cm daytime satellite imagery in Rwanda to estimate overall household expenditure. Here,

we show that electricity consumption data can be repurposed to estimate other indicators such as

wealth, without the deployment of additional resources such as surveys. This chapter also presents

an approach to estimating actual kiloWatthours (kWh) of household electricity consumption from

daytime imagery. These estimates are useful in understanding the value of electricity investments

and also providing business insights for future investments. In addition to kWh estimates, this

chapter explores the advantages of varying estimation metrics at different levels of aggregation,

highlighting the implications on performance and privacy. Results from this work show that at 1
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sqkm resolution, the model estimates with high fidelity, the average electricity consumption, while

preserving the privacy of households. This chapter provides an approach for governments to eval-

uate the impact of varying investments on the socio-economic well-being of its people, where a

specific resolution that best supports effective decision making can be selected.

Machine learning models learn very well in the presence of large amounts of clean labels.

Building footprints are an example of labels that are important to understanding household char-

acteristics and that lend themselves well to machine learning models. However, in resource con-

straint settings, label availability and cleanliness remains a challenge. Chapter 5: Learning to

Segment from misaligned and partial labels- presents a method to leverage machine learning for

building roof segmentation, when labels are noisy and incomplete. This chapter demonstrates that

relevant machine learning models can be developed by making smart modifications to existing

machine learning approaches, thereby making the algorithms suitable for the relevant context. In

this chapter, we first present an approach to realign misaligned building footprint labels. Next we

demonstrate how a machine learning model can be trained when there are omitted building in-

stances within an image patch. Combining both approaches, we show that building footprints can

be obtained given noisy and incomplete labels. Beyond the usefulness of the work in learning with

noisy labels, outputs from this chapter (building footprints) were used to provide insights to the

CNN models presented in Chapter 2 and 4, highlighting the relevant features learnt during model

training.

On the whole, this thesis applies deep learning and geospatial analysis to the energy domain

to answer resource allocation questions and remote monitoring of socio-economic indicators. This

work is particularly relevant for resource-constraint regions who could benefit from sub-national

high resolution guidance about how to invest and the impact of their investments. While this work

demonstrates the approach within the domain of electricity access and usage, the developed and

proposed methods are of relevance to other sectors that may also require decision support.
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Chapter 1: A Data-Driven Descriptive Analysis of Electricity Consumption

& Growth in Kenya and Rwanda

Access to reliable and affordable electricity is a primary goal for policymakers, governments

and development organizations. Developing economies regularly make critical decisions on how

to allocate precious public-sector resources to increase electricity access, often with little evidence.

Governments, financial institutions, and entrepreneurs are exploring new pathways for electrifica-

tion such as solar home systems and mini-grids, as well as redoubling investments in traditional

grid extension, all in an effort to build sustainable institutions for delivering electricity services.

Despite these efforts, as of 2019 nearly 800 million people still live without access to electricity

[4]. This estimate could potentially be higher as the Covid-19 pandemic has slowed progress to-

ward universal electricity access [5]. Thus, electricity access remains a primary pillar for sustained

growth and development.

Providing electricity access is an age-old challenge that multiple countries have and continue

to address. In the 1930s, the United States saw a huge push to boost electrification rates (especially

in rural areas) through programs led by the Rural Electrification Administration. This initiative

sought to provide both electricity connections and appliances for farmers in rural areas. While the

cost of rural electrification was estimated to be very high (sometimes up to $2000 /mile to extend

power lines), appliance financing and credit extensions to farmers equally ensured high demand

for power upon electrification. This combination made the rural electrification story in the United

States a huge success and has served as an example of electrification for the rest of the world.[6]

Unlike the U.S. rural electrification program, government-led electrification initiatives such

as those in India and throughout Sub-Saharan Africa have directly targeted households for grid

connections instead of rural farmers. These electrification schemes spear-headed by country-led
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agencies have emerged across the world with the goal of fast-tracking electrification. In India, the

Rajiv Gandhu Grameen Vidyutikaran Yojana (RGGVY) scheme is an example of a government-

led initiatives geared at increasing electricity connections at small to no connection fees. In Kenya,

the Last Mile Connectivity Program (LMCP) and Rural Electrification Authority (REA) programs

also aim to electrify households and rural public facilities, respectively[7]. In Rwanda, large scale

electricity access initiatives such as Electricity Access Rollout Program (EARP) have significantly

increased electricity access in households.

Despite the large strides made by these initiatives (sometimes at no cost to households) to in-

crease grid connections, there remains a high capital cost to the utility or energy provider. Lee

et al [8] estimate the cost of an electricity connection may range from $1300 to $1600 for house-

holds in Kenya. Similarly [9] estimate the rural per connection grid connection cost to be $1100

in Vietnam, $2300 in Tanzania, while those of urban grid connections could be $570 in Vietnam,

$1100 in Tanzania and $800 in South Africa. As utilities electrify more households, an increasing

proportion of these new connections would stem from rural areas, thereby leading to steeper per

household connection costs for the utility. Assuming an average rural connection cost of $1,500 per

connection, at current U.S. average household electricity consumptions of 900 kWh/month [10], it

would take about 10 years to recoup the connection cost if 10 % of the electricity tariff were ded-

icated to capital cost recovery 1. As electricity demand decreases the potential for cost recovery

becomes significantly harder. At very low electricity consumptions of around 5 kWh/month, as

seen in Rwanda, it would take 2,874 years to recoup the investment cost 2,. At such low consump-

tions, the economics of grid extension becomes infeasible and other cheaper electricity provision

technologies have to be considered.

While grid extension efforts in developing economies have led to an up-tick in the percent-

age of population that has access to electricity at home; a less well-understood phenomena is the

evolution of consumption as the utility increasingly electrifies more rural households. Understand-

ing electricity consumption growth especially for more recently electrified households is critical

1Assuming the residential electricity tariff of 13.7 cents/kWh [11]
2Assuming a residential electricity tariff in 8.7 cents/kWh, with 10 % of the tariff allocated to cost recovery
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for cost-effective planning. However, projecting future electricity consumption is difficult, under-

scored by the observation that projections tend to understate growth in electricity demand in the

developing world [12]. Plausible electrification strategies depend on analyzing existing customer

data to predict the behavior of varying customer cohorts such as newly-connected customers.

This chapter presents an in-depth analysis of electricity consumption data for utility based

customers in Kenya and Rwanda. Using data from electric meters and analyzing over 100,000

customers in each country this chapter presents a descriptive analysis of electricity consumption

patterns for varying connection cohorts. A key finding that emerges is that utilities are increasingly

connecting lower consumers who peak sooner and plateau lower, thereby making it harder to re-

cover the costs of grid extension. This finding underscores the importance of consumption growth

studies which the energy providers must consider in order to cost-effectively electrify households.

1.1 Related Work

1.1.1 Electricity consumption

Accurate electricity consumption estimates are important in designing electrical generation and

delivery systems and meeting reliability requirements. A study in Malawi [13] uses off-grid data

from 7 PV and battery systems to show the impact of incorrect load estimation on system cost

and reliability. They found that system cost scaled proportionally with errors in consumption es-

timates, where over estimation led to significant increases in system cost of between USD 1.82

to USD 6.02 per watt-hour, while underestimating consumption eroded system reliability. This

dichotomy between system cost and reliability emphasizes the need for data-driven approaches to

understanding and predicting consumption, which can in turn yield more optimal system design.

In the case of residential electricity consumption, predictions are typically made by using multi-

ple variables including socioeconomic characteristics, appliance ownership, and living conditions.

A literature review on the topic suggests that at least 62 variables potentially affect residential

electricity usage[14]. Other authors conclude that some important explanatory variables for house-

hold electricity consumption include appliance ownership, electricity tariffs, available income, and
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number of residents in the household [15, 16, 17]. While these analyses offer a deep-dive into

electricity consumption patterns, they depend on expensive and time-consuming household sur-

veys, rendering them difficult to scale with similar resolution to larger areas such as countries

or regions. Spatio-temporal analysis can provide insights to electricity consumption over large

areas. Socio-economic and demographic variables such as population and income levels can be

folded into such methods when studying electricity demand. For example, [18, 19, 20] demon-

strate spatio-temporal analyses using satellite imagery to study population and energy dynamics

in various regions. Results from these papers show a relationship between spatial dynamics, elec-

tricity consumption, and population. To explore the differences in electricity consumption due

to urbanization, [19] use a pixel-based method to delineate urban, suburban and rural regions in

China. A universal definition for urban regions was difficult to obtain and the Chinese adminis-

trative units “prefectural city” are a mix of both urban districts and rural counties. The authors

use population adjusted nighttime lights to delineate urban areas. Land cover was then used to

determine the optimal nighttime lights threshold for highly dense built-up areas in China. The

obtained highly dense regions are labeled as the urban core while the difference between urban

regions and urban core gives the suburban region. This definition of urbanization allows them to

study differences in electricity patterns by urbanization levels. Chévez et al.[21] propose another

approach for obtaining spatially homogeneous areas using k-means clustering algorithm. In this

case, rather than using urban, suburban and rural as homogeneous areas, they define k clusters,

where each cluster is a spatially homogeneous region. Homogeneity is defined by the authors as

regions with similar electricity consumption. The algorithm classifies n users with M features into

the k clusters. Given the number of clusters (k) defined a priori, the algorithm finds k clusters

which minimize the euclidean distance as defined by sum of least squares. Initially, k × M values

are chosen to represent cluster centroids. The authors compute the euclidean distance of each user

from the initial centroids of the clusters and then assign the user to the cluster which yielded the

smallest distance from the user. The process is repeated until users do not change
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1.2 Electricity Consumption in Kenya

Kenya is an example of a country that has vastly expanded its electrification – from 2010 to

2015, grid penetration has increased by 27%, more than doubling the number of customers on

the centralized grid – see Figure 1.1 [22]. In addition to the centralized grid, there are now up-

wards of 600,000 solar home systems deployed, which contribute another 5–6% in electrification

(estimated using census figures [23] and current population estimates([24]). Most of the grid con-

nections from 2010 to 2016 were residential, and nationwide residential electricity consumption

has increased at roughly 9% annually over the period. Despite these large gains, little is understood

about how much electricity these new customers consume, and even less is known about how their

consumption will change with time. This study seeks to address this question: how much elec-

tricity do newly-connected electricity customers use, and how will that consumption evolve? To

that end, we present a longitudinal study of electricity consumption growth in Kenya. This study

is built upon a dataset of billing records from Kenya Power, the sole distribution utility in Kenya.

The dataset includes monthly billing records over a six-year period, from 2010 through 2015, for

a random sample from Kenya Power’s customer database at the end of 2015. After cleaning and

meta-data verification, the random sample amounts to roughly 136k residential customers. The

scale and extent of the longitudinal dataset is heretofore unseen in the literature on electricity con-

sumption for an African country. Further description of this dataset is provided in Section 3. To

identify which customers in our randomly-sampled dataset are rural, we developed an algorithm

for determining which areas of the country are urban, peri-urban, and rural based on a constrained

clustering method – we describe this method and its relevance in Section 1.2.2 and Appendix

1.5.1. Subsequently we show results for urban and rural consumption, where the urban results are

a straightforward combination of both urban and peri-urban customers. In Section 1.2.3, we use

the results of this method as well as other customer meta-data in order to segment our sample of

customers and identify patterns of consumption growth among various groups. We conclude with

implications of this study for policymakers and electricity planners, discussion of the limitations
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of our work, and next steps for research in the area.
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Figure 1.1: Total number of customers and total electricity sales for Kenya Power between 2010
and 2016. Non-Residential includes industrial, commercial, street lighting, and off-peak loads.
Customer additions were mainly to the residential sector. Data are from Kenya Power annual
reports [22].

1.2.1 Kenya Power Utility Data

Our study analyzes monthly electricity data of historical consumption in Kenya for residential

customers from January 2010 through December 2015. The analysis first randomly samples cus-

tomers from Kenya Power’s customer database of about 4 million customers, at the end of 2015

and includes only residential customers with postpaid electricity meters. This random sample con-

sists of 152,752 customers. Using customer meta-data such as the meter GPS location and date

of meter installation (connection), we remove customers with missing GPS location or installation

date data. After this filtering our study dataset contains 135,579 customers. We use the bills of this

study dataset for subsequent computations and analysis. Each bill is provided as a series of com-

ponents, according to a block tariff structure called the A0 (Residential) tariff. This tariff structure

includes a combination of fixed and variable components; a description of these components is

provided in Table 1.1.
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Component Fixed/Variable Description
Fixed Charge Fixed 150 Ksh
Unit Charge Variable 1st 0-50 units @ 2.50 Ksh/Unit

Variable 2nd 51-1,500 units @ 12.75 Ksh/Unit
Variable 3rd Above 1,500 units @ 20.57 Ksh/Unit

Fuel Cost Charge Variable 2.51 Ksh/Unit
Forex Fluctuation Adj. Variable 1 Ksh/Unit

Water Resource Management Authority (WARMA) Variable 0.05 Ksh/Unit
Inflation Adj. Variable 0.23 Ksh/Unit

Rural Electrification Program (REP) Variable 5 % of Unit Charge
Energy Regulatory Committee (ERC) Variable 0.03 Ksh/Unit

Value Added Tax (VAT) Variable 16 % of (Unit Charge + Fuel + Forex)

Table 1.1: Kenya Power residential (A0) tariff components. Note that the tariff description is as of
the end of our study period; the tariff changed slightly on a couple of occasions during the study
period. [25]

In addition to monthly units of electricity consumption (provided in kWh), each component

also includes a bill amount (provided in Kenya Shillings – herein, KSh). In this study, we ex-

clusively report on units of electricity consumption (kWh); discussion on the implications of this

choice is provided in Section 1.2.3.

While most customers have bill data for all or nearly all months, there are some customers

within this study dataset that have missing bill data, creating an unbalanced panel.

Figure 1.2: Year of electricity connection versus number of months since the electricity connection,
for each of the 136k customers. Each horizontal line represents a customer over time, with black
indicating the presence of data for that given customer in a given month while white represents the
absence of data for the given customer in a given month. This figure shows (i.) the data available
for each customer and (ii.) the data available over different durations of access.

Figure 1.2 shows the months for which bill data are available for each customer, where cus-

tomers are sorted by date of installation (connection). Each horizontal line represents a customer
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[A] [B]

Figure 1.3: This figure compares the locations of electricity customers in our sample with the
locations of population in Kenya. The customer locations are also segmented by urbanization level,
showing well-defined spatial transitions from urban to peri-urban to rural. A:Spatial distribution
of 136k customers in sample. B: 2015 Kenya Population – each dot represents 100 people.

over time, with black indicating the presence of data for that given customer in a given month.

Conversely, white represents the absence of data for the given customer in a given month. Please

note that the sample is biased to the rate of growth in Kenya Power’s customer base, and that we

observe different epochs for each customer based on the relationship between their connection date

and our study period (2010–2015). A small number of customers, seen in the topmost rows of the

graph, have six years of billing data but are listed as having an installation date of March 1, 1995;

we believe these customers originate prior to 1995, but have incorrect installation dates in our

dataset. Based on our interaction with Kenya Power, installation dates for customers originating

prior to 1995 were not recorded thus these customers were listed as having an installation date of

March 1, 1995. We do not use data from these customers for determining customer consumption

growth patterns. The customers are spatially distributed across Kenya as seen in Figure 1.3(a),

where each dot represents a single electrical connection. For comparison, Figure 1.3(b) shows the

population density of Kenya, where each dot represents 100 people. Comparing customer loca-

tions to overall population density, there are heavy concentrations of both customers and people

in the western, central, and coastal regions of Kenya. The electricity customer dataset is biased
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towards higher-density areas; evidence for this claim is available in 1.5.1.

1.2.2 Methods

In order to understand consumption among different groups, this study conducts a combination

of spatial and temporal segmentation of the study dataset.

Spatial Segmentation

Most newly-connected and unconnected households are in rural areas. In order to identify

these households, we classify the customers in our dataset spatially by urbanization level. While

it is common to use an urban-rural classification, unfortunately there is no standard definition of

these categories [26]). To address this, we developed a new method for identifying urban and rural

areas that makes use of high-resolution data on population density, land use classification, and

satellite nighttime light intensity. We provide an abbreviated description of our method here, and

describe our method in depth in Appendix 1.5.1. Similar to the approach used by Chevez et al.,

we apply a k-means clustering method, however we apply some constraints to the method [27].

The constraint k-means algorithm partitions predefined pixels of Kenya into k clusters, such that

the euclidean distance between the pixel’s features and the cluster centroid are minimized. Eq.

(1) shows the objective function of the algorithm, where k represents the number of clusters, ki

the number of pixels in cluster i, xj a vector of features for pixel j and i is the cluster centroid for

cluster i. Unlike Chevez et al. we apply a non-random initialization to the algorithm in the form of

constraints as discussed in Appendix 1.5.1. Once the clusters are obtained, we use customer GPS

locations to assign each customer to a pixel and by consequence a cluster. From our experience,

the clustering algorithm works best with k = 3 clusters, which we identify as our urban, peri-urban,

and rural areas. Peri-urban represents areas on the urban fringe whose denizens may access urban

services and resources. Figure 1.3(a) shows the clustering results from our constrained k-means

algorithm. Three customer clusters are shown in blue (urban, 6.6% of customers), yellow (peri-

urban, 38.4% of customers) and violet (rural, 55% of customers). Areas classified as urban are
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mainly the cores of Nairobi and Mombasa, the two largest cities in Kenya, although a few urban

areas can be seen in the smaller cities of Kisumu and Nakuru. The peri-urban regions generally

envelop the urban locations, although other peri-urban locations border regions classified as rural.

For this study, we subsequently add the peri-urban cluster to the urban cluster to form a single

urban group; justification for this decision is provided in Appendix 1.5.1.

Temporal Segmentation

To tease out underline behaviors, the data was decomposed using two methods: by calendar

date and by duration since customer electricity connection. For the former, post-paid billing dates

are used to aggregate consumption by calendar month. For the latter, the number of months since a

customer established their electricity connection is used to group customers. Most of our analysis

uses this latter characterization, which aims to provide insight into growth of consumption by the

duration of customers’ experience with access to electricity. It is important to note that this method

conflates customers from different eras into the same group, where bills from customers grouped

by the same duration of experience may come from different months or years. We discuss the

implications of this approach in Section 1.2.3.

1.2.3 Consumption patterns in Kenya

Using customer locations and our clustering method, customers were categorized into rural and

urban groups. Table 2 shows the number of customers in each category for the entire study dataset,

as well as for those who received an electricity connection before 2009 and after 2009. A majority

of customers in our dataset are in rural regions (55%) and most received their electricity connec-

tion after 2009 (64.5%). Much of the recent increase in connection is due to efforts by Kenya

Power, the Rural Electrification Authority (REA), and the Government of Kenya to improve ac-

cess to electricity in rural areas and slums, especially via the Last Mile Electrification Program (for

densification of existing transformers) and the Global Partnership on Output- Based Aid (GPOBA)

Program (for formalization of connections in in- formal settlements) (Kenya, 2016).
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Consumption of a representative residential customer over time

Initially, we characterize the consumption over time of all customers in our study dataset re-

gardless of the time they obtained a grid connection. A representative residential customer is cho-

sen as one whose consumption is the median consumption of all customers in any calendar month.

Note that each month this representative customer (here the customer with median consumption in

that month) is not necessarily the same customer.
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Figure 1.4: Monthly customer electricity consumption for 135,579 customers from 2010 to 2015.
The solid line represents the monthly median customer’s consumption while the grey area repre-
sents the interquartile range of the study dataset. From the utility’s perspective, there is an increas-
ing number of lower-consuming customers.

Figure 1.4 shows electricity consumption of the median customer (and the interquartile range

of consumption levels) for each calendar month from 2010 through 2015. The Figure shows a

declining trend over time for the median customer’s electricity consumption (the solid line in the

figure). This in itself is indicative that the utility must service an increasing number of customers

whose monthly consumption is reducing.
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Consumption growth over time since connection

The prior section described the consumption of a representative customer as observed by the

utility. We wish to now understand whether the consumption of individual customers actually

grows over time and if the growth over time varies between rural and urban customers. We ini-

tially examine monthly customer electricity consumption over time as a function of the number of

months a customer has had an electricity connection; this draws on the assumption that new elec-

tricity customers are similar in their consumption patterns regardless of when they receive their

first connection.
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Figure 1.5: Monthly customer electricity consumption for 135,579 customers by duration of cus-
tomer’s electricity connection, for the first ten years of access. The solid line represents the monthly
median customer consumption while the grey area represents the interquartile range. Electricity
consumption for the whole dataset initially increases sharply followed by continual, though de-
creasing, growth.

Figure 1.5 shows this organic growth in consumption amongst residential customers in our

study dataset. In this figure, the solid line indicates the monthly median electricity consumption,

and the grey area shows the interquartile range. From this figure, it is apparent that monthly
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electricity consumption for the whole study dataset seems to continually increases upon access.

This observed behavior is due to having consumption cohorts contributing to different portions of

the figure. For example, customers connected in 2014 would only influence the first 24 months

of the graph while those connected in 2007 and prior would not have data in the first 24 months.

This figure shows that the older customers consume higher while the newer customers consume

less, noting that the customer counts for each connection year are different. We further segment

consumption by connection cohort to understand the growth in each cohort. But first, we use the

previously-defined customer categories (urban and rural) to further segment the consumption data.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Number of Months since Connection

M
on

th
ly

 C
us

to
m

er
 C

on
su

m
pt

io
n 

(k
W

h)  Rural  Urban

 Interquartile range  Median

Figure 1.6: Median monthly customer electricity consumption during the first decade of access,
by urbanization level. The distribution for rural customers is shown in red and the distribution for
urban customers is shown in green. Solid lines are median monthly customer consumption while
dashed lines show the interquartile range. Rural customers consistently consume less than urban
customers.

Figure 1.6 shows electricity consumption for urban and rural customers. Solid lines repre-

sent monthly median customer consumption while dashed lines represent the interquartile range.

Across all quartiles, rural customers consumed less electricity during their first decade of ac-

cess than urban customers. This distinction is most pronounced with high-consuming rural con-
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sumers, who use significantly less electricity than their high-consuming counterparts in urban ar-

eas. Nonetheless, each group shows the same characteristic pattern of fast initial growth followed

by persistent though slowing growth thereafter.

Does the year of connection matter?

So far we have shown that customers grow their consumption upon receiving access, irrespec-

tive of their urbanization level. This perspective hides the possibility that customers connected to

the grid earlier in calendar time – possibly those who were urban and started out with the means

to afford a connection – might have different consumption levels from those who were connected

more recently through a wave of subsidized rural electrification. Here we examine the effect of

different waves of connection by grouping customers into the year they received an electricity

connection.

[Rural ]

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90
Number of Months since Connection

M
on

th
ly

 C
us

to
m

er
 C

on
su

m
pt

io
n 

(k
W

h)

Year of
 Connection

2009
2010
2011
2012
2013
2014
2015

[Urban]

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90
Number of Months since Connection

M
on

th
ly

 C
us

to
m

er
 C

on
su

m
pt

io
n 

(k
W

h)

Year of
 Connection

2009
2010
2011
2012
2013
2014
2015

Figure 1.7: Monthly median customer consumptions, separated by the year customers received
a connection. The year the median customer received a connection matters, as more recently-
connected customers consume less electricity and peak sooner than customers connected at earlier
times.

Figure 1.7(a) and (b) shows median customer electricity consumption for rural and urban cus-

tomers, respectively. In order to ensure that we can compare consumption of customers with

the same age of electricity connection, we consider only customers who received an electricity

connection in 2009 or later. Looking at the figure, it is apparent that the year of connection is an

important consideration for both the rural and urban cohorts, as earlier connected customers (2009,
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2010) tend to peak and level off. Further, it is evident that more recently-connected customers peak

sooner and at lower consumption levels than those customers with earlier connections. This pattern

is fairly consistent, showing that the most recently-connected customers simply do not consume

as much electricity as earlier customers even after their consumption growth has abated. In fact,

the median customer whose connection began in 2009 consumes almost twice the electricity of the

median 2014 or 2015 customer. Although consumption patterns are similar across urban and rural

cohorts, it is clear from Figure 1.7 that median urban customers consume more electricity than

median rural customers. To further explore how much more electricity median urban customers

consume, we computed the ratios of consumption for each year of connection.
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Figure 1.8: Ratio of Monthly Consumption for median urban to median rural customers. Median
urban customers consume 50% more electricity than their median rural counterparts.

Figure 1.8 shows these ratios of consumption for median urban to median rural customers, sep-

arated by the year customers received an electricity connection. From the figure we see that beyond

the stabilization period of 6–12 months the median urban customer consumes 50% more electric-

ity than the median rural customer. This ratio provides a concise way to understand electricity

consumption at varying levels of urbanization.
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Sample size considerations

Each step of segmentation reduces the sample size of customer bills available in the segment.

To ensure that our conclusions are durable, we examine the sample sizes of customer bills for

these segments. Figure 1.9 shows the monthly customer sample size for each year of connection.
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Figure 1.9: Monthly number of customers in the rural category, separated by electricity installation
dates. The large number of customers, numbering in the thousands of bills, allows for confidence
in the significance of our finding.

To remove points with perhaps too few samples, we filtered out months for which the sample size

was less than 10% of the median sample size for a given year of connection. Since each line in

Figure 1.9 is comprised of distributions numbering in the thousands of bills, we have confidence

in the significance of our finding. We apply the same sample size filtering approach to customers

in the urban segment.
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Whose consumption is reducing?

To orient our observations towards the implications of increasing electrification, we look specif-

ically at the rural consumers, who will comprise much of the further potential growth in the elec-

tricity customer base in Kenya. We must realize that not all rural customers have the same patterns

in consumption; Figure 1.7(a) shows a drop in consumption in the later months of access. This

pattern stands out for rural customers in 2009, 2010, and 2011 especially, whose consumptions

reduce anywhere between 12% and 28%. While these drops appear to be synchronized in calendar

dates, their appearance only among customers who started their connections in particular years

along with the lack of any known macroeconomic change over the period raises questions about

what caused the drop. A drop in the median could be the result of either an equally-distributed

“broad” reduction or a deeper reduction focused on a particular group of customers. To investigate

this question, we selected the rural customers from 2009 and 2011 and looked at their consumption

in two different time periods: all of 2013, when both groups have reached their steady-state peak

in consumption, and the last five months of 2015, when the drop in consumption occurs.

[2009] [2011]

Figure 1.10: Migration within the electricity consumption distribution for (a.) rural customers
with start dates during 2009 and (b.) rural customers with start dates during 2011. Horizontal axis
shows breakdown of customers by mean monthly consumption for the year 2013 and vertical axis
shows breakdown of customers by mean monthly consumption for the last five months of 2015.

Figure 1.10(a) and (b) are migration charts that show the percentage of customers that change

their consumption bin from 2013 to 2015. Bin boundaries measured by monthly consumption in
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kWh were chosen to be consistent for the 2013 and 2015 groups. The 2013 customer sample sizes

of each group (n) are shown at the bottom of the chart. We can see that for both groups more

customers reduced consumption than increased it and that reductions in consumption are more

concentrated in the lower portion of the distribution. We also see that a larger percent of the 2011

customers dropped to the lowest consumption bin in 2015 than the earlier 2009 customers.

Customer % in [0,20] kWh % in [0,20] kWh
Start Year in 2013 in 2015

2009 24.0 29.3
2011 34.5 43.9

Table 1.2: Comparing the proportion of customers in the lowest consumption bin for two groups
of customers: those starting in 2009 and those starting in 2011. For customers who received an
electricity connection in 2011, more customers started in the lowest bin and a larger proportion
moved there by 2015.

Table 1.2 compares the percentage of customers (2009 and 2011) who were in the lowest

consumption bin in 2013 and 2015. For 2009 customers, 29.3% of all customers were in the lowest

consumption bin ( 20 kWh) during the 2015 period compared to 24% during the 2013 period; for

2011 customers, this number is more pronounced, at 43.9% of all customers during the 2015

period compared to 34.5% during the 2013 period. Thus, for the 2011 customers, the reduction in

consumption is relatively more concentrated in the lower end of the distribution. Although there

is some migration to higher consumption bins, customers at the lower end of the distribution are

far more likely to reduce their consumption and sometimes stop consuming entirely. While some

customers may actively elect to reduce their consumption by purchasing more efficient lighting

and appliances, others may be deprived from enjoying the economic and quality-of-life benefits of

electricity consumption due to high electricity costs, poor reliability, lack of access to financing

for equipment purchases, damaged equipment, or a combination of factors. We note that only

a small proportion of customers in our sample went to zero consumption, which might imply a

disconnection or other billing issue. Understanding the motivations for reductions in consumption

among these lower-consuming customers, perhaps via surveys and other measurements, is a critical

next step for improving customers’ experiences and outcomes with electricity access as well as
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building more sustainable and durable electricity-providing institutions.

1.2.4 Policy Implications

Examination of grid-connected Kenya Power customers shows that the monthly median elec-

tricity consumption of the recently-connected customers is lower than that of grid-connected cus-

tomers from several years ago, comparing at the same point in time after connection. For example,

a median customer in an urban area who received a connection in 2009 consumed 43 kWh per

month after 18 months while a median customer in a rural area who received a connection in 2014

consumed 18 kWh per month after 18 months. This result shows that electricity planning based on

earlier consumption estimates may be misleading. In this section we consider implications of our

results, some limitations, and the sensitivity of our analyses to important methodological choices.

Implications for electricity planning

Countries with low GDP per capita must make critical decisions on how to allocate precious

public-sector resources amongst competing priorities, especially when it comes to spending on

infrastructure. For example, if Kenya tried to connect 1 million households annually to the grid,

the investment in distribution infrastructure alone would exceed 4% of the annual government

budget. We are assuming here that investments in generation and transmission can come from

private sources. It is equally difficult to recover the investment cost from cross- subsidies applied

to industrial customers. Recovering an investment of $1 billion USD from the 3575 presently-

connected industrial consumers with an average consumption of 95,000 kWh per month would

require an additional tariff of $0.25 USD/kWh levied on industrial customers; this is clearly an

unreasonable expectation. Hence a least-cost investment approach suited to anticipated electricity

demand is crucial for low-income countries. The results of this study can potentially help Kenya

Power to reduce the cost of providing electricity to households. We propose three cost reduction

approaches based on our findings: (i) Solar Home Systems (SHS) for low consuming customers;

(ii) Reforming technical standards to connect more low-consuming customers within the existing
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connection radius; and (iii) Extending the existing connection radius. Median consumption levels

below 20 kWh/month for a residential customer may provide a crucial tipping point when com-

pared to planning based on historical estimates of consumption – typically closer to 50 kWh/month.

For example, a 20 kWh/month consumption level could possibly be met by an off-grid system that

would deliver 500 Wh/ day or a 150 Watt peak SHS costing $500 if such a shift did not limit a

customer’s anticipated consumption growth. If a 20 kWh/month consumption level were met with

a grid connection, the connection cost would be 2–3 times higher. On the other hand, for a 50

kWh/month consumption level, the investment cost of an off-grid system is likely to be higher than

that of a grid connection. This simplistic example illustrates how the results of this study impact

electrification planning in a resource-constrained economy. The real planning scenario is likely to

be much more nuanced and might depend on specifics of sub-populations that are being addressed.

Kenya’s connection policy states that the utility charges customers who wish to connect a flat fee if

those customers reside within 600 m of any transformer on the grid. This fee is 34,980 KSh ($340

USD), or 15,000 KSh ($145 USD) under the subsidized Last Mile Connectivity Program (LMCP).

Customers outside of this radius who wish to connect may do so at the full cost of the connec-

tion, on average $1200 or more as the distance grows. The reasoning behind this 600m policy

is a combination of engineering and cost constraints; the voltage drop experienced as well as the

cost of poles and conductors needed both in- crease with a longer distance from the transformer.

Knowledge of anticipated demand can shape appropriate engineering requirements of the grid. For

example, one could easily and safely reduce the service standard, sized for a peak 3 kW load to

perhaps 1 kW for lower-consuming customers. This would in turn lower cost of transformers, con-

ductors, and cables as more customers can be added onto the same transformer. Less stringent yet

still sufficient technical standards enable the utility to densify existing transformers at the current

connection radius, lowering the per customer transformer cost, as more low consuming customers

can be accommodated on the same transformer.

Alternatively, extending the connection radius with the same wire standards would potentially

also allow a low-voltage wire to reach customers located further away from the transformer. In
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Figure 1.11: The proportion of Kenya’s population within range of any of Kenya Power’s trans-
formers under two different connection fee policies: (1) customers within 1km of any existing or
new transformer can connect for a flat fee (red line) and (2) the existing policy, where customers
within 600m of any existing or new transformer can connect for a flat fee (black line). Note that
Kenya Power presently has a total of roughly 58k transformers, and those transformers are within
range of 62% of the country’s population.

Figure 1.11, we show the implications for Kenya Power if the connection radius were increased.

For this analysis, we use a greedy algorithm that places new transformers in the locations that

maximize the population covered. At present, 62% of Kenya’s population lives within 600 m

of Kenya Power’s roughly 58,000 transformers, and the Government of Kenya has a stated goal

of providing access to electricity to 100% of the population by 2020. According to the figure,

maintaining the same connection policy and attempting to reach 85% of Kenya’s population with

the grid would require an additional 35,000 transformers. However, newer transformers are in rural

areas where customers are further apart, but voltage drops are lessened due to lower consumption

per customer. Thus, relaxing the 600 m constraint no longer poses as much of an engineering

challenge and would enable the grid to reach more customers with existing or fewer additional

transformers. If the policy were changed to allow any customer within 1km of any transformer to

connect for a flat fee, it would take fewer than 5000 additional transformers to reach the same 85%
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of the population. While the cost of connections is still a heavy burden achieving those connections

by extending existing low-voltage infrastructure, as opposed to deploying new transformers, may

present a lower-cost option. Further, this strategy would align well with the LMCP, which aims

to densify existing underused transformers using a budget of roughly $450 million USD. It is

important to note that existing plans for the three phases of LMCP (an investment of roughly $450

million USD) include only 1400 additional transformers, challenging the Government of Kenya’s

stated goals of reaching 70% electrification by the end of 2017 and universal electrification by

2020. Without a significant change of direction on alternative means of electrification, massive

reductions in connection costs, or unexpectedly high growth in electricity consumption, the utility

model faces severe challenges in meeting the dual mandate of universal electrification and investor

profitability. Sustained low consumption levels will hinder the financial viability of utilities whose

goal is to increase electricity access. It may be possible to boost consumption and by consequence

financial viability via targeted programs such as appliance financing and tariff subsidies. These

can create more growth in electricity consumption, support higher quality-of-life and have potential

income benefits for customers while supporting the dual mandate of electricity providers. Although

our discussions have focused on Kenya, we believe that Kenya Power’s experience can highlight

broader lessons that are relevant for utilities in other developing countries.

• Customer consumption may not grow at a constant percentage over time.

• Performing better customers analytics, prior to deciding how to connect these customers can

result in fewer underutilized grid connections, allowing more customers to be reached at a

cheaper cost.

• The assumption that everyone must be connected in the same manner has both benefits and

costs, and it is important to quantify the costs to design evidence-based policy.
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Additional considerations

Urban/Rural Sensitivity: Urbanization levels were defined using a combination of datasets.

However, we recognize that there are a range of classification methods for determining urbaniza-

tion level, and that our results are sensitive to the method we used. Additionally, not all rural

regions are similar – localized economic effects will not be captured by this approach, but we

attempt to deal with this by primarily considering medians as well as interquartile ranges, so as

to not be affected by extremes in the distribution. Further, definitions of urbanizations are hardly

static as captured in our clustering analysis. These definitions change with time and are influenced

by changing socio- economic factors and migration. Thus our definition of urbanization levels

only capture one snapshot, which is at the start of the analysis period (2010). Future work on this

topic is to examine how consumption evolves in areas that experience slower or faster changes in

urbanization levels.

Other Temporal Effects: Analyzing customer growth on a calendar basis conflates the effects

of a growing customer base with those of an evolving customer base, a typical situation for grids in

sub-Saharan Africa. In an effort to disaggregate these two, we spend the majority of our analysis

analyzing customers via the lens of time since electricity connection. While transforming the

temporal axis from calendar dates to time since electricity connections reveals relevant information

for electricity access, there are also adverse effects to consider. This approach obscures the effects

of cyclic and seasonal changes, macroeconomic shocks, and, as we show in this work, differences

among newer and older customers. While we acknowledge that these exogenous events occurred

during our study period, we believe that a six-year duration to our study should allow examination

of larger trends in growth of consumption among these customers.

Tariff and Meter: We use kilowatt-hours as the measurement of consumption over time, with

limited consideration of the various tariff structures in place for these customers. Some of these tar-

iff components changed during the course of the study period; for example, in mid- 2014, the fixed

tariff increased from 120 KSh per month to 150 KSh per month. Some of the variable tariff com-

ponents also had small changes during the study period, and others, such as the Foreign Exchange
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(Forex) and Fuel Cost Charges changed on a monthly basis to reflect market conditions. While

many of these changes were seemingly negligible, more in-depth analysis is needed to estimate the

scale of these effects on longitudinal consumption. In particular, our sample consists of customers

only on postpaid electricity meters. Initially, we do not have any clear evidence that differentiates

these customers from customers with prepaid electricity meters. However, since customers with

postpaid meters tended to receive their connections earlier, as a class they are likely more wealthy

than their prepaid counterparts, potentially depressing the consumption values reported throughout

this paper. We take it as future work to understand the implications of examining only customers

with postpaid meters, and seek to compare the consumption patterns among those customers with

postpaid and prepaid electricity meters.

Equity: Different electricity delivery technologies within the same community challenge no-

tions of equity in electricity connections and may pose political barriers. Quantifying the costs of

equity of connections, though not necessarily equity of service, are worthy of further study, though

beyond the scope of this work.

1.3 Electricity Consumption in Rwanda

Over the past decade, Rwanda has seen increased electrification rates from 10% [28] in 2011 to

64.5% [29] as of June 2021. As of June 2021, 47% of Rwanda was connected to the national grid

and 18% utilizing off-grid systems primarily solar. The government has set a target of achieving

100% electrification by 2024 with all productive users gaining access by 2022. 100% electrification

will be achieved by having 52% of users connected to the grid with the remaining 48% utilizing off-

grid systems[30]. Understanding electricity consumption for already electrified users can provide

the government with insights on which users might benefit more from grid versus off-grid systems.

Increased electrification efforts have been primarily led by the Rwanda Energy Group (REG), a

government owned holding company incorporated in July 2014 with two subsidiaries; the Energy

Utility Corporation Limited (EUCL) and the Energy Development Corporation Limited (EDCL).

While EDCL focuses on increasing investment in the development of new energy generation and
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transmission infrastructure as well as planning and executing energy access projects, EUCL fo-

cuses on provision of utility services through operations and maintenance of existing generation

plants, transmission and distribution networks and retail of electricity to end-users[31]. In addi-

tion to growth in electrification, Rwanda has also experienced a series of tariff changes in the past

decade. Table 1.3 shows the electricity tariff structures for residential customers in Rwanda over

the past 15 years[32].

Table 1.3: Residential Tariff Structure for Rwanda. A fixed 500 FRW service charge was in place
but later removed in 2015.

Year Tariff Structure Energy Charge (FRW/kWh)
2006 Flat Rate 112
2012 Flat Rate 134
2015 Flat Rate 182
2017 0 - 15 kWh 89

15 - 50 kWh 182
>50 kWh 189

2018 0 - 15 kWh 89
15 - 50 kWh 182
>50 kWh 210

Electricity tariffs prior to 2012 were considered to be below cost of service and therefore a 20%

increase in residential tariff was approved by Rwanda Utilities Regulatory Authority (RURA), the

agency mandated to regulate the energy sector[32]. Residential tariffs were further increased by

35% in 2015 with authorities citing increased generation costs as a result of the continued reliance

on thermal energy[33]. A fixed service charge of 500 FRW was in place prior to 2015 but was

removed in 2015. Two years later in 2017, a block tariff structure was introduced by increasing the

tariffs for high consumers while introducing "lifeline" tariffs for the lowest consumers. Given that

most new connections are low consumers, the block structure aimed at improving their ability to

afford electricity[34]. There has been an acceleration of new electricity connections to the grid in

the latter half of the past decade as Rwanda seeks to achieve universal electrification by 2024[29,

34].

In this work, we present a data-driven descriptive analysis of electricity consumption in Rwanda

with the goal of understanding how consumption has evolved for different cohorts. This work also
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highlights the changes in electricity consumption given the tariff policies. Our analysis is built on

prepaid purchases of 811,541 Rwandan customers (with over 361 Million transactions) between

2012 - 2020. Specifically this work aims to answer these two research questions:

1. How much electricity do newly-electrified customers use, and how has that consumption

evolved?

2. How do different tariff policies influence utility revenues and electricity consumption?

By answering these research questions, this work can be relevant to other utilities seeking

to electrify more of its population by providing insights on customer behavior and responses to

varying tariff polices.

1.3.1 Rwanda Energy Group Utility Data

Our panel dataset obtained from the Rwanda Energy Group consists of 361,029,383 prepaid

historical electricity consumption purchases from 2012 to 2020. This dataset covers 811,541 grid

connected customers who received an electricity connection between 1996 to 2019. For each

customer, historical electricity purchases are available, showing both the quantity of electricity

purchased and the corresponding tariff for the purchased units of electricity. While the dataset

includes associated taxes such as Value Added Tax (VAT), our analysis only evaluates the amount

of electricity purchased (kWh) and the per kWh tariff. We observe that 88 % of customers are

residential while the remainder are non-residential (including small commercial, industries, hotels,

health facilities). Our dataset does not include large industrial customers. REG has undergone a

number of revisions in their customer categorization process over the years resulting in customers

belonging to different categories over time. For this study, we take the customer’s final category as

of 2020 as their customer category. Figure 1.12 shows the number of new electricity connections

made by the utility for customers within our dataset 3. This aligns with REG’s reports of higher

number of residential customers compared to non-residential customers. We observe that 66 %

3Our dataset ends in April 2020, resulting in the dip in connections on the figure for the year 2020.
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of electricity connections are made within the time frame of our study period 2012-2020. This

analysis focuses on the customers who are receive a grid connection during the study period.

Figure 1.12: Annual number of new electricity connections made by the utility (REG) for both
residential and non-residential customers. 66% of new connections were made after 2012 while
88% of customers within the dataset are residential.

The dataset consists of customers from 15 of the 30 districts that make up Rwanda. We observe

that 37.4 % of customers within the dataset are from Kigali, the capital of Rwanda, which makes

up three of the 15 districts for which we have customer data. The second largest clusters of cus-

tomers are located in the south western and northwestern districts, followed by the Northeastern

and southern districts and the lowest number of connections in the central districts that neighbor

the capital Kigali as shown in Figure 1.13.

1.3.2 Methods

From pre-paid purchases to monthly consumption

Our dataset begins with pre-paid purchases made by customers at varying points in time. In

Rwanda, grid connected electricity customers tend to have pre-paid meters and can purchase units
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Figure 1.13: Spatial coverage of Rwanda customers (residential non residential) within our 811K
dataset

of electricity on an as-needed basis. To compare consumption overtime at the same frequency,

the following pre-processing strategy is applied. i) Median purchase frequency for each customer

i is estimated e.g. every 5 or 7 days. Given any sequentially occurring two purchase periods

(t𝑛 and t𝑛+1), consumption is spread between both purchase periods (on a daily basis) if the time

delta between both periods is lower than the median purchase frequency. Otherwise the purchased

units are spread over the median purchase frequency of the customer. The data smoothing process

is performed at a daily resolution, after which the daily consumption is aggregated to monthly

consumptions in kiloWatthours (kWh). The smoothing process transforms stochastic electricity

purchases to monthly electricity consumption to support further analysis. The smoothing process

preserves the aggregate monthly consumption seen across customers, thus giving confidence to the

smoothing method.
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Temporal Segmentation

To understand how residential electricity demand evolves over time, we dis-aggregate the elec-

tricity consumption data temporally (similar to the methodology in 1.2.2) based on the number

of months that each customer has been connected to the grid. By doing this, we are able to un-

derstand how a typical customer’s electricity consumption changes with each additional month of

being connected to the grid.

Tariff Analysis for Residential Customers

Our tariff and revenue analysis is performed on three electricity consumption classes (i.e. low,

medium and high). The classes are defined to align with RURA’s tariff block criteria as defined

in [34]. Eqn (1.1) shows the class definitions given the average monthly amount of electricity �̄�𝑖

which is used by customer i in a 12-month period (a year prior) to the tariff change.

𝑐 =



𝐿𝑜𝑤, if �̄�𝑖 <= 15 kWh.

𝑀𝑒𝑑𝑖𝑢𝑚, if 15 < �̄�𝑖 <= 50 kWh

𝐻𝑖𝑔ℎ, if �̄�𝑖 > 50 kWh

(1.1)

Table 1.4 shows counts within each class for tariff periods 2015 and 2017. High confidence

customers by class are defined as customers who have at least 80 % of their data in the assigned

class given the class allocation from the �̄�𝑖. These customers are used to evaluate the impact of

tariff changes on utility revenues and electricity consumption.

Table 1.4: Customer count by class prior and after obtaining the high confidence balanced sets.
2015 Tariff Period 2017 Tariff Period

Low Medium High Low Medium High
All 133,735 92,304 37,708 170,209 94,708 34,806
High Confidence 99,512 28,329 16,473 124,701 30,719 16,666
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1.3.3 Consumption patterns in Rwanda

Consumption of representative REG customers

First we present the overall consumption behavior for all residential and non-residential cus-

tomers in our dataset, regardless of their grid connection date. Amongst residential customers,

the total monthly residential consumption for customers within the dataset ranged between 7 to 9

GWh/month. Despite a 54 % increase in the number of residential customers between 2016 and

2020, the total residential monthly consumption only increased by about half (28.5 %) during that

timeframe. This suggests that while the utility is increasing the number of people with access to

electricity, the newly connected customers are consuming less electricity. Thus increased the num-

ber of grid connections does not always translate to consumption. For non-residential customers,

electricity consumption increased by about 10 % between 2016 and 2019 while the number of

connections increased by about 22 %. Even in the non-residential sector, the utility is adding many

more smaller commercial customers relative to the initially connected high consumers. While more

residential customers are being connected relative to non-residential customers, the total monthly

consumption for the non-residential sector remains higher than that of the residential sector. This

suggests that the revenues from the fewer non-residential customers may be cross-subsidizing the

associated costs for the many more residential customers.

We also observe that between 2013 - 2019, electricity consumption growth was on average

4.6% with the non residential sector recording an average growth of 6.3% and 3% in the residential

sector. This falls far below REG targets of 15% demand growth required to avoid excess costs of

generation which would in turn necessitate more government subsidies [35]. It is important to note

that this study does not include electricity consumption data from large scale industries that would

have a significant impact on the aggregate electricity consumption growth.

We also analyzed the purchasing frequency of prepaid electricity tokens. We observe that

in Kigali, residential customers purchase on average about 13.9 kWh every 16 days while non-

residential customers purchase about 47.5 kWh every 13 days. In comparison, outside Kigali resi-
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dential customers purchase about 7.2 kWh every 37 days while non-residential customers purchase

21.2 kWh every 20 days. These observations show that residential customers in Kigali purchase

both twice the amount and twice as frequently as residential customers outside Kigali. Or put oth-

erwise, rural household use less electricity and purchase at half the cadence of their urban peers.

A similar observation is made amongst non-residential customers who purchase twice as much in

Kigali compared to outside Kigali. These observations align with the general expectation that pro-

ductive electricity demand is highest in urban centers and that urban regions use more electricity

than non-urbanized regions.

Consumption growth with time in Rwanda

Previous studies on residential and non-residential grid connected customers in Kenya have

shown interesting patterns of how electricity consumption evolves as a function of time spent on

the grid [36, 37]. This pattern of fast initial growth (in the first year of receiving a connection),

followed by plateaued or slowed growth is identical for both residential and non-residential cus-

tomers albeit with slight differences for rural vs urban locations. Using a similar method as [36,

37] and all customers (regardless of their data completeness), we kick off our descriptive analy-

sis by assessing how electricity consumption among REG’s residential customers evolves as they

“mature" on the grid.

Our first observation is that generally, more newly connected customers progressively stabilize

at lower levels of consumption. That is, customers connected in 2019 and 2018 have the lowest

median consumption when compared with older customers as shown in Figure 1.14.

This pattern is consistent with similar observations by [36] and [37] among Kenya’s grid con-

nected residential and small commercial electricity consumers. Our hypothesis regarding this be-

haviour is that newer customers are mostly low-income households that are connected through

the government rural electrification program and as such tend to consume less electricity. Unlike

observations in Kenya, consumption levels in Rwanda tend to be much lower. For example, the me-

dian residential Kenyan customer electrified in 2013 plateaued around 30 kWh/month, while the
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[A] [B]

Figure 1.14: Shows median monthly electricity consumption for REG’s electricity customers seg-
mented by year in which they got connected to the grid. A: Residential customers within the REG
dataset. B: Non-Residential customers within the REG dataset

median residential Rwandan customer also electrified in 2013 plateaued around 10 kWh/month.

Though the absolute difference is only 20 kWh/month, implications for energy providers are sig-

nificantly different as these customer groups might be better suited for different electrification

technologies. One hypothesis around much lower median consumption levels in Rwanda might be

due to differences in household income between both countries. It is worth noting that the 2020 per

capita GDP in Kenya was $1879 while that of Rwanda was $798 [38]. In depth income analysis

(possibly through extensive surveys) are needed to better understand the reason for consumption

differences between both customer groups despite being electrified in the same calendar year. The

differences in consumption amongst varying connection cohorts in Rwanda suggest that providing

access to electricity does not guarantee consumption of electricity and improved welfare, and that

other micro-economic factors might influence consumption.

The second observation is that median electricity consumption amongst all cohorts remains

fairly flat or may slightly decrease as consumers “mature" on the grid. This suggests that the Rwan-

dan utility is servicing an increasing number of customers whose consumption is either stationary

or not changing much, and as such, who might have to be cross subsidized by older customers.

Our dataset consists mainly of monthly consumption (kWh), thus additional variables which may

help explain the plateauing behavior or slight decrease are not available.

Furthermore, we test the relationships between monthly kWh consumption and number of

months since connection under a regression framework to evaluate if the observed pattern of growth
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and stabilization is a statistically significant relationship across all members of the same connec-

tion year cohort (not only the medians). The regression results show that for residential customers

connected prior to 2018, there is a positive relationship between consumption and time. On aver-

age, each additional month yielded a small but significant increase in consumption. For residential

customers connected 2018 and after, they on average experienced drops in electricity consump-

tion overtime. This result aligns with the general trend in Figure 1.14 showing the behavior of

the median customers. As for the non-residential customers, we observe mostly negative correla-

tions between kWh consumption and number of months spent on the grid within the 2013-2018

connection year cohorts, which is also consistent with Figure 1.14 (See Table 1.9 in the Appendix

1.5.2).

The third observation is around the large consumption differences between urban (Kigali) and

rural (non-Kigali) districts. Figure 1.15 shows the median and interquartile range of customers

by urbanization level. We observe that customers consuming in the upper quartile and residing in

non-Kigali districts consume similar amounts of electricity as median customers residing in Kigali.

This emphasizes the even lower consumptions (under 20 kWh even after 4 years of receiving an

electricity connection) that are experienced outside of the urbanized district of Kigali. Beyond the

difference between Kigali and other districts, we also observe a large consumption distribution that

exist amongst both Kigali customers and customers located in other districts. This wide distribution

highlights the variability in consumption amongst customers. Thus methods that are able to better

differentiate between customers would be critical for energy access planning.

1.3.4 Implications of Tariff Changes on Utility Revenues and Electricity Consumption

Having seen how a typical REG customer’s electricity demand evolves as a function of time

spent on the grid, this section seeks to understand how residential tariff changes (in 2015 and 2017)

affected demand for electricity and by extension revenues remitted to the utility. To do this, we

present the average residential revenue per customer collected by REG after segmenting customers

based on low-medium-high categories described in the methodology section.
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Figure 1.15: Electricity consumption over time for customers in Kigali versus non-Kigali cus-
tomers.

Average revenue per customer after 2015 tariff change

As a result of the increased operating costs associated with running diesel power plants at

Jabana 1 and 2, REG increased the tariff for all customers by 35% [33] from 134 FRW to 182

FRW . To see if the policy objective of increasing company revenue was met by this tariff increase,

we present the average monthly revenue per customer before and after the policy change for each

consumption group as shown in Figure 1.16. We observe from the figure that the highest increase in

average monthly revenue per customer occurred for the medium category of residential customers,

though smaller increases in average monthly revenue per customer were also observed for the low

and high categories. The steepest increase in revenue happens in the first 3 months following the

tariff change date, after which the average monthly revenue per customer appears to stabilize. The

actual percentage changes in average monthly revenue per customer are reported in Table 1.5.

Given the 35% increase in electricity price, the average corresponding per customer increase in

revenue remitted to REG one year prior to and after the tariff change ranged between 10% and 33%

and a corresponding reduction in kWh consumption ranged between 2% and 18%. The largest per
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Figure 1.16: Shows changes in revenue per customer among low, medium and high consumption
customers after introduction following the 2015 tariff change from 134 RWF to 182 RWF. The red
vertical line indicates the date when the tariff change took effect.

customer increase (33%) in revenue was observed in the medium consuming group which consists

of customers consuming between 15 and 50 kWh/month. While the lowest increase in revenue

(10%) was observed in the high consuming customers. Although the high consumers displayed
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Table 1.5: Shows the average change in average monthly revenue per customer and average change
in customer consumption for each of the Low, Medium and High categories of customers one year
pre and post the 2015 tariff change.

Low Medium High

Pre 2015 Tariff Change (FRW) 825 3,846 22,029
Post 2015 Tariff Change (FRW) 991 5,140 24,131
Avg % Change +20 +33 +10
Pre 2015 Tariff Change (kWh) 6.2 28.7 164
Post 2015 Tariff Change (kWh) 5.5 28.2 134
Avg % Change -11 -2 -18

the lowest average per customer percent increase in revenue they had the largest absolute mone-

tary revenue increase of 2,102 FRW. It is noteworthy that the average consumption for medium

consuming customers barely changed with the introduction of the new tariff, while the consump-

tion of high consumer dropped by 18 % (the highest observed drop in consumption). On the whole,

the consumption group with the highest revenue increase showed the smallest average decrease in

consumption, while the consumption group with the smallest revenue increase decreased its con-

sumption the most. By increasing the tariffs by 35% the average low consuming customer paid

an additional 166 FRW per month. For households living on a dollar a day, this represents about

an additional 0.7% of their income dedicated to electricity consumption. [39] suggests that house-

holds spend about 3% of their income on electricity. Thus a marginal increase in income of close

to 1% dedicated to electricity consumption might suggest why on average electricity consumption

decreased.

Average revenue per customer after 2017 tariff change

Similar to our analysis of the 2015 tariff change, we examine how introduction of the block

tariff in January 2017 impacted the per-customer revenue remitted by residential customers to

REG.

Figure 1.17 shows the average monthly revenue per customer pre and post the 2017 tariff

change. We observe significant drops in average monthly revenue per customer for the low and
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Figure 1.17: Shows average changes in average monthly revenue per customer among low, medium
and high consumption customers after introduction of the block tariff in January 2017. The red
vertical line indicates the date when the tariff change took effect.

medium categories, while the high category experienced a very small drop in average monthly rev-

enue per customer. Similarly, this drop is experienced within the first 3 months of the tariff change.

Table 1.6 summaries the percentage changes in average monthly revenue per customer. From Ta-
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ble 1.6 we observe that for customers in the low category, there was on average a 39% decrease in

average monthly revenue per-customer as a result of the 49% reduction in tariff. This correlates

with the observed increase in average electricity consumption by low consuming customers of 12%

which offset further decrease in average monthly revenue per-customer. In the medium category,

we see that despite the tariff remaining unchanged for consumption above 15kWh a month, house-

holds on average remitted 26% less revenue to grid after the tariff change. We also observe that

consumption remained nearly constant pre and post the tariff change. This suggests that the drop

in revenues remitted by this group is as a result of customers paying a lower unit price for their

first 15 kWh of consumption. The effect of decreased remitted revenues might be exacerbated if

most of their consumption occurs within in the lowest consumption tier of less than 15kWh/month.

Furthermore, the block tariff generally leads to a decrease in revenues among the low and medium

categories because any increase in monthly kWh consumed (as a result of reduced price) is not

enough to make up for the fall in revenue per-household. On the other hand there was very little

change in the average monthly revenue per customer for households in the high consuming group.

Low Medium High

Pre 2017 Tariff Change (FRW) 970 5,136 24,400
Post 2017 Tariff Change (FRW) 590 3,795 23,720
Avg. % Change -39 -26 -3
Pre 2017 Tariff Change (kWh) 5.3 28.1 134.0
Post 2017 Tariff Change (kWh) 6.0 28.0 134.6
Avg. % Change +12 -0.6 +0.4

Table 1.6: Shows the average revenue per customer collected by REG and average customer con-
sumption for each of the Low, Medium and High categories of customers one year pre and post
introduction of the block tariff in January of 2017

1.3.5 Discussion

Decreasing consumption and Electricity planning

Analyzing grid-connected customers in Rwanda reveals that monthly residential electricity

consumption is overall low ranging from 4 - 10 kWh/month for the median customer. Further-
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more, more recently-electrified households consume less electricity than their counterparts who

were connected earlier on. A similar trend is also observed on the non-residential side where small

businesses connected in 2019 consume about 5 kWh/month after 12 months, while those connected

in 2013 consume about 23 kWh/month after 12 months. These findings are consistent with those

made by [40, 37] in Kenya.

For any household in Rwanda, the official electricity connection fee is 56,000 RWF ($54),

which is far below the cost to the utility to electrify the home. This connection fee was set up in

2013 around the onset of the Electricity Access Rollout Program (EARP). This low connection fee,

despite not reflecting the true connection cost to the utility, allowed many households to receive

access to electricity. Vulnerable households can pay this connection fee overtime, further reducing

the amount a household has to pay at anytime for an electricity connection. [8] conducted an exper-

iment in Kenya where they offered randomized electricity connection prices to 1,139 households.

This experiment showed that demand for electricity connections significantly decreased with price.

While up-take was universal under the free grid connection strategy (high subsidy arm), even at a

29 % connection fee subsidy the uptake was significantly lower. This findings in conjunction with

the observed very low electricity consumption in Rwanda suggests that while affordability may be

a barrier to a grid connection, at such low connection fees of 56,000 RWF, many households who

may not utilize grid services are being added to the grid.

Thus far, Rwanda plans to achieve universal electricity access with 48 % of its residential users

utilizing off-grid systems. For low consumers such as those observed within the data, off-grid

systems such as solar home systems which have a smaller cost of installation would better support

their consumption needs. This is consistent with the notion that off-grid systems are necessary

technologies in ‘modern electricity service ladder’ [41]. While grid services may not be fully re-

placed, these offgrid systems could provide affordable first-access to low consuming homes pend-

ing the time their demand for electricity grows.
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Barriers to electricity consumption

Following the consumption growth analysis, there may be a number of reasons that explain

the decrease in residential electricity consumption that occurs in more recently electrified cohorts.

In this section, we introduce these hypotheses and present preliminary evidence for them, though

we acknowledge that further surveys and analysis are imperative to validate them. In the first

hypothesis, we postulate that low electricity consumption among households is a consequence of

lower incomes. The Fifth Integrated Household Living Conditions Survey (EICV5) from Rwanda

presents household demographic and socioeconomic variables for 14,580 nationally representa-

tive households [42]. Here we analyze the total consumption expenditures of households, which

represents the monthly monetary amounts spent on goods and services. We use consumption ex-

penditure as a proxy measure for wealth. Further inspection of grid connected households from

the survey reveals that low electricity consuming households spend on average a total of 132,652

FRW per month, while non-low (medium and high) electricity consuming households spend on

average a total of 396,595 FRW per month. 4. The categories for low, medium and high electricity

consumers align with those defined in our methodology section. The huge differences in overall

household expenditures (which may be an indication of household wealth), suggests that the lower

consuming households tend to be poorer. Additional surveys directly measuring household income

or wealth, electricity consumption and household location would provide better insights into the

electricity consumption constraints due to differences in wealth and affordability.

In the second hypothesis, we posit that lower electricity consumption could be tied to electric

appliance ownership and use among households. Evaluating appliance ownership from the EICV5

survey suggest that there may be key differences in the appliances owned by different electricity

consumption categories. The five most frequently used appliances in the survey were evaluated in

light of the consumption categories. The most owned appliances within the survey include mobile

phones, followed by radios, video/DVD players, computers, and refrigerator/freezer, respectively.

4The survey reported total expenditure reflects a household’s monthly expenditure on goods and services. This
accounts for food, rent, electricity, water and more, derived from survey responses.
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Whie mobile phones and radios can be considered low-wattage appliances, video/DVD players,

computers and refrigerator/freezer can be considered as high-wattage appliances. Overall, appli-

ance ownership amongst medium and high customers is higher than appliance ownership in low

consumers. While the ownership of high-wattage appliances is low overall there are significant

differences between low and non-low (medium + high) electricity users. Specifically, while com-

bined refrigerator/freezer ownership is 15 % in the medium and high consumers, less than 1%

of low consumers own a refrigerator/freezer. A similar observation is made for the ownership

of video/dvd players which is 42 % in the non-low group and only 11 % in low consuming cus-

tomers. Computer ownership was also found to be 4 % and 22 % for the low and non-low groups,

respectively. While this initial observation does not provide additional insights to the efficiency of

appliances, it is an indication that higher consumers own more high-wattage appliances than low

consumers. Affordability of these appliances may also influence their ownership as poorer house-

holds have less purchasing power to buy high-wattage appliances. Appliance financing, similar to

endeavours carried out in the U.S. in the 1930s, may contribute to lifting the observed electricity

demand in low consuming households. We hope to corroborate this initial analysis using more de-

tailed surveys thus helping to better understand the relationship between electricity consumption

and barriers to electricity consumption in Rwanda.

Quantifying Subsidies given Tariffs & Revenue

Through our analysis, we have shown that increasing the tariff in 2015 by 35 % resulted in

suppressed consumption especially for the lower tier consumers. Nevertheless, there was a boost

in revenue for the utility as a result of the tariff increase. To revive consumption, especially for

low income households, a block tariff structure was introduced in 2017. This block tariff provided

the "lifeline" tariff of 89 RWF/kWh for consumption less than 15 kWh. While the lifeline tariff

provided more affordable tariffs to low income households, it also came at a cost to the utility in

the form of decreased revenues. Households consuming more than 15 kWh/month also benefited

from the "lifeline" tariff, further straining utility revenues. We observe from the customers within
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our dataset that by introducing the block tariff, the utility experienced a drop in annual revenue

from RWF 2.6 billion to RWF 2.3 billion. This significant drop in revenue further decreases the

financial viability of the utility as it is already serving customers who use little to no electricity and

pay a small fee to use it. Similar analysis can be carried out to quantify the potential subsidies that

governments or institutions can offer utilities to better support utility operations while encouraging

electricity consumption amongst poor and economically vulnerable households.

1.4 Summary

Developing economies are experiencing rapid increases in the number of households with grid-

access. A decade ago electricity access in Rwanda and Kenya were 10% and 30%, respectively. In

10 years that number has more than doubled to 64.5% in Rwanda and over 70 % in Kenya. This

acceleration towards universal electricity access has enabled many households to use electricity and

has opened opportunities to improve their welfare. However, it has also revealed some important

patterns in electricity consumption given the pace of electrification.

This work analyzes the dynamics of electricity consumption among these newly-connected

customers in Kenya and Rwanda. The key finding of newer customers using less electricity and

peaking sooner continues to highlight the importance of non-grid electrification technologies to

support the initial low demand of newer customers. While reaching the entire population with

some form of electricity access is a goal for all countries, it is vital to consider the challenges

therein. If, as our results show, the expected consumption plateau is lower for newer customers,

then the lowest-cost technology for initially providing electricity access to some customers, at least

until the demand grows significantly, may not be grid power.

Beyond electricity consumption trends, this work also shows the impact of tariff changes on

utility revenue and the amount of electricity used. The observed increase in electricity consumption

for the lower consumers shows that a block tariff structure might be beneficial in making electricity

consumption more affordable for the poorer households, however this comes at a significant cost

to the utility, further placing strain on its ability to remaining financially viable. While universal
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electrification is the goal, tariff structures that preserve consumption especially for the lower tier

consumers, can promote the use of electricity but may require large monetary investments in the

form of subsidies to the utility.

1.5 Appendix

1.5.1 Kenya Supporting Material

Kenya Classification

We applied a constrained k-means clustering method (Wagstaff et al., 2001) to identify three

clusters (urban, peri-urban, and rural). We initially used two clusters, representing urban and rural

areas, but discovered that the numerical uniqueness of the urban cores of Nairobi and Mombasa –

with high population density and intense nighttime lighting – set those areas apart into their own

cluster. The peri-urban surroundings of the cities and the rural areas were quantitatively more simi-

lar and therefore grouped into the same cluster. This does not agree with conventional definitions of

urban areas. By identifying three clusters, the algorithm is able to separate these “peri-urban” areas

from the rural areas, arriving at a much more justifiable classification. We also note that electricity

consumption levels across all quartiles were largely similar between the urban and peri-urban cat-

egories, so we felt comfortable pairing these two clusters into a single category representing urban

consumption. The constrained k-means clustering method works by exploiting accepted charac-

teristics about urban areas, which is used to apply initial constraints on the clustering algorithm.

For identifying these initial constraints, we leverage three methods for determining urban and ru-

ral locations from the literature. We use the spatial regions of overlap of these three methods to

bootstrap our algorithm, effectively identifying consensus-urban regions. The methods include:

1. The Global Rural-Urban Mapping Project (GRUMP) (Socioeconomic Data and Applications

Center, SEDAC, 2010), which combines census and satellite data to produce various datasets, in-

cluding urban masks used in this analysis; 2. LADA Land Use Systems of the World data which

provides 40 land-use classes for the world including urban areas (Land Degradation Assessment
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in Drylands, 2010); and 3. The UN population estimate (The United Nations Population Divisions

World Urbanization Prospects, 2010), which uses a national urbanization level (23.6% in the case

of Kenya) to determine a threshold of population density at which to separate urban areas and rural

areas. The constraints (consensus regions) describe which items in the dataset must be or cannot

be “linked” (appear in the same cluster). These areas provide the initial conditions of the clustering

algorithm, effectively bootstrapping the cluster definitions with areas that must appear in the same

cluster. With this guidance for initial cluster relationships, the algorithm can then proceed to assign

the remaining areas to any of the three clusters. To determine cluster membership, the algorithm

uses features obtained from three 2010 data sources, all of which are available publicly and in a

raster format at a maximum common resolution of 1 km × 1 km:

• Population Density via WorldPop (AfriPop, 2010);

• Nighttime Lights via the DMSP-OLS satellite imagery dataset (NOAA’s, 2010);

• LADA Land Use Systems of the World data which provides 40 land-use classes for the world

including urban areas (Land Degradation Assessment in Drylands, 2010)

Various methods for urban-rural classification in the literature employ one or two of these

datasets, but we were unable to find any methods that used all three data sources. Prior to applying

the clustering algorithm, the features are normalized by their mean and standard deviation. The

algorithm is able to classify each 1 km × 1 km grid cell of Kenya as urban, peri-urban, or rural.

Based on this classification, customers in our sample can be assigned to an urbanization level using

the GPS locations of their electric meters. Table 1.7 compares our method under 2 and 3 clusters

to the other urbanization methods, in classifying the total population of Kenya. We show that our

method under 3 clusters better allows us to extract the most rural population of Kenya, compared

to when we only apply 2 clusters. Although our method performs similar to existing methods when

defining urbanization levels, our method offers a robust clustering approach because it leverages

regions which existing definitions all agree to be urban, and uses these regions to initialize the

clustering thereby providing a more trustworthy definition of urbanization. In Table 1.8 we also
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show the performance of our method in classifying our study dataset of about 136k customers. The

peri-urban customers defined in our 3 cluster approach tend to be carved from mostly the urban

customers in a 2 cluster approach- although there are some from the rural cluster. This result aligns

with our decision to group urban and peri-urban customer consumption while understanding the

behavior of the most rural customers.

Urbanization Methods Urban Rural PeriUrban
(%) (%) (%)

Our Method (2 clusters) 15 85 NA
Our Method (3 clusters) 5.4 81.7 12.9

GRUMP 22.6 77.4 NA
Land Use Systems 11.9 88.1 NA

UN Population Estimate 23 77 NA

Table 1.7: Comparison of our clustering method with other definitions of urbanization, in classify-
ing the total population of Kenya in 2010.

Urbanization Methods Urban Rural PeriUrban
(%) (%) (%)

Our Method (2 clusters) 32.9 67.1 NA
Our Method (3 clusters) 6.6 55 38.4

GRUMP 53 47 NA
Land Use Systems 22 78 NA

UN Population Estimate 46 54 NA

Table 1.8: Comparison of our method with other definitions of urbanization, in classifying the
136k customers in our sample, by urbanization level.

1.5.2 Rwanda Supporting Material

Sample Size Considerations

Similar to evaluations in [36], sample size evaluations where performed with the data from

Rwanda. Months for which the sample size was less than 10% of the median sample size for a

given connection year, were filtered out, resulting in over 10,000 data points at any given point

in time for residential customers and over 1,000 data points at any given point for non-residential
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customers. Figure 1.18 shows the sample sizes used for the descriptive analysis in Rwanda. These

large sample sizes give confidence in the findings.

[A] [B]

Figure 1.18: Monthly number of residential (A) and non-residential (B) customers in Rwanda, sep-
arated by electricity installation dates. The large number of customers, numbering in the thousands
of bills, allows for confidence in the significance of our finding.

Validating the relationship between consumption growth and time

From our analysis, we observe that median electricity consumption initially increases then sta-

bilizes, for each connection cohort. Table 1.9 shows the average monthly change in electricity

consumption. We present regression results for each connection cohort when electricity consump-

tion is regressed with time. The years indicate the coefficients for customers electrified in that year.

For both residential and non-residential customers, we mostly observe statistically significant rela-

tionships, indicating that observations from the median customer figures are consistent across all

customers in the cohort.
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Table 1.9: Average monthly changes in electricity consumption with time for various connection
cohorts, across residential and non-residential customers. Regression coefficients indicate statisti-
cally significant changes in consumption over time. Standard errors are reported in brackets.

2013 2014 2015 2016 2017 2018 2019

(1) (2) (3) (4) (5) (6) (7)

Residential (kWh/month) 0.003∗ 0.002 0.020∗∗∗ 0.057∗∗∗ 0.035∗∗∗ −0.041∗∗∗ −0.169∗∗∗

(0.001) (0.002) (0.003) (0.004) (0.004) (0.005) (0.011)

Non-residential (kWh/month) −3.802∗∗∗ −0.087 −4.758∗∗∗ −0.827∗∗ 0.671∗∗∗ −2.022∗∗∗ 0.195
(0.182) (0.068) (0.345) (0.360) (0.190) (0.175) (0.714)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 2: Predicting Levels of Household Electricity Consumption in

Low-Access Settings

In low-income settings, the most critical piece of information for electric utilities is the antici-

pated consumption of a customer. Electricity consumption assessment is difficult to do in settings

where a significant fraction of households do not yet have an electricity connection. In such set-

tings the absolute levels of anticipated consumption can range from 5-100 kWh/month, leading to

high variability amongst these customers. Precious resources are at stake if a significant fraction

of low consumers are grid-connected over those with higher consumption.

Now suppose an energy planner or a utility is interested in predicting the anticipated electricity

consumption of an unelectrified household, so as to prioritize areas for grid extension and off-grid

systems. One approach might be to ask the household to enumerate the appliances that would be

used upon grid-access. While this approach would provide the planner with a good sense of appli-

ance ownership and thus the latent household demand, it requires the planner/utility to perform an

extensive survey of all households before determining which areas to prioritize for grid extension

versus off-grid systems. Deploying such extensive census is time-consuming and expensive. In

reality, household censuses in many countries are performed decennially. Thus to support large-

scale rapid and repeatable evaluation, alternative approaches to electricity consumption prediction

have to be considered.

One alternative would be to utilize the large amounts of already collected utility consumption

data to extract relevant features about electricity consumption. Planners can then develop mod-

els that attempt to correlate electricity consumption with features from widely available datasets

such as satellite imagery. This approach lends itself very well to machine learning methods and

remote sensed imagery. An electricity consumption prediction model that allows the discovery
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of relevant household features from satellite imagery can be developed. This model can even be

extending to incorporate and combine multiple data sources for feature extraction. An objective

or loss function specifying the attribute for error minimization would also be required. In this

case, the loss function would minimize the difference between the utility consumption data and

the model predictions. Finally, a training scheme, which allows the model to learn the most rel-

evant features from input data supports optimal model tuning. By combining these components,

a large-scale, rapid approach to predicting electricity consumption can be developed in order to

guide investments for grid extension and off-grid systems.

This chapter presents the first study of it’s kind in low-income settings that attempts to predict a

building’s consumption and not that of an aggregate administrative area. We train a Convolutional

Neural Network (CNN) over pre-electrification daytime satellite imagery with a sample of utility

bills from 20,000 geo-referenced electricity customers in Kenya (0.01% of Kenya’s residential cus-

tomers). This is made possible with a two-stage approach that uses a novel building segmentation

approach to leverage much larger volumes of no-cost satellite imagery to make the most of scarce

and expensive customer data. Our method shows that competitive accuracies can be achieved at

the building level, addressing the challenge of consumption variability. This work shows that the

building’s characteristics and it’s surrounding context are both important in predicting consump-

tion levels. We also evaluate the addition of lower resolution geospatial datasets into the training

process, including nighttime lights and census-derived data. The results are already helping inform

site selection and distribution-level planning, through granular predictions at the level of individual

structures in Kenya and there is no reason this cannot be extended to other countries.

2.1 Introduction

Improved engineering and new business models for electrification have contributed to increas-

ing access to electricity around the world. However, 840 million people still lack access to electric-

ity services [4], many of them residing in places that are difficult to reach and, as a result, expensive

to serve [43, 44]. Energy providers, constrained by limited investment budgets, face a perpetual
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trade-off between expanding electricity access and cost recovery. When consumption levels are

low, as can occur in low-income settings, utilities struggle to recover the cost of servicing a grid

connection, and the government subsidies[40] for initial capital are poorly utilized. Alternatives

to grid extension such as Solar Home Systems (SHS) can support smaller loads without the large

wire investments, while in some cases clustered homes (with clusters far from each other) can make

mini-grids viable[45]. In practice, identifying those likely to become high consumers is critical to

the energy provider, as these are critical to revenue generation and system cost recovery. Given

the diversity of electrification technologies, planners rely on energy access planning tools (e.g., the

Open Source Spatial Electrification Tool (OnSSET)[46]) that utilize electricity consumption tiers,

to match potential customers with technologies that can cost-effectively meet consumption. Con-

sumption predictions can assist matching areas with cost-effective energy technologies, enabling a

country to provide electricity access to a larger population given the same investment.

We make four unique contributions. First, we introduce a data-driven method to predict levels

of future electricity consumption for individual households, using information prior to the house-

hold being electrified. Our approach trains a CNN to predict levels of household consumption

using pre-electrificaion daytime satellite images. Although accurate individual household electric-

ity consumption predictions are difficult to achieve [47], we show that high-resolution daytime

satellite imagery (0.5 m/pixel) performs better (preserving performance at different levels of con-

sumption) than other approaches (historical consumption, census indicators, and Nighttime Lights)

that result in heavily-skewed prediction performance. Secondly, our proposed method shows that

learning about buildings through a building segmentation task and over a large volume of images

improves the downstream task of electricity consumption prediction. Thirdly, we demonstrate a

method for model interpretation that quantifies the importance of building characteristics relative

to the surrounding context. Specifically, we show that building roof sizes and color are relevant to

predicting consumption levels. Our approach also shows that learning about the household’s sur-

rounding context improves prediction performance between 2-5% depending on the consumption

tier.
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Finally, we present additional validation of our results using the World Bank’s Multi-Tier

Framework survey of electricity consumption among households. Sample weighted Pearson cor-

relation scores between the survey and our predictions for 5.3 million residential buildings were

0.82 when excluding the over-sampled and already-electrified capital city of Nairobi, and 0.64

otherwise. Outputs from our model can be used in planning tools such as OnSSET, which uti-

lize electricity demand tiers as an input parameter for spatial electrification planning. Given the

potential dependence of consumption on tariffs and policies for recovery of installation costs, the

specific results of this data-driven approach apply to Kenya. However, our methods can be ex-

tended to other countries, thereby offering insights to electricity planners.

2.2 Related Work

Predicting Electricity consumption: [48, 49] present a comprehensive survey on residential

energy consumption prediction. First, we review load forecasting in time for individual house-

holds, highlighting how the problem at hand is different. One approach [50] forecasts individual

household level electricity loads 24 hours ahead using sequence mining and smart meter data. An-

other [51] clusters customer smart meter data into behavioral groups and later use supervised tech-

niques such as Random Forest to predict customer clusters given unseen smart meter data. Other

residential load forecasting studies [52, 53, 54] also predict the short-term future consumption of

houses given their historical data or appliance usage, and deep learning techniques. Past consump-

tion data is essential for such studies and hence not suitable for future consumption prediction

where no prior data exists. Some studies have attempted to address the problem of predicting the

future consumption of a currently unelectrified household. In [55] the average consumption of pre-

viously connected customers (by municipality) is used to estimate consumption for unelectrified

households. This would not capture the variations amongst households. [56] use support vec-

tor regression to study the relevance of 48 household survey variables (demographics, appliance

ownership, household personality traits) in predicting household consumption. [57] use an en-

ergy end-use model to estimate demand for off-grid communities in Myanmar, Indonesia and Laos
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through household surveys that measure appliance ownership and usage. [58] take a similar ap-

proach to estimating residential electricity consumption in Nigeria by collecting survey responses

on appliance ownership and usage. [59] use machine learning to predict daily electricity con-

sumption tiers upon connecting to a microgrid, using features obtained from customer application

surveys pre-electrification. All of these studies use data that would be difficult and/or expensive to

obtain at scale for a country. Our approach provides a scalable and faster approach to estimating

consumption from proxy household features which are available in satellite imagery.

Satellite Imagery and Machine Learning: Recently, there has been a surge of studies apply-

ing CNNs to satellite imagery to assess building damage [60], measure road quality [61], detect

solar farms [62], segment roads and buildings[63], estimate rooftop density by type [64] and mea-

sure poverty. One approach [65] predicts wealth for multiple African countries by combining

overhead daytime images with CNNs. The authors use high resolution daytime images in train-

ing a CNN to predict nighttime lights; features extracted from the trained model were then used

to estimate household expenditure and wealth at a 10 x 10 km resolution. Their results suggest

that predictions about economic development can be made from satellite image derived features;

this insight provides additional motivation for developing methods that extract information from

imagery for electricity consumption prediction. Building on [65], multiple works [66, 67, 68, 69,

70, 71, 72] have assessed wealth, poverty and development using satellite images. [73] use VIIRS

nighttime lights, gridded population data and land cover to estimate binary electricity access rates

and electricity consumption tiers at 1 x 1 km grids. These studies demonstrate the value of satel-

lite imagery in serving as a proxy measure for varying features such as poverty, electricity access

and consumption. However, all these studies are carried out at a larger spatial scale to preclude

evaluations of poverty levels or electricity consumption tiers of individual households1. [47] is the

only study to the best of our knowledge that predicts individual building energy consumption using

overhead imagery in Gainesville, Florida, and San Diego, California. While performance improves

at a spatially aggregated level, at the individual building level, they report low correlation (r2=0)

1Household consumption tiers are relevant for electrification planning
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between predictions and the training data in Gainesville. The context of this study is quite dif-

ferent given the consumption levels, the size and formal construction practices in the U.S.. Also,

the problem they address is that of estimation for electrified households rather than consumption

prediction for unelectrified households.

To the best of our knowledge, ours is the first study of its kind that predicts electricity con-

sumption at an individual household level using overhead imagery. We formulate our task as a

classification rather than a regression problem, and provide model interpretation around learned

features.

2.3 Models

2.3.1 Problem definition

Given a set of households found in buildings B = {𝑏1, 𝑏2, 𝑏3...𝑏𝑛}, where each building has

a corresponding satellite image prior to the household being electrified X = {𝑥1, 𝑥2, 𝑥3...𝑥𝑛}, the

objective of our proposed model F (𝑥𝑖) is to use each building’s corresponding satellite image pre-

electrification, to predict its consumption class (�̂�) after the building has been electrified (i.e. 𝑦𝑖=

F (𝑥𝑖)). Data from electric meters after electrification serve as ground truth values. Binary labels

y𝑖 are obtained by applying a threshold thres (e.g. <= thres kWh/month) to the average monthly

consumption values of each individual household given its electric meter readings.

We propose a two-phase supervised method to predict binary consumption classes (𝑦𝑖). First,

we prioritize learning about building features through the help of a building segmentation task.

Next, the building segmentation model is used to initialize a supervised model to classify con-

sumption levels. Figure 2.1 illustrates the steps used for training, and their corresponding losses.

Our method is compared to other models that match commonly used approaches to predict elec-

tricity consumption levels after electrification.
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Figure 2.1: Phase 1: A building segmentation model is trained using the encoder in Phase 2 and a
UNET decoder. The segmentation model is trained with a dissimilarity loss (L𝑠𝑒𝑔). Skip connec-
tions are omitted to maximize information funneling. Phase 2: The pretrained encoder is used in
phase 2 to learn the electricity prediction task. An image (𝑥𝑖) containing a household’s building is
input into the pretrained encoder. This encoder is trained with the negative log-likelihood (L𝑡𝑎𝑠𝑘 )
loss to predict electricity consumption levels upon electrification.

2.3.2 Electricity Prediction Models

Here we present 4 different approaches to predicting electricity consumption. The first two are

widely used approaches, the third is our proposed method, and the fourth is an approach to support

the interpretation of our method.

Model A: Average Historical Consumption

Model A represents the simplest model and serves as a baseline. This method mimics ap-

proaches commonly used by energy planners to estimate consumption for the unelectrified. Energy

providers have historical consumption data for already-connected households. Thus, this model

assumes that the average historical consumption of households in the same administrative unit is

sufficient to approximate the consumption of customers that will be electrified in the future. In the

case of Kenya, energy planning is done at administrative levels (following Kenya’s policy of decen-
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tralized energy planning). For each connection year 𝑡𝑘 , households electrified prior to 𝑡𝑘 are used to

calculate the average monthly consumption (�̄�(𝑐 𝑗 , 𝑡𝑘 )) of each constituency 𝑐 𝑗 . A constituency is

an administrative unit and there are 290 constituencies across the country. Households who share

the same constituency and electrification year are assigned the same �̄�(𝑐 𝑗 , 𝑡𝑘 ) value. A threshold

value thres (e.g. <= thres kWh/month) is applied to the assigned consumption of every household

to determine the expected consumption class (𝑦𝑖). 𝑦𝑖 is compared to the true consumption class 𝑦𝑖.

Model B: MLP with Non-Visual Data

Varying lower-resolution datasets are widely available and can serve as proxies for electricity

access. In fact [73, 72] use non-visual data to evaluate electricity access and economic devel-

opment. We present model B, based on publicly available non-visual datasets to evaluate their

performance in predicting consumption levels upon electrification. Model B offers more com-

plexity than an average historical consumption strategy. Non-visual features are inputted into a

Multi-Layer Perceptron (MLP) containing 3 dense layers with 64, 32, and 16 filters respectively

(Appendix 2.7.1). The model is trained by minimizing the Negative Log-Likelihood loss as shown

in Equation 2.1.

L𝑡𝑎𝑠𝑘 =
∑︁
𝑦

− log(𝑝(𝑦𝑖; \)), (2.1)

\ and y𝑖 are the model weights and consumption labels.

Model C: Building Characteristics and Context

Model C combines both information about building characteristics with information about the

surrounding context. In this model both the building of interest (𝑏𝑖) and its surrounding context

(in the form of a 128 x 128 image patch pre-electrification) are used to predict consumption levels

post-electrification. Electricity consumption levels post-electrification are learnt in two phases.

First we train an encoder-decoder building segmentation model to learn relevant building features.

Next, we extract the trained encoder, add a classifier head and use the learnt building weights to

initialize the consumption prediction task. Below we present a description of each phase as shown
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in Figure 2.1.

Phase 1: Learning about buildings: Deep learning has been shown to thrive in the presence

of large amounts of labels. Although our electricity billing dataset is the largest of its kind (i.e., in a

similar context) ever studied, its size remains small relative to the amounts frequently used to train

data-hungry CNNs. We hypothesize that learning a proxy task (such as building segmentation)

could provide relevant image encodings for predicting levels of electricity consumption, especially

when small numbers of labels are available. We employ a much larger dataset of 6,928,078 build-

ing footprint polygon geometries in Uganda released by Microsoft[74] for building segmentation.

Building polygons from Uganda are used because there is no large high quality building footprint

data in Kenya, and Uganda is the closest geographic country to Kenya with building polygons.2

Noisy (misaligned or missing) building polygons were observed within the Microsoft data in some

parts of Uganda. Nevertheless, RGB patches of 128 x 128 pixels were used to train the building

segmentation model in Uganda. We combine a custom encoder with a UNET-decoder to perform

building segmentation (Figure 2.1). This encoder architecture is used both as an encoder for build-

ing segmentation and as an encoder for the classifier in phase 2. This architecture was inspired by

the DeepSense architecture[76] and has been shown to be helpful in remote sensing applications

such as building segmentation. Skip connections between the encoder-decoder are excluded to

maximize information funnelling through the encoder during phase 2. 64 filters were used in each

layer of the encoder. The building segmentation model was trained with a dissimilarity loss (L𝑠𝑒𝑔)

as shown in Equation 2.2, which builds on the Jaccard index J (U,�̂�).

L𝑠𝑒𝑔 = 1 − J (𝑈, �̂�) = 1 − (𝑈 · �̂�) + 𝜖

(𝑈 + �̂� −𝑈 · �̂�) + 𝜖
(2.2)

where U represents the true footprints, �̂� represents the predicted footprints and 𝜖 is used

for numerical stability. The learnt encodings are later used in the downstream consumption level

prediction task to bootstrap the classifier.

Phase 2: Predicting electricity consumption levels: After training the building segmentation

2This work was done prior to the release of Google Footprints [75]

61



model using Uganda data, the encoder-decoder network is initialized with the best building seg-

mentation weights. The encoder is extracted and merged with a classification head (consisting of

a global max-pooling and a dense layer) to predict consumption levels. The image patch is fed

into the encoder with the classifier head, which outputs the predicted class (𝑦𝑖), and is trained with

L𝑡𝑎𝑠𝑘 . Data augmentations (e.g vertical and horizontal image flips, 90 degree random rotations and

15% zooms) are performed during training.

Model D: Building Characteristics Only

The goal of Model D is to provide additional interpretation around the black box CNN in Model

C. Rather than evaluate the whole image, this model aims to evaluate the importance of only roof

characteristics of the building of interest, while ignoring the surrounding context of the household.

To achieve this, Model D utilizes only building roof characteristics (area and type) as predictors

of consumption levels. Specifically, building roof area and the RGB 3-channel intensities are

extracted and used as features for prediction. Building roof area and color are inputted into the

previously defined MLP to predict consumption levels (Appendix 2.7.1). The MLP is also trained

with L𝑡𝑎𝑠𝑘 .

Roof-top area extraction: The point indicator approach proposed by [77] is chosen over

conventional segmentation because the building polygons available for segmentation (Microsoft

Building Footprints in Uganda [74]) suffer from misaligned and omitted labels when compared to

our satellite images. First we select only polygons that are well aligned with structures in satellite

imagery. The well-aligned polygons together with the Pointer Segmentation Network[77] are used

to train a segmentation model that learns when some of the instances within the images are omit-

ted. This segmentation model was also trained with the dissimilarity loss (L𝑠𝑒𝑔). After training on

Uganda, we also generate 1000 hand-labelled footprints in Kenya and use the small sample from

Kenya to tune the Pointer Segmentation Network. Once the model is tuned to Kenya, the GPS

locations of the buildings (𝑏𝑖) in our dataset, are used to obtain a point within each image (𝑥𝑖). This

point when combined with the tuned Pointer Segmentation Network is used to extract the footprint
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for building 𝑏𝑖. The extracted footprint is then used to crop out the pixel intensities of the roof.

We assume building roofs have a uniform color, thus the roof pixel mean for each channel is used

in addition to the roof area (obtained from images pre-electrification) as input features to predict

consumption levels after electrification.

2.4 Data

The dataset used in this work has 3 components: 1) Monthly post-paid electricity bills, 2)

Overhead daytime satellite imagery, and 3) Public data sources. We unify these 3 data sources by

matching the billing dataset to images or public data sources using customer locations within the

billing dataset. Following are some details about each.

2.4.1 Ground truth electricity data

Previously[40], we conducted a longitudinal study of 100k+ randomly sampled electrified

households, observing that median customers in Kenya typically reach a consistent level of electric-

ity consumption roughly 12 months after receiving an electricity connection. Given this observa-

tion, we define the average monthly consumption of a household after 12 months of a connection as

the expected stable electricity consumption. For each household, all bills after one year of connec-

tion are averaged to obtained a single stable estimate of electricity consumption. The World Bank’s

Multi-Tier Framework (MTF) divides electricity consumption into a series of Tiers, based on levels

of electricity services. We consider low levels of consumption as corresponding to Tiers 0 - 2 of

the framework while high consumption levels correspond to >= Tiers 3. Our levels of consump-

tion are obtained by placing a threshold (thres) at 30 kWh/month. Figure 2.2 illustrates our levels

of consumption relative to the MTF tiers. We select a 30 kWh/month boundary because it aligns

with MTF break points and energy access practitioners rely on the MTF tiers to support spatial

electrification planning. Rather than defining the binary class with low being <= 30 kWh and high

being > 30 kWh, we select a discontinuous boundary where stable monthly consumptions (kWh)
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Figure 2.2: Illustration of World Bank Multi-Tier Framework Consumption Tiers relative to our
levels of consumption .

<=30 kWh are considered low while >= 60 kWh are considered high 3. To develop a matched

dataset of bills and images, customers are grouped by location to obtain electrified buildings. We

select residential buildings with only one customer account and these buildings are matched to

contemporaneous daytime satellite imagery. From 135,702 Kenya Power customers, 52,083 single

customer buildings are used to calculate the monthly stable consumption of each customer. Single

customer buildings are chosen over multi-customer buildings because our billing dataset does not

contain all the customers in each multi-customer building. Keeping in mind our goal of predict-

ing expected levels of consumption upon electrification (𝑦𝑖) using images pre-electrification (𝑥𝑖),

satellite image acquisition dates are used to select buildings with satellite imagery acquired prior

to the stable consumption phase. Our selection assumes that the socioeconomic benefits of elec-

trification do not become apparent within a daytime satellite image immediately (< 1 year) after

the household is electrified. Labels are obtained by applying the discontinuous threshold, to obtain

binary consumption levels.

3Customers between 30-60 kWh represent a harder set to study given that we use proxy measures (building charac-
teristics) from satellite imagery. The disjoint boundaries enable electricity planners to still identify customers with low
electricity consumption (<=30 kWh) to target lower-cost electricity technologies and customers, while also enabling
planners to target customers likely to have high electricity consumption (>=60 kWh) for more traditional grid-based
connections. This design choice, made with significant input from electricity system planning practitioners, supports
the twin goals of enhancing the financial sustainability of electricity providers and preserving model performance for
the relevant task.
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Table 2.1: Non-visual data used for electricity prediction.
Census (% of ward)
Water Source (Surface | Improved | Unimproved)
Sanitation (Improved | Unimproved)
Lightfuel (Finished | Rudimentary)
Floor material (Finished | Rudimentary)
Cook fuel (Finished | Rudimentary)
Wall material (Finished | Rudimentary | Natural)
Rooftop material (Finished | Rudimentary | Natural)
Intensity
VIIRS Nighttime lights

2.4.2 Satellite Imagery

Satellite imagery used in this work consists of 3-band (RGB) 50 cm daytime DigitalGlobe

Satellite Imagery obtained between 2002 and 2020. The DigitalGlobe imagery while providing

country-wide coverage only contains a single image per location (there are no temporal images for

the same location). To train the building segmentation task, images with corresponding building

polygons were used irrespective of the image acquisition date. To predict electricity consumption

levels, buildings whose images (𝑥𝑖) occurred pre-electrification are selected as part of the training,

validation and test datasets.

2.4.3 Public data sources

Census Information: The 2009 Kenya census [23] provides low-resolution demographic infor-

mation on households at the ward administrative level, for which there are 1450 wards in Kenya.

The 2009 census is selected over the more recent 2019 census because the recent census data are

not yet publicly available and also occur significantly after our electricity consumption data. In

addition, the 2009 census better aligns with our formulation for latent electricity prediction using

data the occurs prior to when the household was electrified. Table 2.1 shows a summary of param-

eters obtained from the 2009 Kenya census, grouped by semantic meaning. The census reports the

% of households in a ward for every category. Seventeen census indicators were used as additional

data. Customers in the same ward are assigned the ward census value.
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Intensity: 15 arcseconds/pixel (450m at the equator) VIIRS Satellite Nighttime Light data [78]

is often used to study economic development and electricity. Average monthly nighttime light

intensities for every year (2012 - 2015) were calculated using monthly VIIRS composites. The

nighttime light intensity for the year prior to when the building was electrified is retrieved, for the

grid cell in which the building is located. If the building was electrified before 2012, the 2012

intensity is used, as VIIRS composites are only available after 2011.

2.5 Experiments & Results

2.5.1 Experimental Setup

After matching satellite images pre-electrification to the mean electricity consumption of house-

holds in the stable phase, the datasets consist of 20,000 individual households. 75 % was used for

training, 15 % for validation and 10 % were held-out as the test set. The distribution of the overall

electricity data is preserved within each sub-group of train, val, and test. Results are reported for

the 10 % in the held-out test set. All models were trained with an Adam optimizer with a learning

rate of 1e−5. This learning rate was chosen over others (1e−3, 1e−4 and 1e−6) as it offered the best

overall performance and training convergence. The building segmentation model in Phase 1 was

trained for 30 epochs (as both the train and validation curve had converged). The MLP models are

trained for 20 epochs and the CNN model is trained for 100 epochs. A batch size of 64 was used

and 25% dropout was applied on all models to prevent overfitting. Feature standardization and

normalization was performed. We used an input patch size of 128 x 128 pixels to provide enough

field of view that captures the building in the centre and some context around it.

2.5.2 Performance Evaluation

Table 2.2 shows the performance of each of the four models presented in Section 2.3. Our

evaluation metrics include: 1) Class Accuracies shown as True Negative (TN - low consumers)

and True Positive (TP - high consumers) 2) Equally weighted F1-score, and 3) Area-Under-Curve

(AUC).
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(A) Average Historical Consumption

Using average historical consumption levels as predictors for yet-to-be connected customers

results in a highly-skewed prediction (0.35 F1-Score), with 99% of high consumers correctly pre-

dicted while only 2% of low consumers are correctly predicted. The strong performance skew is

because of the electrification bias, where high consumers (who are often wealthier) are electrified

first while lower consumers are added over time. The average historical consumption will always

over estimate the consumption levels of the newly connected (often lower consuming) customers.

An energy planner using administrative level averages will spend large investments to connect low

consumers via grid when cost-effective alternatives might be more suitable.

(B) Non-Visual Data

Census indicators offer a range in F1-scores (0.57 - 0.65), with the highest obtained from

rooftop materials. This suggests that building characteristics are important proxy features for pre-

dicting consumption levels upon electrification. Census parameters while performing better than

Model A, also show a performance skew towards the lower consumption class. Nighttime lights

only achieved a 0.51 F1-score in predicting individual consumption levels of future electricity con-

nections. Overall, when all census and nighttime light features are combines F1-scores and AUCs

are still below that obtained with images.

(C) Building Characteristics and Context

Using only daytime satellite images as the basis for prediction, our approach (Model C) achieves

an balanced F1-score of 0.68 with an AUC of 0.75. This image-based model ensures good perfor-

mance in both classes (70 % and 66 % correctly predicted as low and high respectively). Good

performance in both classes is crucial for energy planners (especially in highly heterogeneous re-

gions) and suggests that images better support local class differentiation, compared to the other

lower resolution data sources. Our CNN architecture performs comparable to well-known archi-

tectures such as VGG16[79] and ResNet50[80], even though our custom encoder only has 728k
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Table 2.2: Comparison of electricity prediction models in Kenya. Area-Under-Curve (AUC) &
Balanced F1-score metrics are presented. True Negative (TN) shows the fraction of low consumers
that were correctly predicted while True Positive (TP) shows the fraction of high consumers that
were correctly predicted.

Model Method Data Input AUC F1-score TN TP
A Historical Consumption Average kWh NA 0.35 0.02 0.99
B Census i) Water Src. 0.69 0.63 0.82 0.47

ii) Sanitation 0.62 0.57 0.63 0.51
iii) Lighting Fuel 0.68 0.63 0.82 0.47
iv) Floor Mat. 0.67 0.61 0.84 0.41
v) Cooking Fuel 0.67 0.60 0.86 0.39
vi) Wall Mat. 0.66 0.63 0.69 0.57
vii) Rooftop Mat. 0.69 0.65 0.66 0.64

B Nightime Lights VIIRS 0.52 0.51 0.77 0.30

B
Census
& Nighttime Lights i)- vii) and VIIRS 0.65 0.65 0.75 0.55

C (Ours)
Building Seg. Weights
without Contrastive loss

Building Characteristics
& Context Images 0.75 0.68 0.70 0.66

C (Ours)
Building Seg. Weights
with Contrastive loss

Building Characteristics
& Context Images 0.73 0.67 0.66 0.67

D Building Characteristics Roof Area 0.65 0.61 0.66 0.56
Roof Color 0.66 0.62 0.56 0.68
Roof Area & Color 0.69 0.64 0.65 0.64

B & C

Building Characteristics
& Context,
Census
Nighttime Lights

Images,
i-vii,
VIIRS

0.77 0.70 0.76 0.65

trainable parameters compared to millions in VGG-16 and ResNet-50 (Table 2.3).

The classifier encoder was pretrained on a building segmentation task. The value of this pre-

training step is validated by 2 approaches. First, we compare classification performance with and

without pretraining and noticed that pretraining the encoder on building segmentation improves

the electrification classifier accuracy from 0.63 to 0.68 when all the electricity training data is

used. When the training data is reduced, performance is preserved for the building segmentation-

Table 2.3: Performance comparison of well-known architectures compared to our encoder
Weights F1-score # Parameters

VGG16 Random 0.62 14,714,688
Resnet-50 Random 0.62 23,587,712

Our Encoder Random 0.63 728,0065
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pretrained model when compared to a model trained from scratch (Appendix 2.7.3). Second,

we also compare the performance with and without a supervised constrastive loss[81] when ini-

tialized with building segmentation weights. Here, we hypothesize that if relevant embeddings

are obtained through building segmentation, further optimizations of the embeddings (through a

contrastive loss) would provide no additional performance gains. The classifier (initialized with

building segmentation weights) was trained with a supervised contrastive loss (temperatures: 0.08

and 0.1) prior to finetuning the final layer for classification. Adding a contrastive loss did not fur-

ther improve performance (0.67 F1-score), suggesting that the building segmentation task learnt

relevant embeddings needed for the classification task.

Combining visual and non-visual features (Model B & C) through a multi-modal architecture

(Appendix 2.7.2), increased the F1-score to 0.70. Using multi-modal data can be helpful to im-

prove electricity predictions.

The image model was evaluated on households with monthly consumption between 31-59

kWh. We observed a 4% decline in F1-score when a threshold of <=30 kWh and > 30 kWh

is used for low and high, respectively. 4

2.5.3 Model Explainability

In this section we explore quantitative and qualitative approaches to uncovering the relevant

features learnt by the CNN when predicting consumption levels from satellite image. We present

three model explanability approaches (1 quantitative and 2 qualitative), with the goal of shedding

some light into the black box CNN models. The first approach evaluates the performance of a

machine learning model that takes in only building characteristics and outputs consumption levels.

This quantitative approach measures the amount of relevant information held in building roof char-

acteristics only. The second approach applies a Gradient-based Class Activation Map (Grad-CAM)

that highlight portions within the input image responsible for the predictions. The third approach

uses Generative Adversarial Networks (GANs) to tease out human-interpretable features that lead

4This set make up 28 % of single household customers within our data.
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Figure 2.3: Sample segmentation outputs using an indicator point to specify which building(s)
to segment[77]. White dots show input points given to the model to specify which buildings to
segment. Green shows predictions and blue ground-truth.

to class differentiation. We present an in-depth discussion of each of these approaches.

(D): Building Characteristics Only (Quantitative Interpretation)

Complementary to the CNN, Model D isolates and quantifies the relevance of building charac-

teristics (only roof-top area and type) when learning to predict consumption. Prior to discussing

Model D’s performance, we first discuss the performance of the pointer segmentation model used

to obtain building footprints. Performance of rooftop segmentation: Hand-labelled polygons

in Kenya showed a validation Intersection-Over-Union (IOU) of 0.54. Figure 2.3 shows sample

segmented footprints in Kenya given indicator points (white dots) specifying buildings. This seg-

mentation model was applied on the electricity training, validation and test set to extract building

footprints (roof area) and average roof pixel intensities for each channel (rooftop type).
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Figure 2.4: Gradient-based class activation maps for sample in test set. Stronger neural activations
are in Red while weaker neural activations are in Blue. Buildings are strongly activated when
predicting high levels of consumption while the activation is more distributed between the building
and its surrounding context when predicting low levels of consumption.

Model D Performance: Roof area and roof color features respectively predicted 66% and 56%

of the low class correctly while respectively predicting 56% and 68% of the high class correctly.

However, combining both roof area and color reduced the skew in performance while encouraging

better predictions for both low and high levels of consumption. This suggests that individual roof

sizes may be more indicative of low consumers while roof materials (from mean pixel intensities)

are helpful for better identifying high consumers. Direct use of images, which includes both the

building characteristics and the surrounding context of the building improves the F1-score (relative

to using only building characteristics) by 4% . This added benefit is likely a combined effect of

bypassing segmentation error and the additional information found within the surrounding context

of the building.
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GRAD-CAM (Qualitative Interpretation)

Class activation maps are used to qualitatively explain the relevant features that the image-

based classifier in Model C uses to predict levels of electricity consumption. GRAD-CAM [82] is

used to visualize portions of the image that have high neural activations when making predictions.

Some GRAD-CAM visualizations are shown in Figure 2.4. Strong activations (red) on buildings

are observed when predicting high-consuming buildings while the activation is more distributed

between the building and its surrounding context (blue) when predicting low-consuming build-

ings. The image-based model utilizes both building size and surrounding land as indicators of

consumption levels.

Visualizing Explanatory Features for Class Differentiation (Qualitative Interpretation)

One might ask the question, why does a model classify one image as low rather than as high?

More formally, the question asked might be: what high-level features is the model using to dis-

criminate between low and high electricity users. To answer this question, we utilize decision

boundary crossing transforms specifically in the form of an unpaired image-to-image Generative

Adversarial Networks (GAN). GANs can be used to identify and visualize features that impact

classification decisions, as they allow a user to inspect how the addition of certain feature vectors

cause an image to fall on the other side of a decision boundary [83].

Consider an image 𝑥𝑖 belonging to an area with low electricity consumers and an image 𝑦 𝑗

belonging to an area with high electricity consumers. In this context low and high are defined by

user thresholds, less than 𝑡𝑙 and greater than 𝑡ℎ, respectively.

Given these unpaired image examples 5, the goal is to learn distinct, localized features that

shift 𝑥𝑖 from being classified as a low consumption image, across the classifier decision boundary

to being classified as a high consumption. Figure 2.5 illustrates the generative decision boundary

mapping functions 𝐺 and 𝐹 that will create the features of interest which lead to a change in the

5A place cannot be both low and high consuming at the same time, thus there are no two class labels defining the
same place.
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Figure 2.5: Illustration of decision boundary transforms 𝐺 and 𝐹 that transform an image from a
given class across the decision boundary to a new class. 𝐺 transforms images of high consumption
areas to that of low consumption areas, while 𝐹 does the reverse.

classification decision. In this work, we use two generators to create decision boundary crossing

transforms: G which generates �̂�𝑖 given 𝑥𝑖 (𝐺 : 𝑋− > 𝑌 ) and F which generates 𝑥 𝑗 given 𝑦 𝑗

(𝐹 : 𝑌− > �̂�). The quality of the generated images are evaluated by two discriminators. The goal

of the generators are to fool the discriminators into thinking the generated images are real. This

approach can be generalized for multiple classes, showing that a tune-able GAN can be created to

understand relevant features for multiclass classification (Refer to [84]).

Similar to [85], this work uses an adversarial loss 𝐿𝑔𝑎𝑛 and a cycle consistency loss 𝐿𝑐𝑦𝑐𝑙𝑒.

These two losses enable both the discriminators and generators to learn from each other while

prioritizing image quality. To ensure that distinct, localized features are generated an illumination

control loss (𝐿𝑖𝑙𝑙𝑢𝑚) is added. This loss prevents the generators from merely increasing or de-

creasing greenness to generate images in the alternate domain, instead incentivizing distinct image

changes while any global change in the pixel values is kept minimal. Each loss is weighted by

some _, thereby controlling the contribution of each loss to the total model loss. The losses are

presented below:
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𝐿𝑔𝑎𝑛 (𝐺, 𝐷𝑦, 𝑋,𝑌 ) = E𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦) [𝑙𝑜𝑔(𝐷𝑌 (𝑦))] + E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [𝑙𝑜𝑔(1 − 𝐷𝑦 (𝐺 (𝑥))] (2.3)

𝐿𝑐𝑦𝑐 (𝐺, 𝐹) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [|𝐹 (𝐺 (𝑥)) − 𝑥 |1] + E𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦) [|𝐺 (𝐹 (𝑦)) − 𝑦 |1]) (2.4)

𝐿𝑖𝑙𝑙𝑢𝑚 (𝐺, 𝐹) = (
∑︁
E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [|𝐺 (𝑥) − 𝑥 |1] +

∑︁
E𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦) [|𝐹 (𝑦) − 𝑦 |1]) (2.5)

𝐿𝑡𝑜𝑡𝑎𝑙 = _1∗𝐿𝑔𝑎𝑛 (𝐺, 𝐷𝑦, 𝑋,𝑌 ) +_2∗𝐿𝑔𝑎𝑛 (𝐹, 𝐷𝑥 , 𝑋,𝑌 ) +_3∗𝐿𝑐𝑦𝑐 (𝐺, 𝐹) +_4∗𝐿𝑖𝑙𝑙𝑢𝑚 (𝐺, 𝐹) (2.6)

Figure 2.6 presents the results for the model implementation, when only the low and high class

are used to train the model. In transitioning from a low-consumption image to a high-consumption

one (top set of images), the method performs two primary localized and distinct changes: road

and building footprints are both enlarged and brightened. These changes have the effect of making

roads and buildings stand in sharper contrast to background features. These results make intu-

itive sense, as the lighter roads in the transformed images look to have a higher quality than roads

in the original one, indicating more development in the generated image, which usually corre-

sponds to higher electricity consumption. Similarly, tin roofs are typically seen as higher-status

home improvements, and making the upgrade from a thatched roof to a reflective one likely par-

allels an increase in electricity consumption for a particular household. Transforming from the

high-consumption class to the low-consumption class (bottom set of images) largely makes the

inverse changes to the input imagery: road and buildings footprints are dimmed and made to

blend in with their surroundings. These generated images on average look more rural than their

high-consumption counterparts. Results from this approach agree with our previous findings and

intuition that while buildings contribute to driving predictions, other contextual features such as
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Figure 2.6: Results from the binary CycleGAN. The first set of transformations take a low-
consumption image and transform it into a high-consumption image; the second set of image does
the inverse. Left to right, the columns indicate the original image, the transformed image, and the
absolute value of the transformed image minus the original image.

road presence and quality, and surrounding vegetation also provide guiding signals to the CNN.

2.5.4 Validation with independent survey data

We present an extra validation of our approach against an independently collected and nation-

ally representative baseline household survey (4473 households) of both electrified and unelectri-

fied households[86]. The Kenya Multi-Tier Framework (MTF) Survey conducted between 2016

- 2018, asks grid-connected households how much electricity they consumed in the most recent

month. The reported and binned onetime consumptions are compared with our predictions for

Kenya Power residential grid-connected customers. Images alone are used to predict consumption
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Table 2.4: County-level consistency between independently collected Multi-Tier Framework
(MTF) Survey and predictions for 5.3 million Kenya Power residential customers. Results (p-
value <0.0005) for counties with at least 15 MTF samples.

29 Counties
28 Counties
(Excluding Nairobi)

Pearson correlation 0.64 0.82

levels of 5.3 million Kenya Power residential customers connected by the start of 2016. MTF

samples are binned at <=30 kWh as low and >=60 as high. Sample weighted Pearson correlations

(Table 2.4) between MTF and predicted consumption levels are reported for 29 counties with at

least 15 MTF survey samples of grid-connected customers. Using all 29 counties, a correlation of

0.64 is observed. Excluding Nairobi county increases, the correlation to 0.826. These correlations

show strong agreement (p <0.0005) given an independent source of national data.

2.5.5 Country-wide predictions

After training, we inferred consumption levels for 11.9 million buildings in Kenya using build-

ing GPS locations collected as part of the Kenya National Electrification Strategy - Structures

Survey. GPS locations and corresponding image patches are used to predict consumption levels

for all buildings. Statistics for each predicted level of consumption are reported in a 6-band TIF for

Kenya at resolutions of 250m, 500m, 1000m and 10,000m. Band 1 shows the predicted number

of buildings with low levels of consumption, band 2, the mean predicted probabilities for band 1

and band 3, the standard deviation of prediction probabilities. Bands 4 through 6 capture similar

information as the first three but are for high levels of consumption. The Kenya map in Figure 2.7

shows predictions (aggregated at 250m) for the 11.9 million buildings. We show the fraction of

buildings that have low levels of consumption. This is obtained by dividing band 1 in our gener-

ated TIF by the sum of band 1 and 4. Blue shows regions where more buildings have low levels of

expected stable consumption, while red shows regions where more buildings have high levels of

expected stable consumption. Because our training data is a sample of consumption data – there

6Nairobi (the largest city in Kenya), is excluded because the survey over-samples recently-electrified informal
settlements.
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are no areas where we have exhaustive coverage – we are unable to obtain performance metrics for

our aggregations. We observe that wealthier areas such as Nairobi have larger number of structures

with high levels of consumption; this aligns with our intuition.

Figure 2.7: Novel predictions of electricity consumption levels for Kenya, aggregated at 250m.
Blue shows regions with a large fraction of low-consuming buildings while Red shows regions
with a large fraction of high-consuming buildings.

2.5.6 API and Users

An API was developed to share building consumption prediction estimates freely to the general

public. The building consumption estimates are aggregated at 250m, 500m, 1000m and 10,000m

cell resolutions for privacy concerns. Users are able to access consumption predictions of a single

cell or collection of cells using the available cell resolutions. Users can make point or polygon

coordinate queries. Figure 2.8 shows a sample JSON response given an input request polygon. The
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Figure 2.8: Sample consumption level API JSON response given an input polygon request. Struc-
ture counts for each class and prediction confidence levels are returned.

query response contains a summary count of all buildings in the queried area of interest that lie in

both the low and high consumption classes. For polygon queries, probability figures are included

that convey the model’s confidence in the structure classifications made. Summary statistics for

cells 1-15 are returned if the summary feature is selected, else individual statistics for each cell

is returned. The API has seen significant engagement from a variety of NGOs, institutions and

individuals since its launch. The API has so far registered 7 active users who combined have made

nearly 15,000 requests. We fully expect the engagement to grow as we make more countries and

consumption categories available to users through the API. For more information on how to access

and use the API, please use: https://eguide.io/#api
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2.5.7 A note on proper applications of our work

This chapter proposes a methodology to estimate anticipated levels of electricity consumption.

Such an exercise given the premise itself of estimating how much electricity a specific household

will consume- is fraught with many uncertainties in the prediction itself, the embedded assump-

tions and (im)proper applications of the results. First, this paper focuses on residential customers

only with an estimate of whether they are expected to be in a low or high level of consumption

if they are grid connected. Secondly, an electrification bias may be present, as the analysis can-

not and does not evaluate customers that are currently electrified with off-grid systems. Thirdly

given that our validation results show that the odds of correct predictions are roughly two out of

three, electrification planners risk classifying individual households or groups of households (per-

haps in some geographies/landscapes or perhaps based on roof materials/footprints) with otherwise

high consumption as low, potentially leading to biased outcomes. Hence we believe that there is

no substitute for individual and community agency and representation; and no substitute for util-

ity/planner surveys. On the flip side, utilities could uniformly end up simply estimating that all

new consumers are low-consuming, extrapolating from their recent observations. Analysis such

as that presented here could be one additional input in decision making. Utilities could improve

their own predictions with the much larger and comprehensive data (e.g. bills and locations of all

existing customers) that they have. Our novel results are aimed at providing a new methodology

and a high-level guidance, making them suitable for site prioritization across larger landscapes,

where a human-in-the-loop approach such as surveys can be taken, to validate the true consump-

tion (through appliance ownership etc) after initial sites have been determined.

2.6 Summary

This chapter proposes a method to estimate levels of electricity consumption for unconnected

households using pre-electrification images. Our results show that our novel methodology of us-

ing satellite images for electricity prediction outperforms existing approaches currently used by
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energy planners. We also present a multi-modal approach that combines satellite images with

other data sources to further improve the overall prediction performance. The predictions of our

model (currently deployed in Kenya) provide a birds-eye view of relative levels of consumption

upon electrification throughout the country and equip decision-makers with a direct measure of

expected energy usage as well as a novel proxy for economic activity. This can enable better sys-

tem planning and stretch investments in electrification to connect more people to modern energy

sources.

Predicting electricity usage from satellite images remains a difficult task, mainly because ele-

ments in satellite images (rooftops, roads, fields) are only proxy measures for electricity. Utilities

could improve their own predictions with additional much larger and comprehensive data (e.g. bills

and locations of all existing customers) that they possess. We are keen to co-develop such method-

ologies with partners. We also plan to evaluate the transferability of our method by extending our

approach to other countries and sectors (e.g., commercial and industrial).

2.7 Appendix

2.7.1 Multi-Layer Perception (MLP) Architecture

Figure 2.9 shows the MLP architecture used to train Model B (Non-visual Data) and Model D

(Building Characteristics Only). The MLP consists of 3 dense layers with 64, 32, and 16 filters

respectively, all with ReLU activations. The last dense layer consists of a softmax activation. 25

% dropout was applied to minimize overfitting.

2.7.2 Performance of building segmentation

Additional evaluation of the building segmentation task is done by observing how the classifier

performs at varying training data sample sizes. Figure 2.10 shows the F1-score at different train-

ing data sample sizes when random subsets of the data are selected and either random weights or

building segmentation weights are used to initialize model training. At each sample size increment,

samples from the previous sample size are included. E.g. the 20 % dataset contains all the samples
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Figure 2.9: MLP architecture used to train Model B and Model D

from the 5 % dataset. Initializing with building segmentation weights offers performance gains es-

pecially at smaller sample sizes. The improved performances with building segmentation weights

suggests that underlying characteristics about buildings (rooftop type, color, size) provides relevant

features for consumption prediction. This is inline with our initial findings that building character-

istics are relevant in predicting consumption levels. In addition to improved model performance,

building segmentation weights make the classifier less susceptible to label quality. Specifically

when random weights are used for initialization, it is observed that the randomly selected sub-

sample at 60 % of the full dataset, performed the best and performance dropped as more samples

were added. This suggests that the ease | difficulty of the sub-sample significantly affects per-

formance. Building segmentation weights initializes the model in a suitable learning space and

has a regularizing effect even as harder labels may be introduced, allowing only additional useful

information to be extracted.

Obtaining large amounts of useful samples to appropriately predict consumption of yet to be

connected customers can be challenging. For energy practitioner looking to apply our approach,

we show that learning about buildings from using a segmentation task, provides useful weight
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Figure 2.10: Comparison of prediction performance when the classifier is initialized with random
weights versus building segmentation weights. Learning about building segmentation improves
performance in low-data regimes and makes performance less susceptible to harder labels thereby
offering a regularizing effect.

tuning needed for appropriate prediction of consumption tiers.

2.7.3 Multi-modal architecture: Encoder and MLP

Figure 2.11 shows the multimodal architecture used to combine satellite images with public

data sources.
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Figure 2.11: Multi-modal architecture combining the CNN image-based encoder with an MLP to
predict consumption levels using visual images and non-visual public data sources.
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Chapter 3: A scalable framework to measure the impact of spatial

heterogeneity on electrification

3.1 Introduction

Sustainable Development Goal 7 (SDG7) was adopted in 2015 by the United Nations member

states to provide access to “affordable, reliable, sustainable, and modern energy” to all by 2030

[87]. Although there has been significant progress towards reaching SDG7 in recent years, 840

million people still live without electricity as of 2019 [4]. The lack of access to electricity in devel-

oping regions necessitates rapid and informed decision making on electrification options. Among

the options available today, isolated or individual customer-scale solar-battery systems, frequently

referred to as solar home systems (SHS), do not require any network at all. Networked options,

such as a grid connection, rely on one or more large power plants located at multiple points on

a network, where transmission lines carry the power over long distances (generally hundreds to

thousands of kilometers) on a high-voltage backbone. This backbone in turn feeds a medium-

voltage (MV) network, which distributes electricity directly to large consumers and transformers.

The transformers drop down the voltage and allow a low-voltage (LV) wire to connect smaller

customers in roughly a kilometer radius. The MV and LV network combined with transformers

is called the distribution system. In the context of investments for access to grid electricity, this

system generally represents the largest fraction of the total system cost and therefore, understand-

ing the requirements of the distribution systems is quite important for proper rural electrification

planning.

Determining the best electrification option for a region is particularly challenging especially

when a mixture of solutions is possible. In fact, Carvallo et al. show that in places with low

electrification rates, hybrid solutions that pair networked systems with standalone decentralized
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options typically offer an attractive approach to electrification [88]. To aid utilities in identifying

electrification options, a number of electrification planning tools that are capable of choosing be-

tween decentralized and networked options have been developed [89]. These tools apply least-cost

methods to determine the demand points, which may be better served by grid extensions and those

whom would gain more benefits from off-grid systems. Depending on the techno-economic model

used and the availability of the data, granularity level of these tools varies. Literature suggests that

using all consumer locations for large-scale planning imposes strong computational constraints on

many models. Thus, the studies aiming for large-scale electrification such as at the country level

tend to make simplifications by grouping individual structures into villages or large cells of 1km

[89].

When consumer points are aggregated over large areas for planning purposes, it is not possible

to understand the impact of the settlement patterns on the components of the distribution systems

and this may lead to misleading results when determining the electrification option at the local

level. In order to address this problem, we first propose a data processing strategy for Kenya to

convert structure locations, identified from satellite imagery, to estimated household locations us-

ing census data. Then, we present a computational framework that involves a two-level network

design algorithm to find an abstract representation of the power distribution system involving low-

voltage wires, medium voltage wires, and the transformers between the two levels of the system.

Given the system components, we introduce three simple metrics for per-household connectivity

requirements of LV wire, MV wire, and transformers to interpret our results at the administrative

unit level and the sub-administrative unit level. With our administrative level analysis provided

for 9.2 million structures in Kenya, we show that traditional rural/urban classification based on

population density is often deceiving in estimating the cost of electrification and a new catego-

rization based on our metrics (combination of MV and LV wire requirements and the number

of structures per transformer) provides more relevant estimates on the total cost. Moreover, in

the sub-administrative analysis, our metrics can help determine the least-cost electrification option

(e.g.,grid, mini-grid, or stand-alone systems) for expanding access and create a platform to perform
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sensitivity analysis based on different cost components. To the best of our knowledge, there is no

focused study that evaluates the value of different connectivity metrics, highlighting their roles

and strengths in facilitating the electrification planning process in a scalable manner. In addition,

our work shows how these connectivity metrics complement and clarify the composite cost metric,

which is usually the only metric reported in many planning studies.

This chapter adds to the existing knowledge in three ways. First, the work demonstrates a

data processing strategy to estimate the residential connection locations at the country level. Sec-

ond, the chapter proposes a framework for applying large-scale computationally-intensive network

optimizations on millions of consumers. Third, the chapter introduces three complementary con-

nectivity metrics for evaluating electrification choices agnostic to the network planning approach.

The methodology that we put forward can assist the decision-making process in electrification

planning and serve as a decision support tool for identifying suitable electrification options. While

we present results for Kenya, we believe that this tool can be applied to places with little to no

access to electricity. Meeting the targets set in SDG7 requires consideration of multiple consumers

across large landscapes with varying settlement patterns; our work outlines a feasible approach to

perform planning at scale to support electrification objectives.

The remainder of the chapter is organized as follows: In Section 3.2 we present relevant contri-

butions from literature, in Section 3.3, we discuss the data used for this work and present a method

to estimate residential connection locations from building structures identified by satellite images.

In Section 3.4 we describe the two-level network optimization algorithm used in our framework

and our computational improvements. In Section 3.5 and 3.6, we show the metrics computed us-

ing the two-level network algorithm and their applications at varying resolutions. In Section 3.7

we also show the sensitivity of our metrics to cost. Finally in Section 3.8, we propose feasible

extensions to our work and conclude.
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3.2 Related Work

In a comprehensive review paper by Ciller et al. [89], planning tools used for rural electrifica-

tion are classified into three groups: pre-feasibility studies, intermediate analysis tools and detailed

generation and network design tools. Although not all efforts towards rural electrification are pre-

sented or used as a software tool in the literature, we review the studies related to our work using

the same classification.

Pre-feasibility studies as in [90, 91, 92, 93] estimate the least cost approach for different tech-

nology choices using simplifying assumptions, allowing for a first pass at the planning problem.

These studies do not typically include network design and are likely to group consumers into vil-

lages or cells (e.g., 1 km x 1 km). Grouping of consumers reduces the computational granularity,

and therefore, pre-feasibility studies have lower model complexity, high computational speed, and

are valuable for quickly evaluating technology choices over large-scale areas at low resolution

given varying generation options. Cost remains the key reported metric of evaluation used with

pre-feasibility methodologies.

The studies that are used for intermediate analysis have various complexity levels depending

on the network design and the technical details considered. Similar to the pre-feasibility studies,

the resolution of the data used in the intermediate analysis studies is low. An intermediate plan-

ning approach presented in [94] proposes a spatial cost minimization electricity planning model

for Kenya to decide between grid-based electrification and off-grid solutions. The model provides

the basis for Network Planner (NP), an online decision-support tool that has been developed to

explore grid, mini-grid, and off-grid options for rural communities [95] and has been used in na-

tional electrification studies of countries such as Senegal [96], Ghana [97] and Nigeria [98]. In

[99], Abdul-Salam and Phimister propose an approach based on hierarchical lexicographic pro-

gramming that considers both cost efficiency and political economy to give large populations a

priority for grid connectivity. Bolukbasi and Kocaman propose a prize collecting Steiner tree ap-

proach to choose between grid and off-grid options and to determine the network design for the
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grid-compatible nodes in a least cost manner [100]. Although these studies offer great value by

folding in more modeling complexity, they reduce the computational difficulties by aggregating

individual consumers and therefore neglect the effect of settlement distribution. Similar to many

electrification planning models, intermediate studies report cost as the key metric of evaluation.

In Ciller et al. [89], Reference Electrification Model (REM) [101] is described as the only

planning tool that falls under the detailed generation and network design class. REM aims to design

a power system configuration evaluating the demand profiles for the individual customers. To

overcome the computational burden of a detailed plan using local level data, REM uses a sequential

approach to plan the sub-systems in a hierarchical manner. Although it provides a very detailed

network configuration, it is acknowledged in [89] that, the network design approach used in REM

is not designed for rural electrification planning and may perform poorly when designing small

networks.

There are also some studies in the rural electrification literature that use customer or household

level data as in REM [101], however, aim for obtaining quick estimates for the network structure

and associated costs, rather than being used for detailed implementation. The main objective of

these studies is to show that rural settlement patterns – especially in Sub-Saharan Africa – can be

diverse and the effect of settlement patterns on the electrification options might be overlooked in

the pre-feasibility and intermediate analysis studies due to the aggregated data considered. Using

several datasets of structure locations developed from satellite imagery, Zvoleff et al. propose a

metric, called the homogeneity index, that serves as a proxy for the degree of dispersion of the

structures. They provide solid evidence about the impact of geographic patterns on the cost of

energy infrastructure. However, they assume that all identified structures within the images are

households and these households can be connected via single level LV network [102]. Kocaman

et al. [103] use the same structure locations as [102] to propose a computationally-intensive two-

level (MV and LV) network optimization approach and evaluate the cost of grid extension for the

distribution systems in limited-size rural regions. In [104], Adkins et al. use inter-community and

inter-household distances as proxies to estimate MV and LV wire lengths.
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In this paper, we build upon the approach presented by Kocaman et al. [103] and present a

computational framework to incorporate a large number of connection points into electrification

planning, thereby improving modeling capacity at reasonable computational speed. In this direc-

tion, our study is the first to propose a detailed data processing strategy to estimate the residential

connection locations from hand-labelled structure points. Moreover, we propose a set of per-

household connectivity metrics - low-voltage wire, medium-voltage wire and transformers - that

can be used to rapidly evaluate electrification choices agnostic to the network planning approach.

We show how network outputs from detailed models such as REM [101] can be used to compute

our metrics and how these metrics facilitate rapid analyses of the electrification landscape within a

country. We discuss all our results for Kenya, for which, to the best of our knowledge, no similar

findings are available in the literature.

3.3 A Data Processing Framework

In this section, we first discuss the source of our structure locations data and propose a data

processing framework to estimate the household locations.

3.3.1 Structure locations

Our study is principally built upon 11.9 million human-labelled building structures in Kenya

from satellite imagery data obtained in 2017. This data was obtained from the Kenya National

Electrification Plan - Structures Survey and includes latitude and longitude pairs for each identified

structure within the images. No additional information is provided on the structure type or its

pertaining attributes such as rooftop type and area.

3.3.2 Estimating household locations

It is quite common for rural households to own multiple structures (shed or outhouse in addition

to living quarters), while in more urban locations, multiple households may dwell within the same

structure [105]. We propose a method to obtain an estimation of households from human-labelled
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Figure 3.1: Data processing framework: 2016 population from the High Resolution Settlement
Layer and 2009 population census are used to estimate a population growth factor (k), which is
used to estimate 2016 household counts. Wards with structure to household ratios > 2 are further
processed, where structures are merged using a set-covering merging algorithm. The two level
network design is ran on resultant structures.

satellite imagery data. Census data provides the number of households at varying administrative

levels. For the case of Kenya, the census provides household counts of each ward. Wards in Kenya

(about 1400 in number) represent the smallest administrative unit in Kenya. The household counts

from census data, provide only aggregates with no information on household locations. Because

the Kenyan census is decennial and there is readily available 2009 Kenya census data, we apply

a correction strategy to estimate household counts in 2016. Facebook’s 2016 High Resolution

Settlement Layer (HRSL), provides population data at a 30m resolution [106]. Given the 2009

population data at the ward level, and using HRSL population data, we estimate a population

growth factor k for each ward, which represents the growth a ward has experienced between 2009

and 2016. We assume household counts scale linearly with population, thus we use a 1:1 relation

between population growth and the growth in the number of households 1. Applying this growth

1From recently released 2019 Kenya census data, we observe roughly 10 % difference between population growth
and the household count growth from 2009 to 2019.
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factor k to the 2009 ward-level household data, we can estimate the expected number of households

in 2016 for each ward. Upon obtaining the 2016 household estimates, a direct comparison can be

applied to the 11.9 million structures obtained from satellite images.

Next, we compute a per-ward Structure To Household ratio (STH) that is the ratio of 2017

identified structures to estimated households (obtained from the census data adjusted to 2016).

This ratio is frequently greater than 1, as observed by Kenya 2014 DHS results [105]. In this

paper, we assume every household in a ward to have the same number of structures; we allow this

ratio to vary from ward to ward. Where the STH ratios are higher than 2, we apply a merging

algorithm described below. We present our full data processing framework, including estimating

household locations and our merging algorithm in Figure 3.1.

3.3.3 A merging algorithm

A set-covering algorithm was applied at different radii and the resulting structure counts were

compared to each ward’s household count. The set-covering problem is an NP-complete problem

and aims to find the minimum number of sites and their corresponding location to cover all de-

mand nodes [107]. Here, we adopt a well-known heuristic approach proposed by [108] to find the

reduced set of structures that cover all building structure locations within a radius r of interest.

Figure 3.1 highlights the merging process when STH are greater than 2. The steps of this approach

are as follows:

1) Draw a circle around each building structure location with a specific radius r.

2) Count the number of points in each circle.

3) Take the circle with the maximum amount of points (Ties are broken arbitrarily).

4) Eliminate the building structure points ’covered’ with the circle in Step 3.

5) Repeat 1-4 with the remaining points until each building structure point is ’covered’.

A merging radius of 20 meters was found to be most suitable to match household counts with
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the adjusted census data, a distance which reduces the 11.9 million human-labelled structures to a

merged structure count of approximately 9.2 million. The average STH ratio for all wards is 1.3

with a maximum of 2.6. See Appendix 3.9.1 for a more detailed discussion on merging radius.

The merged structures and their corresponding locations are subsequently used in the rest of the

paper. The paper treats each merged structure as requiring a separate electric connection.

3.4 A Computational Framework for Distribution Systems Planning

We propose a computational framework to estimate the i) per-structure LV wire requirement;

ii) per-structure MV wire requirement needed for each structure to be connected to the network; iii)

the number of structures per transformer, and; iv) a per-structure connection cost. In this section,

we detail how we compute these four metrics. Motivated by the need to evaluate cost estimates and

additional metrics which highlight spatial diversity, this paper adopts a two-level network design

(TLND) approach proposed by [103] and proposes a decomposition approach to obtain results over

a large spatial extent.

3.4.1 A two-level network design approach

The TLND combines the transformer location problem and the LV and MV network design

problems into a single optimization framework by modeling a two-level radial power distribution

system. The two-level network connects demand points (in this case post-merged structure loca-

tions) via intermediate transformers, which reside on a primary MV network. The merged structure

points are connected to the transformers with a secondary multi-point LV network. As in [103],

transformers are assumed to be uncapacitated, i.e. they can handle unlimited demand. However,

there is a limitation on the distance between a merged structure point and its serving transformer.

The TLND does not consider the presence of the legacy grid, high voltage (HV) network2, load

balancing requirements, or power flow.

2High voltage transmission networks are strongly dependent upon the specific location of central power generation
systems
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Determining the layouts of both LV and MV networks while locating distance-limited trans-

formers that connect them in a continuous space is an NP-hard problem, since the continuous

space location-allocation problem is NP-hard [109]. The algorithm proposed by [103] to solve

this NP-hard problem leverages an agglomerative hierarchical clustering approach. This bottom-

up approach starts with locating a transformer on each demand point (where each demand point

represents a singleton cluster) and iteratively decreases the number of transformers as a pair of

clusters is agglomerated (merged) in a greedy manner based on a dissimilarity measure. In this

paper, the centroid method is used as the dissimilarity measure: the closest pair of transformers

which can be replaced by a single transformer located at the centroid of the demand points without

violating the distance constraint is merged at each step. The minimum spanning tree problem aims

to find a tree (a network containing no cycles) that spans all the points minimizing the total cost

of the connection. At any iteration of the clustering algorithm, once the transformer locations are

updated, the MV network between them and the source point is found using a minimum spanning

tree algorithm with the guarantee of an optimal solution [110]. Once the clusters are formed at

each iteration of the agglomerative hierarchical clustering approach, the multi-point LV network

between the transformers and the demand points is obtained by solving the capacitated minimum

spanning tree problem. This problem aims to find a spanning tree rooted at the transformer con-

sidering a distance or a number of nodes on each sub-tree emanating from the root point. In the

TLND, a distance limit is used on the length of a sub-tree and the problem is solved using Essau

and Williams’s heuristic approach [111]. The maximum distance between demand points and the

transformer is assumed to be 500m, which is a widely accepted limit for open-wire LV lines. For

each step of the agglomerative clustering, the algorithm calculates the minimum spanning tree as

the MV network and the capacitated minimum spanning trees within each cluster as the multi-point

LV network. The overall cost is computed at each step and the least cost design is outputted.

In order to run the TLND, we also assume that a transformer cost USD 2000, a meter of MV

wire cost USD 25, while a meter of LV wire cost USD 10. While we use costs obtained from

[103], our TLND can be run with costs that are reflective of any region of interest. Given the cost
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parameters and the constraints, the objective of the algorithm is to find the number and locations

of the transformers and the least-cost layouts of MV and LV networks. In the next section 3.4.2,

we demonstrate how we integrate the TLND into the computational framework for estimating the

metrics at the country level.

3.4.2 A decomposition approach for large-scale planning

Planning at a national scale with individual structures result in millions of demand points: in

the case of Kenya, 9.2 million merged structure locations need to be considered for planning. Even

at the resolution of the smallest Kenyan administrative unit, the median and maximum per-ward

merged structure count is 6,872 and 32,321, respectively. In response to the significant compu-

tational requirements of large-scale optimizations, [112] proposes micro-optimizations for small

zones as an approach to applying network algorithms for large-scale distribution planning. Inspired

by this micro-optimization strategy, we devise a framework to run the two level network design

algorithm on millions of demand points, without sacrificing spatial heterogeneity.

We develop our computational framework to minimize run-time without sacrificing perfor-

mance. Our approach considers the smallest administrative unit as the entry point to apply the

framework. For Kenya we apply the framework in parallel on each ward. Given a ward, the frame-

work consists of three steps: 1) recursively decompose the ward into cells, 2) parallelize the TLND

for all cells, and 3) reconstruct the ward. Figure 3.2 shows our computational framework for a syn-

thetic ward and its corresponding structures. In Figure 3.2(a) we take a ward as shown in i) and

check the ward against three predefined parameters M, N and R. We compute the number of struc-

tures in a ward (m) and compare it to a predefined threshold (M) which represents the maximum

number of structures that can be present. Next our approach computes the number of structures for

the largest cluster in that ward. Clustering is performed by the two level network design algorithm

to assign structures to a given transformer: by limiting the maximum number of structures in a

cluster to a predefined threshold N we are able to reduce the time it takes to design a low volt-

age network for the structures in the cluster. Similarly, the ward radius (meters) is computed and
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Figure 3.2: Computational framework for planning using multiple demand points. (a)Splitting: A
recursive split is used to obtain valid cells for the network planning algorithm. Splitting continues
until all three constraints are met (Number of structures in cell < M; Number of structures in
largest cell cluster < N; cell radius > R) (b)Parallelization: The network planning algorithm is run
in parallel on all valid cells to obtain transformer locations, the low voltage network and a local
medium voltage network (c)Reconstruction: Transformer locations from all cells in a ward are
used to compute the medium voltage network for the ward.

compared to a predefined minimum radius R, which ensures that the connecting radius of a utility

is preserved and the number of structures connected to a transformer is maximized. The radius

parameter counterbalances the splitting and prevents the wards from being excessively split. If r is

less than R, the ward is accepted as a valid cell for the network planning algorithm; if r is greater

than R, then m and n are compared to M and N, respectively.

Taking the example presented in Figure 3.2(a)(i), in which the per-cell maximum number of
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Figure 3.3: Recursive Split Algorithm

structures M is assumed to be 3, Figure 3.2(a)(ii) shows the results of the initial splitting. The

split cell that does not meet the constraints is further split until the constraints are met, as shown

in Figure 3.2(a)(iii). Formally, our recursive split algorithm splits the ward into cells 𝐶𝑖 such that

they obey the following constraints: 1) the number of merged structures in 𝐶𝑖 must be less than a

predefined threshold M; 2) the number of structures for the largest cluster in 𝐶𝑖 must be less than

a predefined threshold N; and 3) the radius of 𝐶𝑖 must be greater than a predefined radius R in

meters to allow any further splitting. The predefined parameters of M, N, R, are all user-defined

parameters which can be determined a priori by running tests on a small number of wards in order

to understand the effect of number of structures, settlement patterns and the search radius on the

runtime of the network planning algorithm. We discuss the effect of runtime and our choice of

parameters in Appendix 3.9.2.
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Figure 3.3 presents pseudo-code for our splitting algorithm. Once valid cells are obtained,

the TLND is applied in parallel. Transformer locations, the low voltage network and a localized

medium voltage network is obtained for each 𝐶𝑖 cell as shown in Figure 3.2(b). The localized

medium voltage network does not consider transformers in other cells belonging to the same ward;

we address this in a final step by putting cells back together and rerunning the medium voltage

computation (minimum spanning tree algorithm) with transformer locations across all cells in the

ward. We show in Appendix 3.9.2 that splitting the ward does not have adverse effects on the

obtained results.

Detailed computing specifications are as follows: Running 9.2 million structure locations

was done on a computer cluster with two Intel Xeon E5-2680 v4 processors with 14 cores each,

128GB RAM and 200 GB local SSD. 17,330 cells were generated for Kenya and the TLND was

ran on each cell. With the longest allowable runtime being 21 days, this resulted in 98.8% of cells

completing the TLND. Given our framework, 90 % of the cells ran in under 12 hours with more

than 50 % of the cells taking less than 1 hour to run the TLND. 98 % of the cells ran the TLND in

under 4 days.

3.5 An Analysis on the Administrative Boundary Level.

In this section, we first discuss the value of our proposed metrics to measure the impact of

spatial heterogeneity on the electrification cost using the smallest administrative unit resolution

(i.e. ward). Next, we show the performance of our metrics compared to population density at this

resolution. Finally, we discuss the effect of real settlement patterns on our computed metrics.

3.5.1 Proposed metrics calculated for Kenya

Results for each ward are averages across all merged structures within the ward. Here, we

do not include the existing grid in Kenya but rather focus on evaluating the impacts of network-

ing given the structures internal to the ward. Figure 3.4 shows the average ward level metrics

by decile: per-structure low-voltage wire (meters), per-structure medium voltage wire (meters),
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per-transformer number of structures, and per-structure cost (USD).3 Given a desired proximity of

structures to each other and to the transformer, our method allows for the quick and easy identifi-

cation of suitable wards for different types of electrification. For example, an energy provider may

be interested in determining which wards have an average distance between merged structures of

less than 30m and correspondingly can be networked through LV connections. As shown in Figure

3.4(a), the 30m threshold corresponds to approximately 25% of the wards – primarily those in

Eastern Kenya. Similarly, an energy provider might be interested in wards where transformers are

Figure 3.4: Average ward connectivity metrics for Kenya by decile.

in close proximity to each other and consequently are suited for MV networks. In Figure 3.4(b)

we show that almost 50% of wards require less than 10m of MV wire per structure. The ability to

3It is important to note that the two-level network design enforces a limitation of 500 m for connecting structures
on the same LV wire (due to voltage drop considerations).
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specify both LV and MV requirements outside of costs allows planners to quantify the effects of

regional geography on network design.4 Figure 3.4(c) shows the average number of structures per

transformer. Wards with the highest number of structures per transformer are found in more urban

regions in Central Kenya. Generally, number of structures per transformer decreases in more rural

regions even though there are a few otherwise rural wards in Eastern Kenya with higher transformer

capacity.

Figure 3.4(d) shows the average ward per structure connection cost of electricity access: this

cost reflects the average combined wire and transformer costs needed to connect a structure in

the ward. The connection cost metric shows which wards are suitable candidates for networked

grids and which wards are more suited for alternative electrification modes like mini-grids or solar

home systems (SHS). Differentiating between wards suited for mini-grids versus those for SHS

requires leveraging the 3 other metrics in Figure 3.4; the exact cost cutoffs for each technology

choice would depend on the price of these alternatives and the utility’s cost-sensitivity. The four

metrics presented in Figure 3 capture the complexities of geography-dependent network design,

the benefits of which are explored in the next section.

3.5.2 Why do we need new metrics?: A comparison with population density

Population density is a metric that is often used for estimating the location and type (rural or

urban) of demand centers. For energy access problems, we observe that rural/urban classification

based on population density may not be enough and is often deceiving in estimating the cost of

electrification. A new categorization based on a combination of MV and LV wire requirements

and the number of structures per transformer provides more relevant metrics to anticipate the total

cost and create a platform to perform sensitivity analysis based on different cost components. For

this purpose, we compare our metrics against population density to quantify the additional gains

which our metrics may offer.

4It is important to note that computed wiring requirements are distances as a crow flies, and practical routing
considerations might lead to distances which are larger than those presented here. This concern could be addressed by
incorporating topology into the methodology.
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Table 3.1: A new categorization based on a combination of our metrics to anticipate the cost of
electrification

Category Proposed Metrics Population Density
MV / structure LV / structure structures / transformer

Urban & Suburban Low Low High High
Nucleated Rural High Low High Low
Non-nucleated Rural Low High Low Low
Extreme Sparse Rural High High Low Low

wards with less than 70 m MV / structure

Figure 3.5: A scatter-plot showing per structure LV wire requirement against per structure MV wire
requirements. Each bubble in the figure represents a ward in Kenya and the bubble size indicates
the average number of structures per transformer by quartiles. People per sqkm are captured by
the coloring of the bubbles. There are multiple wards with similar population densities that have
varying MV and LV requirements. Thus our connectivity metrics capture more spatial diversity
than population density alone.
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(a) E, Siaya (32.5, 6.9, 7047) (b) F, Makueni (88.4, 34.5, 8610)

Figure 3.6: Two wards with around 120 people per sqkm are shown. The per-structure LV require-
ment, per-structure MV requirement, and the structure count of the ward are shown respectively in
brackets. The grey boxes surrounding each ward represent 30 km2 area for scale and do no show
the administrative boundaries. Figure (a) and (b) show that wards can have similar population den-
sities but varying settlement patterns which can influence the computed metrics.

Figure 3.5 shows a scatter plot of the per-structure MV requirement as a function of LV require-

ment. In this figure, each bubble represents a ward, and the bubble sizes show average number of

structures per transformer of the ward. The average number of structures per transformer are

grouped by quartiles and the quartile ranges are shown in the figure. The coloring in Figure 3.5

shows the people per square kilometer (sqkm). As expected, wards with higher population density

(i.e. those in blue), tend to be grouped at the lower left hand corner of the figure, with low MV and

low LV wire requirements and with higher number of structures per transformer. These wards tend

to be more urban, likely with established grids. The upper right hand corner of Figure 3.5 contains

sparse rural wards with high LV and high MV requirements and low number of structures per trans-

former. However, it is important to note that not all wards that can be considered rural (based on

population density) reside in this quadrant. Given our proposed metrics, these rural wards should

be further categorized as nucleated and non-nucleated (or dispersed) rural settlements, given their

LV and MV combination. The details of this classification are summarized in Table 3.1.

A strong observation from Figure 3.5 is that there are a number of wards with varying connec-

tivity metrics at similar population densities. To explore this observation, we analyzed two such

wards with similar population densities of 120 people per sqkm. Figure 3.6 shows both wards in a
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30 km2 box for scale but does not show the administrative boundary of the ward. The figure shows

the per-structure LV length, per-structure MV length and the number of structures in brackets, re-

spectively. Upon comparing both wards, we see that ward E in Siaya has very different LV and MV

requirements to ward F in Makueni, although they have similar population densities and a similar

number of merged structures. LV and MV requirements in ward E are significantly lower because

of high structure nucleation, while the LV and MV requirements in ward F are much higher because

structures are further away from each other on average. The varied infrastructure requirements of

both wards results in an average difference in connection cost of $1341. By using our proposed

metrics, we capture more insights on the diversity of wire requirements and by consequence con-

nection costs needed to provide electricity access. We further quantify the dissimilarity in wire

requirements for wards with similar population densities in Kenya. For every ward, we identify

wards of similar population density (within 10 %). We compute the average LV and MV difference

between wards with similar population density and the ward of interest. On average, 47 % of the

wards with similar population density have LV or MV differences greater than 20%. This indicates

that using population density as a metric for connectivity would be misleading approximately half

of the time. This distribution of system requirements is lost when population or structure density

alone is used as the metric of evaluation, or when residential consumption nodes are aggregated to

form population centers.

3.5.3 Effect of settlement patterns

Zvolef et al. [102] show that geography and by consequence settlement behavior affect network

lengths. Similarly, Kocaman et al. [103] discuss that settlement patterns play a role in the results

obtained from the two-level network design. In this section, we aim to understand the effect of real

settlement patterns on our computed metrics.

Figure 3.7 shows four wards with varying settlement patterns, where each point represents a

merged structure (points in close proximity might appear as a single point in the figure). The grey

dashed boxes surrounding the structures represent a 25 km2 box. The figure also shows the ward
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(a) A, Nairobi (25, 2.8, 2194) (b) B, Garissa (27.4, 194.2, 145)

(c) C, TanaRiver (31.1, 39, 1991) (d) D, Embu (96.5, 40.8, 8071)

Figure 3.7: Four wards with varying settlement patterns are shown. In brackets are the per-structure
LV requirement, per-structure MV requirement and the structure count of the ward, respectively.
The grey boxes surrounding each ward represent a 25 km2 area. Figure (a) and (b) show similar
LV requirements with significantly different MV requirements. Figure (c) and (d) show varying
LV requirements at similar MV requirements.

labels and their county name. In brackets we report the per-structure LV requirement (m), the per-

structure MV requirement (m), and the structure count, respectively for the ward. Figures 3.7(a)

and 3.7(b) show wards with similar per-structure LV requirements and varying per-structure MV

requirements, while Figures 3.7(c) and 3.7(d) show wards with similar per-structure MV require-

ments and varying per-structure LV requirements. At similar per-structure LV requirements as seen

in 3.7(a) and 3.7(b), the per-structure MV needed in ward A is 70 times lower than that needed in

ward B due to the proximity of clusters. In Figure 3.7(b), significant MV is required to connect

clusters of structures. These clusters may be villages or communities. However in Figure 3.7(a),

all structures and their clusters are in tight proximity. The per-structure MV requirement in Figure
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3.7(b) is even higher due to the smaller number of structures present in ward B when compared to

ward A. At similar MV, Figure 3.7(c) has one-third the LV requirement of Figure 3.7(d). There

is an even spread of structures throughout the 25 km2 grid in Figure 3.7(d), which influences the

per-structure LV requirement. With a higher structure count in Figure 3.7(d), it is expected that

the per-structure LV requirement would be low as the total LV wire length and cost is spread out

among a higher number of structures, however this is not the case. Because structures are more

evenly spread out in ward D, the LV wire requirement is high. We observe that nucleation of struc-

tures drops the per-structure LV requirement while nucleation of clusters (villages, communities)

reduces the per-structure MV requirement. We are able to show that our proposed connectivity

metrics capture the effects of settlement patterns.

3.6 An Analysis on the Sub-administrative Boundary Level

We recognize that decision making about electrification technologies occurs at a granular level

and that a single technology choice cannot be assigned to an administrative unit. As a result, we

leverage the data and methodology for analysis at sub-administrative boundaries. To explore this in

depth, we present the complete network for a sample ward of 7047 structures. Figure 3.8(a) shows

transformer locations and the MV network for all the structures within the ward. The blue pen-

tagons represent transformer locations, red solid line shows the MV network, and the grey points

represent the structures. In Figure 3.8(b), we include the LV network (as green dashed lines) for

a subset of the ward, showing connections between individual structures and transformers. Given

our proposed methodology, the MV and LV network with individual connections can be visualized

as demonstrated by the figure. Energy planners can inspect connections across transformers and

structures and subsequently aggregate the metrics to a level that is most useful to support their

decision making.

With our methodology we can identify which transformer locations and connecting structures

can be networked with minimal LV wire. For the same ward, Figure 3.10(a) shows the number

of structures per transformer at each transformer by quintile. Blue transformers are connected to
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Figure 3.8: Complete network for a sample ward with 7047 structures. Figure (a) shows trans-
former placement and the MV network connecting the transformers. Figure (b) includes the LV
network for a small section of the ward, showing connections between structures and transformers.

many structures while red transformers are connected to few structures. In the figure, we observe

that transformers with few surrounding grey dots have a lower number of connecting structures,

while transformers with many surrounding grey dots have a higher number of connected struc-

tures. Figure 3.10(b) shows the distribution of structures per transformer for all transformers in

the ward. With a ward average of 77.5 structures per transformer, 10% of wards have more than

160 structures per transformer (twice the ward average). The distribution within the ward can be

missed when only considering averages of our metrics along administrative boundaries or at lower

resolutions. The flexibility to evaluate the proposed metrics at multiple scales allows for deeper

evaluation of varying electricity technologies.

Using the same ward, we show that our methodology and metrics can be used to identify oppor-

tunities for varying electrification technologies. Table 3.2 presents four scenarios that align with

the numbers presented in Figure 3.9(a) and Figure 3.10(a). Each scenario shows the combination

of two of our metrics which may lead to a different electrification strategy. We refer the reader to
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Figure 3.9: Low Voltage (LV) per structure, for each transformer in sample ward. a) Spatial
distribution of LV per structure, binning transformers by quintile. b) CDF of LV per structure for
all transformers in ward. The ward average is 32.5 meters. Four scenarios are presented, each with
different implications for networking. See Table 3.2 for details

both Figures 3.9(a) and 3.10(a) for spatial visualization. In Table 3.2, the transformer colors are

given in brackets for each scenario. Scenario 1 occurs when there are many structures connected

to a given transformer and there is a small LV wire requirement for structures connected to the

transformer. With a large number of structures connected to the transformer, the cost of the trans-

former is spread across multiple structures, thereby reducing the cost to any individual structure.

Coupled with a low LV wire requirement, the choice of electrification is heavily dependent on the

per-structure MV wire requirement. A low MV wire requirement suggests a centralized system

like grid extension is a viable option for structures connected to these transformers. Scenario 2

shows there are many structures connected to a transformer but the structures are not clustered

around the transformer.5 Although the per-structure transformer cost is low due to high number

of connecting structures, the high LV wire requirement becomes a major bottleneck to networking

5Note that we show 7047 structures which may appear as though they are in close proximity but represent multiple
kilometers of coverage.
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Figure 3.10: Number of structures per transformer, for each transformer in the sample ward. a)
Spatial distribution of structures per transformer, binning transformers by quintile. b) CDF of
structures per transformer for all transformers in ward. The ward average is 77.5 structures per
transformer. Four scenarios are presented, each with different implications for networking. See
Table 3.2 for details

this transformer and the structures associated to it. Solar home systems might prove to be suitable

alternatives in this scenario. Scenario 3 presents a worst case scenario from a networking stand-

point. Here there are few structures connected to the transformer and the structures are not in close

proximity to each other. Similar to scenario 2, solar home systems might be worth considering

as the cost to connect structures is high. Scenario 4 represents a case where there are few struc-

tures connected to the transformer, but the structures are in close proximity to each other and the

associated transformer. In this scenario local generation and distribution through the low cost LV

network would seem the most suitable approach. Because our approach uses individual structures,

energy providers can explore the implications of networking at multiple resolutions, right down

to the individual transformers. We do not show the MV wire metric at sub-administrative bound-

aries, as the existing grid network is needed in order to assign an MV wire requirement to a given

transformer.
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Table 3.2: Scenarios highlighting different electrification strategies which can be identified with
our method.

Scenario Structures / Transformer LV / Structure (m) Possible System(s)
1(Purple) High (blue) Low (blue) Grid Extension or Minigrid
2(Black) High (blue) High (red) Solar Home System (SHS)
3(Orange) Low (red) High (red) Solar Home System (SHS)
4(Dark Red) Low (red) Low (blue) Local Generation or Minigrid

3.7 Sensitivity Analysis

We evaluate the robustness of our proposed metrics by performing a cost sensitivity analysis.

Table 3.3 presents our proposed metrics under 3 cost scenarios: i) baseline cost previously dis-

cussed, ii) double MV and LV wire cost iii) double transformer cost. The sensitivity analysis is

performed on four previously presented wards A through D, first introduced in Section 3.5.3. From

this sensitivity analysis we show that our proposed per structure MV, LV and transformer metrics

are stable (less than 3 % change) under the three cost scenarios. We also observe that the wire cost

is the primary driver of cost. This observation is apparent when doubling transformer cost results

in less than 6.5 % change in the cost per structure across all four wards, while doubling wire costs,

doubles the cost per structure across all wards.

Through this cost sensitivity analysis, we show that our proposed metrics can support infras-

tructure planning, where the actual unit wire and transformer installation costs (best known by

the planner) can be directly multiplied by our metrics to obtain realistic cost estimates to support

electricity infrastructure decision making.

3.8 Conclusion

In this paper we assess the effects of regional geography and settlements patterns on electrifica-

tion strategies. By estimating the locations of residential structures through our proposed merging

process, we are able to capture settlement behaviors of structures over a whole country. Through

our novel computational framework that involves a network design algorithm, we develop a two-

level distribution network between the structures. We present a a set of connectivity metrics on the
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Table 3.3: Cost Sensitivity Analysis under three scenarios i) baseline cost (MV =$25/m , LV =
$10/m, Transformer=$2000) ii) 2X MV and 2X LV wire cost, iii) 2X transformer cost. Sensitivity
analysis is presented for 4 wards (A,B,C,D) previously in Section 3.5.3.

Baseline Cost 2X Wire Cost 2X Transformer Cost
LV

Per Structure Ward A 25 25 25

Ward B 27.4 27.4 27.4
Ward C 31.1 31.1 31.1
Ward D 96.5 96.3 96.5

MV
Per Structure Ward A 2.87 2.89 2.89

Ward B 194.2 194.2 194.2
Ward C 38.99 38.99 38.99
Ward D 40.85 40.92 40.85

Structures
Per

Transformer
Ward A 137.12 137.13 137.13

Ward B 29 29 29
Ward C 32.1 32.1 32.1
Ward D 14.7 14.6 14.7

Cost
per

Structure
Ward A 336 660 352

Ward B 5198 10326 5266
Ward C 1348 2634 1411
Ward D 2123 4109 2259

wire requirements, number of structures on a transformer, and connection cost on a country level

without sacrificing spatial resolution. We discuss that easily accessible metrics such as population

density ignore the interplay between structure locations, and accordingly the true connection cost

of a structure.

We demonstrate that metrics which capture settlement behavior are crucial when planning ef-

ficient electrification on a large scale. Meeting the targets set in SDG7 requires considerations

of multiple consumers across large landscapes with varying settlement patterns and our proposed

metrics can easily be folded into existing planning approaches to support these objectives. In ad-

dition, thanks to its scalability, our framework can support decision making at a granular level by

recommending electrification strategies such as solar home systems, mini-grids and grid.
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Our future efforts will involve relaxing some of the assumptions made in this work. Relaxing

the assumption on uniform consumption would potentially lead to different network outcomes and

would allow for variable transformer sizing. We also intend to capture existing grid infrastructures

in our planning approach, for all settings have some initial network backbone that influences op-

timal electrification strategies. Finally, in our current implementation, the two-level network does

not account for environmental and topological constraints such as protected areas, rights-of-ways,

and elevation. As we believe these constraints would influence the medium voltage computation,

we aim to incorporate them in future work.

3.9 Appendix

3.9.1 Merging Approach

We considered various merging radii to merge the 11.9 million identified building structures.

Figure 3.11: CDF of STH ratios for all wards in Kenya under varying merging radii.

Figure 3.11 shows the effect of merging on STH ratio under varying merging radii. We see that
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the maximum STH ratio is 6.5 for unmerged structures, with multiple wards well above 2 structures

per household. This implies that at the worst case, for a specific ward, every household has about

6 structures. We believe this estimate to be wrong as it does not account for other building types

(commercial, industrial, etc). For merging radii from 5 to 30 meters, we observe a drop in the STH

ratio, where at 20 m and 30 m, the maximum STH ratios are 2.6 and 2.1 respectively. We decided

on the 20 m merging radius because it reduced the STH ratio for wards with exceedingly high STH

ratios, without compromising those wards with STH less than 1. In the case of a merging radius of

30 m (as seen by the purple line), the STH ratios of less than 1 were further depressed.

3.9.2 Sensitivity to Scaling Strategy

We evaluated our framework by looking at some wards under vary split configurations. The

selected wards were split into 4, 9, 16 and 25 cells and the TLND was applied to each cell. The

runtime, per-structure low voltage, per-structure medium voltage and transformer capacity for the

split configurations were evaluated against the unsplit ward. In this experiment, we only control

the number of cells generated and do not apply limits on the number of structures in the cell or the

cell radius. Figure 3.12 shows the worst case completion time in hours for five wards split into the

aforementioned number of cells. The worse case completion time represents the completion time

for the cell that took the longest to run. The computational time is cut by more than half for 4 of the

5 wards when the ward is split into 4 cells. Subsequent splitting further improves the completion

time for the 4 wards.

The computational time for Kendu Bay in Figure 3.12 oscillates as the number of cells in-

creases, although the worst case always takes less time when the ward is split than when it is left

unsplit. To better understand this oscillation, we looked at the number of structures for the cell with

the longest runtime in each of the wards. Figure 3.13 shows the number of structures under varying

splits for the cell with the longest completion time. Capping the number of structures in a cell (M)

at 3000 structures, significantly decreases the completion time. In our computational framework

our choice for the hyper-parameter M was 3000 and thus ensured that large wards were split to
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Figure 3.12: Completion time of the TLND in hours for the cell that took the longest time. Four
out of five times, splitting a ward into 4 dropped the completion time by half.

cells with manageable number of structures. Revisiting Kendu Bay ward, where completion time

oscillated, we observed from Figure 3.13 that dropping the number of structures in the cell is not

the only contributing factor to completion time. Figure 3.13 suggests that the settlement pattern

or spatial layout of structures within the cell influences the completion time. It also suggests that

without enforcing minimum limits on the cell radius R, over-splitting a ward can have negative ef-

fects thereby increasing the computational time. Thus we used a minimum cell radius of 500m to

stop over-splitting and capped the maximum number of structures in the largest cluster (N) at 300.

This ensured computational gains while minimizing degradation in performance of our metrics.

Figure 3.14 shows our average connectivity metrics for 5 wards under varying split approaches.

The figure also shows the results when the algorithm is run on the whole ward using the Unsplit

label. These average connectivity metrics are obtained by first summing the metrics across all cells

in a ward, then normalizing the sums by the number of structures in the wards. Figure 3.14 (a)

and (b) show that our LV and MV connectivity metrics are not heavily influenced by splitting the

ward into cells and applying our reconstruction strategy. However, we notice that the number of

structures per transformer varies under different split strategies and tends to drop as we increase
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Figure 3.13: Number of structures for the cell will the longest run time. Splitting decreased the
number of structures. However, number of structures is not the only driver of completion time. As
in the case of Kendu Bay, spatial layout of structures also influences the computational time.

the number of cells a ward is split into. From these wards, we observe that transformers tend

to be more under-loaded as the number of cells increase. We apply a minimum radius R in our

splitting algorithm to prevent excessive splitting, thereby ensuring that the number of structures

per transformer is maximized.

3.9.3 Code

The repository and code needed to replicate this work can be found here: https://github

.com/SEL-Columbia/two_level_grid_network_planner.
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(a) LV after Reconstruction

(b) MV after post-processed Recomputation

(c) Number of structures per transformer after Reconstruction

Figure 3.14: Effect of splitting and MV reconstruction on our proposed connectivity metrics. The
two-level network design is applied to each cell. Averages for the ward are reported here.

114



Chapter 4: High resolution estimates of household electricity usage as a

proxy for household overall expenditure

The first three chapters of this thesis have focused on analyzing electricity consumption growth

overtime, predicting future electricity consumption levels for unelectrified households and mea-

suring the impact of settlement patterns on grid connection costs. This chapter departs from the

electricity access question and rather focuses on how monitoring and evaluation of socio-economic

indicators can be performed given electricity data.

We currently find ourselves in a data revolution, where the volumes of global data are in the

zettabytes. These large volumes of data bring with them budding opportunities to extract new

insights about human development across multiple indicators. The data, stemming from both

private and public sector can be coupled with new analytical approaches to better measure impacts

of investments and progress towards sustainable development goals.

Despite this explosion in global data products, many emerging economies still lag behind in

the acquisition, storage and usage of valuable datasets needed to support rigorous and recurrent

monitoring and evaluation of multiple socio-economic indicators. In contrast, governments in an

attempt to meet sustainable development goals are providing millions of new customers with ac-

cess to electricity amongst other services. This chapter evaluates the effectiveness of re-purposing

electricity usage data collected by utilities to provide new insights to other domains such as eco-

nomic well-being.

4.1 Introduction

Indicators of human well-being and access to services are critical for measuring the impact

of investments and guiding development policies. Countries invest billions of dollars annually to
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improve access to electricity and water services, modernize agriculture, provide relief to vulner-

able groups , all with the objective of meeting the Sustainable Development Goals. Data-driven

approaches to guide and monitor the impact of such investments over long temporal horizons can

support better evidence-based decision-making. [113]

A lack of sufficient high resolution data to monitor and inform investment remains a key chal-

lenge[114]. Household survey deployment has traditionally been the approach to collect detailed

ground data about household access to services, wealth and expenditures. However, because sur-

veys are an active1 data collection approach, they only capture a one-time snapshot of a household

every few years. While surveys may be nationally representative samples of the population, their

implementation is costly, the data collection process is time consuming and the survey collection

can sometimes be too slow to be useful. Moreover, the sample sizes and spatial sampling of these

surveys do not support decision making at high resolutions (sub-administrative level). Census

data which captures every household, is collected once in a decade, thus can not serve as a good

alternative for frequent evaluation.[115]

What if high frequency, passively collected data could be leveraged for improved policy mak-

ing and service delivery? Passively collected data is data already being collected by governments

and various institutions, without the need to deploy further resources or surveys for collection.

Examples of passively collected data include electricity, water and mobile phone usage. Passively

collected data presents an opportunity to re-purpose already collected data to answer new ques-

tions. [116] show how mobile phone data can be used to improve targeting of humanitarian aid to

vulnerable households. While mobile phone usage was not design for poverty measurement, this

work demonstrates how passively collected data can be repurposed to answer pertinent questions

in new ways.

In this work, we leverage already collected electricity usage data, which electric utilities have

access to, and analyze how well it lends itself to estimating other indicators. Specifically, we first

estimate household overall consumption expenditure using electricity usage data from Rwanda,

1Surveys require the deployment of additional human resources to collect one data point compared to approaches
that continually collect data
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showing that higher electricity consumption is correlated with wealthier households. Income, con-

sumption expenditures, and wealth are the three indicators typically used to ascertain the economic

status of a household. Household income can be difficult to measure as it is self-reported thus may

not reflect the broad ranges of non-salary based earnings [117]. This work relies on survey re-

ported household overall consumption expenditure using the Fifth Integrated Household Living

Conditions Survey (EICV5) from Rwanda. The survey is used to establish an approach to estimat-

ing household overall consumption expenditure from electricity usage data. We then present and

evaluate our machine learning based approach to predicting electricity usage for individual house-

holds given high resolution daytime satellite imagery. Predictions from satellite imagery provide a

pathway for non-governmental stakeholders (e.g. businesses, market analytics providers, investors,

researchers, national bodies etc) to repeatedly and independently measure electricity usage and by

consequence household wealth, given small amounts of label data for model training.

While decision-making can be improved by higher resolution data, predictions at the highest

resolution (individual building or household) may be fraught with more error and privacy concerns.

However, at the lowest resolution (country, province or district level), the variance within the ad-

ministrative level is not captured, thereby leaving out a diversified set of solutions which may be

relevant for different groups within the administrative level. Thus, we discuss our predictive per-

formances at multiple resolutions, shedding relevant insights on how to preserve both performance,

privacy and resolution to support decision making.

This work is situated within the context of two bodies of literature: one that establishes the

relationship between electricity usage and economic development and the other that evaluates the

use of non-conventional data sources and machine learning to predict socio-economic indicators.

Electricity usage is often positively correlated with economic growth, where countries with higher

electricity usage also tend to have higher per capita GDPs. There is however conflicting literature

on whether electricity consumption leads to economic development or vice versa. Some studies

have found that increased grid-access and electricity usage improves well-being indicators such as

income, consumption, respiratory health, education and overall expenditure [118, 119, 120, 121].
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Other have found little or no short to medium-term impact of electrification on economic indicators

[8]. While the nature of causality between electricity usage and economic benefits remains harder

to tease out, there is overall agreement about there exists a correlation between electricity usage and

well-being indicators [122]. In this work, we seek to exploit this correlation, to estimate household

overall expenditure as a proxy for wealth, using already collected electricity usage data.

With advances in machine learning and the growth in remote sensed products, there has been

an explosion of methods estimating different household indicators. Multiple works [66, 67, 68, 69,

70, 71, 72, 123] estimate wealth and poverty from satellite imagery. Survey collected wealth data is

used as a supervisory signal to the proposed models to guide the extraction of relevant features from

satellite imagery. Other studies [124, 125, 126, 127] use Call Detail Records (CDR) from mobile

phones to demonstrate that at the individual level, CDR data is predictive of household wealth.

Social media data, in combination with satellite imagery has also been used to map socioecnonomic

indicators [70, 128]. As an alternative to survey measured household characteristics or CDR, we

evaluate the value of electricity consumption data to estimating household wealth. Within the

context of predicting electricity usage, [129, 47, 130] use daytime satellite imagery to predict

electricity usage of individual buildings. Only one of these studies is performed in a low-access

region, where large scale electrification is still being carried out.

Our work shows that electricity consumption data can be valuable in estimating other socio-

economic indicators such as household overall consumption expenditure. This work also shows

that actual electricity consumption can be predicted from daytime satellite imagery with good

model performance at the individual building level. Finally, we show that aggregation can preserve

prediction performance and privacy of the households.

4.2 Data Overview and Processing

This work is centered on the link between electricity usage and household overall expenditure,

first establishing the relationship between both and then predicting electricity usage from daytime

satellite imagery. To understand the relationship between electricity usage and household expen-
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diture, we analyze the Fifth Integrated Household Living Conditions Survey (EICV5). To predict

electricity consumption, we unify monthly household electricity consumption data from electric

meters with daytime satellite imagery using household locations. In this section, we describe the

relevant datasets used.

4.2.1 Electricity Data

The monthly electricity data used in this work was obtained from the Rwanda Energy Group

(REG) who is the primary national electricity grid provider. Prepaid electricity purchases be-

tween 2012 - 2020 for 811K customers were provided by the utility of which 687K are residential

customers. Each residential consumer id and meter id is matched to a separate dataset of meter

locations also provided by the utility. However, only about half of the customers could be paired to

GPS registered electric meters. For customers with corresponding GPS locations, prepaid transac-

tions were converted to monthly electricity consumption (kWh) by spreading the purchased units

over the days between two consecutive purchases. The daily consumptions were then aggregated

over each month to obtain monthly electricity consumption. For periods where the duration be-

tween 2 consecutive purchases was greater than the median purchase frequency (days) for a given

customer, the consumption was spread over the median purchase frequency. The conversion to

monthly consumption values ensured that the customer’s aggregate consumption was preserved.

Having obtained monthly electricity consumption for every customer, customers with the same

electric meter GPS location (given REG’s meter location dataset) were grouped to obtain the av-

erage monthly building consumption in each year. The building GPS locations were matched to

Digital globe satellite imagery, and only buildings with imagery obtained between 2017 and 2020

were selected. Given the average monthly building electricity consumption in a year, the electricity

consumption data was clipped at the 2nd and 98th percentile to remove outliers. A final filtering

step was applied to obtain residential single customer buildings, resulting in 176,081 single house-

hold buildings.

To support good spatial sampling and model evaluation at multiple resolutions, Rwanda was
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(a) Average monthly electricity
consumption

(b) Coefficient of variation (c) Number of households

Figure 4.1: 1km X 1km grid cell statistics, showing the spatial variation in average monthly elec-
tricity consumption, the variation in electricity consumption within the cell and the number of
households in each cell

split into 1km x 1km grid cells. Figure 4.1 shows for every grid cell i) the average monthly elec-

tricity consumption ii) coefficient of variation of monthly electricity consumption iii) the number

of households within the grid cell. Figure 4.1(a) shows that the highest monthly electricity con-

sumption is experienced in Kigali with smaller pockets in other districts while average monthly

electricity consumption outside of the city is mostly lower than 20 kWh/month. Despite low av-

erage electricity consumption, about 80% of the cells have a coefficient of variation greater than

0.5, suggesting that there exist a distribution of household consumption within the 1km x 1km grid

cells, despite low averages. This distribution is at least 50 % of the average monthly cell electricity

consumption. Finally, the household counts figure show that about 20 % of the cells have very

few households (1 - 3). The objective of the predictions, would be to capture both the correct cell

means while adequately preserving the variation within each cell.

4.2.2 Remote Sense Data

Satellite Imagery: High resolution 50 cm daytime satellite imagery obtained from Digital

Globe is paired with GPS locations from electric meters to make predictions. The high resolu-

tion 50 cm daytime imagery obtained between 2017 and 2020, contains four image band (NIR,

Red, Green and Blue). DigitalGlobe imagery provides country-wide coverage containing only a

single image per tile (there are no temporal images for the same tile). To train a model to predict
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electricity consumption from satellite imagery, satellite imagery acquisition dates were matched to

average monthly electricity consumption occuring in the same image year. The value of the NIR

band is discussed when all 4-bands (NRGB) are used compared to using 3-bands (RGB).

High Resolution Electricity Access (HREA) data: The HREA dataset provides annual com-

posites of statistically estimated brightness levels at 15 arcseconds resolution. These brightness

estimates are derived from temporal analysis of nighttime light imagery from the VIIRS sensor,

dating back to 2012. The statistically estimated brightness levels as suggested by the authors is

an indicator of outdoor lighting usage, which can be correlated with overall energy consumption.

From the HREA dataset, only cells with recorded brightness levels are selected. This dataset is

used to predict household overall expenditure and is compared to the performance of utility data

when estimating household overall expenditure.

4.2.3 Rwanda Fifth Integrated Household Living Conditions Survey (EICV5)

The EICV5 survey is a nationally representative survey of Rwandan households. The fifth it-

eration of the survey was collected between October 2016 and October 2017, with responses from

14,580 households. The survey provides information on household demographics and well-being

such as poverty, inequality, living conditions, education, housing conditions, household electricity

consumption, overall household expenditure amongst others. While the survey reports household

information, the GPS locations of the households are not shared. The survey however reports the

corresponding districts of the households. Note that there are 30 districts in 26,338 square kM of

Rwanda. This work looks at two indicators i) overall consumption expenditure of households and

ii) expenditure on electricity. Overall consumption expenditure represents the value of good and

services purchased by a household in a given year. This expenditure includes rent, expenditure

on food, water, electricity and more, and is given in Rwandan Francs (RWF). Secondly, this work

also looks at the expenditure on electricity by households connected to the national electricity grid

(3,589 households). This set of households does not include households using electricity primarily

from solar systems. Only grid connected households are considered to ensure a fair comparison
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with our utility dataset. The survey’s electricity expenditure is reported in RWF. Tariffs (fixed

tariff and the 2017 block tariff implemented in Rwanda) account for the differences between the

survey electricity expenditure (RWF) and the utility reported electricity consumption (kWh). The

survey data is used to establish the relationship between electricity usage and household overall ex-

penditure. This relationship provides justification for leveraging electricity usage data for varying

purposes such as household wealth estimation.

4.2.4 Model Data Split

Here we discuss our data splitting strategy which is used to test the transferability and robust-

ness of our predictions. 1 square km grid cells are created to support spatial sampling across the

whole country. In order to train our models, 4577 (90 %) grid cells were selected for in-sample

train, validation and test, while leaving 518 (10 %) grid cells are withheld for out-of-sample test-

ing. The buildings found in the withheld out-of-sample cells are never seen during model training

and validation, and are only used to validate the transferability of our models to unseen regions.

For the in-sample grids, buildings within the grid cells with electricity data were split into 70 %

train, 20 % validation and 10 % held-out testing. The distribution of electricity consumption from

meter readings in the overall metering data was preserved in each set. Figure 4.2 shows the spatial

sampling used to obtain the in-sample and out-of-sample set.

4.3 Methods for Estimating Electricity Consumption from Satellite Imagery

4.3.1 Model Architecture and Training:

Predicting average monthly electricity consumption from daytime satellite imagery was done

using a Convolutional Neural Network (CNN). Varying CNN architectures have been proposed

to support computer vision analysis. For this work, MobileNets were used due to their attractive

lighter weight architecture. The encoder portion of the MobileNet architecture was combined with

a light-weight predictive head consisting of 5 dense layers. Four of the 5 layers were activated with

Rectified Linear Units (ReLus) while the last layer had a linear activation.
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Figure 4.2: Spatial sampling of in-sample and out-of-sample sets using 1km X 1km grid cells with
utility electrified customers.

For model training, a 64 x 64 m image patch is fed into the network where the network predicts

the average monthly kiloWattHour consumption of the building found at the center of the image

patch. An L1 norm loss (Mean Absolute Error) was used to train the model

𝑀𝐴𝐸 =

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (4.1)

, where y𝑖 is the true monthly electricity consumption and 𝑦𝑖 is the predicted electricity con-

sumption. An Adam optimizer at a learning rate of 1e-5 proved to be the best in minimizing the L1

norm. A minibatch size of 16 images was used to train the model at each iteration for 20 training

epochs. The model loss converged after 20 epochs with no additional gains observed.
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4.3.2 Metrics:

Model performance is evaluated under both a regression and classification lens. Three re-

gression based metrics are used for evaluation: i) Mean Absolute Error (MAE) which measures

the average absolute error between the true monthly consumption and the predicted monthly con-

sumption and ii) Mean Absolute Percentage Error (MAPE) which measures the average absolute

percentage error between the true monthly consumption and the predicted monthly consumption

iii) the R2 which measures how well the model captures the variability within the electricity con-

sumption data.

Classification metrics are obtained by binning the predicted consumption values and computing

the class accuracies and F1-scores. The class boundaries are set at the 50 % percentile for the binary

classification and at the 33rd and 66th percentile for the 3 class classification.

4.3.3 Results aggregation:

While predictions are performed at the individual building level, we report our model perfor-

mance at three aggregation levels: 250 x 250 m, 500 x 500 m and 1 x 1 km grid cells. To perform

aggregations, the average monthly consumption of single customer residential buildings within

each grid cell (at a given level of aggregation) is computed using the utility reported electricity

consumption. Average predicted monthly consumptions for the same single customer residential

buildings are also computed. The average predicted consumptions are compared with the utility

predicted consumptions at the given aggregation level. The regression metrics are then applied to

the grid averages to obtain the reported performances.

4.4 Results

We present our results in two parts: First we present how well our method lends itself to

measuring overall household consumption expenditure. Household consumption expenditure is

defined as the total money a household spends on goods and services within a given period of
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time. Household overall consumption expenditure is an indicator of the household’s purchasing

power and wealth. Thus the first part of our results discusses how well our method can estimate

household wealth given electricity usage data. In the second part of the results we present how

well our method predicts average monthly household electricity usage (kWh) in a given year. Here

we discuss model performances at varying resolutions and under varying metrics.

4.4.1 Measuring household consumption expenditure

A study of 22 Sub-Saharan African countries reveals that about 3% of household total ex-

penditure goes towards electricity expenditure [39]. We validate this relationship in Rwanda by

analyzing a nationally representative survey of Rwandan households taken between October 2016

- October 2017. The Integrated Household Living Conditions Survey 5 (EICV5) obtained from

the National Institute of Statistics of Rwanda (NISR) sampled 14,580 households and reports both

household annual expenditure on electricity and overall expenditure. While household locations

are not provided, the survey indicates the corresponding district of each household. Thus we

measure district-level correlations between expenditure on electricity and household overall ex-

penditure for all 30 districts in Rwanda. Figure 4.3 shows district-level average monthly electricity

expenditure relative to household overall consumption expenditure in 30 districts for both grid

connected households and unelectrified households in the survey. Note that while unelectrified

households do not spend on electricity, Figure 4.3(b) uses the electricity expenditure of grid con-

nected households to see how is agrees with the overall expenditure of unelectrified households.

Figure 4.3(a) supports the well-studied relationship that electricity expenditure correlates well

(adjusted R-squared 0.98) with overall expenditure at the district-level and thus electricity con-

sumption data can serve as a good proxy for overall household expenditure for grid connected

households. Due to the lack of household GPS locations, this relationship could only be validated

at the district level. Nevertheless, the relationship between electricity usage and overall consump-

tion expenditure is well captured by the linear relationship, where districts with higher average

electricity usage also have higher overall consumption expenditure and vice versa. A linear model
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(a) Grid connected (3589 households ) (b) Unelectrified (9778 households)

Figure 4.3: District-level correlation between average monthly electricity expenditure and average
monthly overall consumption expenditure for grid connected and unelectrified households.

(as shown by the black line) was fitted to the district-level data. A Mean Absolute Percentage Error

(MAPE) of 10.6 % is observed between the survey reported overall consumption expenditure and

the approximated overall consumption expenditure from the linear model. Given the self-reported

nature of the survey, we anticipate that part of the discrepancy between the linear model and the

survey values may be due to self-reporting errors. Nonetheless, this shows that a simple linear

model correctly approximates the relationship between electricity usage and household overall

expenditure.

Assuming that district-level electricity expenditure (for grid connected households) might be

useful in measuring overall expenditure in unelectrified households, we show in Figure 4.3(b)

the average district-level household electricity expenditure for grid connected households against

household overall consumption expenditure for unelectrified households. The figure shows no

observable district-level correlation between average monthly electricity expenditure (in grid con-

nected households) and overall household expenditure for the unelectrified. This behavior comes

as no surprise, where electricity expenditure of electrified households can not be used as a proxy

to measure household overall expenditure in unelectrified households.

Currently, about 65 % of Rwanda is electrified, we expect the relationship between electricity

usage and overall consumption expenditure to be more relevant as nations push for universal grid

connections. It would be critical to validate the strength of the correlation between electricity and
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consumption expenditure at higher resolution (though beyond the scope of this work, as household

locations are not provided).

Estimating District-level Overall Expenditure with Utility Data

Having shown (through the independently collected survey), that there exist a strong corre-

lation (at the district-level) between electricity usage and overall consumption expenditure, this

section discusses the performance of utility collected electricity usage data in estimating overall

consumption expenditure.

Utility Data The utility data, is a collection of electricity consumption for 176,081 households

between the periods of 2017 - 2020 obtained from Rwanda Energy Group (See Section 4.2.1 for

in-depth data description and processing). The electricity usage data as reported by the utility is

passively collected through electric meters deployed at homes. We have shown that there exist a

linear relationship between survey reported electricity expenditure and overall consumption expen-

diture. Thus we use a linear model to estimate survey reported overall consumption expenditure

from the utility reported electricity usage data 2. Given the linear model, the MAPE between true

district overall consumption expenditure and the model estimated overall consumption expenditure

is reported. We observe a MAPE of 11.9 % when utility reported electricity usage is used as inputs

to the model to estimate overall consumption expenditure. This compares to a MAPE 11.5 % when

survey electricity expenditure is used, for the 18 districts with utility data. The 0.4% performance

difference between utility reported electricity usage and survey reported electricity expenditure,

shows that large amounts of passively collected electricity consumption data can be used to esti-

mate overall consumption expenditure and by extension household wealth, thereby bypassing the

need for repeated annual surveys.

Open Source Datasets We compare the performance of utility based electricity consumption

with that of the High Resolution Electricity Access (HREA) dataset, a widely available proxy of

2In the appendix we show strong agreement between survey electricity usage and utility electricity usage
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energy usage. Specifically, HREA reports statistically significant brightness levels derived from

nightly VIIRS satellite imagery at 15 arcseconds resolution. This dataset is often correlated with

overall energy consumption. Also using a linear model, we evaluate the ability of HREA to esti-

mate district-level reported overall consumption expenditure. We observe a MAPE of 14.7 % and

14.9 % for the linear model that takes HREA as its inputs and predicts consumption expenditure

in all districts and the 18 REG districts, respectively. This suggests that while lower resolution

datasets such as brightness levels might be indicators of consumption expenditure, better perfor-

mance can be obtained by using the utility data. An added advantage of using utility reported

electricity consumption is that overall consumption expenditure can be estimated at resolutions

higher than 15 arcseconds. Moreover errors with non-utility data may increase with increasing

resolution.

Table 4.1 summarizes these results, reporting the MAPE when different datasets are used to

estimate overall consumption expenditure.

Table 4.1: Mean Absolute Percentage Error (MAPE) between model-based approximations of
overall consumption expenditure and EICV5 survey reported consumption expenditure, when dif-
ferent datasets are correlated with survey consumption expenditure.

All Districts 18 Districts
EICV5 10.6 11.2
Utility Data NA 11.9
HREA 14.7 14.9

4.4.2 Measuring household electricity usage

Thus far, we have shown that electricity usage data can be relevant for measuring other indi-

cators such as household overall consumption expenditure. In this section, we discuss our results

from predicting residential electricity consumption using remote sensed daytime imagery. Be-

yond measuring wealth indicators, electricity consumption estimates are also relevant for multiple

stakeholders (e.g. national bodies, marketing insights, investors etc) looking to understand cur-

rent electricity usage at scale. Here we present performances of our regression-based predictive

Convolutional Neural Network (CNN) that takes in image patches (64 x 64 m) and outputs the
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kilowattHour consumption of single customer residential buildings. We report performances at

varying resolutions and discuss the implications.

Predictive performance at varying resolutions

We present electricity consumption prediction performance at 4 resolutions (individual build-

ings, 1 x 1 km grids, 500 x 500 m grids and 250 x 250 m grids). Decision-making can occur at

varying resolutions where trade-offs between error and electricity consumption heterogeneity (at a

given resolution), exists. In the case of distribution transformer connection policies, utilities may

choose to electrify household within a certain radius of the distribution transformer. That radius

can range from 500 m to a few kilometers. Understanding predictive performance of electricity

consumption models can provide useful guidance for such connection policies.

Predictive performance at the building level First we discuss performance at the individual

level as the predictions are made on individual buildings. Figure 4.4 shows scatters of true aver-

age monthly electricity consumption for buildings against the predictions obtained with satellite

imagery for the in-sample and out-of-sample test sets.

The regression-based CNN model is better able to differentiate the average monthly consump-

tion for residential buildings consuming more than 10 kWh/ month. While the model is able to

identify that a building is in the low range (< 10 kWh/month), the model cannot correctly estimate

the actual consumption of the household, given the narrow range. This behavior is likely because

of homogeneity in the satellite imagery of low consuming buildings in rural areas.

Regression Results: Table 4.2 shows the prediction performances for individual buildings

under both regression and classification metrics. First we discuss the observations of model per-

formance given regression metrics. For all residential buildings in our dataset, the MAE is close to

9 kWh/month while the MAPE is around 75 %, when making predictions for individual buildings.

This suggests that at the individual level, the regression-based CNN records large relative predic-

tion errors as shown through the MAPE but small absolute errors as shown through the MAE. Not-
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(a) In-sample test (b) Out-of-sample test

Figure 4.4: Compares avg. monthly electricity consumption of buildings to those predicted using
satellite imagery. The model is more sensitive to variability in consumption for buildings that
consume on average more than 10 kWh/month. While it correctly places low consuming buildings
(<10 kWh/month) in the below 10 kWh category, it is not as sensitive in differentiating household
below that cutoff.

ing an average monthly consumption of 18 kWh/month, and a standard deviation of 25 kWh/month

for this dataset, the MAE of 9 kWh/month indicates average prediction errors are within a third

of the standard deviation. The next observation is that when households with consumptions <

3kWh/month are removed, the MAPE improves from 77 % to 52 % for the out-of-sample test set

and from 75 % to 51 % for the insample test set. This indicates that the recorded high MAPEs are

mainly driven by lower consumers where error represent a larger proportion of their consumption.

A third observation is that including a 4th image band (NIR) does not significantly improve the

model performance. The MAPE remains comparable when using three versus four image bands.

Finally, given the scatter in Figure 4.4, R2s range from 0.6 - 0.64 and show that the individual

predictions capture around 60 % of the variability in the data. All R2s showed high statistical

significance (p𝑣𝑎𝑙𝑢𝑒𝑠 < 0.001).

These regression metrics suggests that predicting average monthly electricity consumption for

individual buildings from satellite is more feasible for higher consuming buildings. For low con-

suming buildings, it is hard to know whether the consumers are truly low or whether other contem-

poraneous variables may be at play (e.g. the building is a vacation home with occasional tenants).
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Table 4.2: Prediction performance for individual buildings, reported for the In-Sample and Out-
Of-Sample Test Sets. Regression metrics are reported for the CNN under 3 image bands (RGB)
versus 4 image bands (NRGB)

In-Sample Test Out-of-Sample Test
Regression

All Buildings
(3 Band: RGB)

R2 0.60 0.61

MAE 8.72 9.68
MAPE 75 77

Regression
Buildings >3 kWh/month

(3 Band: RGB)
R2 0.61 0.61

MAE 10.76 11.81
MAPE 50.7 51.7

Regression
All Buildings

(4 Band: NRGB)
R2 0.64 0.64

MAE 8.63 9.49
MAPE 76 78

Binary Classification
All Buildings Low (<= 10.1 kWh) 0.83 0.83

High (>10.1 kWh) 0.78 0.74
F1-score 0.80 0.78
Accuracy 0.80 0.78

3 Class Classification
All Buildings Low (<= 5.8 kWh) 0.65 0.64

Medium (5.8 - 17 kWh) 0.57 0.59
High (>17 kWh) 0.61 0.65

F1-score 0.62 0.63
Accuracy 0.61 0.62

Nonetheless, the regression model was able to extract useful features from satellite imagery to

differentiate electricity usage.

Classification Results: The regression results suggest that high predictive performance is

harder for lower consuming households. Thus, we evaluate how classification metrics would per-

form. Table 4.2 also shows the classification performance when the predictions are binned into 2

and 3 classes. For the binary classification task, we observe a prediction class accuracy of 0.83,

when identifying buildings consuming less than 10 kWh/month and a class accuracy of 0.78 when
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identifying buildings consuming more than 10 kWh/month, for the in-sample test set. The 10

kWh/month threshold is selected because this represent the 50 % percentile of the data, thus allow-

ing the identification of the top half versus bottom half of consumers. Compared to the regression

results, this suggests that while images may not predict the actual building consumption with high

fidelity, identifying consumption classes for individual buildings is feasible at high performances

(balanced accuracy and F1-score of 0.8 and 0.8, respectively for the in-sample test set). The 3-class

problem presents a harder task, where electricity consumption is thresholded at the 33rd and 66th

percentile, to obtain low, medium and high groups. It is observed that the predictions are better at

identifying the lower consumers (<5.8 kWh/month) while the middle group remains the hardest

group to identify. For the 3 class problem, a balanced accuracy of 0.61 and 0.62 is observed for

the in-sample and out-of-sample test sets.

While making predictions for individual buildings provides the highest resolution into electric-

ity usage, there exist higher errors when predicting low consuming buildings. These errors drop

for higher consuming buildings. An alternative to reporting actual kilowatt-hour values would be

to estimation consumption classes, as this is an easier task with better performance.

Performance Aggregated at 1 kM x 1 kM grid cells Individual building predictions provide the

highest spatial resolution though the mean absolute percentage errors are high due to larger errors

for low consumers. Here, we analyze the value of aggregated results on performance. Results are

first aggregated to 1 sqkm, where the utility reported averages of the grid cells are compared with

the averages of predictions within the grid cells. Note that predictions are made at the building level

and residential buildings within the cell are averaged for comparison. At this resolution, we make

a few key observations. Aggregating the results to 1 sqkm significantly improves the performance.

The R2 improved from 0.6 to 0.81 for the in-sample test set and from 0.61 to 0.83 for the out-

of-sample test set. Figure 4.5 shows this agreement between utility electricity measurements and

our predictions, for the in-sample and out-of-sample test sets, aggregated at 1km resolution. Each

bubbles represents a 1 sqkm grid cell and the bubble sizes represent the number of residential
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buildings within our dataset found in the grid. Larger bubbles are grids with more residential

buildings. (See Section 4.2.4 for further description on the 1 sqkm grid cells).

(a) In-Sample Test (2528) (b) Out-of-Sample Test (495)

Figure 4.5: Agreement (of 1kM grid cells) between average monthly electricity consumption from
electric meters and the predicted averaged monthly electricity consumption using imagery. Each
point represents a grid cell and the size the number of households in a cell.

From the Figure, we also observe that grid cells with few number of customers (smaller bub-

bles) occur further away from the linear fit line, suggesting that aggregation is not helpful for grid

cells with fewer customers. This observation is intuitive as there are fewer examples within the grid

cell that the predictive model could learn from and also fewer examples to smooth the noisy pre-

dictions. By removing grid cells with fewer than five samples the observed R2 increased to 0.9 and

0.95 for the in-sample and out-of-sample test, respectively. Figure 4.6 shows the scatter when grid

cells with fewer than 5 samples are removed. Removing grid cells with few households, reduces

the number of grid cells by 47 % and 29 % for the in-sample and out-of-sample test, respectively.

However, the model performance at this resolution is better when there are more samples within

the grid. As more households get electrified, we can expect that fewer grid cells will have a low

number of households or buildings for the model to learn.

To further understand performances by electricity consumption levels, we evaluate perfor-
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(a) In-Sample Test (1341 grids) (b) Out-of-Sample Test (350 grids)

Figure 4.6: Agreement (of 1kM grid cells) between average monthly electricity consumption from
electric meters and the predicted averaged monthly electricity consumption using imagery. Each
point represents a grid cell and the size the number of households in a cell.

mances for different consumption ranges. Here we try to unpack which consumption ranges are

hardest to estimate via satellite imagery.

Table 4.3 shows detailed prediction performance for different electricity consumption ranges.

The table shows the MAE and MAPE for each consumption range. In addition, the table shows

the number of grids within that range, the true average consumption for the grids (not weighted by

sample size) and the total number of buildings in each grid, for grids with at least 5 buildings. By

breaking down the performance by consumption groups we observe that the MAPEs are highest

for grid cells with average consumptions less than 4 kWh/month. However, very small MAEs

around 1 kWh/month are also observed for this group. The higher MAPEs are observed because

the consumptions are themselves very small for this group.

In contrast, while the MAEs for the 4-10 kWh/month group is also around 1 kWh/month, the

MAPEs for this group are about half those of the lowest tier. This suggests that while aggregation

improves performance overall, the gains are smallest where the model itself struggles to predict

correctly. Because model predictions at the building level are worse for very small consuming
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Table 4.3: Prediction performance aggregated at 1 km for grid cells with at least 5 buildings.
Results show both the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error
(MAPE) for in-sample and out-of-sample test sets.

All MAE
(kWh/month) MAPE # of grids Avg. electricity

consumption (kWh/month)
# Individual

Buildings
In-Sample Test 3.1 24.3 1341 12.3 19053

Out-of-Sample Test 2.5 25.4 350 10.3 17590
1 - 4

kWh/month
In-Sample Test 1.1 35.3 159 3.3 992

Out-of-Sample Test 1.3 45.2 53 3.2 950
4 - 10

kWh/month
In-Sample Test 1.2 18.5 667 6.6 6528

Out-of-Sample Test 1.2 17.4 193 6.5 6914
>=10

kWh/month
In-Sample Test 6.9 28.3 515 24.4 11347

Out-of-Sample Test 5.5 27.9 104 21.5 9682

households, this pattern is maintained even when buildings are grouped. Nevertheless, grids with

consumptions between 4 -10 kWh/month have much lower prediction errors. For grids with con-

sumptions >= 10 kWh/month, the aggregation also results in much lower MAPEs compared to

grids with <4 kWh/month.

While we observe that aggregation allows for good estimation of average monthly electricity

consumption, we evaluate the prediction variability within the 1 km grid cell, which gives fur-

ther justification to the value of aggregation. Given the building level consumption values, the

Coefficient of Variation (CoV) at the 1 sqkm grid cells is computed. The CoV captures the ratio

between the standard deviation of the electricity consumption within the grid and mean electricity

consumption of the grid. The true CoV reflects the variation using the utility reported electricity

values for the households within the dataset and this is compared to the CoV given the predicted

electricity consumptions of individual buildings. Comparing the CoVs gives an indication of how

well the prediction model performs in capturing the variability in electricity consumption between

the buildings in the same grid cell.

Figure 4.7 shows the CoV of the true consumption and that of predicted consumption for the
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Figure 4.7: Coefficient of Variation (CoV) for each 1 kM grid cells from the in-sample test set.
Left: CoV using true utility consumption data. Right: CoV using predicted consumption given
satellite imagery. While average grid monthly consumption are accurately predicted, beyond the
urban center, the model does not capture the variability within the grid cell.

in-sample test set. Outside the urban center of Kigali, the model struggles to capture with high

fidelity, the variations in consumption within each grid cell. 76 % of grid cells have a true CoV

greater than 0.48, while only 28 % of grid cells have a CoV greater than 0.48 when predictions

are used. An L1-norm loss was used in training the model and this loss function optimizes for the

average. The CoV shows that given this loss function, the model is better at estimated the aver-

age consumption of buildings within a 1 sqkm grid and does not perform as well in capturing the

variability in consumption within the grid cell. This effect might be amplified due to the obvious

differences between urbanized Kigali and more rural areas outside of Kigali. The differences in

satellite imagery between urban and rural regions might pull the embeddings of rural areas closer

together while pushing those of rural areas further from that of urban areas. As a result, electricity

consumption differences between households in the same urbanization level are harder to differ-

entiate using the CNN-based approached. This effect coupled with the chosen loss function might

encourage the model to allocate the average consumption of the neighborhood to the individual

building. One strategy to addressing this is to train separate rural, peri-urban and urban models

to better support the learning of relevant image features for the urbanization level. Given this ap-
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proach to model training, it suggests that aggregated results may be more valuable if kilowatt-hour

values are of interest to energy planners while individual predictions lend themselves better to

consumption classes.

Aggregating individual predictions, offers better spatial insights to electricity consumption,

with good stability across the in and out-of-sample test sets. However, while the averages of the

grid cell are accurately predicted with imagery, the variation within the grid cell especially at low

consumption levels is harder to capture using daytime images.

Predictive performance across multiple resolutions Thus far, we have presented performances

at the individual building level and for 1 sqkm grid cells. Here we compare performances at 5

resolutions: district, 1 x 1 km, 500 x 500m, 250 x 250 m and individual buildings. The district level

performances are included as the previous section on estimating overall household expenditure was

performed at the district level. 500 m and 250 m grid cells are also considered as they illustrate

how performance scales with increasing resolution. For the 1km grid cells with at least 5 samples,

we reported the performances for both in-sample and out-of-sample test set in Table 4.3. Using

those same grids, we now discuss the performance in estimating the kilowatt-hour consumption at

multiple resolutions. Figure 4.8 shows the MAPE at 5 spatial resolutions for the in-sample test set.

The largest MAPE is observed at the individual level, while the smallest MAPE is observed at the

district. Though each level of aggregation improved the estimation of average monthly electricity

consumption, the largest performance gain occurred at 1 km. Beyond 1 km the gains from further

aggregation where minimal. This suggests that average monthly electricity consumption values are

optimally estimated at 1 km grid cell resolutions, though the models can be trained at the individual

building levels.

4.4.3 Model Transferability

A key attribute of desirable models is their ability to transfer to unseen regions. We evaluate

the transferability of our predictions by comparing the performance of the in-sample test set to that

137



Figure 4.8: Mean Average Percentage Error (MAPE) between utility reported consumption and
predicted consumption at varying resolutions. Aggregation reduces the MAPE, where predictions
at individual buildings have the highest MAPE while those at the district level have the lowest
MAPE. The largest gains from aggregation are observed at 1 km grid cells.

of the out-of-sample test set. The out-of-sample test set contains buildings from 1 km grid cells

that were never seen by the model during training and validation. Across all metrics (classification

versus regression) and at varying resolutions, the model performances for the in-sample amd out-

of-sample test sets have been comparable. This suggests that the model is robust and can transfer

well to new unseen regions in Rwanda. This feature is of importance as more households are being

added to the grid, the model can be trusted to maintain a similar performance when used in the

newly electrified regions.

4.4.4 Model Explainability

In this section we analyze the relationship between building characteristics and household elec-

tricity usage with the goal of understanding the visual features which the CNN model learns to

make predictions. Specifically, we evaluate the building roof characteristics and surrounding in-
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formation.

Do larger buildings consume more electricity? To start off this analysis, we first aim to under-

stand the relationship between building roof sizes and electricity consumption. We compare the

distribution of rooftop sizes for 3 electricity consumption groups. Figure 4.9 shows the distribution

of building roof areas for three average monthly electricity consumption groups: < 10 kWh, 10 -

50 kWh and >50 kWh. The y-axis of the cumulative distribution curve shows the proportion of

buildings with rooftop areas below a given threshold. From the Figure, we observe that households

consuming > 50 kWh/month on average have a high likelihood for their building roofs to be larger

than 100 square-meters. In fact, about 65 % of these buildings have roof sizes greater than 100

square-meters. On the other hand, more than 90 % of buildings using < 10 kWh/month on average

have roof areas less than 100 square-meters. For the 10 - 50 kWh/month group the percentage is

lower at about 80 % having roof sizes less than 100 square meters. This suggests that there are dif-

ferences in roof sizes and by extension building sizes, where large electricity consumers are more

likely to have larger buildings. The figure also suggests that the relationship between roof size

and electricity consumption is non-linear, where rule-based functions may fall short in predicting

electricity consumption from roof sizes. Thus using CNNs to learn useful non-linear relationships

becomes more imperative when predicting electricity consumption from satellite imagery.

How important is the building compared to its surrounding context? Black box models pro-

vide an approach to extract patterns from the data which correlate with the indicator of interest.

However, extracting human interpretable features that are relevant for predicting electricity con-

sumption is not always evident. In this section, we provide some model explainability by com-

paring the relative performance of a model learning from building characteristics alone (building

rooftop size and roof color) with a model learning from the building and its surrounding image

pixels. To extract individual building characteristics, we leverage the Point Segmentation ap-

proach[77], which uses an indicator point to specify the building to segment. Using the GPS

locations for buildings within our dataset, we specify the building to segment and can obtain the
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Figure 4.9: Distribution of single customer residential building roof areas as a function of 3 elec-
tricity consumption groupings, for 74K buildings. Higher electricity usage buildings also have a
higher likelihood of having larger roof or building footprints and vice versa.

corresponding building roof size and roof color. Figure 4.10 shows sample buildings roofs ex-

tracted using the Point Segmentation approach. The dot or point on each building shows the input

point to the segmentation model while the blue outline shows the extracted building roof footprint

from the model.

Two models are compared: First is the MultiLayer Perception (MLP) binary classifier model

that takes as inputs the extracted building roof size and the average roof pixel intensity for each

band. The second is binary classifier CNN which takes in an image patch (64 x 64 meters) and

predicts the consumption class of the household within the patch. The encodings from the previ-

ously trained regression model are used in this classification task with the only difference being

that a dense layer with sigmoid activation is used as the final layer. The classification head is re-

trained while the encoding weights are kept frozen to ensure the same features are being used /

analyzed. Classification is chosen over regression because the cross entropy loss function of the

140



Figure 4.10: Sample building footprints extracted with the Point Segmentation method. Dots show
the buildings of interest that are input into the model, while blue outlines shows model outputs as
building roof footprint.

classier does not encourage averaging (an observation which was made when the regression model

was used). The bottom and top quartile customers make up the low and high consumers, respec-

tively. Specifically, low is defined as <=5 kWh/month while high is defined as >=31 kWh/month.

This discontinuous class boundary is selected so as to minimize ambiguity between classes and to

better tease out the contributions of building characteristics relative to those of the surroundings.

Here we compare the results from the MLP with that from the CNN-based classifier.

Table 4.4: Compares classification performance when building roof size and color are used for
prediction to performance when an image patch (containing the building and its surroundings) is
used. Building characteristics yield a 0.77 F1-score while including surrounding context increases
performance by 13 %. Results for the test sets.

Low
(<= 4.9 kWh/month)

High
(>= 31 kWh/month) Accuracy F1-Score

Building Roof Size & Band Pixel Means
(Method: MLP) 0.78 0.77 0.78 0.77

64 x 64 m full image patch
(Method: CNN) 0.91 0.90 0.90 0.90

Table 4.4 shows classification performance for i) building roof size and color and ii) full 64

x 64 m image patch for the test sets. Using building roof characteristics yields a binary classi-
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fication balanced F1-score of 0.77, however including information about the buildings surround-

ings (neighboring houses, fields etc), the binary classification F1-score increased by 13 %. This

suggests that while the building size and roof color are strongly correlated with electricity con-

sumption, the increased field of view which considers features surrounding the household offers

additional informational relevant for distinguishing both classes.

Incorporating surrounding information into the model can be further enhanced with a few mod-

ifications. The chosen model and training configuration in this work, removes the spatial depen-

dence amongst buildings of close proximity. An alternative would be to predict consumption for

multiple buildings within an image patch. By not predicting the electricity consumption of mul-

tiple buildings within the same image, the current model does not incorporate how consumption

varies within the neighborhood. Approaches such as Mask-RCNN[131], have been used to classify

and segment multiple buildings within the image. This approach allows the model to see a large

view of the neighborhood. By viewing multiple buildings within an image, the model can tease

out key questions about the spatial heterogeneity of consumption within the neighborhood. This

might also improve the individual building prediction performance and the CoV from predictions

as results are aggregated. One bottleneck to address under the Mask-RCNN architecture is that to

train such a model, electricity usage data for all buildings within the patch would be needed. [77]

have shown that segmentation models can be modify to handle incomplete labels by specifying

or "pointing-out" the specific building for segmentation. This modification can be incorporated

into the Mask-RCNN architecture to support predictions when only partial electricity consumption

labels are available within the patch.

4.5 Summary

This work makes two key contributions: First we show that residential electricity consump-

tion is well correlated with overall household expenditure and that utility electricity consumption

data can be used to estimate household expenditure for grid connected households. Our results at

the district level show a 0.4 % MAPE difference between survey data and utility data when esti-
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mating household expenditure. In addition, utility data performs better than open source datasets

such HREA, at the district level. We expect utility data to be even more valuable at the sub-

administrative level, where HREA measurements may be more subject to noise. While these re-

sults highlight the value of electricity usage data for measuring other indicators, there are further

opportunities to solidify this observation. Validating household expenditure from utility data at

the household level could not be done as there was no way to obtain income or expenditure in-

formation for the utility customers. National bodies could include a sample of known utility cus-

tomers into their repeated surveys to better capture both their longitudinal wealth and electricity

consumption. This could provide an approach to develop robust and spatially explicit household

expenditure models from electricity usage data. Nonetheless in the absence of household loca-

tions linked to both wealth and electricity consumption, it is well established within the literature

that households on average spend about 3 % of their income on electricity, thereby providing a

rule-of-thumb to roughly estimate household overall expenditure from electricity usage data. This

back-of-the-envelop approach provides a first pass at obtaining household expenditure from utility-

based electricity usage data.

Secondly, this work establishes a methodology to estimate household electricity usage data

from high resolution 50 cm daytime satellite imagery. Here, image patches showing the building

of interest (centered within the patch), are input into the CNN to predict the actual consumption.

Overall, the work illustrates that satellite imagery provides valuable features for predicting indi-

vidual building consumption. Significant performance gains are observed with aggregation, where

stakeholders can obtain high fidelity predictions at 1 sqkm resolution while preserving household

location characteristics.

Finally, this work demonstrates strong transferability where similar performances are observed

between the in-sample and out-of-sample test sets. This gives confidence that as more households

from unelectrified parts are given electricity, the model with a bit of fine-tuning should continue to

provide useful insights on electricity usage.

143



4.6 Appendix

4.6.1 Relationship between utility electricity consumption and survey-based electricity expendi-

ture

Here we present the correlation between the our utility electricity consumption data and survey-

based electricity expenditure, at the district level. Agreement is validated at the district level be-

cause the survey only provides household districts and does not report household GPS locations.

Figure 4.11 shows the correlation between mean survey reported monthly electricity expenditure

and mean utility reported monthly electricity usage. The figure shows that utility data strongly

agrees with the survey data at the district level with R2 of 0.9. This agreement between both esti-

mates of electricity usage gives confidence that utility data can be directly correlated with survey

reported overall household expenditure.

Figure 4.11: District level agreement between EICV5 survey reported electricity expenditure and
utility reported electricity consumption. Each dot represents a district, for which there are 18
districts with utility and survey data
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4.6.2 Relationship between electricity consumption and survey-based consumption expenditure

This section provides more insights on the agreement between electricity usage from utility

data and survey reported consumption expenditure. In the main body of this chapter we report the

MAPEs from linear models. Here we show the correlations and the best-fit linear models used to

obtain the MAPEs. Figure 4.12 shows the agreement and best fit linear model between household

electricity usage and household overall expenditure at the district level. Results from utility re-

ported electricity consumption and satellite imagery-derived predictions, aggregated at the district

level are shown. Both inputs correlate with overall household expenditure, though the predictions

tend to underestimate the absolute electricity consumptions and by consequence the absolute over-

all expenditures. Nevertheless, the predictions preserve the relative electricity consumption and

also relative household overall expenditure levels, the same districts are considered low or high in

both the utility and satellite derived datatsets.

Figure 4.12: Scatter between household electricity consumption and survey reported household
electricity expenditure at the district level. True utility and satellite-imagery derived predictions,
aggregated at the district-level are shown. In general, absolute electricity consumption derived
from satellite imagery tends to be lower than the true observed electricity consumption. Never-
theless, the relative electricity consumption levels amongst districts is preserved in the satellite
imagery derived estimates.
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Chapter 5: Learning to Segment from misaligned and partial labels

The previous chapters have demonstrated how utility data can be utilized to understand cus-

tomers, determine optimal electrification strategies and predict household demand. CNNs were

used to predict both consumption levels for unelectrified households and actual kilowatthours for

already connected buildings. A recurrent theme throughout this thesis has been to uncover the rel-

evant features driving the predictions from black-box CNN models. The main approach has been

to understand building roof characteristics as seen by the model. Obtaining building roof char-

acteristics is a largely solved problem in settings where clean label data is abundantly available.

Within the context of the thesis work performed in Kenya and Rwanda, building footprint data

especially in rural settings was not always available. Thus alternative approaches to segment and

obtain building characteristics were needed in order to support the work. This chapter discusses

a methodology to extract building footprints to support electricity access and usage studies, given

household locations.

To extract information at scale, researchers increasingly apply semantic segmentation tech-

niques to remotely-sensed imagery. While fully-supervised learning enables accurate pixel-wise

segmentation, compiling the exhaustive label datasets required is often prohibitively expensive.

As a result, many non-urban settings lack the ground-truth needed for accurate segmentation. Ex-

isting open source infrastructure data for these regions can be inexact and non-exhaustive. Open

source infrastructure annotations like OpenStreetMaps are representative of this issue: while Open-

StreetMaps labels provide global insights to road and building footprints, noisy and partial anno-

tations limit the performance of segmentation algorithms that learn from them.

In this chapter, we present a novel and generalizable two-stage framework that enables im-

proved pixel-wise image segmentation given misaligned and missing annotations. First, we in-

troduce the Alignment Correction Network to rectify incorrectly registered open source labels.
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Next, we demonstrate a segmentation model – the Pointer Segmentation Network – that uses cor-

rected open source labels to predict infrastructure footprints despite missing annotations. We test

sequential performance on the Aerial Imagery for Roof Segmentation dataset, achieving a mean

intersection-over-union score of 0.79; more importantly, model performance remains stable as we

decrease the fraction of annotations present. We demonstrate the transferability of our method to

lower quality data sources, by applying the Alignment Correction Network to OpenStreetMaps

labels to correct building footprints; we also demonstrate the accuracy of the Pointer Segmentation

Network in predicting cropland boundaries in California from medium resolution data. Overall,

our methodology is robust for multiple applications with varied amounts of training data present,

thus offering a method to extract reliable information from noisy, partial data.

5.1 Introduction

Processing remotely-sensed imagery is a promising approach to evaluate ground conditions at

scale for little cost. Algorithms that intake satellite imagery have accurately measured crop type

[132],[133], cropped area [134], building coverage [135] [136], urbanization [137], and road net-

works [61] [138]. However, successful implementation of image segmentation algorithms for re-

mote sensing applications depends on large amounts of data and high-quality annotations. Wealthy,

urbanized settings can more readily apply segmentation algorithms, due to either the presence of or

the ability to collect significant amounts of carefully annotated data. In contrast, more rural regions

often lack the means to exhaustively collect ground truth data. Some open source datasets exist

for such settings, and by successfully coupling these annotations with remotely sensed imagery,

researchers can gain insights into the status of infrastructure and development where well-curated

sources of these data do not exist. [139] [140].

Although these global open source ground truth datasets – e.g. OpenStreetMaps (OSM) – offer

large amounts of labels for use at no cost, the annotations within suffer from multiple types of noise

[141] [142]: missing or omitted annotations, defined as objects being present in the image and not

existing in the label [141]; misaligned annotations occur when annotations are translated and/or

147



Figure 5.1: Types of label noise present in open source data. Building footprints are the class of
interest.

rotated from its true position [143]; and incorrect annotations – annotations that do not directly

correspond to the object of interest in the image. Figure 5.1 presents examples of these three types

of label noise.

Noisy datasets present a training challenge when using traditional segmentation algorithms,

as the model cannot learn to associate image features and target labels when the relationship is

obscured by noise. To address the issues of misaligned and omitted annotations, and in order to

extract information from imperfect data, we present a simple and generalizable method for pixel-

wise image segmentation. First, we address annotation misalignment by proposing an Alignment

Correction Network (ACN). With a small number of images and human verified ground truth anno-

tations, the ACN learns to correct misaligned labels. Next, the corrected open source annotations

are used to train the Pointer Segmentation Network (PSN), a model which takes in a point location

and identifies the object containing that point. Learning associations from a representative point is

a widely acknowledged method of object detection: [144] notes that an intuitive way for humans

to refer to an object is through the action of pointing. By ‘pointing-out’ the object instance of

interest, our network ignores other instances that may not have corresponding annotations, there-

fore preventing performance degradation caused by annotation-less instances within the image.

As a result, our sequential approach presents a method for handling misaligned data as well as
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varying levels of label completeness without explicitly changing the loss function to compensate

for noise. While our approach cannot replace large amounts of carefully annotated outlines, it

can complement existing open source datasets and algorithms, reduce the cost of obtaining large

amounts of full annotations, and allow researchers to extract information from imperfect datasets.

This chapter’s key contributions are as follows:

• We introduce the Alignment Correction Network (ACN), a means to verify and correct mis-

aligned annotations using a small amount of human verified ground truth labeled data.

• We propose the Pointer Segmentation Network (PSN), a model that can reliably predict

polygon boundaries on remotely-sensed imagery despite omitted training annotations and

without requiring any bespoke loss functions.

• We demonstrate the applicability of our methodology to three different segmentation prob-

lems: building footprint detection with a highly-accurate dataset, building footprint detection

with noisier training data, and cropland boundary prediction.

Taken as a whole, our approach enables resource constrained actors to use large amounts of mis-

aligned and partial labels – coupled with a very small amount of human verified ground truth

annotations – to train image segmentation algorithms for a variety of tasks. The rest of the chapter

is organized as follows: In Related Work, we discuss related literature; in Methods, we describe

our novel methodological contributions; in Results, we present results for the ACN and the PSN

for all segmentation tasks; and in Conclusion, we restate our most salient findings.

5.2 Related Work

Computer vision researchers have recently made numerous advances in semantic segmenta-

tion, in applying state-of-the art techniques to remote sensed imagery, and in learning from noisy

datasets; we discuss some important contributions to the literature below.

Existing Segmentation Approaches

Primarily based on improvements to deep convolutional neural networks (DCNN) architectures,
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Figure 5.2: Summary of our two-stage approach to segment from noisy annotations. Stage 1: The
ACN uses an image (𝑥𝑖) and label (𝑦𝑎

𝑖
) with a single misaligned annotation to predict a corrected

annotation �̂�𝑎
𝑖

containing the realigned annotation. Random shifts between ±10 pixels are applied
to 𝑣𝑎

𝑖
to obtain 𝑦𝑎

𝑖
. The network is trained with a small set of images (𝑥) and verified ground truth

annotations (𝑣). Stage 2: A large noisy training set is first realigned with the ACN. Realigned,
incomplete annotations are used for supervision. The PSN uses selected points from available
instances, 𝑥𝑖 and �̂�𝑖 to learn the segmentation task.
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researchers have achieved record performances for a variety of different segmentation tasks. Fully

convolutional encoder-decoder type architectures – one type of DCNN – take in an image and

output a per-pixel prediction for the class of interest [145]. Some architectures use symmetric

networks with skip connections to perform pixel-wise predictions [146] [147]. Alternatively, two-

stage detection algorithms first perform region proposal – areas that have a high likelihood of

containing the object of interest – and then detect objects within the identified regions [148] [149]

[150]. Modifications to two-stage detection algorithms have enabled semantic segmentation of

images, whereby individual pixels in an image are placed into one of a number of classes [131]

[151]. Development of these segmentation architectures has been facilitated by large, comprehen-

sive datasets which enable the implementation of these algorithms in a fully supervised approach:

here, every object in the image and its corresponding annotation are used in the learning process

[152] [153] [154].

Applying Deep Learning to Remote Sensed Imagery

Multiple projects have leveraged satellite imagery to answer various questions on land use, road

quality, object detection, consumption expenditure: by linking sparse ground truth with abundant

imagery, researchers can extrapolate trends in existing data to areas where labeled data do not ex-

ist [155], [156], [157]. Alternatively, some works have proposed neural network architectures that

sidestep training data constraints and the relative lack of labeled ground-truth in remote areas [158]

[159]. Jean et al. combine Google maps daytime images (provided by DigitalGlobe), nighttime

lighting, and survey data to estimate poverty for multiple African countries [123]. High resolution

daytime images were used to train a model to predict nighttime lights as measured by DMSP-OLS;

features extracted from the last layer of the model were then used to estimate household expen-

diture or wealth. Results from this chapter suggest that predictions about economic development

can be made from remote sensed data using features derived from imagery; this insight provides

additional motivation for developing methods that extract information from noisy imagery datasets.

Learning From Noisy Annotations

The problem of poor-quality training data, especially in rural areas, for segmentation tasks is well
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known: [160] acknowledge the variability in coverage of open source data in Kenya and observe

significant degradation of coverage as one moves away from urban settings. Coverage degrada-

tion from urban to rural areas is also seen in South Africa[161], Brazil[162] and Botswana[163].

[164] estimates the effects of multiple types of training data noise, including misalignment and

missing annotations, finding that as noise levels increase, both precision and recall decrease. For

applications such as measuring building or field area which are useful in downstream analysis of

wealth, crop yield and more, high noise levels decrease the ability to successfully use segmenta-

tion algorithms. Several works tackle the problem of learning from imperfect labels. [141] propose

new loss functions to address noisy labels in aerial images. [143] [165] both focus on the issue of

misalignment: [165] uses a self-supervised approach to align cadaster maps, and while the method

proposed in [143] maximizes the correlation between annotations and outputs from a building

prediction CNN, it assumes buildings in small groups have the same alignment error. Our two-

stage approach builds upon existing convolutional frameworks common to many noise correction

approaches. However our approach relies on the well-known binary cross entropy loss function,

addresses both misalignment and omitted annotation, and does not require that all misalignments

are identical. Thus serving as an attractive alternative when noisy labels are present.

5.3 Methods

Traditional segmentation methods take an image input 𝑥𝑖 and aim to learn a function 𝑓 (x) that

predicts a single channel label �̂�𝑖 containing all building instances present in the image. Equation

5.1 shows the learned function given 𝑥𝑖, where 𝜐𝑎
𝑖

is the single channel label of instance a in image

𝑥𝑖 and there are a total of A instances in that image:

𝑓 (𝑥𝑖) → �̂�𝑖

𝑠.𝑡. �̂�𝑖 = �̂�1
𝑖 ∪ �̂�2

𝑖 ... ∪ �̂�𝐴
𝑖

(5.1)
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5.3.1 Alignment Correction Network

Misalignment occurs when there is a registration difference between an object in an image

and its annotation. In remote sensing, misaligned annotations may occur for a number of reasons,

including human error and imprecise projections of the image [165]. There are two types of anno-

tation alignment errors: 1) translation errors, where the annotation is shifted relative to the object,

and 2) rotation errors, where the annotation is rotated relative to the object. [143] suggest that

translation errors are more frequent for OpenStreetMaps in rural areas. Thus in this chapter, we

only address translation errors present in open source data. We propose an Alignment Correction

Network (ACN) that takes in an image 𝑥𝑖 and a label 𝑦𝑎
𝑖

containing one misaligned instance a.

The ACN outputs a label �̂�𝑎
𝑖

containing the predicted, corrected annotation. �̂�𝑎
𝑖

is compared to 𝜐𝑎
𝑖

to learn optimal weights for the network. During training, the misaligned label 𝑦𝑎
𝑖

is obtained by

applying random x-y shifts, between ±10 pixels to 𝜐𝑎
𝑖
. Sensitivity to the ±10 pixels translation

shift is discussed in the results.

When multiple misaligned instances are present in an image, the instances are corrected inde-

pendently. This approach is chosen for two reasons: it allows instances within an image to have

varying degrees of translation error and it also enables the network to be robust to incomplete la-

bels with missing instances. Here, a small dataset of images (𝑥) and carefully verified ground truth

labels (𝜐) are used to train the ACN as shown in Stage 1 of Figure 5.2.

5.3.2 Pointer Segmentation Network

Assuming 𝑚 available annotations – 𝜐1
𝑖
... 𝜐𝑚

𝑖
, where 𝑚 < 𝐴 – common algorithms will struggle

to implement Equation 5.1, as some predicted object instances will not have corresponding true

labels for comparison during training. To address this issue, we introduce the PSN, a network that

learns to segment an image using only 𝑚 available annotations. The PSN takes as inputs an image

𝑥𝑖 and a single channel of points specifying selected instances to be segmented, and it outputs a

segmentation mask only for the selected instances. We specify the fraction of instances to be used

for training using a parameter 𝛼, where 𝛼 is the number of selected instances divided by the number

153



of available instances. Equation 5.2 shows this formulation, where 𝑝𝑖 (𝛼) specifies a point within

each selected instance, and �̂�𝑖 (𝛼) denotes the predicted label for instances specified by 𝑝𝑖 (𝛼):

𝑓 (𝑥𝑖, 𝑝𝑖 (𝛼)) → �̂�𝑖 (𝛼) (5.2)

By including a single channel containing points 𝑝𝑖 (𝛼), our PSN segments only instances that

are associated with the points. This offers two benefits: first, we simplify the learning task to

specify instances of interest, and second, the network can be trained with common binary cross

entropy loss. To handle varying extents of missing annotations, the model is trained by randomly

picking 𝛼 for every image in each epoch; at inference time, all instances of interest are specified

using points.

In the sequential training configuration, the ACN is used to correct a training dataset that is then

inputted to the PSN for object segmentation; this process is shown in Stage 2 of Figure 5.2. Binary

cross-entropy loss is used for all networks. Both ACN and PSN use the same baseline architecture

(lightUNet) shown in Appendix 5.7.1 and further explained in the results, albeit modified by the

number of input channels.

5.4 Data

Three separate datasets are used to train and test the performance of the ACN and the PSN, all

described below. During training and testing, we only use images that contain labels.

5.4.1 Aerial Imagery for Roof Segmentation

We use the Aerial Imagery for Roof Segmentation (AIRS) dataset to establish baseline per-

formances for both the ACN and PSN. The AIRS dataset covers most of Christchurch (457𝑘𝑚2),

New Zealand and consists of orthorectified aerial images (RGB) at a spatial resolution of 7.5 cm

with over 220,000 building annotations, split into a training set (T𝑠𝑒𝑡) and a validation set (V𝑠𝑒𝑡).

The AIRS dataset provides all building footprints within the dataset coverage area. To mimic more
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Figure 5.3: CDF of the number of buildings present in 128x128 patches of the 30cm-resampled
AIRS dataset.

readily-available data, we resample the imagery to 30 cm, an approach which creates imagery more

similar to that provided by Google Earth. Next, we slice the resampled images into 128 by 128

pixel patches and discard all patches in which the area occupied by buildings is less than 10 % of

the total area – this methodology ensures that patches with multiple buildings are selected. Other

than this basic filtering, we preserve T𝑠𝑒𝑡 and V𝑠𝑒𝑡 .

After resampling and filtering, we obtain 99,501 and 10,108 patches from the T𝑠𝑒𝑡 and V𝑠𝑒𝑡 ,

respectively. We further split T𝑠𝑒𝑡 into 80:20 fractions, where 80% is used for training and 20%

for validation. V𝑠𝑒𝑡 is withheld and used as a test set to evaluate performance. Figure 5.3 shows

the fraction of patches for a given number of buildings in T𝑠𝑒𝑡 and V𝑠𝑒𝑡 . Note that some patches

contain partial buildings.
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5.4.2 OpenStreetMaps

Humanitarian OpenStreetMaps (OSM), through free, community-driven annotation efforts,

provides building footprints by country on their Humanitarian Data Exchange (HDX) platform.

While this data provides the best (and only) ground truth for many parts of the world, label quality

is highly heterogeneous, both in terms of footprint alignment and coverage. In order to test the

performance of the ACN on these incomplete and misaligned building footprints, we pair OSM

annotations for Kenya [166] with selected DigitalGlobe tiles from Western Kenya (a box enclosed

by 0.176 S, 0.263 S, 34.365 E, and 34.453 E) and closer to Nairobi (a box enclosed by 1.230 S,

1.318 S, 36.738 E, and 36.826 E). The DigitalGlobe tiles have a 50 cm spatial resolution and were

collected between 2013 and 2016. Slices measuring 128 by 128 pixels were generated from the

DigitalGlobe images, which we then couple with overlapping OSM building labels. We generated

human verified ground truth annotations for 500 of the image patches.

5.4.3 California Statewide Cropping Map

We also use crop maps and decameter imagery to demonstrate the flexibility of the PSN. The

California Department of Water Resources provides a Statewide Cropping Map for 2016 [167];

we pair this shapefile with Sentinel-2 satellite imagery to learn to extract crop extents [168]. Red,

blue, green, and near-infrared bands – all at 10m resolution – are acquired from a satellite pass on

August 30, 2016; the bands cover the same spatial extent as Sentinel tile 11SKA (a box enclosed

by 37.027 N, 36.011 N, 120.371 W, and 119.112W). Cropped polygons larger than 500m2 are

taken from the California cropping map and are eroded by 5m on all sides to ensure that field

boundaries are distinct at a 10m spatial resolution. We split the 110km x 110km tile into images

patches measuring 128 by 128 pixels and remove all slices that do not cover any cropped areas,

leaving a total of 5,681 patches containing an average of 17 fields per patch; these images are split

into training, validation, and test sets at a ratio of 60/20/20.
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Table 5.1: mIOU of Base-UNet[76] and lightUNet for routine segmentation with complete and
well-aligned labels. Both models are trained on 30 cm resampled AIRS imagery.

Models mIOU

Base-UNet 0.86
lightUNet 0.85

5.5 Results

For all model testing, we report the mean intersection-over-union (mIOU), defined as the in-

tersection of the predicted and true label footprints divided by the union of the same footprints,

averaged across the testing dataset.

5.5.1 Baseline Model

We establish the performance of the baseline model (lightUNet) used for both the ACN and

PSN by comparing the lightUNet to the UNet architecture proposed by DeepSenseAI [76]. The

lightUNet 1 architecture is modified from [76] to perform segmentation with fewer parameters.

We refer to the model proposed by [76] as Base-UNet; we train both the Base-UNet and lightUNet

models for 30 epochs on the 30 cm resampled AIRS dataset [169], and we report their mIOU.

Table 5.1 shows that our lightUNet model achieves comparable performance to the Base-UNet

when performing routine building segmentation. Our lightUNet model has about half the number

of parameters as the Base-UNet and therefore takes less time to train.

5.5.2 Alignment Correction Network

V𝑠𝑒𝑡 in the AIRS dataset is used to evaluate the performance of the ACN. Random translations

were generated between ± 10 pixels for the xy-axis and applied to ground truth AIRS annotations,

resulting in unique translation shifts for each object in an image. The introduction of noise through

random translation yields a baseline mIOU of 0.55 for comparison. The shifted annotations to-

gether with the images are fed into the ACN, and the corrected annotations are compared to the

1See Appendix 5.7.1 for details about the convolutions.
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true annotations to drive the learning process. We report the mIOU on V𝑠𝑒𝑡 when varying amounts

of T𝑠𝑒𝑡 data are used for training. Random translations between ± 10 pixel are applied to all objects

in V𝑠𝑒𝑡 . When the ACN is trained with 800, 400 and 240 images, the corresponding mIOU on all

images in V𝑠𝑒𝑡 are 0.81, 0.77 and 0.67 respectively, compared to the baseline of 0.55. This suggests

that the ACN performs better when more images are used but can learn with only a couple hundred

training images.

Table 5.2: mIOU before and after ACN correction.
mIOU

Translation Shift (± pixels) Before ACN After ACN

0 to 5 0.63 0.81
5 to 10 0.40 0.73
10 to 15 0.26 0.46
15 to 20 0.18 0.28

Using the ACN model trained with 400 images and random translation shifts between ± 10

pixels, we evaluate the robustness of the ACN to varying levels of translation shifts. Table 5.2

shows mIOU before and after ACN correct, when different ranges of translations shifts are applied

to V𝑠𝑒𝑡 . Across all translation shifts the ACN is able to perform some realignment of annotations,

even for translations (>10 pixels) which the model was never trained on.

We observe two types of alignment correction as outputs from the ACN: translations and trans-

lations plus infilling. Infilling occurs when the misaligned annotation area is less than the building

area. In the translation plus infilling case, the model both shifts the annotation and fills the missing

portion of the annotation. Overflow is sometimes observed upon correcting the label, resulting in

the corrected annotation exceeding the building outline. Figure 5.4 shows examples of both types

of corrections when training on 800 images. This figure demonstrates how the ACN learns over

time: green outlines show predictions from the ACN and blue outlines show misaligned annota-

tions which the ACN takes as input.
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Figure 5.4: Types of annotation corrections performed by the ACN when trained with 800 images.
Green shows corrected annotations. Blue shows misaligned annotations.

5.5.3 Pointer Segmentation Network

As an alternative to traditional segmentation models, we propose the Pointer Segmentation

Network (PSN), a network that takes in an additional channel with points of interest and returns

a single channel output with annotations. The PSN was evaluated separately from the Alignment

Correction Network (ACN); this section focuses on reporting segmentation performance on the

AIRS dataset when partial – but well-aligned – labels are used. To appropriately compare the PSN

with the lightUNet, we evaluate model performance using all annotations in every image of V𝑠𝑒𝑡 .

Here, we compare the ability of both networks to segment every building instance in the image,

having learned with missing annotations. Table 5.3 reports the performance of the lightUNet and
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the PSN with varying fractions of selected annotations (𝛼): As 𝛼 decreases, performance of the

PSN remains robust, indicating that the network still learns the segmentation task despite missing

annotations. By specifying the points of interest, the PSN outperforms the lightUNet model.

Table 5.3 also presents results for two different methods of acquiring the required building

points: using building centroids versus using a randomly generated point from within the cor-

responding annotation. By comparing the performance of the PSN using centroids with that of

randomly generated points, the best annotation strategy to be used at inference can be determined.

We find that the PSN performs better when centroids are used to train the model: This suggests that

annotators should strive to extract points near the center of buildings to ensure better segmentation

outcomes during inference. Additionally, because the extent of missing annotations may not be

known a priori for datasets, we evaluate how the network handles heterogeneous (Het.) amounts

of label completeness by sampling 𝛼 from a random uniform distribution between 0 and 1. The

uniform distribution ensures an equal chance for alpha to take on any value between 0 and 1. 𝛼

is resampled for each image during every training epoch. Table 5.3 shows that the PSN remains

robust at performing segmentation and works for a heterogeneous 𝛼 that varies across images. Al-

though 𝛼 will likely differ across images but remain constant for a given image at a particular time,

during training we allow 𝛼 to change over every training epoch for a given image, enabling our

approach to be robust against images taken at different times where new construction may have

occurred.

Figure 5.5 shows how the PSN learns – and where non-PSN type networks fail – when learning

with missing annotations. The figure shows some outputs of the PSN and the lightUNet model

when both are trained with 𝛼 = 0.7 and used to predict all building instances present within the

image. Although both networks are trained with missing annotations, generated annotations from

the PSN are more visually accurate.
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Table 5.3: mIOU of PSN and lightUNet for all buildings in V𝑠𝑒𝑡 images, when trained with varying
𝛼.

mIOU

𝛼 = 1 PSN (centroid) 0.90
lightUNet (centroid) 0.85

𝛼 = 0.7 PSN (centroid) 0.89
PSN (non-centroid) 0.83
lightUNet (centroid) 0.53

𝛼 = 0.5 PSN (centroid) 0.87
lightUNet (centroid) 0.18

𝛼 = Het. PSN (centroid) 0.87
lightUNet (centroid) 0.71

5.5.4 Sequential Testing

The AIRS dataset is used to evaluate the sequential performance of our two-stage methodology

shown in Stage 2 of Figure 5.2, whereby the ACN and PSN are trained and tested sequentially.

Using T𝑠𝑒𝑡 , we establish two training datasets for the sequential process: T1, containing misaligned

labels generated from the true T𝑠𝑒𝑡 ; and T2, containing ACN-corrected T1 labels. The ACN model

trained with 400 training images is used to generate T2. The noise present in both training datasets

is captured by the mIOU listed in Table 5.4. The PSN and lightUNet models are trained on T1

and T2 using 𝛼 = 𝐻𝑒𝑡 with an identical implementation of label withholding to that described in

the previous section. The trained models are used to segment V𝑠𝑒𝑡 images; we compare predicted

annotations to the true annotations to attain the performance metrics reported in Table 5.4.

Table 5.4 shows that, with 𝛼 = 𝐻𝑒𝑡, the PSN performs significantly better than the lightUNet

when trained on either misaligned labels (T1) or ACN-corrected labels (T2). Again, we find that

with incomplete labels, regardless of alignment quality, the PSN outperforms the lightUNet. More-

over, in both training configurations, PSN mIOU performance nears that of the training dataset. As

a result, we conclude that the PSN is able to predict object extents at a similar accuracy to that of

the training dataset.

Figure 5.6 presents outputs from the PSN when trained with ACN-corrected annotations: cor-
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Figure 5.5: Annotations from PSN and lightUNet models when trained with 𝛼 = 0.7. Predictions
are made for all building instances in the image and are compared to the ground truth.

rected annotations from the ACN are shown in blue and predicted outputs from the PSN are shown

in green. In the left half of Figure 5.6, we present properly corrected ACN-labels and demonstrate

that the PSN is able to predict building footprints accurately when corrected annotations are accu-

rate. The right half of the figure shows poorly corrected annotations: These corrected annotations

fall on roads, grass, or across the actual building extent. In these cases, the PSN tries to predict

a building footprint where there is no building. Accordingly, we conclude that improvements to

the ACN can further improve PSN performance, as more accurate training labels will allow for

better label prediction. Nonetheless, in the presence of misaligned annotations and partial labels,

we are able to achieve better performance with our sequential architecture than with traditional

segmentation approaches.
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Table 5.4: Performance of the segmentation architectures. The ACN is trained with 400 images;
both segmentation networks are trained with 𝛼 = 𝐻𝑒𝑡. available annotations.

mIOU

T1: Misaligned train dataset 0.57
PSN (trained on T1) 0.54
lightUNet (trained on T1) 0.17

T2: ACN-corrected train dataset 0.81
PSN (trained on T2) 0.79
lightUNet (trained on T2) 0.74

5.5.5 ACN Application: Realignment of OSM Annotations

In many parts of the world, ground truth is rare or nonexistent; moreover, what resources do

exist often have significant accuracy issues. Despite potential shortcomings, these datasets can

provide unique insight into conditions on the ground, and if their quality can be improved, they

offer immense value to researchers. To confirm the performance of our realignment method on

noisier images and labels, we tested the ACN on OSM building polygons in Kenya, a dataset

containing considerable amounts of label misalignment. Of the 500 human-verified ground truth

image labels generated for Kenya, 400 are used to train the ACN and 100 to validate. The extent

of noise in OSM labels is measured by comparing the labels to the human-verified ground truth

labels. mIOUs of 0.30 and 0.31 for the train and validation data respectively were recorded, when

comparing OSM labels to their ground truth counterparts. OSM training labels are used to train

the ACN and the trained model is ran on the 100 validation labels. A 50 % improvement in mIOU

from 0.31 to 0.47 is observed on the 100 validation images. This suggests that our approach is

transferable to open source labels and offers gains even with noiser images and labels, using a

small dataset.

Figure 5.7 shows a sampling of ACN-corrected OSM annotations for images in the validation

dataset: Hand-labelled annotation are shown in blue, OSM annotations are shown in red and cor-

rected annotations are shown in green. Overall, we find that the ACN is able to correct misaligned

OSM annotations both in rural and urban regions. In rural Western Kenya, where buildings tend to
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Figure 5.6: Sample images showing PSN performance when trained with corrected annotations.
Blue footprints show ACN-corrected annotations. Green footprints show PSN-predicted annota-
tions trained with 𝛼 = 𝐻𝑒𝑡. and 400 ACN-corrected labels. PSN performance is dependent on the
quality of corrected annotations.

be smaller, the ACN shifts OSM footprints to better align with the buildings. We observe that the

noisier image quality makes it more difficult for the ACN to identify extremely small buildings. In

more urbanized Nairobi, the ACN also improves the alignment of OSM annotations, albeit with

some failure cases.

5.5.6 PSN Application: Cropland Segmentation

Next, we apply the PSN to the task of cropland segmentation using Sentinel-2 imagery and

a 2016 California cropping map. Knowing exact field outlines provides valuable information to

farmers, planners, and governments; however, a lack of reliable, location-specific ground truth of-

ten hampers these efforts. We demonstrate the ability to accurately learn cropland extents using

only a subset of fields, instead of requiring the comprehensive set of training polygons that would

be necessary for traditional segmentation networks. Similar to previously described tests, we quan-

tify the performance of the PSN in recreating these field boundaries as we select a certain fraction
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Figure 5.7: Hand-labelled annotations, OSM annotations and ACN-corrected annotations. The
ACN is trained on 400 images from Western Kenya and Nairobi, and improves label quality despite
the noisier training data.

of the annotations, comparing results to those of the lightUNet. Table 5.5 presents these results.

At all fractions of available training data shown in the table, the PSN outperforms the lightUNet

in segmenting croplands. After 40 training epochs, the PSN is able to predict all field boundaries

for the test set across both values of 𝛼. When trained with all annotations (𝛼 = 1), the PSN achieves

a mIOU of 0.92. In contrast, the lightUNet only reaches a mIOU of 0.75 when 𝛼 = 1, and sees its

performance significantly diminish as field boundaries are withheld. Figure 5.8 shows the PSN-

and lightUNet - recreated field polygons when the models are trained with 𝛼 = 0.75 and are asked

to predict all polygons within an image. The true cropland polygons are shown in blue while the

predicted polygons are shown in green; all examples shown come from the test set.
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These results demonstrate the viability of the PSN in delineating field boundaries and the

preferability of our method over a baseline alternative, when the acquisition of field boundaries

is expensive. In locations with low data availability and smaller, non-uniform field boundaries, the

PSN provides a reliable method for determining cropped area polygons.

5.6 Summary

As the demand for extracting information from satellite imagery increases, the value of reli-

able, transferable object segmentation methodologies – especially ones that compensate for noise

and inaccuracies in training data – increases in parallel. In this chapter, we present a novel and gen-

eralizable two-stage segmentation approach that address common issues in applying deep learn-

ing approaches to remotely-sensed imagery. First, we present the Alignment Correction Network

(ACN), a model which learns to correct misaligned object annotations. We test the ACN on a

set of alignment errors, including i) misalignment of the AIRS dataset, ii) existing and substantial

misalignment errors within the OSM Kenyan building footprint dataset. Overall, we find that the

ACN significantly improves annotation alignment accuracy.

We also introduce the Pointer Segmentation Network (PSN), a model which reliably predicts

an object’s extent using only a point from the object’s interior. The value of the PSN lies in learning

to segment objects within an image despite incomplete or missing annotations, an issue which both

hinders traditional segmentation efforts and is common in many ground-truth datasets. We train

and test the PSN on the AIRS dataset and find that the model can accurately predict building extent

regardless of the fraction of available annotations present or where the training point resides within

Table 5.5: mIOU for all field boundaries in test set, for varying 𝛼 values.
mIOU

𝛼 = 1 PSN 0.92
lightUNet 0.75

𝛼 = 0.75 PSN 0.91
lightUNet 0.69
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Figure 5.8: Sample images and ground truth labels showing cropland extent in California; also
shown in green are PSN and lightUNet predicted footprints 𝛼 = 0.75, overlaid on true cropland
polygons, shown in blue. PSN predictions remain highly accurate. Comparatively, the lightUNet
predicts only a portion of the crop extents correctly

the object. We also evaluate the performance of the PSN for cropland segmentation using Sentinel

imagery and a 2016 California cropland map as inputs, demonstrating that the model can reliably

learn cropland polygons regardless of the fraction of available annotations. Overall, for all testing

configurations – those which vary the fraction of available training annotations and those which

change the location of where the training point lies– and for both object segmentation applications

presented – building footprint and cropland extent predictions – the PSN outperforms a baseline

segmentation model.

Lastly, we sequentially link the ACN and PSN to demonstrate the ability of the combined

networks to accurately segment objects having learnt from misaligned and incomplete training
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data. Taken together, we envision our proposed networks providing value to the community of

researchers and scientists looking to extract information from widely-available satellite imagery

and unreliable ground-truth datasets.

5.7 Appendix

5.7.1 Architecture

Figure 5.9: Architecture used for both the Alignment Correction Network (ACN) and the Pointer
Segmentation Network (PSN). Four input channels are used for both ACN and PSN, while three
are used for the lightUNet. This network is modified from [76] by reducing the number of filters
to 48 and maintaining the same filter size through out the network. In addition, the network uses
dropout in addition to batch normalization after every epoch.
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Conclusion

Achieving affordable and reliable universal electricity access and usage requires multiple con-

tributing advancements. This thesis makes key contributions towards i) increased electricity access

- by performing electricity demand-side analysis / prediction, and ii) least cost grid access stud-

ies given settlement patterns. Beyond electricity access this thesis also contributes towards rapid

and large scale assessment/monitoring given investment decisions- by providing methodological

approaches to measure welfare indicators and buildings characteristics. Below we outline some

novel contributions and key takeaways from this dissertation.

Results from the utility data reveal some relevant patterns about electricity consumption es-

pecially for the newly grid-connected homes. As utilities bring in millions of households to the

grid, these household tend to use less electricity, peak sooner and plateau at electricity consump-

tion levels lower than their peers who were connected earlier on. This pattern is observed both in

Kenya and Rwanda, albeit median monthly consumptions in Kenya ranging in the 30 kWhs while

those in Rwanda are much lower, around 5 kWhs. Preliminary evidence from surveys, show that

these households are poorer and as a result allocate a smaller proportion of their income to elec-

tricity consumption. Concurrently, the capital cost of grid connections, especially in more rural

areas remains high reaching up to $1500/connection. At such high capital costs and low consump-

tions, if energy providers could adequately anticipate consumption, they could better provide more

cost-effective systems (e.g. a $200 30W solar panel) to meet such low demand, while simulta-

neously investing in avenues that could boost income levels of households (e.g. irrigation pumps

for improved agriculture). Overall, these insights emphasizes that off-grid technologies remain an

important rung in the access ladder.

Deciding the unit price for electricity while meeting the dual objectives of cost recovery and

encouraging consumption amongst poorer household, remains a challenge. By analyzing utility

revenue and electricity consumption pre and post tariff policies, this work shows that increasing

the tariff suppresses consumption especially for lower consumers who also tend to be poorer. Con-

versely, while the implementation of a "lifeline" tariff might encourage consumption especially in
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lower consumers, utility revenues are significantly impacted, further limiting its ability to recover

costs in the low consumers. Thus, to adequately support the "lifeline" tariffs and cost recovery,

government interventions in the form of subsidies might be required.

Anticipating consumption levels of future customers remains a difficult problem even for util-

ities. Chapter 2 shows that rapid large scale evaluations of latent electricity demand can be per-

formed using satellite imagery. Results from the work shows that predictions from satellite im-

agery, provide a better starting point than assuming that newly connected households will con-

sume the same as their older peers. This chapter also shows that improved performances can be

obtained by learning about buildings characteristics prior to predicting electricity consumption

levels. Approaches that extract household characteristics would better support predictions and hu-

man interpretation of the learnt models. In addition to daytime satellite imagery, this chapter also

shows that multi-modal models that learn from multiple data sources better capture the variability

in household consumption. Further extensions and deployment of the prediction models should

perform a thorough examination of other input datasets as they may yet hold the key to improved

prediction performance.

Estimating the cost of grid connections is well documented within the literature. However, few

approaches demonstrate how cost estimates can be carried out at scale for millions of buildings.

Instead, cost metrics based on population density are utilized to determine places that are easier

or more difficult to connect via grid extension. In chapter 3, through our abstraction of the grid,

we offer a set of unique metrics that allows energy planners to estimate the ease of electrifying

every individual structure. This is especially valuable in places of similar population density but

different settlement patterns. For example, we show that for two places of similar population

density, where one has clustered structures and the other has more spread-out structures, the cost

of a grid connection is much lower for the clustered settlement as less wire is needed to grid connect

these households. This perspective is completely missed in the absence of our proposed metrics

where population density is used as the indicator for cost. We show that this novel indicator of grid

connection costs, can be computed across the whole landscape of a country (Kenya in our case)
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and is especially relevant in places where the is no pre-existing grid.

Large investments are being made to support electricity bill recovery, one of which is the in-

stallation of at home electric meters. As result, the utility is already collecting large amount of

electricity usage data, though mainly using it to support energy related endeavours. Chapter 4

shows that electricity usage data can be re-purposed to answer new questions relevant for sustain-

able development. This application is particularly interesting because it does not require additional

large scale investments into data collection efforts. Specifically, this work provides a methodology

for estimating household overall consumption expenditure using electricity usage data. We show

that electricity usage remains a good proxy for household overall expenditure. This chapter also

shows how satellite imagery can be used to estimate the actual average monthly electricity con-

sumption of a building. This methodology can empower governments who are already resource

constraint, with the ability to approximate other relevant indicators without deploying large invest-

ments to collect new data.

Decision making for planning purposes can occur at multiple resolutions, from the individual

household level to the administrative level. High resolution data provides good variability of the

indicator but may not preserve the privacy of household. Low resolution data, at the administrative

level may support individual privacy but might miss the spatial heterogeneity of the indicator. We

show through the work done in chapter 4 that aggregating electricity consumption predictions in

Rwanda to the 1 sqkm resolution maximizes both objectives of providing high resolution insights

about electricity usage while preserving the privacy of households. In reality, stakeholders tend to

be more interested in areas that might be in need for prioritization of a service, rather than the indi-

vidual households. Our experiments on aggregation provide insights to how quickly performance

improves with aggregation and an approach that other stakeholders can apply to evaluate their data

or indicator of choice.

Transferable and generalizable electricity prediction models remain a desirable feature espe-

cially when multitudes of households remain unconnected. The training and parameter optimizing

schemes exemplified in this work show that robust models can be developed to support electricity

171



consumption studies. In both chapter 2 and 4, the proposed models showed stable and comparable

performances from the train to in-sample and out-of-sample test sets. These model tuning strate-

gies are critical to ensuring that the models transfer to unseen regions of the country and perform

well for new customers.

Convolutional Neural Networks offer a pathway for extraction of non-linear features or patterns

from data. However, they tend to be black-box models with little to no insight about what is driving

the predictions. Understanding the tunable knobs within the model enables the planner to first

detect spurious results and secondly make informed decisions. Throughout this dissertation, the

discovery of explanatory features driving predictions have been prioritized. Building roof sizes and

types, road quality, agriculture land have emerged as key variables that correlate with electricity

consumption levels. Through the three approaches for model explainability demonstrated in this

work, we provide a multi-view lens on the features driving electricity consumption predictions.

Such novel explanatory analysis gives confidence that the models are learning relevant features

over spurious patterns within the data.

Despite the poor building footprint quality in the regions of this work, a smart modification to

traditional building segmentation was developed in order to extract building characteristics. This

model can be leverage and coupled with already detected buildings to develop other household

indicators such as roof top size and quality. This contribution supports the application of building

segmentation to areas where data quality and quantity may be a bottleneck.

Electric utilities are themselves sitting on large volumes of data and as grid-connections con-

tinue to be a priority, the volume of this data will grow. This dissertation shows how utilities can

analyze their own data to reveal insights about their customers and perform predictions about po-

tential future grid customers. Rather than assuming that newly connected household will consume

the same amounts of electricity as older customers, this thesis provides methods to support similar

analysis by the data-holders, to inform and support their planning of electricity services.

Numerous contributions have been made throughout this dissertation. While the work could

be extended in mutiple ways, here we highlight three critical extensions that may better support
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application and deployment of the work:

Predictions from lower resolution satellite imagery: Chapter 4 proposes the use of high res-

olution 50 cm daytime satellite imagery as an input to the deep learning models to make predic-

tions about average monthly electricity consumption. These images were one-time purchases from

Maxar. The provided Maxar imagery from varying satellites (WorldView2, WorldView3, GEOS)

is a tapestry of the best images and this collection is selected from different acquisition years. To

better support recurrent predictions from remote sensed imagery, this work could be extended to

evaluate the predictive power of freely available products such as 10m Sentinel data, that have

higher temporal candence. While predictions might not be carried out at the individual building

level, predictions at 1sqkm grid can still be supported with the medium resolution product. The

freely available imagery will reduce the cost that stakeholders may face when applying this work

to new customers. In addition, predictions from medium resolution products might better incor-

porate the spatial inter-dependence of households’ consumption, when multiple households are

considered in the same image patch.

Learning from masked data: This work was made possible due to the carefully built relation-

ships with stakeholders such as the utilities in Kenya and Rwanda. On one hand, the utilities

hold the data needed to perform this work, while on the other hand sits the energy and machine

learning expertise needed to develop the methodologies. By providing masked datasets, utilities

can catalyze research and innovation needed to improve their planning and operations. One ap-

proach from literature that has shown promising results in protecting data privacy while supporting

learning is federated learning methods. Through federated learning approaches, machine learning

models can still leverage supervisory signals from relevant training data, while the data remains on

the energy planner’s server. With such privacy preservation approaches (data masking or federated

learning), more robust methods to demand-side analysis and prediction can be developed.

Utility Analytics Toolkits: A key observation from this work is that while utilities have access

to large volumes of electricity usage data fewer have access to the necessary human resources and

expertise to conduct electricity consumption studies and predictions. This dissertation presents
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methodological approaches to studying and predicting electricity usage. For these methods to be

deployed and utilized recurrently, there is a need to translate such methods into simple and usable

software packages and toolkits that are regularly maintained. Such toolkits can enable utilities to

better understand their customers (current and future) and provide the necessary analysis needed

to improve their electricity access and reliability plans.

This dissertation has extensively demonstrated multiple contributions in the form of key results

and novel methodologies. While the focus of the thesis has been on electricity usage in Kenya

and Rwanda, the work can equally be applied to more countries and to other domains seeking to

increase access, measure the impact of investments and provide useful insights to planners. We

hope that it catalyzes research and deployment beyond the electricity domain.
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