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Abstract
A symmetry’s tale: from the material to the celestial

Guanhao Sun

Symmetry has played a crucial role in our understanding of physical systems. In this thesis,

we review several works based on investigating the symmetry properties of theories. We examine

and improve the Noether’s theorem and the coset construction, both powerful tools when studying

the symmetry aspects of a physical system. We manipulate the intrinsic ambiguities in the

derivation of the stress-energy tensor using Noether’s theorem to systematically compute, without

any guesswork, the necessary “improvement terms” which make the tensor satisfy certain

algebraic properties such as symmetry and tracelessness, even off-shell. We then construct a new

type of coset construction, which can accommodate relativistic particles with arbitrary spins. This

is the first work we know of to incorporate arbitrary spin degrees of freedom into coset

construction. We then present two interesting examples of condensed matter systems described by

effective field theories that come from spontaneous symmetry breaking. For the so-called framid,

we present the peculiar behavior of its stress-energy tensor that it is Lorentz-invariant even though

the system breaks Lorentz boosts spontaneously. An analogy is drawn to the cosmological

constant problem since the vacuum energy there and the Lorentz-breaking terms here are all

surprisingly zero. Lastly, we describe how the inflation of the universe can be driven by a solid.

We focus on the icosahedral inflation model, where the isotropies of background evolution and

scalar power spectrum are guaranteed although the system is anisotropic. We discuss some

observational signatures of this model.
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Chapter 1: Introduction and Background

Symmetries of physical systems are at the core of the studies of the laws of nature. At the

dawn of theoretical physics, it was assumed in Newton’s laws that physical rules are invariant

under Galilean transformations. Later, in the 19th century, Maxwell put together his famous

equations for electromagnetism, which possessed the more general Poincaré-invariance. Studies

of this symmetry then led to the formulation of special relativity in the early 20th century. As the

hero of relativity, Einstein himself is famously obsessed with the idea that a more symmetric, and

hence more beautiful, theory should be closer to reality1. Symmetries have continued to growmore

important in physics, all the way up to contemporary research in the 21st century. For example, they

are the necessary ingredient in the definition of particles, and therefore vital to the understanding of

the standard model of particle physics. Moreover, the principles of effective field theory live on the

idea that symmetry is one of the leading criteria for determining the effective Lagrangian. It is then

important to develop and upgrade the theoretical toolbox we have for investigating the symmetry

aspect of a physical system, and to scrutinize the applications. Following this line of thought, in this

thesis, we will explore a few specific tools for and applications of the principle of symmetry, trying

to make some extensions and improvements. This thesis is a collection of works done on several

specific spots in the vast land administrated by symmetries, and is far from being comprehensive,

nor do we try to make it so. We hope that these works contribute to a better understanding of what

symmetries are capable of in contemporary theoretical research.

This thesis is mainly based on the work in [1, 2, 3, 4]. Several other works during my graduate

study that are in preparation are not included in this thesis. For completeness, they will be briefly

1As a famous quote from H. Bondi goes, “What I remember most clearly was that when I put down a suggestion
that seemed to me cogent and reasonable, Einstein did not in the least contest this, but he only said, ‘Oh, how ugly.’ As
soon as an equation seemed to him to be ugly, he really rather lost interest in it and could not understand why somebody
else was willing to spend much time on it. He was quite convinced that beauty was a guiding principle in the search
for important results in theoretical physics.”

1



discussed at the end of this chapter.

1.1 Noether’s theorem

Noether’s theorem is a key manifestation of the importance of the principle of symmetries,

relating continuous symmetries to conservation laws. When this theorem is applied to local

field theories, one usually calculates the locally conserved current Jµ corresponding to each

independent continuous symmetry generator through the Noether’s procedure. The procedure for

such a calculation is reviewed below.

For the purpose of the discussion of the Noether’s theorem, we will be using φ(x) to denote a

generic multiplet of (real) fields, not necessarily scalars, and the dot ‘ · ’ to denote the contraction of

indices in field space. Assume that we have an action S[φ] that is invariant under some continuous

symmetries, enumerated by a,

φ(x)→ φ(x) + εa ∆a , (1.1)

where εa are constant infinitesimal parameters, which we will always keep up to first order only, and

∆a are given local functionals of the fields. When we are concerned only with internal symmetry,

the Noether current is calculated to be

Jµa = − ∂L

∂
(
∂µφ
) ·∆a , (1.2)

whereL denotes the Lagrangian of the system. For the casewhere the transformation is a spacetime

symmetry, the current takes a different form, which we will see in Chapter 2; and for the specific

case of spacetime translations, we obtain the famous canonical stress-energy tensor T µc ν through

Noether’s procedure,

T µc ν =
∂L

∂
(
∂µφ
) · ∂νφ− δµνL . (1.3)

However, this conserved current Jµ is famously ambiguous, and the ambiguities are routinely

exploited in the case of spacetime symmetries to “improve” the current associated with spacetime

2



translations, the canonical stress-energy tensor T µνc , to some form T µν with specific properties:

if the theory has spatial rotational invariance, T ij can be made symmetric; if the theory also has

Lorentz invariance, the full T µν can be made symmetric [5, 6]; if the theory further has scale-

invariance, T µν can be made traceless up to a total divergence [7, 8, 9]; finally, if the theory has

full conformal symmetry, T µν can be made fully traceless [7, 8, 9]. Notice that these algebraic

properties of symmetry and tracelessness are generically only valid on-shell, and frequently require

great insights in “guessing” the correct final form. In Chapter 2 of this work, we will present a

systematic procedure which calculates the necessary improvement terms for all the different cases

mentioned above without any guesswork. Even better, we will derive the additional terms needed

to make the stress-energy tensor symmetric and traceless even off-shell.

1.2 Coset construction

Apart from giving rise to conserved quantities, symmetries are also important when they are

spontaneously broken. Spontaneous symmetry breaking happens when the ground state solution

of a system does not exhibit one or more symmetries that are present in the Lagrangian, or the most

symmetric formulation, of the system. Research around spontaneous symmetry breaking has been

extremely fruitful in modern theoretical physics, with one of the most prominent examples being

the Higgs mechanism. It has since become, in many cases, an important aspect when it comes to

understanding a physical system.

This fact becomes particularly evident when we are primarily concerned with low-energy dy-

namics. When continuous symmetries are spontaneously broken, conventional knowledge states

that the spectrum of low-energy excitations include gapless (massless) Goldstone modes. If only

internal symmetries are broken and the underlying physics is Poincaré-invariant, Goldstone’s the-

orem guarantees the existence of one Goldstone boson for each spontaneously broken symmetry.

When Poincaré symmetry is broken, however, no such one-to-one correspondence is guaranteed.

At least one gapless excitation must exist, but it need not be describable as a scalar particle. In fact,

it could have any spin and need not be a particle—or even a quasiparticle—in any conventional

3



sense. A striking example occurs in fermi liquids at zero temperature, which spontaneously breaks

Lorentz boosts. The corresponding gapless excitations that satisfy Goldstone’s theorem are the

well-known particle-hole pairs, which evidently have no single-particle interpretation [10].

Oftentimes, the only gapless excitations of a given system are the Goldstone modes. Whenever

this is the case, as long as we only concern ourselves with the deep infrared (IR), we can integrate

out all gapped excitations, yielding a theory consisting of only Goldstone modes. In practice,

we often do not explicitly integrate out the gapped modes. Instead, we use the principles of

effective field theory (EFT) to construct an action by writing down a linear combination of all

symmetry-invariant terms at any given order in a derivative expansion. The coefficients of this

linear combination are phenomenological parameters that can be determined experimentally. It is

important to note that even when symmetries are spontaneously broken, they remain symmetries

of the IR theory of Goldstones; however, their actions on the Goldstones are non-linear and as a

result can be quite complicated. Therefore, constructing the full set of symmetry-invariant terms

can be rather challenging. To facilitate the formulation of Goldstone EFTs, a procedure known as

the coset construction has been devised [11, 12, 13, 14, 15].

For a Poincaré-invariant system that spontaneously breaks internal symmetries while leaving

spacetime symmetries intact, there is no ambiguity or choice in how to formulate an action using

the coset construction (except for the numerical values of various coefficients that can be fixed

experimentally). This uniqueness is a clear reflection of the strict nature of Goldstone’s theorem

when Poincaré symmetry is preserved; in particular, Goldstones must be massless, scalar particles

that exist in a one-to-one correspondence with the spontaneously broken symmetry generators.

When Poincaré symmetry is broken, however, Goldstone’s theorem is not always so restrictive.

In particular, the number or type of Goldstones in the EFT is not determined by the spontaneous

symmetry-breaking pattern alone [16, 17]. We must supply additional information regarding

the spontaneous symmetry-breaking mechanism if we are to uniquely determine the EFT (up to

experimentally-determined coefficients) [12]. Ideally, the coset construction for spontaneously

broken spacetime symmetries should reflect this extended set of possibilities. While the last few
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decades have seen a great effort to understand the coset construction when Poincaré symmetry

is spontaneously broken, there remain many kinds of systems that spontaneously break Poincaré

symmetry, but whose effective action is difficult to be generated from the traditional method of

cosets. In Chapter 3 of this thesis, we will extend the traditional coset construction to allow for

a wider range of Goldstones. In particular, we focus on a simple yet illustrative class of systems

that have largely evaded descriptions at the level of the coset construction, namely relativistic point

particles. This class of EFTs is a useful testing-ground for extensions of the coset construction for

two main reasons:

• All particles exhibit identical (or almost identical) spontaneous symmetry breaking (SSB)

patterns, yet there are infinitely many distinct kinds of particles, each of which exhibits

markedly different behavior. In particular, each kind of particle is classified by its spin

s ∈ N/2 and mass m. Massive and massless particles behave quite differently and particles

of different spins have qualitatively very different actions.

• Almost all previous attempts at formulating coset constructions for systemswithout fermionic

symmetries have assumed that the Goldstone excitations involve only bosonic fields; 2 how-

ever, there are Goldstone’s effective actions which involve fermionic degrees of freedom,

like that of the fermi liquid [19]. Since point-particles of half-integer spin are fermions, we

have a simple testing-ground for fermionic extensions of the coset construction. Thus, an

important aim of this work is to extend the coset construction to account for situations in

which the Goldstone excitations involve fermions even when the global symmetry group is

purely bosonic (i.e. the symmetry algebra is an ordinary algebra as opposed to a graded

algebra).

We will review in Chapter 3 the standard coset construction, and outline our new philosophy for

the coset construction and comment on the advantages of this novel perspective. We then develop

2Notable successful attempts to include fermions are given in [18, 19], but these fermionic degrees of freedom were
included by hand as opposed to being generated by the coset itself.
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our method in detail to build up effective actions for relativistic point particles of arbitrary spin

through coset construction.

1.3 Condensed matter systems

Perhaps one of the most surprising applications of spontaneous symmetry breaking is to classify

condensed matter systems. A detailed introduction to this topic can be found in [20]. Although

condensed matter systems are mostly highly non-relativistic, and are associated with a specific rest

frame, the fundamental laws from which the collective excitations of condensed matter systems

emerge remain Lorentz invariant. One can then think of condensed matter systems as states which

break Lorentz invariance spontaneously, and classify them according to their symmetry-breaking

patterns.

In [20], condensed matter systems are classified into eight different categories according to

their symmetry-breaking patterns. It is beyond the scope of this work to discuss all of them. We

will focus on two out of the eight systems, namely the (type I) framid and the solid, and explore

some applications of the EFTs of these two systems.

1.3.1 Framid

The framid is a kind of relativistic system that spontaneously breaks Lorentz boosts only. It

is most intuitively described in terms of a vector field Aµ(x) with a constant time-like expectation

value:

〈Aµ(x)〉 = δ0
µ . (1.4)

Such an expectation value breaks Lorentz boosts, and the corresponding Goldstone fields ~η(x) can

be thought of as parametrizing the fluctuations ofAµ(x) in the directions of the broken symmetries:

Aµ(x) =
(
ei~η(x)· ~K)

µ
α〈Aα(x)〉 , (1.5)

where ~K are the boost generators. Notice that, even with Goldstone fields present, AµAµ = −1.
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One can construct theGoldstone effective theory either bywriting down in a derivative expansion

the most general Poincaré invariant action for Aµ, performing the replacement (1.5), and then

expanding to any desired order in the ~η fields, or by using the coset construction for spontaneously

broken spacetime symmetries. These two approaches have different advantages and disadvantages,

but they yield the same result [20]. We will follow the former here.

To the second order in the derivative expansion, the most general effective Lagrangian takes the

form [20]

L = −M
2
1

2

[
(c2
L − c2

T )(∂µA
µ)2 + c2

T (∂µAν)
2 + (c2

T − 1)(Aρ∂ρAµ)2
]
, (1.6)

whereM1 is an overall mass scale and cL, cT represent the propagation speeds of the longitudinal

and transverse Goldstones. Wewant to eventually work with the Goldstone Lagrangian expanded to

quadratic order; hence, with two derivatives on two different fields in each term of the Lagrangian

(so that each derivative comes with at least one order of the field), it suffices to expand Aµ to first

order in the Goldstones,

A0 = Λ 0
0 = cosh |~η | ' 1, Ai = Λ 0

i =
ηi

|~η |
sinh |~η | ' ηi . (1.7)

It is convenient to separate the Goldstones into their longitudinal and transverse modes, ~η =

~ηL + ~ηT , where

~∇× ηL = 0, ~∇ · ~ηT = 0 , (1.8)

and also rescale them,

~η → ~η

M1

, (1.9)

to eventually obtain a neat form of the effective Goldstone Lagrangian,

L2 =
1

2

[
~̇η 2 − c2

L (~∇ · ~ηL)2 − c2
T (∂iη

j
T )2
]
. (1.10)
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Framids remain hypothetical at the moment – there has been no observations of framids in

nature, despite the fact that it has the simplest symmetry breaking pattern among condensed matter

systems. However, this system has an interesting property that could make it a useful theoretical

analog of the cosmological constant problem. More precisely, from the setup above, one can

derive the stress energy tensor of the theory, which displays a peculiar property: if evaluated on the

~η(x) = 0 background, it is Lorentz invariant [20]:

Tµν(x) = −Λ ηµν +O(∂~η ) . (1.11)

This is surprising: the ground state of the system spontaneously breaks boosts, so there is no obvious

reason why it should have a Lorentz-invariant stress tensor. Certainly, all familiar condensed matter

systems in the lab, such as solids, fluids, superfluids, which also spontaneously break Lorentz, have

stress-energy tensors in their ground (or equilibrium) states that are not Lorentz invariant. In

particular, in c = 1 units, they typically have mass densities much bigger than their pressures or

internal stresses.

We will first argue and then show in Chapter 4 that the Lorentz invariance of the stress-energy

tensor holds at one-loop level. Technically, massive cancellations show up miraculously at 1-loop

level to preserve this property. The analogy to cosmological constant problem then goes as follows:

for the cosmological constant problem, the vacuum energy expectation value is stupendously small,

compared to its “natural” value3; in the case of the stress-energy tensor for the framid, terms

that violate Lorentz symmetry are zero, without obvious reasons for being so. The hope is that

understanding the analogous naturalness problem for the framid stress-energy tensor could give us

insight into the cosmological constant problem.

However, a satisfactory understanding of the Lorentz-preserving phenomenon of framid at the

level of symmetry is not available at the moment. One may think of it as a property protected by

the spontaneously broken Lorentz symmetry, but this requires great insights if what is given is the

3See, for example, [21] for a comparison between the “natural” value that come from theoretical considerations and
the observed value.
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low-energy effective action (1.10), instead of the manifestly Lorentz-invariant formulation (1.6).

Moreover, there exists a completely different system that features precisely the same symmetry

breaking pattern as the framid, but saturates the associated Goldstone theorem in a radically

different way, and that most definitely does not have a Lorentz-invariant stress-energy tensor in its

ground state. Such a system is the familiar Fermi liquid, and we refer the reader to [10] for details

about its relationship with spontaneously broken boosts. We will only carry out the explicit 1-loop

calculation in this work, and leave the task of formulating a complete argument for this behavior

based on symmetry to future projects.

1.3.2 Solids and inflation

We now turn to a more conventional condensed matter system – solids. From the symmetry

breaking point of view, solids break boosts, spatial translations, and rotations spontaneously, and

we can write down an effective field theory action accordingly. In this work we will follow closely

the formulation of EFT for solids in [22, 23, 24] (see also [25]).

To set up our description, think of “naming” the volume elements of the solid in consideration

with a three-dimensional internal label, φI(~x, t), where I takes the value of 1, 2, or 3. Using this

description, we are essentially monitoring the volume elements that go through a certain spatial

position ~x over time. Although the choice of the labeling could in principle be arbitrary, an obvious

choice that makes our later discussions of the internal symmetries easy and intuitive is the one with

equilibrium value

〈φI〉 = xI . (1.12)

This background breaks translational and rotational symmetry (and of course, boosts symmetry).

However, usually a solid system is homogenous at large distances, and is invariant under (a subgroup

of) rotations. To restore these properties, we enforce the internal symmetries,

φI → φI + aI , φI = OI
Jφ

J , (1.13)
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where the aI’s are constant shifts and O is an element of SO(3) or one of its subgroups, depending

on the system. The background configurations are now invariant under a combination of internal

and spatial translations/rotations. In other words, the full spatial and internal symmetries are broken

to the diagonal combination. Because of this, there is no need to further distinguish between the

internal indices I , J andK, and the spatial indices i, j and k. We then write down the Lagrangian

in the spirit of effective field theory. To do so, we employ the basic building block

BIJ = ∂µφ
I∂µφJ , (1.14)

which is the only shift-invariant Lorentz scalar quantity to the lowest order in derivative expansion.

The most general action we can write down is then

Ssolid =

∫
d4x F (BIJ) , (1.15)

where F is a generic function invariant under rotations O acting on the I, J indices. Expanding

this action around its background values with perturbations πI ,

φI = xI + πI , (1.16)

which are interpreted as the phonons, leads to rich results about the dynamics of phonons in the

solid. We will not dive into great detail in describing solids in a lab. Instead, we will focus on the

application of this knowledge to primordial cosmology, namely, solid inflation [24]. The idea is to

drive inflation with the solid system we just constructed, written in terms of the action

S0 =

∫
d4x
√
−g
[

1
2
M2

PR + F
(
BIJ

)]
. (1.17)

As a note on the terminology, from now on, when we talk about “solid inflation”, we choose the

OI in equation (1.13) to be an element of the full SO(3) group. Now, in addition to fluctuations of
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the scalar fields, we also expand in the fluctuations of the metric,

gµν = gFRW
µν + hµν , (1.18)

where gFRW
µν is the Friedmann-Lemaître-Robertson-Walker metric. We can then carry out the

standard program of inflationary calculations to obtain the power spectra and bispectra. However,

as we mentioned, the solid system breaks spatial translations and rotations, without ever touching

time translation. But the conventional understanding of inflation requires at least a spontaneous

breaking of time, since inflation has to be able to keep track of time, and eventually come to an end.

In fact, the effective field theory of inflation [26] is worked out exactly based on this understanding.

Solid inflation then proves the point that this is not necessary – we can construct inflationary models

without spontaneous breaking of time translation symmetry. The role of the clock, in solid inflation,

is played by the metric itself – a time-dependent metric gives rise to time-dependent behaviors of

the stress-energy tensor of the system, which could then be used to keep track of time.

One can further specialize the solid inflation model and develop the so-called icosahedral

inflation [27], which exhibits some additional unique properties. To setup the icosahedral inflation

model, one requires that the OI in equation (1.13) be elements of the icosahedral group. What

makes icosahedral inflation special, compared with, say, tetrahedral inflation, is that it is the

only model in the solid inflation family that guarantees an isotropic scalar power spectrum, while

being intrinsically anisotropic, allowing anisotropies in other power spectra, the bispectrum, and

higher-point correlation functions.

Why do we want a model with such properties? Usually we say in cosmology that cosmological

observations indicate that the very early universe was approximately homogeneous and isotropic.

However, this is based on the only primordial observables we have had access to so far, which are

the background cosmology and the two-point function of scalar perturbations. Focusing on the

observed isotropy, it is interesting to ponder whether the universe could secretly be anisotropic—in

terms of other observables, such as higher-point correlation functions, and the underlying theory—
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but featuring an accidental isotropy for the observables we have detected so far. By “accidental”

we mean something precise: that isotropy of those observables is a so-called accidental symmetry,

akin to baryon number conservation in the standard model of electroweak interactions. That is, an

approximate symmetry that is enforced by the fundamental symmetries of the theory to some low

order in a perturbative expansion. Based on what we have seen, icosahedral inflation is a concrete

implementation of this idea.

In Chapter 5, we will discuss icosahedral inflation in more detail and calculate its unique mixed

tensor-scalar power spectrum. Observational implications will also be briefly analyzed.

1.4 Other works

In addition to the works mentioned above, there are several other works that are carried out

during my graduate study, currently in preparation.

First, we carried out a more detailed analysis of the observational consequences of icosahedral

inflation. Using the Einstein-Boltzmann code CLASS [28], we calculated the cosmic microwave

background (CMB) power spectra predicted by icosahedral inflation. As is detailed in Chapter 5,

among the different types of correlation functions, we will focus on the so-called T-B and E-B

correlations, where T modes are fluctuations in the CMB temperature, and E and B modes are two

different CMB polarization modes. This is because such modes are only present when we break

either isotropy or parity, and is a hint that the underlying primordial cosmology theory may not be

isotropic or parity-even. At the same time, breaking isotropy generates “off-diagonal” correlations,

CXY
lml′m′ , withX and Y being T (temperature), E (E-mode) orB (B-mode), for l 6= l′ andm 6= m′,

whereas for homogeneous and isotropic models, we are forced to have l = l′ andm = m′. Further,

the value of CXY
lml′m′ is not independent of m or m′. Therefore, contrary to the usual practice of

averaging over differentm = m′ values for a fixed l = l′, we did an analysis using bipolar spherical

harmonics, first formulated in [29]. We plan to publish our analysis soon. The hope is that some

comparisons between our analysis and the Planck data (specifically section 6 of [30] from Planck

2015) can be carried out in the near future.
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More generally for inflationary models, we have been investigating the power law behavior of

the scalar power spectrum. The scalar power spectrum for inflationary models are predicted (and

also measured, for example, in Planck 2018 [31]) to scale with the wavenumber k as k−3+nS−1,

where nS − 1 is a small number (� 1), constant to the leading order in slow-roll, usually referred

to as the “tilt”. Typically, power-law correlation functions come from some scaling symmetry of

the theory, and in the case of inflation, a dilatation symmetry would follow from exact de Sitter

symmetry. To allow for an exit from the inflationary phase, usually we break exact de Sitter

slightly. However, the power law behavior of the power spectrum is preserved, and the tilt can

be interpreted as a parametrization of the theory’s deviation from exact de Sitter. The task is to

figure out the mechanism behind the preservation of the power law behavior under a slightly broken

scaling symmetry. We have found an empirical procedure that could help us read off the tilt from

the theory without going through the full calculation of the power spectrum. Starting from this

empirical method, we hope to gain a deeper understanding of the situation, and eventually unveil

the theoretical construct behind the power law correlation function and our empirical procedure.

Lastly, we carried out an analysis of the combined effect of accretion and superradiance for a

scalar field permeating the vicinity of a Kerr black hole. The idea of superradiance is that when a

light bosonic field is present around a Kerr black hole, there is a an instability in the configuration,

through which energy and angular momentum can be extracted from the black hole. At the same

time, accretion of ambient matter onto the black hole is always active, and in most cases the rate

of accretion is smaller than that of superradiance. However, when the system comes close to the

“boundaries” of superradiance – regions in the parameter space of the system where the rate of

superradiance is small enough so that accretion can compete efficiently with it, we need to be more

careful about our analysis. We carried out analytical and numerical analyses to study the behavior

of the system in these regions, showing how the accretion and superradiance cooperate to move

the system along the boundaries we mentioned above. We plan to publish the finalized work in the

near future, and hope that it could help understand future observations of Kerr black holes.
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1.5 Note on Conventions

Throughout this thesis, we will use the “mostly-plus” metric signature, ηµν = diag(−,+,+,+).

We will work in natural units, ~ = c = 1. Summation over repeated indices is usually implied,

unless stated otherwise. In Chapter 2, for Lorentz generators, we use the same normalization as

[8, 9], which differs from that of Weinberg [6], J µν
here = −iJ µν

Weinberg. Also in Chapter 2, when

addressing scale- and conformal-invariance, we keep the spacetime dimensionality D generic.

Otherwise, we work in D = 4. In Chapter 3, we start with a generic D but restrict to D = 4 when

we start to construct our effective actions of point particles.
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Chapter 2: An Improved Noether’s Theorem for Spacetime Symmetries

2.1 Ambiguous currents from an ambiguous theorem

In Chapter 1 we have seen that Noether’s theorem relates continuous symmetries to conservation

laws, with the conserved current calculated by Noether’s procedure given in equations (1.2) and

(1.3). We have also mentioned that this current is notoriously ambiguous. In fact, it is ambiguous

for two main reasons:

1. First, given a current Jµ that is conserved “on-shell"—that is, on solutions of the equations

of motion—one can always add to it a contribution of the form

∆Jµ ≡ ∂αΣαµ , Σαµ = −Σµα , (2.1)

where Σαµ is any local functional of the fields that is antisymmetric in α and µ. Such an

addition is conserved “off-shell"—that is, on any field configuration, regardless of whether

this solves the equations of motion or not. Moreover, it does not contribute to the global

charge associated with the current, Q ≡
∫
d3xJ0, because, using the antisymmetry of Σαµ

and assuming the fields vanish sufficiently fast at spatial infinity, one has

∫
d3x∆J0 =

∫
d3x ∂iΣ

i0 = 0 . (2.2)

So, the two currents, Jµ and J ′µ = Jµ + ∆Jµ, obey equivalent conservation laws and yield

the same global charge.

2. Second, since the currentJµ is only conserved on-shell anyway, one can add to it contributions

that vanish on-shell. At the classical level, this does not modify the value of Jµ or of Q on
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solutions of the equations of motion, and so it does not modify the associated conservation

laws either. At the quantum level, this modifies the Ward identities in the contact terms only,

since the equations of motion are obeyed in correlation functions up to contact terms.

In standard textbook treatments, it is exactly the first kind of ambiguities that allow people to

derive the improvement terms to treat the stress-energy tensor such that it has the desired properties

– symmetric, traceless, or symmetric and traceless. We will see later that the second kind of

ambiguities can be utilized to make the stress-energy tensors satisfy these properties even off-shell.

For the purposes of what follows, it is instructive to trace the ambiguities discussed above back

to Noether’s theorem: it is the theorem itself that is ambiguous. To see this, let’s review how the

theorem usually works. Once again, as in equation (1.1), we assume that our S[φ] is invariant under

some continuous symmetries,

φ(x)→ φ(x) + εa ∆a(φ, ∂φ, · · · ) . (2.3)

To be precise, let’s say that under (2.3) the Lagrangian density changes by a total derivative,

L → L + εa ∂µF
µ
a , (2.4)

whereF µ
a are some functionals of the fields. Then, as the theorem goes, let’s see how the Lagrangian

density changes if we make εa in (2.3) spacetime-dependent, εa = εa(x). To first order in εa, the

variation must take the form

δL = εa(x) ∂µF
µ
a + ∂µε

a(x)Gµ
a + ∂µ∂νε

a(x)Gµν
a + . . . (2.5)

where the G’s are suitable functionals of the fields, and usually the series in derivatives of εa

truncates at finite order. For example, for a Lagrangian with at mostN derivatives on a single field,

the series usually truncates at ∂Nεa order. Notice that if one sets εa to a constant, only the first

term survives, and one goes back to eq. (2.4). If we now integrate δL over spacetime we get the
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variation of the action for generic εa(x). Restricting to functions εa(x) that go to zero at infinity,

we can integrate all derivatives of εa by parts and end up with

δS =

∫
d4x δL =

∫
d4x εa(x) ∂µJ

µ
a (off-shell) , (2.6)

where Jµa are whatever functionals of the fields emerging from the procedure just described. This

defines the Noether currents. The last step is to recognize that eq. (2.3) for generic εa(x) vanishing

at infinity is a particular field variation that vanishes at infinity, but on-shell the action should be

stationary for all field variations that vanish at infinity. So, on-shell one must have

∂µJ
µ
a = 0 (on-shell) . (2.7)

Why are we saying that such a procedure is ambiguous? The ambiguity of item 1 above is easy

to spot: Adding to Jµa identically conserved terms of the form (2.1) does nothing to the integrand

in (2.6), precisely because such terms are identically conserved. The ambiguity of item 2 instead

is more subtle to unveil, but more relevant for what follows. It has to do with the very first step

of the Noether procedure, when we make εa spacetime dependent: it is usually assumed that that

corresponds to replacing (2.3) simply with

φ→ φ+ εa(x) ∆a , (2.8)

but, in fact, in the theorem as we just described it, nowhere are we using this specific form of the

transformation. The only property that we are using is that the x-dependent transformation that we

perform should reduce to the symmetry (2.3) in the limit in which εa are constants. Then, instead

of (2.8), we could use [3]

φ→ φ+ εa(x) ∆a + ∂µε
a(x) Φµ

a + ∂µ∂νε
a(x) Φµν

a + . . . , (2.9)
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where the Φ’s are arbitrary functionals of the fields. By definition of functional derivatives, these

new terms in the transformation of φ modify the variation of the action (2.6) by

δS ⊃
∫
d4x

δS

δφ
·
[
∂µε

a(x) Φµ
a + ∂µ∂νε

a(x) Φµν
a + . . .

]
(off-shell) . (2.10)

Integrating by parts all derivatives of εa and comparing to (2.6), we see that the current gets new

contributions of the form

Jµa ⊃ −
δS

δφ
·
[
Φµ
a − ∂νΦµν

a + . . .
]

(off-shell) , (2.11)

which clearly vanish on-shell.

So, in summary, both ambiguities discussed above are inherent features of Noether’s theorem

itself. The second one—the one we just discussed—is more interesting, in that it ties new terms

in the current to a modification of how the fields are declared to transform under the spacetime-

modulated version of the symmetry. This will allow us to derive systematically, directly from the

theorem, the improvement terms for the stress-energy tensor that are associated with spacetime

symmetries beyond translations. As we now explain, the main idea is to tailor, each time, the

translation Noether theorem to the particular additional symmetry one wants to exploit1.

2.2 The main idea

We want to improve the Noether’s theorem for spacetime translations, exploiting the ambi-

guities discussed above, especially the second one. This, as we saw, is related to modifying the

transformation properties of the fields as in (2.9). We then have to ask under what condition we

can gain something by considering (2.9), perhaps with some judicious choice of the Φ functionals,

instead of the apparently simpler (2.8).

1Brauner, Torrieri, and Yonekura have brought to our attention refs. [17, 32, 33], which also explore ambiguities
in Noether’s theorem and use them to derive, in a systematic way, a number of desired properties for the conserved
currents. The overlap of our work with those papers is, in fact, substantial, especially with ref. [32]. We plan to analyze
the connection more closely in the near future.
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In fact, for internal symmetries, we see no general benefit of using (2.9) in place of (2.8).

On the other hand, for translations, we can make use of the fact that other possible spacetime

symmetries, such as Lorentz invariance, scale invariance, and conformal invariance, can in fact be

thought of as very specific spacetime-modulated translations. For instance, an infinitesimal Lorentz

transformation of constant parameter ωµν = −ωνµ, shifts the coordinates by

xµ → x′µ = xµ + ωµνx
ν (Lorentz) , (2.12)

which is formally a spacetime modulated translation

xµ → x′µ = xµ + εµ(x) , (2.13)

with parameter

εµ(x) = εµL(x) ≡ ωµν x
ν (2.14)

(‘L’ for ‘Lorentz’.) Notice that the index a of the infinitesimal parameters now becomes the

spacetime index, εa → εµ.

Our fields transform under a translation of constant parameter εµ as2,

φ(x) → φ(x)− εµ∂µφ(x) (translations) , (2.15)

and usually we would run the translation Noether theorem by generalizing this to

φ(x) → φ(x)− εµ(x) ∂µφ(x) , (2.16)

for generic εµ(x), which yields the so-called canonical stress-energy tensor. But, in alternative, we

can notice that since under a Lorentz transformation of constant parameter ωµν the fields transform

2We will stick to the active point of view for transformations throughout the work, unless otherwise clarified.
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as

φ(x) → φ(x)− ωµν xν∂µφ(x)− 1
2
ωµν J µν · φ(x) (Lorentz) , (2.17)

we can run the Noether’s theorem for translations with a “Lorentz-friendly" version of (2.9):

φ(x) → φ(x)− εµ(x)∂µφ(x)− 1
2
∂µεν(x)J µν · φ(x) . (2.18)

Such a transformation rule has the property that for a very specific εµ(x)—eq. (2.14)—it corresponds

to a symmetry of the action: Lorentz invariance. This implies that the stress-energy tensor

one derives running the Noether’s theorem in this way will have an additional property besides

conservation. In particular, as we will see, the fact that eq. (2.14) corresponds to the most general

εµ(x) that has constant, antisymmetric first derivatives, will force the stress-energy tensor to be

automatically symmetric, off-shell.

This of coursematches the standard conclusion—Lorentz symmetry implies a symmetric T µν—

but in our procedure there is no guesswork involved: by making the translation Noether theorem

sensitive to Lorentz invariance, we automatically get a symmetric stress-energy tensor. And,

contrary to the standard Belinfante procedure, nowhere do we have to use the equations of motion.

Of course, thismeans that theBelinfante stress-energy tensor differs fromours by terms proportional

to the equations of motion. As we tried to emphasize in section 2.1, such an ambiguity is to be

expected on general grounds.

This is the basic idea that we will try to exploit. As usual, the devil is in the details, so let’s see

explicitly how these work out in the case of Lorentz, scale, and conformal invariance.

2.3 Passive vs. active, action vs. Lagrangian

As a preliminary step, it is useful to be precise about the symmetries we want to consider. At

least for the cases we study here, we can think of a spacetime symmetry as a symmetry of the action
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that is associated with a specific change of coordinates,

xµ → x′µ(x) = xµ − εaAµa(x) (2.19)

under which the fields transform in a certain way,

φ(x)→ φ′(x′) = φ(x) + εa ∆̃a , (2.20)

where Aµa are functions of the spacetime coordinates only, and ∆̃a are given local functionals of

the fields, minus all terms that contains only one factor of the fields φ and with only one derivative.

This is the so-called passive viewpoint. According to it, the transformation above is a symmetry if

the infinitesimal action element does not change,

L [φ′(x′)] d4x′ = L [φ(x)] d4x , (2.21)

that is, if the Lagrangian density changes as

L [φ′(x′)] =
∣∣∣ det

∂x

∂x′

∣∣∣L [φ(x)] (2.22)

In principle we could insist on a weaker requirement—that the action change only by boundary

terms—but, at least for standard spacetime symmetries, this subtlety happens to be relevant only

in the case of conformal transformations and we will discuss it in due time. For the moment, we

are going to ignore it.

Now, it so happens that, for an infinitesimal transformation, it is more convenient to adopt

the so-called active viewpoint, whereby we transform the fields directly, evaluating all fields and

derivatives at the same values of their arguments. In this point of view, the field transforms as

φ(x)→ φ(x) + εaAµa(x)∂µφ(x) + εa ∆̃a(φ, ∂φ, · · · ) . (2.23)
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We can now carry out the Noether’s procedure and write down the most general formula for the

Noether’s current,

Jµa =
∂L

∂
(
∂µφ
) · (Aνa∂νφ− ∆̃a

)
− AµaL . (2.24)

Keeping these Aµa’s generic functions of spacetime is an over generalization for our purpose in this

chapter. We keep equation (2.24) in its current form anyway in case it is useful for future follow-up

studies. To study the case of spacetime coordinate translations, simply set Aµa → Aµν = δµν and

∆̃a = 0. One can easily check that this leads to the canonical stress-energy tensor (1.3).

In deriving Noether’s current, as shown in section 2.1, we turn on a spacetime dependence for

the εa. We will do the same here. Writing

x′µ(x) = xµ + εµ(x) (2.25)

for the specific εµ(x) that corresponds to the infinitesimal symmetry we want to consider, from

(2.22) we get

L [φ′(x)] + εµ∂µL = L [φ(x)]− ∂µεµL , (2.26)

where we kept terms up to first order in εµ. Thus, from the active viewpoint, the spacetime

transformation under study is a symmetry of the action if the Lagrangian density changes by a

specific total derivative term [34]:

δL ≡ L [φ′(x)]−L [φ(x)] = −∂µ
(
εµ L

)
. (2.27)

Notice that every term in the infinitesimal transformation δφ = φ′(x) − φ(x) that is of the form

fµ(x)∂µφ, where fµ(x) is an infinitesimal function only of spacetime coordinate, can be interpreted

as a part of some local spacetime coordinate transformation, taking the form of equation (2.25) in

the passive point of view. We are now ready to run our improved translation Noether theorems.
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2.4 Improved translation Noether theorem

2.4.1 Generalities

For simplicity, we focus our attention on Poincaré invariant field theories, with the fieldmultiplet

φ transforming linearly under Lorentz symmetry, according to a generic representation J µν ,

not necessarily irreducible. Moreover, when we consider scale-invariant or conformal-invariant

theories, we assume that the fields transform linearly under those as well. In other words, we

assume that no spacetime symmetry is spontaneously broken. As we hope it will be clear shortly,

these simplifying assumptions are not really needed for our strategy to work, and in principle, our

analysis can be straightforwardly extended to non-linear realizations as well.

Likewise, for simplicity we consider Lagrangian densities that depend at most on the first

derivatives of the fields,

L [φ] = L (φ, ∂µφ) . (2.28)

In principle we could repeat our analysis with any number of higher derivatives. Even better, in this

day and age, given the ongoing proliferation of effective field theories and derivative expansions,

it would be nicer to find a more general functional approach that does not require specifying the

maximum number of derivatives entering the Lagrangian. We leave this task for future work.

Under rigid translations, our fields transform as in (2.15). We want to run the associated

Noether’s theorem generalizing that transformation law to

φ(x)→ φ(x)− εµ(x)∂µφ(x)− ∂µεν(x)Ψµν(x) , (2.29)

for generic εµ(x), and for a specific (field-dependent) Ψµν(x), which will change from case to case,

depending on the additional symmetries we want to consider.

The variation of the Lagrangian density is

δL =
∂L

∂φ
· δφ+

∂L

∂ ∂αφ
· ∂αδφ , (2.30)
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which, after some straightforward algebra, can be written as

δL = −∂µ (εµL )− ∂µεν T µν − ∂ρ∂µεν S ρµν (2.31)

with

T µν = T µνc +
δS

δφ
·Ψµν + ∂ρ S ρµν (2.32)

S ρµν =
∂L

∂ ∂ρφ
·Ψµν , (2.33)

where T µνc is the canonical energy-momentum tensor as in equation (1.3), and the equations of

motion δS
δφ

are nothing but the Euler-Lagrange equations,

δS

δφ
=
∂L

∂φ
− ∂µ

(
∂L

∂ ∂µφ

)
. (2.34)

Also notice that the quantity T µν differs from the canonical stress-energy tensor, T µνc , by two

terms: one is proportional to the equations of motion, the other is a total derivative. As a result, at

low-energies T µν reduces to T µνc on-shell.

According to the general logic of Noether’s theorem as reviewed in section 2.1, for generic

εµ(x) the variation of the Lagrangian density must take the form

δL = −∂µεν T µν + total derivatives , (2.35)

and this can be taken as the definition of the stress-energy tensor. To rewrite (2.31) as (2.35), we

must integrate by parts the third term. The obvious way to do this would be to write

− ∂ρ∂µεν S ρµν = ∂µεν ∂ρS
ρµν + total derivatives , (2.36)

but, in fact, we can bemore general and keep inmind an ambiguity related to that of item 1 in section
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2.1: since ∂ρ∂µεν is symmetric in ρ and µ, we can add to whatever multiplies it any functional of

the fields that is antisymmetric in ρ and µ. This will prove useful for what follows. We can thus

write that, for our generalization of the translation Noether theorem, the stress-energy tensor is

T µν = T µν − ∂ρ
(
S ρµν + Σρµν

)
, Σρµν = −Σµρν , (2.37)

where Σρµν is a generic functional of the fields that is antisymmetric in ρ and µ.

Notice that, crucially, to arrive to (2.31) we did not drop total-derivative terms. So, we can

use the result of the last section: for the choices of εµ(x) and Ψµν(x) that make (2.29) a symmetry

transformation, only the first term in (2.31) should survive. As we’ll see, this will typically imply

some algebraic property for T µν . One can then try to use the ambiguity associated with Σρµν to

extend that property to the full T µν 3. It may seem that at this point our procedure could use some

guesswork, despite our bragging about the opposite. In practice, however, one parametrizes Σρµν

as the most general linear combination of the tensors at one’s disposal with the right symmetries,

and checks whether there is a choice of coefficients that achieves the desired result. Phrased in this

way, this step is a linear algebra problem and, as advertised, there is no guesswork involved. We

will see this explicitly at work in the three examples that follow.

2.4.2 Lorentz-friendly version

To begin with, consider a Poincaré-invariant field theory, with the fields φ transforming accord-

ing to some representation J µν under Lorentz, as in eq. (2.17). So, if we choose the functionals

Ψµν in (2.29) to be simply

Ψµν(x) = Ψµν
L (x) ≡ 1

2
J µν · φ(x) (2.38)

(‘L’ for ‘Lorentz’), we have that for εµ(x) = εµL(x) ≡ ωµνx
ν , with constant and antisymmetric ωµν ,

eq. (2.29) corresponds to a symmetry transformation, that is, only the first term in (2.31) should

survive.
3For this reason, one should resist the temptation to cancel the last term in T µν (see eq. (2.32)) against the first

term inside the ∂ρ(. . . ) in eq. (2.37) until all the symmetries have been exploited.
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On the other hand, for these specific choices, eq. (2.31) reads

δLL = −∂µ(εµLL )− ωµνT µν . (2.39)

This immediately implies that T µν is symmetric, since ωµν is the most general antisymmetric

constant tensor:

T µν = T νµ . (2.40)

Keep in mind that T µν is not conserved by itself, and has to be complemented by a correction

∆T µν in order to restore conservation. The reason behind this is that (2.39) is obtained using a

specific transformation, while in (2.35) we are using an arbitrary εµ. We should then ask whether

we can choose Σ in (2.37) to make the rest of the stress-energy tensor,

∆T µν ≡ −∂ρ
(
S ρµν + Σρµν

)
, (2.41)

also symmetric. We parametrize Σ as the most general linear-in-S combination of S and η

tensors with the correct anti-symmetry property. Taking into account that S ρµν is, in this case,

antisymmetric in µν (because of (2.33) and (2.38)), we write

Σρµν = Σρµν
L ≡ αS νρµ + β

(
S ρµν −S µρν

)
+ γ
(
Sσ

σρ ηµν −Sσ
σµ ηρν

)
, (2.42)

with arbitrary α, β, and γ. The only choice for which eq. (2.41) is symmetric in µ and ν is

α = −β = 1 and γ = 0.

Thus, for this choice, putting everything together we arrive at our Lorentz-friendly version of

the stress-energy tensor:

T µνL = T µνc +
1

2

δS

δφ
·J µν · φ+

1

2
∂ρ

[
∂L

∂ ∂ρφ
·J µν · φ− ∂L

∂ ∂µφ
·J ρν · φ− ∂L

∂ ∂νφ
·J ρµ · φ

]
.

(2.43)

As we proved, as a consequence of Lorentz-invariance, this is guaranteed to be symmetric, on- and
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off-shell:

T µνL = T νµL (off-shell) . (2.44)

It differs from the standard Belinfante expression [5, 6], which in general is symmetric only on-shell,

by the second term on the r.h.s. of (2.43), which is manifestly zero on the equations of motion.

2.4.3 Scale-friendly version

The case of scale-invariance proceeds along the same lines. Suppose that we have a scale-

invariant theory in D spacetime dimensions, and let’s call d the matrix of scaling dimensions of

the fields. So, under a scale transformation xµ → (1 + ω)xµ, with infinitesimal, constant ω, the

fields transform as

φ(x)→ φ(x)− ω xµ ∂µφ(x)− d · φ(x), (2.45)

In order to make use of this symmetry for our purposes, we can choose Ψµν in (2.29) to be

Ψµν(x) = Ψµν
S (x) =

1

D
ηµν d · φ (2.46)

(‘S’ for ‘scale’), so that we have a symmetry when ε(x) takes the form appropriate for a scale

transformation,

εµ(x) = εµS(x) ≡ ω xµ , (2.47)

with constant ω. Plugging this particular choice of ε(x) into (2.31), we get

δSL = −∂µ(εµSL )− ωT µ
µ , (2.48)

while, for scale-invariance to be a symmetry, only the first term should survive. So, scale-invariance

guarantees that T µν is traceless, off-shell:

T µ
µ = 0 . (2.49)
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Similarly to the case of Lorentz, we now have to ask whether we can choose Σρµν in (2.37)

in order to extend this property—tracelessness—to the rest of the stress-energy tensor, eq. (2.41).

Since now S ρµν is proportional to ηµν (see (2.33) and (2.46)), the most general linear-in-S

combination of S and η tensors with the right antisymmetry property is simply

Σρµν = Σρµν
S ≡ δ

(
S ρµν −S µρν

)
, (2.50)

with generic δ. Eq. (2.41) is traceless only for δ = −D/(D − 1). With this choice, putting

everything together we arrive at our scale-friendly stress-energy tensor:

T µνS = T µνc +
1

D
ηµν

δS

δφ
· d · φ+

1

D − 1
∂ρ

(
ηµν

∂L

∂ ∂ρφ
· d · φ− ηρν ∂L

∂ ∂µφ
· d · φ

)
. (2.51)

As a consequence of scale invariance, this is guaranteed to be traceless, on- and off-shell,

T µS µ = 0 (off-shell) . (2.52)

Before proceeding, there is a small puzzle that we need to address. According to standard

results [7, 8, 9], scale-invariance is not enough to make the stress-energy tensor traceless. The best

one can do, usually, is to make it traceless, on-shell, up to a total divergence:

T µµ = −∂µV µ (standard result) . (2.53)

Here V µ is a quantity known as the ‘virial current’, which we will encounter and explore further in

the next section. Only if the theory enjoys full conformal symmetry can the stress-tensor be further

improved to eliminate this total divergence. In our case, there is no sign of this: scale-invariance

alone guarantees that eq. (2.51) is completely traceless, off-shell. How is this possible?

The resolution of the puzzle is that eq. (2.51) is not symmetric in general. The standard result

(2.53) assumes that one is only considering symmetric stress-energy tensors, like the Belinfante
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one [5, 6], which is symmetric on-shell, or our version (2.43), which is symmetric off-shell as well.

What we just proved is that if one gives up this requirement, in a scale-invariant theory one can

make the stress-energy tensor completely traceless, off-shell. In fact, with hindsight, this is obvious

already from eq. (2.53): by adding to T µν the trivially conserved improvement term

1

D − 1

(
ηµν∂αV

α − ∂νV µ
)
, (2.54)

one can cancel the trace of T µν at the expense of giving up its being symmetric.

2.4.4 Conformal-friendly version

Before moving on to the case of full conformal invariance, it is instructive to first combine the

two strategies that we adopted in the previous subsections. This will also shed some light on the

tension between tracelessness and symmetry of the stress-energy tensor we just alluded to.

Consider then a Lorentz-invariant, scale-invariant theory. To make use of both symmetries,

we can combine the Ψµν’s in (2.38) and (2.46), and use for the translation Noether theorem the

transformation rule (2.29) with

Ψµν(x) = Ψµν
S (x) + Ψµν

L (x) . (2.55)

In this case, eq. (2.29) reduces to a translation for constant ε, to a Lorentz transformation for ε(x)

as in (2.14), and to a scale transformation for ε(x) as in (2.47).

Precisely because of the same reasons as in the last two subsections—Lorentz invariance and

scale invariance—theT µν contribution to the stress-energy tensor is both symmetric and traceless,

off-shell:

T µν = T νµ , T µ
µ = 0 . (2.56)

The question is what to do with the rest, eq. (2.41). We can first notice that, as far as the µ and ν

indices are concerned, our S ρµν has the same algebraic properties as our Ψµν in (2.55): it is made
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up of a scale part, which is pure trace, and a Lorentz one, which is antisymmetric:

S ρµν = S ρµν
S + S ρµν

L , S ρµν
S ∝ ηµν , S ρµν

L = −S ρνµ
L . (2.57)

In turn, the most generic Σρµν we can add is simply the combination of (2.42) and (2.50):

Σρµν = Σρµν
L + Σρµν

S

= αS νρµ
L + β

(
S ρµν
L −S µρν

L

)
+ γ
(
SL σ

σρ ηµν −SL σ
σµ ηρν

)
+ δ
(
S ρµν
S −S µρν

S

)
.

(2.58)

Symmetry of ∆T µν requires α = −β = 1, γ = δ = 0 in the equation above, while traceless-ness

requires α − β − γ(D − 1) = 0, δ = −D/(D − 1). The two solutions of this linear algebra

problem are inconsistent, meaning one can make ∆T µν symmetric, or traceless, but not both. In

either case, ∆T µν contributes a total derivative to the stress-energy tensor. And so, in particular,

if one decides to make it symmetric, its trace will be a total divergence, in agreement with the

standard result (2.53).

Now, what happens in the case of full conformal invariance? It so happens that infinitesimal

special conformal transformations are precisely a spacetime-modulated specific combination of

Lorentz- and scale-transformations of the form (2.55), when ε(x) in (2.29) is taken to be

εµ(x) = εµC(x) ≡ bµ x2 − 2b · x xµ (2.59)

(‘C’ for ‘conformal’), with constant bµ. The derivatives of such an ε(x) are in fact a combination

of a trace part and an antisymmetric one,

∂µεC ν = 2 (bνxµ − bµxν)− 2b · x ηµν , (2.60)

as befits a (spacetime-dependent) combination of Lorentz- and scale-transformations. So, if we

use this εµ(x) in (2.31), the T µν term vanishes because of Lorentz- and scale-invariance, and we
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are left with

δCL = −∂µ (εµL ) + 2bµ
(
S µα

α + 2 Sα
[µα]
)
. (2.61)

Reasoning as before, we would be tempted to say that, if conformal transformations are a symmetry,

only the first term should survive. But this is where the subtlety we briefly alluded to in section 2.3

becomes relevant, and so we must finally address it.

In most common cases, even under a passive transformation, the action of a (classically)

conformally invariant theory is not strictly invariant under conformal transformations, but changes

by a boundary term. This is not necessarily related to the existence of Wess-Zumino terms, like for

instance that studied in [35]. Rather, it usually happens because one is not really using the most

symmetric version of the action. To make this very explicit, consider a free massless real scalar

field Φ(x) in four spacetime dimensions:

S[φ] = −
∫
d4x 1

2
(∂Φ)2 . (2.62)

The passive version of a special conformal transformation is

xµ → x′µ = xµ + bµ x2 − 2b · x xµ , Φ(x)→ Φ′(x′) = Φ(x)− 2(b · x)Φ(x) , (2.63)

and it is easy to check that the action above changes by a boundary term:

d4x′ 1
2
(∂′Φ′)2 = d4x

(
1
2
(∂Φ)2 − bµ∂µ

(
Φ2)
)
. (2.64)

However, if one instead starts from the equivalent action

S̃[φ] =

∫
d4x 1

2
Φ�Φ , (2.65)

that boundary term is gone:

d4x′ 1
2
Φ′�′Φ′ = d4x 1

2
Φ�Φ . (2.66)
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For simplicity, whenever possible, we tend to rewrite actions in a way that they only involve

up to first derivatives of the fields, and, in fact, we have assumed just that in all of our derivations

above. So, if we insist on this assumption, in general for conformal transformations we have to

allow that the action change by a total derivative beyond that of eq. (2.27). This means that, for a

conformally invariant theory, the last term in (2.61) must be a total derivative:

V µ ≡ S µα
α + 2 Sα

[µα] = ∂ασ
αµ , (2.67)

for some local functional σαµ. V µ is traditionally called the ‘virial current’ [8, 9].

We can now go back to the form of the stress-energy tensor, eq. (2.37). We already saw that

its T µν part is symmetric and traceless, off-shell. As to the rest, eq. (2.41), we saw in (2.57) that

S ρµν is made up of the equivalent scale and Lorentz parts. The virial current (2.67) relates these

two parts. And so, for example using (2.67) we can eliminate the scale part,

S ρµν =
1

D

[
ηµν ∂ασ

αρ +DS ρµν
L − 2SLα

ραηµν
]
, (2.68)

and rewrite (2.41) as4

∆T µν =− ∂ρ
(
S ρµν
L − 2

D
SLα

ραηµν + Σρµν
)

− 1

D
ηµν∂α∂ρσ

(αρ) . (2.69)

This expression, together with the tracelessness and symmetry of T µν , encodes conformal invari-

ance at the level of the stress-energy tensor. There is no reference anymore to the transformation

properties of the fields under scale transformations because, for conformal invariant theories, those

are related to the fields’ Lorentz transformation properties through the virial current (2.67).

The question now is whether one can choose an (antisymmetric in ρ and µ) Σρµν in such a way

as to make ∆T µν also traceless and symmetric. For vanishing σµν , the answer is simply the same

4Notice that only the symmetric part of σµν enters the stress-energy tensor.
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as in the Lorentz-friendly case—see section 2.4.2:

Σρµν = Σρµν
L ≡ S νρµ

L −
(
S ρµν
L −S µρν

L

)
. (2.70)

The reason is that, as we know from that section, this choice makes (2.41) symmetric, and the extra

terms in (2.69) are already symmetric. Moreover, as to the trace, we have

Σρµ
L µ = 2 SLµ

ρµ , (2.71)

which makes the trace of the first line in (2.69) vanish.

For nonvanishing σµν , we can supplement Σρµν
L with total derivative terms, which, in order not

to spoil the µν symmetry just obtained, and recalling that Σρµν must be antisymmetric in ρ and µ

and that it is acted on by a ∂ρ in (2.69), should take the form

Σρµν = Σρµν
L + ∂αΞ[ρµ][αν] , (2.72)

where Ξ should be symmetric under the ρµ ↔ αν pair-exchange, while we are displaying the

needed antisymmetries explicitly. The trace of (2.69) then is

∆T µµ = −∂α∂ρ
(
ηµν Ξ[ρµ][αν] + σ(αρ)

)
. (2.73)

Following the same logic as before, we parametrize Ξ as the most general tensor with the right

symmetries and constructed out of σ and η tensors:

Ξ[ρµ][αν] = A
(
ηµνσ(αρ) + ηαρσ(µν) − ηµασ(νρ) − ηνρσ(µα)

)
+B

(
ηαρηµν − ηµαηνρ

)
σββ . (2.74)

Demanding that eq. (2.73) vanish, we get A = − 1
D−2

and B = 1
(D−1)(D−2)

.

Putting everything together, we find that the conformal-friendly version of the stress-energy
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tensor is:

T µνC = T µνc +
δS

δφ
·
(

1

D
ηµνd+

1

2
J µν

)
· φ+

1

2
∂ρ

[
∂L

∂
(
∂ρφ
)J µνφ− ∂L

∂
(
∂µφ
)J ρνφ− ∂L

∂
(
∂νφ
)J ρµφ

]

+

[
1

D − 2
ηµν∂ρ∂σσ

(ρσ) − 1

D − 2

(
∂ν∂ρσ

(ρµ) + ∂µ∂ρσ
(ρν)
)

+
1

D − 2
�σ(µν)

+
1

(D − 1)(D − 2)
∂µ∂νσρρ −

1

(D − 1)(D − 2)
ηµν�σρρ

]
, (2.75)

where σµν is related to the virial current by (2.67), V µ = ∂ασ
αµ. This stress-energy tensor is

guaranteed to be symmetric and traceless, off-shell:

T µνC = T νµC , T µC µ = 0 (off-shell) . (2.76)

Before we conclude, notice that (D− 2) is showing up in denominators in many terms. Indeed,

our procedure does not work for D = 2, and this special case needs to be dealt with separately. It

is also important that the virial current be a total derivative, as per eq. (2.67). The reason is that in

(2.75) there are combinations like�σ(µν) and σρρ. These cannot be written directly in terms of the

virial current V µ—rather, one needs to extract the σ tensor from V µ = ∂ασ
αµ.

2.5 The other currents, for free

We have seen how modifying the translation Noether theorem along the lines of section (2.4.1)

can make the derivation of “improved" stress-energy tensors systematic. The reason the strategy

works is that it makes explicit use of the fact that Lorentz, scale, and conformal transformations

can be thought of as suitably modulated translations. They are still defined by certain constant

parameters, respectively ωµν , ω, and bµ. Now, suppose we wanted to run the Noether’s theorem

not for translations, but for those extra spacetime symmetries. These parameters would have to be

modulated in x in an arbitrary way to find the corresponding currents. But the advantage of how

we organized our Lorentz-friendly, scale-friendly, and conformal-friendly translation Noether’s

theorems is that these can be used directly also as Noether’s theorems for, respectively, Lorentz,
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scale, and conformal transformations 5.

Concretely, adopting the general transformation law (2.29) for completely generic εµ(x), the

Lagrangian changes as in (2.35). This can be taken as the definition of the stress-energy tensor

associated with this particular implementation of the Noether’s theorem. If we are running the

Lorentz-friendly version of the theorem (section 2.4.2), and we perform an x-modulated Lorentz

transformation,

εµ(x) = ωµν(x)xν , ωµν(x) = −ωνµ(x) , (2.77)

the variation of the Lagrangian density reduces to

δL = −∂µ
(
ωναx

α
)
T µνL + total derivatives (2.78)

= −∂µωνα xαT µνL + total derivatives , (2.79)

where we used that, as a consequence of Lorentz invariance, T µνL is symmetric, off-shell. Now, by

definition, whatever multiplies the derivatives of the ωµν parameters in δL is the Noether current

Mµνα associated with Lorentz transformations,

δL = −∂µωναMµνα + total derivatives . (2.80)

Taking into account that the ω’s are antisymmetric, we thus have

Mµνα = 1
2

(
xαT µνL − x

νT µαL
)
, ∂µM

µνα = 0 (on-shell) , (2.81)

in agreement with the standard result [5, 6].

Likewise, if we are running the scale-friendly version of the theorem (section (2.4.3)), and we

perform an x-modulated scale transformation,

εµ(x) = ω(x)xν , (2.82)

5Similar ideas were exploited in [36] in the case of Galilean invariance.
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the variation of the Lagrangian reduces to

δL = −∂µ
(
ω xν

)
T µνS + total derivatives (2.83)

= −∂µω xνT µνS + total derivatives , (2.84)

where we used that, as a consequence of scale invariance, T µνS is traceless, off-shell. By defini-

tion, whatever multiplies the derivatives of ω(x) is the Noether current Sµ associated with scale

transformations,

δL = −∂µω Sµ + total derivatives . (2.85)

We thus get

Sµ = xνT
µν
S , ∂µS

µ = 0 (on-shell) . (2.86)

Related to our comments at the end of section 2.4.3, notice that this differs from the standard

expression of the scale current in a non-conformal theory,

Sµ = xνT
µν + V µ (standard result) . (2.87)

The V µ appearing here is precisely the same as in eq. (2.53). In fact, using the conservation of

Sµ and of T µν , from (2.87) one derives (2.53), which shows that eq. (2.53) is only valid on-shell.

Again, the difference between our result (2.86) and the standard one (2.87) stems from our using a

traceless but, in general, non-symmetric stress-energy tensor.

Finally, consider the conformal-friendly case (section 2.4.4). If we choose εµ(x) to be an

x-modulated special conformal transformation,

εµ(x) = bµ(x)x2 − 2b(x) · x xµ , (2.88)
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the Lagrangian changes by

δL = −∂µ
(
bν x

2 − 2b · x xν
)
T µνC + total derivatives (2.89)

= −∂µbν
(
x2δνα − 2xνxα

)
T µαC + total derivatives , (2.90)

where we used that T µνC is symmetric and traceless, off-shell. Following the same logic as above,

we see that the Noether current associated with special conformal transformations is

Kµν =
(
x2δνα − 2xνxα

)
T µαC , ∂µK

µν = 0 (on-shell) , (2.91)

in agreement with the standard results [7, 8, 9].

2.6 Examples

Let us work through a few explicit examples of the different improvements we have presented

for the translation Noether theorem:

• Symmetric T µν from Lorentz invariance

We can start by taking a look at the non-trivial case of a Dirac spinor ψ(x), with Lagrangian

L = −ψ̄
(
i/∂ +m

)
ψ . (2.92)

The canonical stress-energy tensor is as usual not symmetric,

T µνc = −iψ̄γµ∂νψ − ηµνL . (2.93)

Applying our formula (2.43) from the Lorentz-friendly procedure, we get:

T µνL = −iψ̄γµ∂νψ−ηµνL − i
2
ψ̄ [J µν , γρ] ∂ρψ+

i

2
∂ρ
(
ψ̄γµJ ρνψ + ψ̄γνJ ρµψ

)
, (2.94)
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with the Lorentz generators given by

J µν = −1

4
[γµ, γν ] . (2.95)

The commutator [J µν , γρ] = (−γµηνρ + γνηρµ) fixes the non-symmetric part coming from

the first term in T µνL , while the rest of the expression is already symmetric. With a bit of

γ-matrix algebra, the final expression becomes

T µνL = − i
2
ψ̄ γ(µ∂ν)ψ +

i

2
∂(µψ̄ γν)ψ − i

2
ηµν∂ρ

(
ψ̄γρψ

)
− ηµνL , (2.96)

which is manifestly symmetric, off-shell, as promised.

• Traceless T µν from scale invariance

For our scale-invariance example we may look at scalar theories of the form

L = φ4f

(
(∂φ)2

φ4

)
, (2.97)

which are scale-invariant for any function f in D = 4. The canonical stress-energy tensor

for such theories is

T µνc = 2f ′∂µφ ∂νφ− ηµνfφ4, (2.98)

where the prime means f ′ = ∂Xf,X ≡ (∂φ)2

φ4 . Notice that T µνc happens to be symmetric,

since we are dealing with a scalar field, but is not traceless in general.

Our prescription for a traceless stress-energy tensor (2.51) (with d→ 1) gives the following

improved expression for such theories:

T µνS = 4
3
f ′ ∂µφ ∂νφ− 1

3
ηµνf ′ (∂φ)2 + 1

6
ηµν φ ∂ρ (f ′∂ρφ)− 2

3
φ ∂ν (f ′∂µφ) , (2.99)

for which one can readily check that the trace vanishes off-shell.
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However, T µνS is not symmetric in general: the first three terms are manifestly symmetric,

but the last one is symmetric only if f ′ is a constant, that is, only if

f(X) = const + const×X . (2.100)

It is clear from (2.97) that this choice corresponds, in D = 4, to a conformally invariant

theory.

• Traceless, symmetric T µν from conformal invariance

Up to changing the normalization of φ, the conformally invariant theory mentioned above is

L = −1
2

(∂φ)2 − λφ4 . (2.101)

For such a simple theory, the virial term (2.67) takes the form V µ = φ ∂µφ and hence

σµν = 1
2
ηµνφ2. Following (2.75), and given that J µν = 0 for scalar fields, the improved

stress-energy tensor in D = 4 becomes

T µνC = −2
3
∂µφ ∂νφ+ 1

6
ηµν (∂φ)2 − 1

12
ηµνφ�φ+ 1

3
φ ∂µ∂νφ , (2.102)

which is manifestly symmetric and traceless, off-shell. In fact, recalling that compared to

our previous example now we have f ′ = 1
2
, we see our scale-friendly T µνS in (2.99) reduces

precisely to our conformal-friendly T µνC above.

Notice that, compared to the more standard improved stress-energy tensor associated with

(2.101),

T µν = −∂µφ ∂νφ+ 1
2
ηµν(∂φ)2 + ληµνφ4 + 1

6
(∂µ∂ν − ηµν�)φ2 (standard result)

= −2
3
∂µφ ∂νφ+ 1

6
ηµν (∂φ)2 + ληµνφ4 − 1

3
ηµνφ�φ+ 1

3
φ ∂µ∂νφ , (2.103)

ours has a different coefficient for the φ�φ term and, perhaps more surprisingly, has no sign
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of the potential. In particular, our T µνC does not depend on λ. The reason is that, as we tried to

emphasize, our expressions for improved stress-energy tensors differ from the more standard

ones by terms proportional to the equations of motion. For solutions of the equations of

motion, the value of potential can be related to that of φ�φ:

λφ4 = φ · λφ3 = 1
4
φ�φ (on-shell). (2.104)

Using this on-shell relationship, the two expressions (2.102) and (2.103) coincide.

• Electromagnetism

Finally, we may also look at the electromagnetic field’s Lagrangian, which is Lorentz-, scale-,

and, inD = 4, conformal-invariant. We can then apply and compare all of the three different

prescriptions. Consider then

L = −1

4
FµνF

µν . (2.105)

The canonical stress-energy tensor is

T µνc = ∂νAλF
λµ +

ηµν

4
F 2 , (2.106)

which is neither symmetric nor traceless.

The Lorentz generators for spin-1 fields are given by (J µν)ρ σ = −ηνρδµσ + ηµρδνσ. Our

formula for Lorentz-invariance yields the manifestly symmetric stress-energy tensor

T µνL =
ηµν

4
F 2 + Aλ ∂

(µF ν)λ + ∂λ
(
A(µF ν)λ

)
. (2.107)

Our scale-friendly prescription (2.51) (with d→ D−2
2

) instead gives

T µνS = ∂νAλF
λµ+

ηµν

4
F 2− D − 2

2(D − 1)
∂ν
(
AλF

λµ
)
+

D − 2

2D(D − 1)
ηµν
(
Aλ∂ρF

λρ +D∂ρAλF
λρ
)
.

(2.108)
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Using ηµµ = D and ∂µAλF λµ = −F 2/2, we see that the trace vanishes, in generic D,

T µS µ = 0 , (2.109)

without the use of equations of motion. However, notice that this stress-energy tensor is no

longer symmetric.

As well known, in D = 4 the theory is also conformally invariant. In fact, the virial term

vanishes, and the resulting conformal-friendly stress-energy tensor is

T µνC = ∂ρA
µ ∂ρAν − ∂µAρ ∂νAρ − A(µ∂ρF

ν)ρ +
ηµν

4
Aλ∂ρF

λρ , (2.110)

which is manifestly both symmetric and traceless, without using the equations of motion.

Notice that none of these stress-energy tensors for the electromagnetic field is gauge invariant.

This is a common issue, and it is usually fixed, on-shell, by adding ad hoc further improvement

terms. For a more constructive approach, somewhat similar to ours, see instead [37] and

references therein.

2.7 Summary and discussion

Despite the dryness and length of our algebra, our strategy and findings are easy to summarize:

• There are ambiguities in the standard formulation of Noether’s theorem. One of these is

related to a modification of how the fields are chosen to transform in the case of a spacetime-

modulated symmetry transformation. Since spacetime symmetries beyond translations can

be thought of as suitably modulated translations, such an ambiguity can be used to one’s ad-

vantage, constructively, to derive directly from the translation Noether theorem the algebraic

properties of T µν associated with said additional spacetime symmetries.

• We formulated this strategy in general, and applied it to the cases of Lorentz invariance,

scale invariance, and conformal invariance. We reobtained the standard results, albeit with
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some modifications: first, our stress-energy tensors have the standard algebraic properties

(symmetry and/or tracelessness) off-shell; second in the case of combined Lorentz and scale

invariance, we noted a tension between tracelessness and symmetry of the stress-energy

tensor. The standard choice corresponds to making the stress-energy tensor symmetric. But

we showed that there is an equally valid choice in which the stress-energy tensor is traceless,

off-shell, but in general non-symmetric.

• Since the additional spacetime symmetries are incorporated into the structure of the trans-

lation Noether theorem, this serves as Noether’s theorem for those additional symmetries as

well, yielding directly their associated currents in terms of the stress-energy tensor.

Our unified framework shows that the standard improvement terms that make the stress-energy

tensor symmetric in the case of Lorentz invariance, and traceless in the case of scale and conformal

invariance have the same origin: they are a direct consequence of the fact that all those additional

spacetime symmetries are suitably modulated translations.

We have already mentioned two possible extensions of our analysis at the beginning of sec-

tion 2.4.1: the case of non-linearly realized spacetime symmetries, and the case of Lagrangians with

higher-than-first derivatives of the fields. Another possible extension would be to push the starting

point of our improved Noether’s theorem, eq. (2.29), to higher orders in derivatives of εa(x). We

see no obvious use for this at the moment, but maybe there is one, perhaps related to the question

of non-linear realizations alluded to above. Also, as stated in our last sample, electromagnetism,

our method does not automatically guarantee gauge-invariant results, and it could be helpful to find

an extension to our method to incorporate that. Finally, we wonder whether the viewpoint we have

put forward here can prove useful for the ongoing conversation on scale vs. conformal invariance

(see for instance the recent [38] and references therein.)

42



Chapter 3: Coset construction for particles of arbitrary spin

In section 1.2 we briefly discussed the importance of spontaneous symmetry breaking, and the

role the coset construction plays in constructing low-energy effective field theories of systems with

the corresponding Goldstone modes. In this Chapter we will show the details of our construction

of a coset formalism for relativistic particles of arbitrary spin. We begin with a review of the

standard coset construction when Poincaré symmetry is spontaneously broken. Next, we outline a

new philosophy for the coset construction and comment on the advantages of this novel perspective.

As a warm-up we construct the well-known EFTs for massive spin-0 point-particles. It turns out

that to construct an effective action for a spin s particle, we must impose an N = 2s super-

reparameterization gauge symmetry on the particle wordline. A brief review of the superspace

formalism can be found in Appendix A. We will then impose a gauged N = 1 supersymmetry

(SUSY) at the level of the coset construction and use it to formulate actions for spin-1/2 particles.

After that, we go to an extended superspace to allow for N = 2s supercharges and formulate

actions for arbitrary-spin particles using the method of cosets. It turns out that for N > 1, the

situation becomes complicated and we must supplement the superspace formalism with a multiplet

calculus similar to that presented in [39]. To demonstrate that these supersymmetric actions do

in fact describe spinning point-particles, we quantize these actions and demonstrate that they have

the correct state-spectrum. We find that for massless particles, a new kind of inverse Higgs (IH)

constraint, which bears some resemblance to the dynamical IH constraints of [18, 19] are needed

to remove Lorentz Goldstones. To further investigate the nature of these novel IH constraints we

construct two distinct actions for massless spin-0 particles. Finally, we conclude by commenting

on how our new perspective on the coset construction can open up exciting possibilities for future

research.
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3.1 The coset construction: a review

To keep it concise, we only discuss the key steps in the coset construction. For detailed

introductions, see [12, 14] and the references therein. Consider a relativistic quantum field theory

with global symmetry group G that is spontaneously broken to the subgroup H. We include both

internal and spacetime symmetries in G andH. Let the symmetry generators be

P̄µ̄ = unbroken translations,

TA = other unbroken generators,

Pµ′ = broken translations,

τα = other broken generators,

(3.1)

where µ̄ and µ′ run over complementary subsets of 0, . . . D − 1, where D is the dimension of

spacetime. Supposing that µ̄ = 0, . . . , p, the above SSB pattern describes a Dp-brane running

parallel to translations generated by Pµ̄. We permit τα and TA to be some combinations of internal

and spacetime generators. Importantly, P̄µ̄ need not be a subset of the spacetime translation

generators, Pµ, of the Poincaré group. We insist on the existence of unbroken P̄µ̄ so that states

may be classified by some notion of energy and momentum parallel to the brane. For example,

solids spontaneously break spatial translations, but phonons can be classified according to lattice

momentum, which is conserved (in the vanishing-Umklapp scattering limit) [20, 40, 41].

Although P̄µ̄ and TA are both unbroken generators, they will play very different roles in the

coset construction. As a result, it is helpful to define the subgroup H0 ⊂ H that is generated

exclusively by TA.

To construct an effective action of only Goldstones, we parameterize the coset G/H0 of non-

linearly realized symmetries by1

γ = eix
µ̄P̄µ̄eiX

µ′ (x)Pµ′eiπ
α(x)τα . (3.2)

1Although P̄µ̄ are unbroken and hence linearly realized on the fields, they generate shifts (i.e. are non-linearly
realized) when acting on the coordinates. As a result, we include these generators in the coset G/H0.
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The coordinates are xµ̄ and the Goldstone fields areXµ′ and πα, up to normalization. The symmetry

transformations act on γ by left-multiplication. That is for constant U ∈ G, we have

γ → U · γ, (3.3)

which can be used to determine the transformation rules for the Goldstones and coordinates [12].

In the world of mathematics, it is a well-known fact that the Maurer-Cartan form, defined by γ−1dγ,

is a Lie algebra-valued one-form. As a result, we may express it as a linear combination of the

symmetry generators

γ−1∂µ̄γ = iE ν̄
µ̄

(
P̄ν̄ +∇ν̄X

µ′Pµ′ +∇ν̄π
ατα + BAν̄ TA

)
. (3.4)

Under a global symmetry transformation, it can be checked that E ν̄
µ̄ transforms as a vielbein2,

∇ν̄π
α and∇ν̄X

µ′ transform covariantly, and BAµ̄ transforms as a connection underH0. As a result,

we refer to ∇ν̄π
α (∇ν̄X

µ′) as the covariant derivative of πα (Xµ′) and to take further covariant

derivatives, we may use

∇Hµ̄ ≡ [(E−1)ν̄µ̄∂ν̄ + iBAµ̄ ]. (3.5)

Notice that we have been completely general about the dimension of the symmetry-breaking

object; it can be a brane of any dimension. In the simple case of a 0-brane (i.e. a point-particle),

we construct our EFT as a one-dimensional field theory on the time coordinate t ≡ x0.

We mentioned earlier that when only internal symmetries are broken, the number of Goldstones

exactly matches the number of broken generators. However, when spacetime symmetries are

broken, this need not be the case. The removal of extraneous Goldstones can be implemented at

the level of the coset construction by way of imposing inverse Higgs (IH) constraints [11, 13, 15,

42].

2Although we use the same set of notation for the upper and lower indices of the vielbein, the two indices actually
have different transformation properties. The upper index transforms linearly under the subgroupH0, while the lower
index is covariant under coordinate transformations. The fact thatE is a vielbein can also be understood as the fact that
the integral over aDp brane (introduced in the next section)

∫
dp+1x detE transforms as a scalar under all symmetries.
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Pragmatically, the rules of the game are as follows: Suppose that the commutator between an

unbroken translation generator P̄ and a broken generator τ ′ contains another broken generator τ ,

that is [P̄ , τ ′] ⊃ τ . Suppose further that τ and τ ′ do not belong to the same irreducible multiplet

underH0. Then it turns out that it is consistent with symmetry transformations to set the covariant

derivative of the τ -Goldstone in the direction of P̄ to zero. This gives a constraint that relates

the τ ′-Goldstone to derivatives of the τ -Goldstone, allowing the removal of the τ ′-Goldstone. The

setting of this covariant derivative to zero is known as an inverse Higgs constraint. It turns out that

in certain situations, the set of allowed IH constraints is significantly expanded beyondwhat we have

mentioned above [40, 43]. There are two main physical motivations for imposing IH constraints.

First, sometimes two Goldstones in the coset will not induce independent fluctuations. Then, we

can view IH constraints as convenient gauge-fixing conditions to remove redundant Goldstones.

Second, when the conditions for IH conditions are met, we will find that our EFT has gapped

Goldstones. As a result, below the energy of this gap, we must integrate out these gapped degrees

of freedom. In such a case, IH constraints can be thought of as integrating out gapped Goldstones.

For further explanations of the origins of IH constraints, consult [12, 42, 44, 45] and for more on

the coset construction, see [12, 14, 40, 43, 46, 47].

3.2 Our philosophy

The coset construction derives its name from the broken symmetry coset G/H0. As explained

in the previous section, the coset is parameterized by the Goldstone fields. As a result, the number

of Goldstones that appear in the coset exactly equals the number of spontaneously broken symmetry

generators; however, after imposing IH constraints, extraneous Goldstones are removed, meaning

that the total number of Goldstones that exist in the EFT may be less than the number of broken

generators. This picture is all well and good for a wide range of systems, but we can begin to see

issues as soon as we consider the spin-0 point particle. In particular, the leading-order effective

action is

S = −m
∫
dt
√

1− Ẋ iẊ i, (3.6)
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where X i(t) gives the instantaneous position of the particle at time t and m is the mass [12]. As

we will see in the next section, the fields X i(t) appear in the coset as Goldstones associated with

spontaneously broken spatial translations. If we consider a quantum mechanical particle, however,

this is cause for alarm. The set of energy eigenstates of a free bosonic point particle are labeled

by their three-momentum, |~p〉, with corresponding energy E~p =
√
~p2 +m2. Thus the ground

state of this system is |~0〉. But notice that such a state spontaneously breaks Lorentz boosts, while

preserving spatial rotations and spacetime translations. How is it possible that the field content of

our action (3.6) consists of Goldstones corresponding to spatial translations when such translations

are not spontaneously broken?

One response is that a classical point-particle has a well-defined position and momentum

simultaneously. As a result, the ground state must pick a particular spatial position and hence

spontaneously breaks spatial translations. Thus it is natural to suppose that the resulting EFT

should have spatial translation Goldstones. But it seems rather odd that in order to describe a

quantum particle, we should have to rely so strongly on classical intuition.

It turns out that a similar problem arises when formulating EFTs for finite-temperature systems.

For example, the EFT for a fluid consists of Goldstones associated with spacetime translations

despite the fact that the equilibrium density matrix spontaneously breaks Lorentz boosts while

preserving spatial rotations and spacetime translations (i.e. the same SSB pattern as a quantum

point particle). The solution proposed in [43] involves a similar appeal to classical intuition: while

the equilibrium density matrix of a fluid may not spontaneously break translations, semiclassically

the density matrix accounts for a statistical ensemble of highly chaotic micro-states, each of which

spontaneously breaks every symmetry, including translations. As a result, the coset should not

be parametrized by Goldstones associated with the broken generators alone, but should instead be

parameterized by Goldstones as if every symmetry of the theory were broken. We will refer to

Goldstones associated with broken symmetries as broken Goldstones and those associated with

unbroken symmetries as unbroken Goldstones. It turns out that broken and unbroken Goldstones

behaved rather differently; at the level of the coset this differencemanifests as gauge redundancies. In
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this work, we will borrow this approach and generalize it. We unfortunately have no first-principles

understanding of why the inclusion of unbroken Goldstone fields is necessary for quantum point

particles. The intuition employed to justify their existence in the finite-temperature case does not

obviously apply to zero-temperature systems of any variety. What is clear, however, is that the

inclusion of unbroken Goldstones is often necessary. It is our goal to outline the most general rules

imaginable for including unbroken Goldstones at the level of the coset construction. Then we will

apply this generalized coset construction to formulate actions for relativistic particles with spin.

The approach we take to the cosets is as follows. Let the symmetry generators be given by (3.1),

where once again µ̄ and µ′ run over complementary subsets of the Lorentz index µ = 0, . . . , D− 1,

where D is the dimension of the spacetime.3 In general, P̄µ̄ need not be the spacetime translation

generators Pµ̄; however for all examples considered in this work they will be. The rules of our new

coset construction are the following.

• Instead of constructing the effective action on the spacetime coordinates xµ̄, introduce world-

volume (or worldline / worldsheet depending on dimension) coordinates σM . To keep

things completely general, we will allow σM to include both bosonic (Grassmann even) and

fermionic (Grassmann odd) coordinates. We let M = 0, . . . , p for p ≤ D − 1 represent

bosonic coordinates andM = p + 1, . . . ,N + p be fermionic coordinates. Importantly, the

dimension of the worldvolume could be any non-negative number that is no larger than the

dimension of the physical spacetime. As such the worldvolume coordinates can be thought

of as defining a Dp-brane. In particular, we will construct spinning point-particle actions

on manifolds with p = 0 and N = 2s, where s is the spin of the particle. Notice that a

(classical) Dp-brane cannot have more than p + 1 unbroken spacetime translations. To be

consistant, the unbroken translation index runs over µ̄ = 0, . . . , d ≤ p, where d is the number

of unbroken spatial translations.

3E.g. we may have µ̄ = 0 and µ′ = 1, . . . , D − 1, but we may not have µ̄ = 0, 1 and µ′ = 1, . . . , D − 1.
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• Parameterize the coset with Goldstones associated with every symmetry generator

g(σ) = eiX
µ̄(σ)P̄µ̄eiX

µ′ (σ)Pµ′eiπ
α(σ)ταeib

A(σ)TA . (3.7)

Notice that at this point, broken and unbroken Goldstones appear on equal footing. Global

symmetries act via left-multiplication, so for constant U ∈ G, we have g → U · g.

• If spacetime translations parallel to theDp-brane are unbroken, we may impose some sort of

worldvolume-reparameterization symmetry—this could include super-reparameterization—

as needed

σM → σM + αM(σ). (3.8)

This symmetry can be total reparameterization or partial reparameterization. There is a great

deal of freedom here. In many of the examples to come, it will be convenient to introduce a

worldvolume vielbein as a gauge-field that transforms under these diffeomorphisms. If the

translations parallel to the Dp-brane are broken, (e.g. by a lattice) we may impose a rigid

linear symmetry of the coordinates

σM → LMNσ
N + αM , LMN , α

M = const. (3.9)

Such rigid symmetries arise in solids and certain phases of liquid crystals [40], though we

will not consider liquid crystals in this thesis.

• To distinguish unbroken Goldstones associated with TA from broken Goldstones associated

with τα, impose gauge symmetries associated with TA of the form

g(σ)→ g(σ) · eiλA(σ)TA . (3.10)

Just like with the reparameterization invariance, there is a great deal of freedom here. We

could allow λA(σ) to be a generic function of σ, in which case the Goldstones associated
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with τα can be gauge-fixed to zero. Alternatively, we can put constraints on the allowed

form of λα(σ). Thus, the extent of these gauge symmetries are not strictly determined by the

symmetry-breaking pattern. For the broken generators τα we may (though are not required

to) impose rigid transformations of the form

g(σ)→ g(σ) · eiκατα , κα = const. (3.11)

Such rigid symmetries arise, for example, in superfluids that spontaneously break spatial

rotations [20]. Finally, notice that all gauge symmetry acts via right-multiplication on g and

the physical symmetries act via left-multiplication. As a result the gauge symmetries must

commute with the physical symmetries.

• The EFT is constructed using invariant building-blocks generated by the Maurer-Cartan form

g−1dg. (3.12)

All terms generated by the Maurer-Cartan form that are manifestly invariant under the

coordinate reparameterization and gauge symmetries can be used as building-blocks of the

EFT.

• Inverse Higgs constraints can be imposed whenever there is a set of covariant terms (i.e. they

transform linearly under global, reparameterization, and gauge symmetries) that when set to

zero, enables the removal of one set of Goldstones from all invariant building-blocks. This

includes the rather unusual dynamical IH constraints presented in [18, 19] that enable the

removal of certain Goldstones at the price of introducing non-trivial operator-constraints on

the remaining fields. We will find that similarly unusual IH constraints can be imposed when

considering massless particles.

We allow for a great deal of freedom in this coset construction. The reason for doing so is that

we are treating the coset as a pragmatic tool to construct symmetry-invariant actions that satisfy
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Goldstone’s theorem. In particular, since there are no local gauge symmetries associated with any of

the broken generators, Goldstone’s theorem will be satisfied. The terms of the Maurer-Cartan form

that arise from this coset construction are automatically invariant under all internal symmetries.

Finally, to recover the usual coset construction in which only broken Goldstones appear, one

need only choose σM to be purely bosonic and allow αM in (3.9) and λA in (3.10) to be completely

general functions of σ. In this way, we may gauge-fix σM = δMµ̄ X
µ̄ and bA = 0.

3.3 Massive spin-0 point-particles

From now on we consider particles in D = 4 flat spacetime. We will construct the effective

action for the spin-0 point-particle in two different ways. First, we employ the usual coset construc-

tion techniques to formulate a classical action, reminiscent of the Nambu-Goto action. Next, we

use our new philosophy of cosets to formulate a point-particle action in the style of the Polyakov

action that can easily be quantized. We let Pµ generate spacetime translations and Jµν generate

Lorentz boosts, which satisfy the usual Poincaré algebra

i[Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ,

i[Pµ, Jρσ] = ηµρPσ − ηµσPρ,

i[Pµ, Pν ] = 0.

(3.13)

We will often find it convenient to use the basis of Lorentz generators

Ki = J0i, Ji =
1

2
εijkJjk. (3.14)

3.3.1 À la Nambu-Goto

Consider a classical scalar point-particle sitting at rest. The SSB pattern is rather straight-

forward: Lorentz boosts Ki and spatial translations Pi are spontaneously broken, while spatial

rotations Ji and temporal translations P0 are unbroken. As pointed out in the previous section, the
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fact thatPi are spontaneously broken is a feature of the classical point-particle only; the ground-state

of the quantum point-particle breaks boosts alone.

We begin with the coset of non-linearly realized symmetries

g(t) = eitP0eiX
i(t)Pieiη

i(t)Ki . (3.15)

The Maurer-Cartan form is then

g−1∂tg = iE(P0 +∇X iPi +∇ηiKi + ΩiJi), (3.16)

where the einbein E, covariant derivatives∇X i and ∇ηi, and spin connection Ωi are given by

E = Λ0
0 + Ẋ iΛi

0,

∇X i = E−1(Λ0
i + ẊjΛj

i),

∇ηi = E−1(Λ−1∂tΛ)0i,

Ωi =
E−1

2
εijk(Λ−1∂tΛ)jk,

(3.17)

where Λµ
ν ≡ (eiη

i(t)Ki)µν and Ẋ i ≡ ∂tX
i. We can now impose the IH constraints ∇X i = 0,

which can be solved to give
ηi

η
tanh η = Ẋ i, (3.18)

where η ≡
√
~η2. These IH constraints imply that ∇ηi and Ωi are sub-leading in the derivative

expansion, so the only building-block at leading order is E, which becomes E =
√

1− Ẋ iẊ i.

Hence the action is

S = −m
∫
dt
√

1− Ẋ iẊ i, (3.19)

where m is a constant parameter that we interpret as the mass. We can see, therefore, that X i are

the only Goldstones that survive the IH constraints.

Finally, it is worth pointing out that the above action can be thought of as a gauge-fixed version
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of a manifestly-covariant action. Let τ be the coordinate of the particle’s worldline and let Xµ(τ)

be the fields. Then we can define the action

S = −m
∫
dτ

√
−ẊµẊµ, (3.20)

where Ẋµ ≡ ∂τX
µ. Notice that this action is invariant under reparameterization of the coordinate

τ → τ ′(τ). Thus, we can gauge-fix τ = X0(τ) ≡ t, recovering our initial action (3.19).

3.3.2 À la Polyakov

We now throw off the shackles of the ordinary coset construction and proceed with our new

philosophy. Begin by parameterizing the full symmetry group

g(τ) = eiX
µ(τ)Pµeiη

i(τ)Kieiϑ
i(τ)Ji , (3.21)

where τ is the particle’s worldline coordinate. With our new philosophy, since P0 is unbroken,

we have free reign to impose any kind of diffeomorphism (i.e. reparameterization) symmetry

on the coordinate τ , and since Ji are unbroken we may impose any gauge symmetries of the

form g → g · eiλi(τ)Ji . Evidently, there are many possibilities. On the one hand, the excess of

possibilities is a draw-back; one of the most appealing features of the coset construction is that

it is so constraining that one need barely think in order to use it effectively. On the other hand,

Goldstone’s theorem for spontaneously broken spacetime symmetries (unlike its internal symmetry

counterpart) can be satisfied in all sorts of unusual and unexpected ways. We should therefore

not be disappointed that our novel approach to the coset construction now reflects this diversity of

possibilities more fully.

With some foreknowledge of the desired point-particle action, we impose the following gauge

symmetries.

• Reparameterization invariance: Let e(τ) be the einbein of the particle’s worldline. Then we
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have

δτ = −ξ(τ), δe = ∂τ (eξ), (3.22)

where ξ is an arbitrary infinitesimal function of τ .

• We do not want any rotational Goldstones ϑi in the EFT, so we impose total rotational gauge

symmetry

g → g · eiλi(τ)Ji , (3.23)

where λi is an arbitrary function of τ . We can use this gauge symmetry to fix ϑi = 0.

With this gauge-fixing condition, our group-element is now

g(τ) = eiX
µ(τ)Pµeiη

i(τ)Ki . (3.24)

We may compute the Maurer-Cartan form, using e as the einbein,

g−1∂τg = ie(∇XµPµ +∇ηiKi + ΩiJi), (3.25)

where the covariant derivatives and spin connections are given by

∇Xµ = e−1ẊνΛν
µ,

∇ηi = e−1(Λ−1∂τΛ)0i,

Ωi =
1

2e
εijk(Λ−1∂τΛ)jk,

(3.26)

such that Λµ
ν ≡ (eiη

i(τ)Ki)µν and Ẋ
µ ≡ ∂τX

µ.

We can impose the IH constraints∇X i = 0, which can be solved to give

ηi

η
tanh η =

Ẋ i

Ẋ0
. (3.27)

These IH constraints ensure that ∇ηi and Ωi do not contribute to the leading order. Thus, the only
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leading-order building block is ∇X0, which now becomes

∇X0 = e−1

√
−ẊµẊµ. (3.28)

Thus, our leading-order action is

S =

∫
dτe
(
(∇X0)2 +m2

)
= −

∫
dτ

(
1

e
ẊµẊµ − em2

)
,

(3.29)

wherem is again a constant parameter which we interpreted as the mass. We have used the fact that∫
dτe is the invariant integration measure. We have thus recovered the standard effective action

for a spin-0 point-particle in the Polyakov form. Since such an action has an external einbein, it

is clear that the ordinary coset construction would not generate it. We therefore see a clear (albeit

small) benefit of our new cost construction philosophy. In the following sections, we will see more

significant advantages.

3.4 Spin-1/2 point-particles

It was demonstrated in [39, 48, 49, 50, 51, 52, 53] that the effective action describing a spin-

1/2 particle could be derived by imposing N = 1 worldline supersymmetry. A quick review of

worldline supersymmetry can be found in Appendix A. In this section we will impose the worldline

supersymmetry at the level of the coset construction. It turns out that including a mass term requires

a little extra machinery, so we begin by considering the massless case.

3.4.1 Massless

A massless, spinning particle must always travel at the speed of light with the direction of the

spin parallel (or anti-parallel) to the velocity. Without loss of generality, let us choose the direction
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of motion to be parallel to ẑ. Then, the unbroken Poincaré symmetry generators are

Pu ≡ P0 − P3, Ji ≡ Ji + ε3ijKj, (3.30)

and the broken generators are

Pv = P0 + P3, Pm, Ki ≡ Ki + ε3ijJj, (3.31)

where the indicesm,n = 1, 2. Notice that Ji are the generators of the (full) little group of massless

particles; it is easy to check that their commutation relations are just like those of the generators

for the two-dimensional Euclidean group. Additionally, in this basis of translation generators, the

non-zero components of the metric are ηuv = ηvu = 1/2 and ηmn = δmn. Lastly, we assume that

there are no internal symmetries, so Poincaré is the full symmetry group.

Since spin-1/2 particles enjoy worldline SUSY, we define our coset on the superspace coordi-

nates σM = (τ, θ)M . The most general group element is

g(σ) = eiX
α(σ)Pα+iXm(σ)Pmei�

i(σ)Kiei�
i(σ)Ji , (3.32)

where α run over u, v, andXµ are bosonic fields as a function of σM = (τ, θ)M , as shown in (A.1).

Similarly for � and �. We now impose the following gauge symmetries. First, since Pu is unbroken,

we have the freedom to impose super-reparameterization symmetry, acting on σM , the worldline

einbein e and its super partner χ by (A.12) and (A.13). And since Ji are unbroken, we may impose

the rotational gauge symmetry

g → g · ei�i(σ)Ji , (3.33)

where �i is a generic function of σ. We may therefore gauge-fix �i = 0.

With this gauge-fixing condition, the Maurer-Cartan form is

g−1∂Mg = iEA
M

(
∇AX

αPα +∇AX
mPm +∇A�

iKi + 
iAJi
)
, (3.34)
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where the covariant derivatives of Xµ are

∇AX
α = E

M
A ∂MX

µ�µ
α,

∇AX
m = E

M
A ∂MX

µ�µ
m,

(3.35)

such that �µν = (ei�
i(σ)Ki)µν , and E

A
M is the superzweibein as in (A.10). The precise forms of

∇A�i and 
iA will not be important for the construction of the leading-order action.

We many now impose IH constraints. In particular, it is consistent with symmetries to fix

0 = ∇0X
v, 0 = ∇0X

m. (3.36)

These IH constraints can be used to solve for �i in terms of Xµ, thereby leaving Xµ as the only

remaining Goldstone. However, these constraints also force ∇0X
µ to be null, which we do not

wish to impose by hand. Instead, the fact that the particle moves along a null-trajectory should be a

result of the equation of motion. The reason these IH constraints are over-constraining is that if we

were to include �i in our effective action, they would serve as Lagrange multipliers. In particular,

the constraints they would place on the dynamics of Xµ would be redundant with the constraints

imposed by e and χ. Thus, we could just as well not include �i in our EFT at all as they would be

entirely redundant. We will investigate this further in the following subsection.

We now can construct the leading-order effective action4

S =
1

2i

∫
dτdθE∇0X

µ∇1Xµ, (3.37)

which can be immediately simplified to

S =
1

2i

∫
dτdθE D0X

µD1Xµ. (3.38)

Here E is the superdeterminant sdet(EA
M) of the superzweibein, and its exact form is shown in

4We choose to normalize the fields so that the overall coefficient in front of the action is 1/2i.

57



(A.10). We can explicitly perform the dθ integral, which yields an action defined only on the

particle worldline τ . Letting Xµ(τ, θ) = Xµ(τ) + iθψµ(τ), we have

S =

∫
dτ

(
1

2e
ẊµẊµ +

i

2
ψ̇µψµ −

i

e
χψµẊµ

)
. (3.39)

Upon quantization (see section 3.6), we will see that this action describes a spin-1/2 point-particle.

3.4.2 On-shell inverse Higgs

We now investigate the nature of the on-shell IH constraint for the case of the massless spin-1/2

particle. To do so, we construct the leading-order action without removing the Lorentz Goldstones

�i. Using the covariant derivatives of (3.35), we may construct our leading-order action. We have

S =
1

2i

∫
dτdθE (∇0X

µ∇1Xµ + C∇1X
u), (3.40)

for some constant C. Expanding the covariant derivatives, we have ∇1X
u = D1X

µ�µ
u. At this

point, it is convenient to define the superfield Lµ ≡ C�µ
u, which can then be expanded as

Lµ = Lµ + iθλµ. (3.41)

Notice that Lµ is constrained to be a null-vector, meaning that L2 = 0 and Lµλµ = 0. Performing

the dθ integral, our action becomes

S =

∫
dτ

(
1

2e
(Ẋµ − iχψµ)2 +

i

2
ψ̇µψµ +

1

2
ẊµLµ +

ie

2
ψµλµ

)
. (3.42)

Now let us compute the equations of motion. By varying e and χ we find the respective equations

e−2(Ẋµ − iχψµ)2 = ψµλµ, ψµẊµ = 0. (3.43)
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And by varying Lµ and λµ subject to the constraints L2 = 0 and Lµλµ = 0, we have

Ẋµ ∝ Lµ, ψµ ∝ Lµ. (3.44)

Notice that the second equation of (3.44) implies that ψµλµ = 0. Plugging this expression into

the first equation of (3.43) gives (Ẋ − iχψ)2 = 0, which is exactly the constraint obtained by

varying e in the action (3.39). Additionally, the second equation of (3.43) is the same constraint

found by varying χ in (3.39). We thus have reproduced the constraint equations arising from the

standard action (3.39) that does not contain any Lorentz Goldstones. Then, we can interpret (3.44)

as equations that specify the Lorentz Goldstones Lµ.

We therefore conclude that the inclusion of the Lorentz Goldstones does not give us anything

new, so they are entirely extraneous degrees of freedom and can simply be omitted from the EFT.

3.4.3 Massive

Notice that in the scalar action (3.29), the term involving the mass is essentially a cosmological

constant-term. In the spin-1/2 action (3.39), however, there is no such mass term. The reason is

that in a theory with SUSY, an ordinary cosmological constant-term of the form
∫
dτe does not

respect the full gauge symmetry group. In this section, we will see how a symmetry-invariant

cosmological constant-term can be included in the action.

The intuition is as follows. Suppose that the point-particle existed in a five-dimensional

spacetime such that the momentum along the fifth dimension is fixed by p5 = m, for some constant

m > 0. Since the particle is massless, the on-shell condition is pµpµ + (p5)2 = 0, or equivalently,

pµpµ + m2 = 0. Thus, if we are only concerned with the motion of the particle along the four

spacetime coordinates xµ for µ = 0, 1, 2, 3, then the particle behaves as if it has massm.

Going through a procedure almost identical to that of the previous subsection, we find the
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effective action for a massless spin-1/2 particle in 5D is

S =

∫
dτ

(
1

2e
ẊµẊµ +

i

2
ψ̇µψµ −

i

e
χψµẊµ +

1

2e
Ẋ5Ẋ5 +

i

2
ψ̇5ψ5 −

i

e
χψ5Ẋ5

)
, (3.45)

where we have defined X5(τ, θ) = X5(τ) + iθψ5(τ). At this point, it is helpful to work in the

“Hamiltonian picture” in which we include the conjugate momentum p5 of X5. We thus have

S =

∫
dτ

(
1

2e
ẊµẊµ +

i

2
ψ̇µψµ −

i

e
χψµẊµ + Ẋ5p5 −

e

2
(p5)2 +

i

2
ψ̇5ψ5 − iχψ5p5

)
. (3.46)

Fixing p5 = m for constantm > 0 we have5

S =

∫
dτ

(
1

2e
ẊµẊµ +

i

2
ψ̇µψµ −

i

e
χψµẊµ −

m2e

2
+
i

2
ψ̇5ψ5 − imχψ5

)
, (3.47)

which agrees with the massive spin-1/2 action from [39]. In particular, notice that the equation of

motion for e is (gauge fixing χ = 0)

1

e2
ẊµẊµ +m2 = 0, (3.48)

which is exactly the on-shell condition for a massive particle.

3.5 Higher-spin point-particles

The symmetry-breaking pattern of the Poincaré group for massless particles is the same for all

values of spin s, namely the unbroken generators are (3.30) and the broken generators are (3.31).

Thus, the only possible distinguishing features among the effective actions for particles of differing

spins are the choices of worldvolume and gauge symmetries. It has been demonstrated in [50] that

the EFT for a particle of spin s enjoys N = 2s SUSY. We present an extended worldline SUSY

formalism as well as a method of multiplets for calculations in this formalism in Appendix B. At this

5Notice that we are not integrating out p5; instead, we are constraining the system to have p5 = m.
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stage, we will split the problem into two pieces. The first deals with spin 1 particles, corresponding

toN = 2. The effective action will be defined in terms of an integral over superspace and will thus

lead to an off-shell SUSY-invariant action. The second will be valid for allN ≥ 1, but will instead

rely on the multiplet formalism and as a result will yield local on-shell SUSY-invariant actions.

3.5.1 Spin-1 point particles

We define our coset on the superspace coordinates σM = (τ, ~θ)M for ~θ = (θ1, θ2). We take

the unbroken translation generator Pu as an opportunity to impose the super-reparameterization

invariance which acts on σM , e and ~χ by (B.6) and (B.7), while the supervielbein EA
M is given

by (B.4). Then, as in the spin-1/2 case, we take the unbroken little group generators Ji as an

opportunity to impose a gauge invariance that can be used to fix θi = 0.

With this gauge-fixing condition the most general group element is

g(σ) = eiX
α(σ)Pα+iXm(σ)Pmei�

i(σ)Ki , (3.49)

where α = u, v andm = 1, 2. The Maurer-Cartan form is

g−1∂Mg = iEA
M

(
∇AX

αPα +∇AX
mPm +∇A�

iKi + 
iAJi
)
, (3.50)

where the covariant derivatives of Xµ are

∇AX
α = E

M
A ∂MX

µ�µ
α,

∇AX
m = E

M
A ∂MX

µ�µ
m,

(3.51)

such that �µν = (ei�
i(σ)Ki)µν . The precise forms of ∇A�i and 
iA will not be important for the

construction of the leading-order action.

We impose on-shell IH constraints

0 = ∇0X
v, 0 = ∇0X

m, (3.52)
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which allow us to remove �i from the effective action. The leading-order effective action forN = 2

is therefore

S =
1

4

∫
dτd2θE εab∇aX

µ∇bXµ, (3.53)

which can be immediately simplified to

S =
1

4

∫
dτd2θE εabDaX

µDbXµ, (3.54)

where εab is the totally antisymmetric tensor such that ε12 = −ε21 = 1 and ε11 = ε22 = 0. We can

now expand the superfield Xµ in powers of ~θ, yielding

X
µ = Xµ + iθaψaµ +

i

2
εabθaθbF µ. (3.55)

The integral over d2θ can now be explicitly evaluated, yielding an action defined on the worldline

coordinate τ by

S =

∫
dτ

(
1

2e
(Ẋ − i~χ · ~ψ)2 +

i

2
~̇ψµ · ~ψµ +

e

2
F 2 − i

2
Aabψµaψbµ

)
. (3.56)

Notice that the field F µ appears with no derivatives and that its equation of motion is simply

F µ = 0. We can thus integrate it out at no cost, except the resulting action will only be invariant

under SUSY on-shell.

3.5.2 Arbitrary-spin point particles

As mentioned earlier, for particles of spin s > 1—which correspond to N > 2—we must

admit defeat, at least in part, if we wish to construct a SUSY-invariant action using the superspace

formalism. The reason is that no superspace integral can give rise to the desired invariant action. To

see why, we propose the following power-counting argument. We let µ count powers of energy; e.g.

[∂τ ] = [dτ ]−1 = µ1. Begin by noticing that the actions we have calculated so far, (3.29,3.39,3.56)
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all contain a term of the form

S ⊃
∫
dτ

1

2e
Ẋ2 + · · · . (3.57)

By assuming S scales as µ0, we therefore have the scaling ofX , and henceX, namely [X] = µ−1/2.

Further, notice that the commutator of two super-translations give rise to one temporal translation,

so [Dθ] = [D0]1/2 = µ1/2. Moreover, integration and differentiation with respect to Grassmann

numbers are equivalent operations, so [dθ] = µ1/2. Lastly, our action should involve two factors of

X and two covariant derivatives D and D′, which can be either D0 or Dθ. Then the action scales

like

[S] = [dτ ][dN θ][D][X][D′][X] = [D][D′]µs−2, (3.58)

where we have used the fact that N = 2s. But also, the action ought to scale like µ0, so we have

[D][D′] = µ2−s. But since D and D′ must scale as either µ1 or µ1/2, [S] = 0 can only be satisfied

if s ≤ 1. In particular, for s = 0, we have D = D′ = D0; for s = 1/2, we have D = D0 and

D′ = Dθ; and for s = 1, we have D = D′ = Dθ.

We now use the multiplet formalism to construct actions invariant under global SUSY for

arbitrary N and hence arbitrary spin. Let Σµ = (Xµ, ~ψµ) and ηi = (ηi, ~φi) be bosonic multiplets,

as defined in (B.10). We take the unbroken generators Ji as an invitation to impose gauge

symmetries that allow us to remove the Goldstones associated with Ji. Then, we can express the

most general group element as the SUSY multiplet6

g = eiΣ
αPαeiΣ

mPmeiη
iKi . (3.59)

Using the SUSY covariant derivative (not to be confused with the covariant derivative generated

6Notice that the addition and multiplication rules (B.14) and (B.15) enable us to define arbitrary functions of the
multiplets by employing a Taylor expansion.
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by the coset) defined by (B.16), we can compute the Maurer-Cartan form by

g−1DAg = i
(
∇AΣαPα +∇AΣmPm +∇Aη

iKi + ΩiJi
)
, (3.60)

where the covariant derivatives of Σµ generated by the coset are

∇AΣα = DAΣµΛµ
α,

∇AΣm = DAΣµΛµ
m,

(3.61)

whereΛµ
ν = (eiη

iKi)µν . The precise form of the other terms in the Maurer-Cartan form will not be

important for the construction of the leading-order action. Imposing the on-shell IH constraints7

removes the Goldstones ηi,

0 = ∇0Σv, 0 = ∇0Σm. (3.62)

To construct the effective action, we must build a symmetry-invariant fermionic multiplet (see

(B.12) for the definition of the fermionic multiplet), which can then be integrated according to the

prescription (B.18). We see that at leading order, the only such option is Φ ≡ ∇0Σµ∇aΣµ, which

can be immediately simplified to Φ = D0ΣµDaΣµ. We then have the leading-order action

S =

∫
SUSY

Φ =

∫
dτ

(
1

2
Ẋ2 +

i

2
~̇ψµ · ~ψµ

)
. (3.63)

We must now gauge the N = 2s extended worldline SUSY. In particular, we want an action that

in invariant, up to terms proportional to the equations of motion, under the infinitesimal local

transformations (B.7) and the on-shell SUSY transformations

δXµ = ξẊµ + i~ε · ~ψµ,

δψa = ξψ̇aµ + εa
1

e

(
Ẋµ − i~χ · ~ψµ

)
− βabψbµ,

(3.64)

7It should be noted that these are only legitimate on-shell IH constraints because we are going to ultimately gauge
the worldline SUSY. If we were to keep the SUSY global, then there would be no constraints imposed by gauge fields
and the equations of motion arising from boost Goldstones would in fact be extremely important.
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where ξ, ~ε, and βab are now generic infinitesimal functions of τ . In particular, we have

S =

∫
dτ

(
1

2e
z2 +

i

2
~ζµ · ~ψµ

)
, (3.65)

where where z ≡ Ẋ − i~χ · ~ψ and ζa ≡ ψ̇a +Aabψb. Equivalently, the expanded form of the action

is

S =

∫
dτ

(
1

2e
(Ẋ − i~χ · ~ψ)2 +

i

2
~̇ψµ · ~ψµ −

i

2
Aabψµaψbµ

)
. (3.66)

Comparing with [51], we find that we have successfully reproduced the action for on-shell extended

local SUSY.

If we wish to include a mass-term in this action, we can follow the steps of section 3.4.3 and

arrive at the following additional terms in the action

Smass =

∫
dτ

(
− m2e

2
+
i

2
~̇ψ5 · ~ψ5 − im~χ · ~ψ5 − i

2
Aabψ5aψb5

)
. (3.67)

Thus, the full action for the massive higher-spin point particle is the sum of (3.66) and (3.67).

3.6 Quantization

After employing our novel coset construction to formulate actions with worldline SUSY, we

now wish to demonstrate that they in fact describe point particles with intrinsic quantum spin. By

quantizing the action with N = 2s ∈ Z worldline SUSY, we will find that the resulting wave

function describes a point-particle of spin s. We will follow closely the procedure shown in [51].

Starting with equation (3.66), we find it convenient to express the action in the “Hamiltonian

form,”

S =

∫
dτ

(
pµẊµ −

1

2
epµpµ − i~χ · ~ψµpµ +

i

2
~̇ψµ · ~ψµ −

i

2
Aabψaψb

)
. (3.68)
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It is then clear from the equations of motion for e, χa and Aab that

pµpµ = 0,

pµψaµ = 0,

(ψµ)[a(ψµ)b] = 0. (3.69)

We then impose the (anti-)commutation relations

[Xµ, pν ] = iδµν , {ψµa , ψνb } = ηµνδab. (3.70)

To facilitate the quantization procedure, it is convenient to work with the usual identification

pµ = −i∂/∂Xµ. To realize the second anti-commutation relation, we work in the representation

ψµa =
1√
2
γ5 ⊗ · · · ⊗ γ5︸ ︷︷ ︸

a−1

⊗γµ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−1

, (3.71)

where we have used the Dirac γ matrices, which satisfy {γµ, γν} = 2ηµν . Now, assuming a < b, it

is straightforward to determine that

(ψµ)[a(ψµ)b] = −1

2
1⊗ · · · ⊗ 1︸ ︷︷ ︸

a−1

⊗γ5γ
µ ⊗ γ5 ⊗ · · · ⊗ γ5︸ ︷︷ ︸

b−a−1

⊗γµ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−b

.

(3.72)

The constraint equations coming from equations (3.69) for a spinor Ψα1···αN are, respectively,

�Ψα1···αN =0,

/∂
βa

αa Ψα1···βa···αN =0,

(γµ) βa
αa (γµ) βb

αb
Ψα1···βa···βb···αN =0. (3.73)
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Following the procedures in [51], these constraints will finally give, in the SL(2,C) notation,

∂α̇aβa Ψα̇1···α̇a···α̇N = 0, �Ψα1···αN = 0. (3.74)

But these are just the conditions that Ψα1···αN be the wave function for a relativistic particle of spin

s = N /2. We therefore conclude that our action (3.66) indeed describes a spin-N /2 point particle.

3.7 Massless spin-0 point-particles

When we constructed the EFTs for the massive spin-0 particle, the resulting IH constraints

could be solved directly for the Lorentz Goldstones, ηi in terms of the translation Goldstones, Xµ.

However, when dealing with massless particles, the IH constraints over-constrained the translation

Goldstones and we were forced to interpret them as on-shell IH constraints. In this section we will

explore in more detail the relationship between Lorentz Goldstones and massless particles.

3.7.1 Without external einbein

Our aim is to construct an EFT for massless scalars without the introduction of an external

einbein. The SSB pattern is identical to that of the spin-1/2 (and higher) massless particles.

Explicitly, the unbroken generators are (3.30) and the broken generators are (3.31). The most

generic group element is

g(τ) = eiX
α(τ)Pα+iXm(τ)Pmeiη

i(τ)Kieiϑ
i(τ)Ji , (3.75)

where α = u, v and m = 1, 2. We impose full reparameterization symmetry δτ = −ξ(τ) as well

as a full Ji gauge symmetry

g → g · eiλi(τ)Ji , (3.76)
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which allows us to gauge-fix ϑi = 0. With this gauge-fixing condition, the Maurer-Cartan form is

g−1∂τg = iE(Pu +∇XvPv +∇XmPm +∇ηi) + Ωi, (3.77)

where the einbein is given by E = ẊµΛµ
u and Λµ

ν = (eiη
i(τ)Ki)µν . The covariant derivatives and

spin connection will not appear at leading order in our EFT.

One might be tempted to impose the IH constraints ∇Xv = 0 and ∇Xm = 0, but this would

imply that Ẋµ is null. Further, since there are no external gauge fields that might constrain Ẋµ to

be null, these constraints do not admit an interpretation as on-shell IH constraints. Thus, we are

forced to include the Lorentz Goldstones ηi in our EFT.

The leading-order action is then

S =

∫
dτE =

∫
dτẊµLµ, (3.78)

where Lµ ≡ Λµ
u. Importantly, Lµ is constrained to be a null vector, that is L2 = 0.

The equations of motion found by varying Lµ and Xµ are respectively

Ẋµ ∝ Lµ, L̇µ = 0. (3.79)

Since L2 = 0 the first equation tells us Ẋ2 = 0, meaning that the particle travels along a null-

trajectory. Then, the second equation tells us that Ẍµ = 0, so the particle does not accelerate. This

is exactly what we should expect of a massless particle. Thus, we have an effective action for a

massless boson that does not include any external einbein at all; the price we pay is the inclusion

of Lorentz Goldstones.
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3.7.2 With external einbein

We now consider what happens if we include an external einbein e such that worldline diffeo-

morphism symmetry acts by

δτ = −ξ(τ), δe = ∂τ (eξ). (3.80)

As in the previous subsection we gauge-fix ϑi = 0. The Maurer-Cartan form is

g−1∂τg = ie(∇XαPα +∇XmPm +∇ηi) + Ωi, (3.81)

where α = u, v and m = 1, 2. Since we have an external einbein, we should expect that on-shell

IH constraints are permitted, and this is indeed the case. To be explicit about how these on-shell

IH constraints can be used, we will wait to impose any IH constraints and keep ηi in the action.

The leading-order action is

S = −
∫
dτe
(
∇Xµ∇Xµ + C∇Xu +m2

)
, (3.82)

for some constants C and m2. Define the field Lµ ≡ CΛµ
u, which results in L2 = 0. Then our

action becomes

S = −
∫
dτ

(
1

e
ẊµẊµ + ẊµLµ −m2e

)
, (3.83)

The constraint equation coming from e is

1

e2
Ẋ2 = −m2 (3.84)

and the constraint equations coming from Lµ are

Ẋµ ∝ Lµ. (3.85)

Upon squaring (3.85), we find that Ẋ2 = 0, which then forcesm2 = 0 on self-consistency grounds.
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Thus, the effect of the on-shell IH constraint is to fix m2 = 0. After we impose this constraint

onm2, we can simply drop the Lorentz Goldstones from our action. Thus the leading-order action

is

S = −
∫
dτ

1

e
ẊµẊµ, (3.86)

which is the standard action for a massless spin-0 point-particle.

Finally, it is worth noting that ordinary IH constraints allow one to solve for the extraneous

Goldstone in terms of other Goldstones; however, dynamical IH constraints [18, 19] instead serve

to impose operator constraints on the terms of the action. Notice that the equations of motion for

Lµ in the action (3.78) impose the operator constraint Ẋ2 = 0. We therefore may conceive of the

equations of motion for Lµ as imposing dynamical IH constraints. Similarly when we impose on-

shell IH constraints in the action (3.82) (which is equivalent to computing the equations of motion

for Lµ) we similarly find a constraint equation that forces m2 = 0. Thus on-shell IH constraints

bear a striking resemblance to dynamical IH constraints.

3.8 Summary and discussion

In this chapter, we defined a generalized coset construction for systems with spontaneously

broken Poincaré symmetry. The motivation was that when Poincaré symmetry is preserved,

Goldstone’s theorem is extremely restrictive: all Goldstones must be spin-0 bosonic particles

with vanishing mass; however, when Poincaré symmetry is spontaneously broken, many more

possibilities exist. In such cases, systems with identical symmetry-breaking patterns may possess

inequivalent Goldstone spectra. To illustrate this diversity, we chose to focus on the relativistic

point particle. All relativistic point-particles have identical (or nearly identical) SSB patterns; yet

they can have any mass m ≥ 0 and have any spin s ∈ N/2. With our new-and-improved coset

construction, we formulated effective actions for point-particles of arbitrary mass and spin. Along

the way we identified a novel kind of inverse Higgs constraint that we termed the on-shell IH

constraint, which arises when constructing EFTs for massless particles. This IH constraint bears
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a striking resemblance to the so-called dynamical IH constraint used to construct EFTs for fermi

liquids [18, 19].

With our new coset philosophy, the SSB pattern is no longer the only object of concern.

Inspired by [40, 43], we parameterized the full symmetry group with Goldstone fields defined on

a worldvolume of our choosing and then imposed Gauge symmetries associated with the unbroken

symmetry generators. Thus, the three ingredients that go into this novel coset construction are (1)

identifying the SSB pattern, (2) choosing a worldvolume on which to construct the action and (3)

picking a particular set of gauge symmetries. Wewere free to choosewhatever gauge symmetrieswe

liked; if we imposed the largest possible set of gauge symmetries, then the Goldstones associated

with unbroken generators could be gauge-fixed to zero, thereby recovering the standard coset

construction. To allow for a wide range of spins—including both bosonic and fermionic particles—

we found that it was necessary to impose an N = 2s local SUSY on the worldline, where s is the

spin of the particle. This gauged SUSY is imposed at the level of the coset, meaning that once

the gauge symmetries are specified, constructing an invariant action is just a matter of ‘turning the

crank’ and using the coset to read-off symmetry-invariant terms. Thus, this new coset construction

provides the same advantages as the usual coset construction.

We expect that this new coset construction will prove useful in a number of areas. In particular,

the ordinary coset construction has proved to be a valuable tool when constructing EFTs for

condensed matter systems [20, 44, 46]. Since our new coset construction allows for fermionic

degrees of freedom, it is our hope and expectation that these new techniques will facilitate useful

extensions of the coset construction to account for phases of matter with low-energy fermions.

For example EFTs for fermi liquids, non-fermi liquids, and bad metals might now be realizable

using this novel method of cosets. We also hope to extend this coset construction to allow for

non-equilibrium EFTs defined on the Schwinger-Keldysh contour [43] and to allow for explicitly

broken symmetries [54] that exhibit fermionic degrees of freedom. Finally, it would be of great

interest to identify the rules that determine which gauge symmetries ought to be imposed. Since

we are free to choose from an infinite set of gauge symmetries, it would be extremely useful to
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construct a dictionary between physical attributes of the system and emergent gauge symmetries in

the coset construction.
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Chapter 4: A technical analog of the cosmological constant problem and a

solution thereof

4.1 A tale of two zeros

The cosmological constant problem has been a topic of heated debate for decades. In fact, it is

difficult to find two theoretical physicists who agree on what exactly the problem is, how to phrase

it, how to quantify it, or how many problems there are. Some maintain that there is no problem at

all. (We realize that some of our colleagues will take issue with this paragraph as well.)

In this chapter we do not intend to review the extensive literature on the subject1. Instead, as

described in section 1.3, we aim to show in detail how the systemof framid [20] presents a technically

similar problem, and how that problem is “solved” there. To be more precise, the problem is that

the stress-energy tensor of the framid is Lorentz-invariant, despite the fact that the framid is a state

that spontaneously breaks Lorentz boosts. The quotes are in order: from a low-energy effective

field theory viewpoint, this problem is solved by apparently miraculous cancellations. However,

there is a more fundamental viewpoint, according to which those cancellations have to happen.

Needless to say, it is a symmetry that ultimately enforces those cancellations, but a symmetry that

is spontaneously broken. In particular, that symmetry does not enforce the cancellations through

standard selection rules—the ground state is not invariant under the symmetry—but only in a

roundabout way, which is utterly obscure in the low-energy effective theory computation we will

perform.

We have argued in section 1.3 that a fully satisfactory symmetry argument is not available. Here

we argue that it cannot be that the structure in (1.11) is only a tree-level statement, and gets modified

1It is impossible for us to do justice to all the attempts that have been made at tackling the cosmological constant
problem. For an overview, we refer the reader to [21, 55, 56, 57, 58] and references therein. In particular, ref. [58]
reviews recent attempts based on relaxation mechanisms.
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upon taking into account quantum corrections. Concretely, this would mean that the expectation

value of the stress-energy tensor on the framid’s ground state is not Lorentz-invariant,

〈Tµν(x)〉 6= −Λ ηµν , (4.1)

for any Λ. This, however, does not seem to be consistent with renormalization theory and, more

in general, renormalization group ideas. The reason is that we can think of our framid effective

theory as a theory for physics below a certain energy scaleM , with all the physics aboveM having

been integrated out. If we integrate out some more physics, say down to a scale M ′ < M , the

coefficients in the framid low-energy effective action change, but the set of allowed terms in such

an action remains the same. So, what was a “quantum correction” in the energy window between

M ′ andM , now becomes a new contribution to a tree-level coupling in the low-energy theory. But

at tree-level the effective theory yields

〈Tµν(x)〉 = −Λ ηµν . (4.2)

This suggests that the same should hold at the quantum level, up to a renormalization of Λ.

As pointed out in section 1.3, this is our technical analog of the cosmological constant problem.

In the cosmological constant problem, one has that the expectation value of the real world’s stress-

energy tensor that couples to gravity is zero (or fantastically smaller than the “natural” value it

should have), without any manifest symmetry reasons for why it should be so. In our case, we have

that the Lorentz-violating components of the expectation value of the framid’s stress-energy tensor

are exactly zero, without any manifest symmetry reasons for why it should be so.

Our work is devoted to explicitly verifying eq. (4.2) for the framid to one-loop order. As one

might expect, the computation will involve UV-divergent loop integrals, and we will have to pay

particular attention to how we regulate such integrals. The reason is that our question has to do

with Lorentz invariance, and so we need to make sure that our regulator respects it. However,

since Lorentz invariance is spontaneously broken, it is not manifest in the effective theory or, more
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importantly, in our loop integrals. And so, for instance, cutting off our integrals in (Euclidean)

momentum space in amanifestly Lorentz invariant fashionmakes no sense: the framids’ Goldstones

already have propagation speeds different from unity, and from one another, and so why should

their loops be cutoff in a Lorentz-invariant fashion?

To address this problem, we use two regulators that can be made straightforwardly compatible

with our spontaneously broken Lorentz invariance. The first is a generalization of Pauli-Villars.

The second is dimensional regularization. Notice that, for the latter, since the Goldstone’s effective

theory has no mass parameters, the relevant integrals for our one-loop computation will all be

trivially zero, which would make our check moot. To circumvent this, we couple the framid to a

massive scalar particle, in all ways allowed by symmetry, and run our check in that case.

With both regulators, we find that, indeed, eq. (4.2) is obeyed at one-loop order. However, the

cancellations involved inmaking the Lorentz-violating components vanish are absolutely nontrivial,

and we were not able to find a clear structure in the actual computation that would ensure, or even

suggest, those cancellations. As a further check of our techniques and of the non-triviality of the

cancellations, we run the same computation in the case of a superfluid, where we don’t expect

analogous cancellations—a superfluid certainly does not respect (4.2). Indeed, in that case we find

deviations from (4.2), and our result matches precisely that of an independent computation carried

out elsewhere [59].

4.2 Warm-up: the free relativistic scalar

Before attempting to compute the expectation value of T µν for our framid, it is instructive to

review how things work out for a free relativistic scalar field, even if we perform computations in

a way that is not manifestly Lorentz covariant.

Consider thus the Lagrangian

L = −1
2
(∂φ)2 − 1

2
m2φ2 , (4.3)
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which yields the stress-energy tensor

T µν = ∂µφ∂νφ+ ηµνL . (4.4)

A quadratic Lagrangian can always be rewritten as a total derivative plus a term proportional to

the equations of motion. So, since the vacuum is translationally invariant, the second term in T µν

does not contribute to our expectation value, and we simply have

〈T µν(x)〉 = 〈∂µφ(x)∂νφ(x)〉 (4.5)

= − lim
y→x

∂µx∂
ν
xGW (x− y) (4.6)

=

∫
d4k

(2π)4
kµkνG̃W (k) , (4.7)

where GW is the Wightman two-point function of φ:

G̃W (k) = θ(k0) (2π)δ(k2 +m2) . (4.8)

At this stage one could use Lorentz-invariance and conclude that

〈T µν(x)〉 =
1

4
ηµν
∫

d4k

(2π)4
k2G̃W (k) . (4.9)

The integral is UV divergent and must be regulated. However, whatever its value, we see that

〈T µν(x)〉 is proportional to ηµν , as expected.

Let’s instead go back to eq. (4.7), give upmanifest Lorentz invariance, and use the delta function

in G̃W to perform the integral over k0. Using spatial rotational invariance, we get

ρ ≡ 〈T 00〉 =
1

2

∫
d3k

(2π)3
ωk , 〈T 0i〉 = 0 , p ≡ 1

3
〈T ii〉 =

1

6

∫
d3k

(2π)3

~k2

ωk
, (4.10)

where ωk =
√
~k2 +m2. 〈T µν〉 is proportional to ηµν if and only if ρ + p vanishes, but now this
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seems impossible: the integrals entering ρ and p are manifestly positive definite, so, how can there

be any cancellations? Then again, such integrals are UV divergent, so one should regulate them

properly before jumping to conclusions.

The UV regulator used should preserve Lorentz invariance. In particular, a hard cutoff in

momentum space will not do, because we have already performed the integral in k0, and so at this

point there is no way to introduce a hard cutoff compatible with Lorentz invariance (usually this

involves Wick-rotating the d4k integral to Euclidean space, and then imposing a 4D rotationally

invariant cutoff there.)

One possibility is to use dimensional regularization directly for our 3-dimensional integrals.

This is compatible with Lorentz invariance because it corresponds to formulating the original

theory (4.3) in d+ 1-dimensions, going through the manipulations (4.5)-(4.7) in d+ 1 dimensions,

and then performing the k0 integral explicitly to be left with d-dimensional integrals. We get:2

ρ =
1

2

∫
ddk

(2π)d
ωk = −md+1 Γ

(
− d+1

2

)
2(4π)

d+1
2

(4.11)

p =
1

2d

∫
ddk

(2π)d

~k2

ωk
= md+1 Γ

(
− d+1

2

)
2(4π)

d+1
2

(4.12)

(notice the 1
3
→ 1

d
replacement in the definition of p), in agreement with ρ+ p = 0.

Another possibility is to use a generalization of Pauli-Villars. Recall that, in the simplest case,

Pauli-Villars amounts to regulating a log-divergent loop integral by a modification of the Feynman

propagator of the form

G̃F (k) =
i

−k2 −m2 + iε
→ G̃PV

F (k) =
i

−k2 −m2 + iε
− i

−k2 −M2 + iε
, (4.13)

with M being a very large mass scale, in particular M � m. This improves the UV behavior of

2Here and for the rest of this chapter we avoid introducing the MS renormalization scale µ, which would be needed
to make our dim-reg formulae dimensionally correct. We do so for notational simplicity, to avoid clutter. If one wants
to reinstate µ in our formulae, one can do so just by dimensional analysis, interpreting our formulae as being expressed
in µ = 1 units.
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the integral without affecting the IR one:

G̃PV
F (k �M) ' G̃F (k) , G̃PV

F (k �M) ' −i(M
2 −m2)

k4
. (4.14)

This is manifestly a Lorentz invariant modification of the propagator. More importantly for our

applying these ideas to the framid case, such a modification corresponds to adding certain Lorentz-

invariant higher derivative terms to the Lagrangian, as clear from the exact rewriting (up to iε’s)

G̃PV
F (k) =

i

−M2+m2

M2−m2 · k2 − 1
M2−m2 · k4 − M2

M2−m2 ·m2
, (4.15)

or, keeping only the leading order inm/M ,

G̃PV
F (k) ' i

−k2 − k4/M2 −m2
. (4.16)

The introduction of the Pauli-Villars propagator is enough to regulate log-divergent integrals.

In our case, we have quartically divergent integrals, with subleading quadratic and log divergences

as well. It turns out that to cancel all these divergences, we need a three-fold modifications of the

Feynman propagator. That is, calling G̃F (k;M) the Feynman propagator for generic massM , we

want to perform the replacement

G̃F (k;m)→ G̃PV
F (k) = G̃F (k;m) +

3∑
a=1

ca G̃F (k;αaM) , (4.17)

where the c’s and α’s are suitable (order-one) coefficients, and M is a common very large mass

scale,M � m.

Since we need to improve the high energy behavior of our loop integrals by four powers of k

compared to the standard Pauli-Villars case of (4.14), we want our modified propagator to have the

high energy behavior

G̃PV
F (k �M) ∼ 1

k8
, (4.18)

78



which requires the αa’s to be all different, and the ca’s to be

ca =
∏
b6=a

α2
b − m2

M2

α2
b − α2

a

. (4.19)

By combining denominators as done above in (4.15), one can see that this still corresponds to

adding suitable higher-derivative Lorentz-invariant terms to the Lagrangian.

Our expressions for ρ and p in eq. (4.10) do not involve directly a Feynman propagator. However,

we have to remember that they came from integrating over k0 an expression involving theWightman

two-point function of φ. In our case, we must replace this with

G̃W (k;m)→ G̃PV
W (k) = G̃W (k;m) +

3∑
a=1

ca G̃W (k;αaM). (4.20)

Then, integrating again over k0, for ρ and p we simply get

ρ =
1

2

∫
d3k

(2π)3

[
ωk;m +

3∑
a=1

ca ωk;αaM

]
(4.21)

p =
1

6

∫
d3k

(2π)3
~k2

[
1

ωk;m

+
3∑

a=1

ca
1

ωk;αaM

]
, ωk;M ≡

√
~k2 +M2 . (4.22)

As expected, but still surprisingly enough, choosing the ca’s as in eq. (4.19) makes both of these

integrals finite, and, in fact, opposite to each other. Namely:

ρ = −p = f(α)M4 + g(α)m2M2 +
1

32π2
m4 log(m/M) + h(α)m4 , (4.23)

where f , g, and h are somewhat complicated functions of the α coefficients, whose explicit form

we spare the reader. On the other hand, the coefficient of m4 logm is finite (for M → ∞) and

α-independent, in agreement with standard renormalization theory: like all non-analyticities in

external momenta and mass parameters, it should be finite and calculable, that is, independent of

the regulator used. In fact, if we expand the dim-reg result (4.11) for d → 3, we get exactly the

same coefficient form4 logm.
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4.3 The framid stress-energy tensor

We have briefly laid out the theoretical setup for framids in section 1.3. Our goal now is

to check whether the stress-energy tensor resulting from this Lorentz-violating theory remains

Lorentz-invariant when including quantum corrections: 〈Tµν(x)〉 = −Λ ηµν . We know the off-

diagonal components of the stress-energy tensor respect this condition due to rotational invariance

of the ground state, hence our task reduces to proving that

〈T 00(x)〉+
1

3
〈T ii(x)〉 = 0 , (4.24)

where the spatial indices are implicitly summed over.

In order to compute the one-loop correction to 〈T µν(x)〉, we start from the full covariant theory

(1.6) and compute the canonical (Noether) stress-energy tensor,

T µν = − ∂L

∂(∂µAλ)
∂νAλ + gµνL

= M2
1

[
(c2
L − c2

T )∂νAµ∂λA
λ + c2

T∂
µAλ∂

νAλ + (c2
T − 1)Aµ∂νAλA

ρ∂ρA
λ
]

+ gµνL . (4.25)

We wish to introduce the framid Goldstones as in (1.5) and expand T µν up to quadratic order.

The diagonal components of (4.25) reduce to

T 00 = −L + ~̇η · ~̇η, (4.26)

T ii = 3L + c2
T∂i~η · ∂i~η + (c2

L − c2
T )(~∇ · ~η)2 . (4.27)

Not surprisingly, this is the same result we would have gotten by applying Noether’s theorem

directly to eq. (1.10): even though boosts are spontaneously broken, spacetime translations are not,

and so one can compute the associated Noether current using directly the ~η parametrization of the

action and having ~η transform in the usual way under translations, ~η → ~η − εµ∂µ~η.

We now performmanipulations similar to those of section 4.2. Dropping the terms proportional
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to the Lagrangian for the same reason as made explicit there, the ground-state expectation values

of the expressions above can be written as

ρ ≡ 〈T 00〉 = lim
y→x

∂tx∂ty〈~η(x) · ~η(y)〉 (4.28)

p ≡ 1

3
〈T ii〉 =

1

3
lim
y→x

[
c2
T ∂

i
x∂

i
y〈~η(x) · ~η(y)〉+ (c2

L − c2
T )∂ix∂

j
y〈ηi(x)ηj(y)〉

]
(4.29)

Decomposing ~η into longitudinal and transverse components, the energy density becomes

ρ =− lim
y→x

∂2
tx〈~ηL(x) · ~ηL(y) + ~ηT (x) · ~ηT (y)〉

=− lim
y→x

∂2
tx (GL(x− y) + 2GT (x− y))

=
1

2

∫
d3k

(2π)3
(ωL + 2ωT ) , (4.30)

where GL and GT are the (scalar) Wightman two-point functions for longitudinal and transverse

modes,

G̃L/T (ω,~k ) = θ(ω)(2π)δ(ω2 − ω2
L/T ) , (4.31)

and ωL and ωT are the corresponding energies, ωL/T = cL/T |~k|. The relative factor of two in (4.30)

comes from the fact that k̂ · k̂ = 1 and
∑

i δ
ii − k̂ik̂i = 2.

Similarly, the pressure can be rewritten as

p =
1

6

∫
d3k

(2π)3

(
c2
L
~k2

ωL
+ 2

c2
T
~k2

ωT

)
. (4.32)

These expressions for ρ and p are very simple generalizations of the corresponding ones in

section 4.2 for a generic massive scalar. However, as we did there, we first need to regularize them

before we can check whether ρ+ p vanishes. As we emphasized in section 4.1, the regulators used

should be consistent with the spontaneously broken Lorentz invariance.
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4.4 Pauli-Villars regularization

Let us first consider a suitable generalization of Pauli-Villars regularization. Given the technical

similarities between the derivation we just performed and that of section. 4.2, it’s clear that if we

are allowed to introduce independent Pauli-Villars modifications for the longitudinal and transverse

phonons’ propagators, taking into account their different speeds, then we get ρ + p = 0 for the

framid as well.

More explicitly, consider the longitudinal phonons’ contributions to ρ and p,

ρL ≡
1

2

∫
d3k

(2π)3
ωL , pL ≡

1

6

∫
d3k

(2π)3

c2
L
~k2

ωL
, (4.33)

with ωL = cL|~k|. Apart from the integration measure, ~k always appears here in the combination

cL|~k|. The same is true for the Wightman two-point function (4.31), where these expressions come

from, and for the associated Feynman propagator,

G̃L
F (ω,~k) =

i

ω2 − c2
L
~k 2 + iε

. (4.34)

So, upon changing the integration variable, ~k ′ = cL~k, we have

ρL =
1

c3
L

ρrel(0) , pL =
1

c3
L

prel(0) , (4.35)

where ρrel(m) and prel(m) are the relativistic expressions for the energy density and pressure of a

massive scalar of massm, eq. (4.10). Then, the same Pauli-Villars regularization that was applied

in section 4.2 can be applied here, yielding

ρL + pL = 0 . (4.36)

Mutatis mutandis, the same considerations can be applied to the transverse phonons’ contributions
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ρT and pT , yielding

ρT + pT = 0 . (4.37)

And so, combining the longitudinal and transverse sectors, ρ+ p = 0.

Notice however that the longitudinal and transverse Goldstones have different speeds in general,

and so the Pauli-Villars regularization procedure that we are advocating has to be different for the

two sectors. Namely, referring to the explicit analysis of section 4.2, whenever there is a k2 in a

propagator, when we deal with the longitudinal sector we have to replace that with −ω2 + c2
L
~k 2,

and when we deal with the transverse sector we have to replace that with −ω2 + c2
T
~k 2.

Recall that in standard relativistic cases, such as that studied in section 4.2, a Pauli-Villars

modification of the propagator can be thought of as coming directly from a suitable local higher-

derivative modification of the action. So, in our case the question is whether there is a local

and Lorentz-invariant higher-derivative modification of the framid’s action that corresponds to

independentPauli-Villarsmodifications of the longitudinal and transverse propagators of the desired

type. The requirements of locality and Lorentz-invariance are nontrivial—the former because the

longitudinal/transverse splitting of ~η is non-local, the latter because ~η transforms nonlinearly under

Lorentz boosts.

Let’s start with locality. The modifications of the Feynman propagators we are after, upon

combining denominators as explained in section. 4.2, take the form

G̃L,PV
F (ω,~k) =

i

−k2
L − 1

Λ2
1
k4
L − 1

Λ4
2
k6
L − 1

Λ6
3
k8
L

, k2
L ≡ −ω2 + c2

L
~k 2 , (4.38)

and similarly for the transverse propagator. The Λa’s are suitable combinations of the Pauli-Villars

pole masses. Importantly for what follows, they are the same for the longitudinal and transverse

propagators, as long as the pole masses are chosen to be the same for the two sectors. This can be

understood easily by thinking about the structure of the propagators at ~k = 0, in which case the

fact that the longitudinal and transverse propagation speeds are different does not matter.

Using the canonical normalization of (1.10), up to total derivatives these propagators correspond
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to the quadratic Lagrangian

L PV
2 =

1

2
~ηL ·

[
�L −

1

Λ2
1

�2
L +

1

Λ4
2

�3
L −

1

Λ6
3

�4
L

]
~ηL + (L→ T ) , (4.39)

where �L denotes the differential operator

�L ≡ −∂2
t + c2

L∇2 , (4.40)

and ‘(L → T )’ stands for a similar structure involving the transverse field ~ηT and its propagation

speed. Our question of locality is thus reduced to the question of whether this quadratic Lagrangian

can be written as a local quadratic Lagrangian for the full ~η field.

Notice that as long as at least one spatial laplacian acts on ηL or ηT , one can easily perform the

longitudinal/transverse decomposition in a local fashion: defining the local differential operator

matrix,

Dij = ∂i∂j , (4.41)

we simply have

∇2~ηL = D · ~η , ∇2~ηT = (∇2 −D) · ~η . (4.42)

Notice also that, in the quadratic action (4.39), it is enough that the ~η ’s on the right—those acted

upon by derivatives—be split into longitudinal and transverse. The undifferentiated ~η ’s on the left

can be replaced with the full ~η field, because, as usual, at quadratic order all longitudinal-transverse

mixings automatically vanish.

So, the only remaining question concerning locality is whether the terms in (4.39) with time-

derivatives only can be rewritten in a local fashion. However, the coefficients of such terms

are the same for the longitudinal and transverse sectors. This, upon using again the vanishing of

longitudinal-transverse mixings, allows us to combine these terms into purely time-derivative terms
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for the full ~η field:

L PV
2 ⊃ 1

2
~ηL ·

[
− ∂2

t −
1

Λ2
1

∂4
t −

1

Λ4
2

∂6
t −

1

Λ6
3

∂8
t

]
~ηL + (L→ T ) (4.43)

=
1

2
~η ·
[
− ∂2

t −
1

Λ2
1

∂4
t −

1

Λ4
2

∂6
t −

1

Λ6
3

∂8
t

]
~η (4.44)

So, in summary, a local rewriting of (4.39) involves the following building blocks:

~η · ∂2a
t (∇2)bDc · ~η , (4.45)

with different integer non-negative values for a, b, and c, up to a+b+c = 4, and suitable coefficients.

In particular, we can restrict to c = 0, 1, because D is proportional to a projector operator (its only

role is to isolate the longitudinal component of ~η ):

D ·D = ∇2 ·D . (4.46)

We can now ask whether these building blocks are compatible with the spontaneously broken

Lorentz invariance. In particular, we can ask whether there exist manifestly Lorentz-invariant

combinations of Aµ and ∂µ that, when expanded to quadratic order in the ~η fields, reduce precisely

to these building blocks.

It is quite easy to convince oneself that the answer is yes. To this end, it is convenient to

integrate by parts half of the derivatives in (4.45). Then, up to a possible sign, the building blocks

are (
(∂t)

a∂i1 . . . ∂ibη
k
)2

(c = 0) (4.47)

and (
(∂t)

a∂i1 . . . ∂ib(
~∇ · ~η )

)2
(c = 1) (4.48)
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Recalling that, to first order in ~η, Aµ is simply

A0 ' 1 , ~A ' ~η , (4.49)

we see that two simple Lorentz-invariant generalizations of (4.47) and (4.48) that reduce to them

to quadratic order in ~η are

(
(∂‖)a∂⊥µ1

. . . ∂⊥µbAν
)2

(c = 0) (4.50)

and (
(∂‖)a∂⊥µ1

. . . ∂⊥µb(∂νA
ν)
)2
, (c = 1) (4.51)

where ∂‖ and ∂⊥µ are defined as

∂‖ ≡ −Aα∂α , ∂⊥µ ≡ ∂µ + AµA
α∂α . (4.52)

In conclusion: there exist local Lorentz-invariant higher-derivative corrections to the framid

action that modify the ~η propagator in a Pauli-Villars fashion, with suitable independent modifica-

tions for the longitudinal and transverse modes, such that the Pauli-Villars analysis of section 4.2

can be separately applied to the two sectors, yielding ρ+ p = 0.

4.5 Dimensional regularization

Let’s now consider dimensional regularization. As for the relativistic case considered in

section 4.2, dimensional regularization of our spatial momentum integrals (4.30) and (4.32) is con-

sistent with Lorentz invariance. This is because we can think of it as corresponding to formulating

the original manifestly Lorentz-invariant theory for Aµ, eq. (1.6), in d + 1 spacetime dimensions,

and then going through all the subsequent steps that led us to (4.30) and (4.32) keeping d generic.

Were we to do so, we would end up with the same integrals (4.30) and (4.32), but in d rather than
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3 dimensions, and with a 1/2d rather than 1/6 prefactor for the pressure.

Now, since our effective theory does not feature mass parameters for the Goldstone fields, the

integrals (4.30) and (4.32) vanish in dimensional regularization. This is certainly consistent with

ρ+ p = 0, but in a trivial way. To run a nontrivial check, we need to deform our theory. We must

do so consistently with Lorentz invariance, of course. And so, in particular, mass parameters for

the Goldstones are not allowed.

A particularly physical way to deform the theory is to couple the framid to a massive field, in

all ways allowed by symmetry. For simplicity, let’s take this to be a scalar field, φ. If its mass is

below the cutoff of the effective theory (the M1 of section 4.3, up to suitable powers of cL/T ), φ

must be included in our computation. Assuming it has zero expectation value, for our one-loop

computation we are interested in all Lorentz-invariant combinations of Aµ and φ with up to two

derivatives and which, once expanded about the framid’s background configuration, yield quadratic

terms in the ~η and φ fields.

We find that there are only three interactions with these properties:

L ⊃ Aµ∂
µφ, AµAν∂

µ∂νφ, AµAν∂
µφ∂νφ . (4.53)

All other possibilities are either related to these through integration by parts or, when expanded

in the Goldstone fields to the desired order, yield terms that are total derivatives themselves, and

can thus be neglected. Adding the terms above to the framid action, and including also standard

kinetic and mass terms for φ, which are Lorentz-invariant by themselves, our effective Lagrangian

at quadratic order becomes

L2 → 1

2

[
~̇η 2 − c2

L (~∇ · ~ηL)2 − c2
T (∂iη

j
T )2 + φ̇2 − (~∇φ)2 −m2φ2

+ 2b1 φ ~∇ · ~ηL + 2b2 φ̇ ~∇ · ~ηL + b3 φ̇
2
]
, (4.54)

where the ba’s are generic coupling constants. Notice that the transverse components of the

Goldstone fields don’t mix with the massive scalar, since ~∇ · ~ηT = 0.
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The relevant components of the stress-energy tensor now read

T 00 = ~̇η 2 + b2 φ̇ ~∇ · ~ηL + (1 + b3)φ̇2, (4.55)

T ii = c2
L(~∇ · ~ηL)2 + c2

T ∂i~ηT · ∂i~ηT − b1φ ~∇ · ~ηL − b2φ̇ ~∇ · ~ηL + (~∇φ)2, (4.56)

where we have omitted terms proportional to the Lagrangian, since, as before, they do not contribute

to our expectation values.

Notice that, at this order, the transverse Goldstones ~ηT are completely decoupled from φ, both

at the level of the Lagrangian and as far as their contributions to the stress-energy tensor are

concerned. The systems is thus divided into two sectors: a transverse one, for which the presence

of φ is irrelevant, and which thus has vanishing energy density and pressure in dimensional

regularization,

ρT =

∫
ddk

(2π)d
cT |~k| = 0 , pT =

1

d

∫
ddk

(2π)d
cT |~k| = 0 , (4.57)

and a longitudinal one, consisting of ~ηL and φ, for which the computation of the energy and pressure

is, as we will now see, quite involved.

From now on, we will restrict to the longitudinal sector, which amounts to setting ~ηT to zero in

the formulae above. Also, for notational simplicity we will drop the subscript ‘L’ from ~ηL (but we

will remember that we are dealing with a longitudinal field.)

4.5.1 Analysis for b3

Consider first the case in which b1 and b2 are set to zero while b3 is nonzero. In that case, ~η

and φ are completely decoupled (at this order), and their contributions to ρ + p can be analyzed

separately. For ~η, there isn’t much to say: the relevant integrals for ρ and p vanish in dimensional

regularization, because they do not involve any mass scale—that is, they are integrals of pure

powers.

The situation is more interesting for φ. Its action is that of a massive scalar with a propagation

88



speed different from one,

S =

∫
d4x 1

2

[
φ̇2 − c2

φ(~∇φ)2 −M2
φφ

2
]
, c2

φ ≡
1

1 + b3

, Mφ ≡ cφm , (4.58)

where for convenience we redefined the normalization of φ by φ→ cφφ.

Applying to the purely φ parts of eqs. (4.55), (4.56) the same manipulations as in the case of a

relativistic scalar (see section. 4.2), we find that the integrals we should compute are

ρφ =
1

2

∫
ddk

(2π)d

√
c2
φ
~k2 +M2

φ , pφ = c2
φ ×

1

2d

∫
ddk

(2π)d

~k2√
c2
φ
~k2 +M2

φ

. (4.59)

Up to a redefinition of the integration variable, ~k = ~k ′/cφ, these are clearly the same integrals as

those of section 4.2. What’s perhaps surprising is that, after such a change of variables, the overall

powers of cφ we are left with are the same for ρφ and for pφ:

ρφ =
1

cdφ
ρrel(Mφ) , pφ =

1

cdφ
prel(Mφ) , (4.60)

where ρrel(m) and prel(m) are the energy density and pressure for a relativistic scalar of mass m,

eqs. (4.11) and (4.12). So, once again, we get

ρφ + pφ = 0 . (4.61)

This apparent accident is in fact a consequence of a formal (spurionic) invariance of the action

(4.58): if we rescale the spatial coordinates but not time, and compensate for this by a rescaling of

cφ and of φ,

~x→ λ~x , cφ → λ cφ , φ→ λ−3/2φ , (4.62)

the action does not change. As usual for spurion analyses, this informs how physical quantities can
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depend on cφ. In particular, we are interested in

ρφ = 〈T 00〉 , pφ = 1
d
〈T ii〉 , (4.63)

for a state that is invariant under translations. These expectation values are thus constant in ~x, and

so their transformation properties under rescalings of coordinates must be completely taken care of

by explicit powers of cφ. T 00 is a spatial density of energy. Since energy∼ time−1 does not change

under a rescaling of spatial coordinates, we must have

T 00 → 1

λd
T 00 ⇒ 〈T 00〉 ∝ 1

cdφ
. (4.64)

T ij is not the density of a conserved quantity. However, it is related to the momentum density T 0j

by the conservation equation

∂0T
0j + ∂iT

ij = 0 . (4.65)

The momentum density rescales as

T 0j → 1

λd+1
T 0j , (4.66)

because momentum itself is the inverse of a length, and so it must rescale as ~P → ~P/λ. Using

(4.65) and (4.66), we thus have

T ij → 1

λd
T ij ⇒ 〈T ij〉 ∝ 1

cdφ
(4.67)

We thus see that both ρφ and pφ depend on cφ exactly in the same way, in agreement with our

explicit result in (4.60).

In more intuitive terms, all of the above stems from the statement that, even if we abandon

natural units and we give independent units to mass (m), length (`), and time (t), energy density
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and pressure still have the same units3:

[ energy
volume

]
=

m

` · t2
,

[
pressure

]
=
[ force
surface

]
=

m

` · t2
. (4.68)

Their ratio is thus dimensionless, and must be the same in all unit systems. In particular if it is −1

in units such that cφ = 1, then it must be −1 even when cφ 6= 1.

The arguments above show that, as far as our check is concerned, we can consistently set b3 to

zero, even when we turn b1 and b2 back on. The reason is that we can work in units such that cφ = 1,

which corresponds to b3 = 0, and run our check in those units. Going from natural units (c = 1)

to cφ = 1 units certainly affects the values of the other parameters of the theory: cL, cT ,M1, b1, b2,

and m. However, since we are leaving these generic anyway, such a change has no repercussions

for our check4.

4.5.2 Analysis for b1 and b2

We may then switch off b3 and perform our computation for non-zero values of the mixing

coefficients b1 and b2. Combining eqs. (4.55) and (4.56), switching to a generic number of spatial

dimensions, 3→ d, and dropping again terms proportional to the quadratic Lagrangian, we obtain

the following expression for ρ+ p:

ρ+ p ≡ 〈T 00 +
1

d
T ii〉 =

d+ 1

d

(
~̇η 2 + φ̇2

)
− 1

d
m2φ2 +

1

d
b1 φ ~∇ · ~η +

d+ 1

d
b2 φ̇ ~∇ · ~η . (4.69)

3For instance, in SI units, 1 J/m3 = 1 kg/m s2 = 1 Pa.
4For more general questions, say computing ρ and p separately rather that just checking ρ + p = 0, one can still

first work in cφ = 1 units and then reinstate the dependence on cφ after the fact, by taking into account how the other
parameters change when we change units. For instance the parameter cL in cφ = 1 units becomes cL/cφ in any other
unit system.
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We can now perform the same manipulations as in section 4.2. We find:

ρ+ p =
1

d
lim
x→y

[
− (d+ 1)∂2

t 〈~η(x) · ~η(y)〉 − ((d+ 1)∂2
t +m2)〈φ(x)φ(y)〉

+ (b1 − (d+ 1)b2∂t)~∇ · 〈~η(x)φ(y)〉
]

=
1

d

∫
ddk

(2π)d
dω

2π

[
(d+ 1)ω2 G̃ηη

W (ω,~k ) + ((d+ 1)ω2 −m2) G̃φφ
W (ω,~k )

+ (ib1 − (d+ 1)b2 ω) |~k| G̃ηφ
W (ω,~k )

]
, (4.70)

where G̃ab
W is the matrix of Wightman two-point functions for the fields ψa = (η, φ) and, thanks to

the longitudinality of ~η, we were able to switch to a purely scalar notation,

~̃η(ω,~k ) ≡ k̂ η̃(ω,~k ) . (4.71)

As usual, from the quadratic Lagrangian we can easily compute the matrix of Feynman propa-

gators, G̃ab
F (ω,~k ). However, going from these to the Wightman two-point functions requires some

work. The general relationship, which we review in Appendix C, is

G̃ab
W (ω,~k ) =

∫
dω′

2π

[
i

ω − ω′ + iε
G̃ab
F (ω′, ~k )− i

ω − ω′ − iε
G̃ab ∗

F (−ω′,−~k )

]
(4.72)

=
∑
n

[
K−1(ω,~k )(ω − ωn)

]ab
(2π)δ(ω − ωn) , (4.73)

where K is the kinetic matrix appearing in the quadratic action,

S =
1

2

∫
d3k

(2π)3

dω

2π
ψ̃∗a(ω,~k )Kab(ω,~k )ψ̃b(ω,~k ) , (4.74)

and the ωn = ωn(~k ) are the positive-energy poles of the Feynman propagators.
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Using this in eq. (4.70) and performing the ω integral leaves us with

ρ+ p =
1

d

∑
n

∫
ddk

(2π)d

[
(d+ 1)ω2

nR
ηη
n (~k ) + ((d+ 1)ω2

n −m2)Rφφ
n (~k )

+ (ib1 − (d+ 1)b2 ωn) |~k|Rηφ
n (~k )

]
, (4.75)

where the R’s are the residues

Rab
n (~k ) = lim

ω→ωn

[
K−1(ω,~k )(ω − ωn)

]ab
. (4.76)

The positions of the poles can be computed for generic b1 and b2, and so can the associated

residues. However, the resulting expressions involve somewhat complicated double square root

structures, which makes it impossible for us to perform the final integral in ~k explicitly. To

circumvent this problem, we can consider the small b1, b2 limit, and expand to the first nontrivial

order in these couplings.

The kinetic matrix for η and φ associated with the quadratic Lagrangian (4.54) is

K =

 ω2 − c2
L
~k2 −(b2ω + ib1)|~k|

−(b2ω − ib1)|~k| ω2 − ~k2 −m2

 (4.77)

The poles of the Feynman propagators are the zeros of detK, which to quadratic order in b1, b2

read

ω1 ' cL|~k| −
|~k|
(
b2

1 + b2
2c

2
L
~k2
)

2cL
(
(1− c2

L)~k2 +m2
) ,

ω2 '
√
~k2 +m2 +

~k2
(
b2

1 + b2
2(~k2 +m2)

)
2
√
~k2 +m2

(
(1− c2

L)~k2 +m2
) . (4.78)

Upon inverting K, expanding the residues (4.76) also to quadratic order, and plugging these
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expansions into our expression for ρ+ p, eq. (4.75), we end up with

ρ+ p =
1

d

∑
A

CA

∫
ddk

(2π)d
|~k| αA(

(1− c2
L)~k2 +m2

)γA√~k2 +m2 βA , (4.79)

where the CA’s are suitable coefficients, and αA, βA, γA are powers that vary in combinations,

yielding in total eleven structurally distinct terms, as outlined in Table 4.1.

α β γ C

1 0 0 1
2
cL(d+ 1)

2 -1 0 1
2

0 1 0 d
2

6 -1 2 b22
4

(1− c2
L)(d+ 1)

4 -1 2 b21
4

(d− 1) +
b22
4
m2(3 + d(2− c2

L))

2 -1 2 b21
4
m2(d+ 2) +

b22
4
m4(d+ 2)

5 0 2 − b22
4
cL(1− c2

L)(d+ 1)

3 0 2 − b21
4cL

(1−c2
L)(d−1)− b22

4
cLm

2(d+3)

1 0 2 − b21
4cL
m2(d+ 1)

6 -3 2 − b21
4
c2
L(d− 1)

4 -3 2 − b21
4
c2
Lm

2d

Table 4.1: Coefficients CA for all the values of the powers αA, βA, γA that appear in (4.79).

Notice that the first three terms in Table 4.1 are the contributions one gets from the free theories

of the Goldstones and the massive scalar. Namely, the first term is

ρ+ p ⊃ 1

2

∫
ddk

(2π)d

(
cL|~k|+

1

d
cL|~k|

)
≡ ρL + pL, (4.80)

in agreement with equations (4.30) and (4.32) and, since it involves only pure powers of the

momentum, it integrates to zero in dimensional regularization. The second and third terms are the
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pressure and energy densities of the free massive scalar,

ρ+ p ⊃ 1

2

∫
ddk

(2π)d

(
1

d

~k2√
~k2 +m2

+

√
~k2 +m2

)
≡ pφ + ρφ , (4.81)

whose sum also equals zero, as was shown in section 4.2.

For the rest of the terms, we switch to polar coordinates and perform the integral in the radial

k-direction; the closed-form result for this type of integrals, dropping the coefficients CA, is

1

2
md+αj+βj−2γj

[
(1− c2

L)
−d−αj

2 Γ
(d+αj

2

)
Γ
(−d−αj+2γj

2

)
2F1

(d+αj
2
,−βj

2
;

2+d+αj−2γj
2

; 1
1−c2L

)
Γ(γj)

+
(1− c2

L)−γjΓ
(d+αj−2γj

2

)
Γ
(−d−αj−βj+2γj

2

)
2F1

(
γj,
−d−αj−βj+2γj

2
;

2−d−αj+2γj
2

; 1
1−c2L

)
Γ(−βj

2
)

]
,

(4.82)

where 2F1 is a hypergeometric function. For some structures in the integrand of equation (4.79),

the integration result takes much simpler forms; for instance the term with α = 5, β = 0, γ = 2

yields

∫
ddk

(2π)d
|~k|5(

(1− c2
L)~k2 +m2

)2 = −π
4
m1+d(1− c2

L)
−d−5

2 (3 + d) sec
(dπ

2

)
. (4.83)

Other structures, particularly when β 6= 0, integrate to totally nontrivial combinations of hyperge-

ometric, Gamma, and trigonometric functions, as seen in the generalized form in (4.82), and so

displaying them here wouldn’t provide much intuition.

It is miraculous to see that all these terms, when summed, cancel exactly with each other,

despite the highly complicated structures and combinations of coefficients involved. What’s also

interesting, is that we don’t need to specify a number of spatial dimensions to obtain the final

answer. That is, for any d, we find:

ρ+ p = 0 . (4.84)
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4.6 Superfluid check

As a check of our methods and computational tools, we now look at the case of a superfluid, for

which we know that the stress-energy tensor does not have a Lorentz invariant expectation value. In

particular, we want to make sure that the mysterious cancellations that yield ρ+p = 0 in the framid

case are not a result of potential nuances of the computation. For a superfluid, 〈Tµν(x)〉 6= −Λ ηµν

already at tree level, and so an analogous computation should yield a nonzero result.

The simplest implementation of a superfluid EFT involves a single scalar field ψ(x) with a

shift symmetry, ψ → ψ + const, and a time-dependent vev, 〈ψ(x)〉 = µt [20, 60, 61], where

µ is the chemical potential. The superfluid phonon field, π(x), parametrizes fluctuations around

this background, ψ(x) ≡ µt + π(x). To lowest order in derivatives, the most general low-energy

effective action is

S =

∫
d4xP (X), X ≡ −∂µψ∂µψ, (4.85)

where P (X) is a generic function, in one-to-one correspondence with the superfluid’s equation of

state 5. Upon expanding to quadratic order in the phononfield and choosing canonical normalization,

one gets

S → 1

2

∫
d4x

[
π̇2 − c2

s(~∇π)2
]
, (4.86)

with the sound speed given in terms of derivatives of the Lagrangian,

c2
s =

P ′(X)

P ′(X) + 2XP ′′(X)
. (4.87)

Similarly to the framid case, in order to run a nontrivial check in dimensional regularization we

couple the superfluid to a massive scalar φ . We look for all possible shift-symmetric, Lorentz-

invariant couplings that, when expanded in the superfluid phonons π(x), yield quadratic terms in

π and φ, with at most two derivatives acting on them. Since X = µ2 + 2µπ̇ + π̇2 − (~∇π)2, the

5Namely, the function P relates the pressure to the chemical potential: p = P (µ2).
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couplings that produce Lorentz-violating structures are:

f1(X)φ → π̇φ

f2(X)∂µψ∂
µφ → π̇φ̇, ~∇π · ~∇φ

f3(X)∂µψ∂νψ∂
µφ∂νφ→ φ̇2 .

For simplicity, we focus only on the first type of coupling, which introduces a π̇φ term in the

quadratic Lagrangian. Moreover, we choose the simplest possible form for f1, that is f1(X) = X .

Finally, we work in the c2
s = 1 limit (which implies P ′′(X) = 0). These choices give us the

opportunity to compare our result directly to an independent path-integral calculation [59].

So, in summary, we start from

L = P (X) +Xφ− 1

2
∂µφ∂

µφ− 1

2
m2φ2, (4.88)

whose stress-energy tensor is

T µν = 2P ′(X)∂µψ∂νψ + 2∂µψ∂νψφ+ ∂µφ∂νφ, (4.89)

omitting, as before, terms proportional to the Lagrangian. Expanding to quadratic order and

canonically normalizing π, we get

L ' 1

2

[
π̇2 − (~∇π)2 + 4b π̇φ+ ∂µφ∂

µφ−m2φ2
]
, (4.90)

and

T 00 ' π̇2 + φ̇2 + 4b π̇φ , T ii ' (~∇π)2 + (~∇φ)2 , (4.91)

where the spatial indices are summed over and b ≡ µ/
√

2P ′(µ2) 6.

6Notice that the expressions (4.91) can be obtained by applying Noether’s theorem directly to the quadratic
Lagrangian (4.90), but only if one takes into account that π transforms nonlinearly under time-translations, since these
are spontaneously broken by the background ψ = µt. This is related to the statement that the superfluid’s ground state
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Performing manipulations similar to those of the framid case, we rearrange some terms and

obtain

T 00 +
1

d
T ii =

d+ 1

d
(π̇2 + φ̇2)− 1

d
m2φ2 + 4

d+ 1

d
b π̇φ− 2

d
L , (4.92)

whose expectation value is given by

ρ+ p ≡ 〈T 00 +
1

d
T ii〉 =

1

d

∫
ddk

(2π)d
dω

2π

[
(d+ 1)ω2

(
G̃ππ
W (ω,~k ) + G̃φφ

W (ω,~k )
)
−m2G̃φφ

W (ω,~k )

− 4i(d+ 1)ωb G̃πφ
W (ω,~k )

]
. (4.93)

Like before, we expand the Feynman propagators and their poles for small values of the coupling

constant b, and then construct the Wightman two-point functions. As expected, all expressions take

simpler forms in this case. Namely, the (positive-frequency) poles are

ω1 '
√
~k2 +m2 +

2b2

m2

√
~k2 +m2 ,

ω2 ' |~k| −
2b2

m2
|~k| , (4.94)

and the corresponding residues are

Rππ
1 (~k ) ' 2b2

m4

√
~k2 +m2 , Rππ

2 (~k ) '

[
1

2|~k|
− b2(2~k2 +m2)

m4|~k|

]
,

Rφφ
1 (~k ) '

[
1

2
√
~k2 +m2

− b2(2~k2 +m2)

m4
√
~k2 +m2

]
, Rφφ

2 (~k ) ' 2b2

m4
|~k| ,

Rπφ
1 (~k ) ' −i b

m2
, Rπφ

2 (~k ) ' i
b

m2
. (4.95)

is an eigenstate ofH − µQ, but not ofH , withH =
∫
d3xT 00 being the Hamiltonian, and Q =

∫
d3xJ0 the charge.
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Putting everything together, the integral in question eventually becomes

ρ+ p =
b2

dm2

∫
ddk

(2π)d

~k2 − d(~k2 +m2)√
~k2 +m2

(4.96)

= − b2m2

4π2(d+ 1)

(
m2

4π

)(d−3)/2

Γ

(
1− d

2

)
, (4.97)

which is different from zero, as expected.

We now come to the result of the independent computation alluded to above. As a possible

UV completion of a superfluid EFT, one can consider a massive complex scalar Φ with quartic

interactions. Putting the system at finite chemical potential, one ends up with a superfluid, with our

field ψ being associated with the phase of Φ. On the other hand, the radial mode of Φ is massive,

and can thus be thought of as our massive scalar φ. For this system, one can explicitly compute first

the associated P (X) at tree level, and then the one-loop quantum corrections to it, in the form of the

quantum effective action Γ[ψ] [59]. (To lowest order in derivatives, this can be done via functional

methods akin to those normally used to compute a Coleman-Weinberg effective potential [14, 62].)

Applying Noether’s theorem to Γ[ψ], one obtains directly the one-loop expectation value of T µν ,

which, for ρ+ p, matches exactly the result above [59].

4.7 Summary and discussion

We close with a few remarks:

1. Our work is about Lorentz-invariance in a system that spontaneously breaks it–that is, in a

system in which such a symmetry is not manifest. So, one must be particularly careful in

unveiling possible sources of Lorentz breaking coming from the way one does computations.

We already discussed at length how to address UV divergences in a way that is compatible

with Lorentz invariance. Another subtlety one needs to address is the Lorentz invariance of

the path-integral measure. Even though we did not use path integrals for our computations,

canonical quantization of the Goldstones’ effective theory is equivalent to path-integral
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quantization with the measure

D~η ≡
∏
x

d3η(x) . (4.98)

This is not Lorentz invariant, because the ~η fields transform non-linearly under boosts 7. As

usual, this should not matter as long as one uses dimensional regularization, but with other

regulators it might matter. We investigate the issue in Appendix E. The conclusion is that this

subtlety does not matter: (i ) for our quantity (〈T µν〉), to the order we are doing computations

(one loop), regardless of the regulator used; or (ii ) for any quantity, to any order, if one uses

dimensional regularization. We were thus justified to neglect it.

2. We have been emphasizing, puzzling over, and checking the fact that our expectation value

〈T µν〉 ∝ ηµν is Lorentz-invariant. However, as we hope the discussion in section 4.5.1 has

made clear, such an expectation value is in fact compatible with any Lorentz invariance, that

is, it is invariant under generalized boosts with an arbitrary speed-of-light parameter c. This

is because 〈T 00〉 (energy density) and 〈T ij〉 (pressure, or stresses) always have the same units,

and so a statement like 〈T µν〉 ∝ ηµν = diag(−1, 1, 1, 1) is independent of the units used.

And so, in particular, it is independent of the value of c. We find this to be an interesting twist.

It could have important conceptual implications, or it could just be a technical curiosity.

3. Besides the framid, there are other cases in which the expectation value of T µν is more

symmetric than the ground state 8. For instance, for a superfluid time-translations are sponta-

neously broken, but the expectation value in question is invariant under them (see section 4.6).

However, in that case such a symmetry property can be explained by standard selection rules:

the ground state spontaneously breaks time translations (H) and a U(1) symmetry (Q) down

to a linear combination thereof (H − µQ) [61]. Expectation values and more in general

correlation functions should only be invariant under the unbroken combination. However,

for operators that are neutral under the U(1) symmetry, this automatically translates into

7Equivalently, one can phrase the problem directly in the canonical formalism [6]. See for instance ref. [63] for an
analysis of the same issue for the chiral Lagrangian.

8We thank Lam Hui for bringing this up.
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invariance under time-translations. T µν is one such operator, and so its expectation value is

invariant under time translations, even though the ground state is not. We do not see any

mechanism like this at play in the framid case.

What is the general lesson of our analysis? Are there implications for the cosmological constant

problem? In general terms, our analysis exhibits an explicit example of a quantum system in which

a certain expectation value is invariant under a symmetry even though there are no selection rules

(including those of remark 3 above) enforcing this. In order to find a potential application of this

phenomenon to the cosmological constant problem, we think one should start by making progress

in two directions. The first is to understand how general this phenomenon is: are there other

examples, and what are their common features—for instance, do they all require a spontaneous

breaking of Lorentz invariance? The second is to find a structure, a pattern in our one-loop check:

the cancellations that lead to ρ + p = 0 for the framid, especially those of section 4.5.2, are

absolutely nontrivial. It is hard to believe that they are not enforced by a hidden structure in the

computation. Perhaps there is a better way of organizing the computation that would make such a

structure manifest. We plan to explore these questions in the near future.
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Chapter 5: Scalar-tensor mixing from icosahedral inflation

5.1 A discrete but dense rotational group

As promised in section 1.3.2, we will now look into the details of icosahedral inflation. To

summarize again the main idea of this chapter, icosahedral inflation can be thought of as a model

where inflation is driven by a peculiar solid with icosahedral symmetry – a discrete subgroup

of 3D rotations (SO(3)). In principle, the background cosmological evolution and all correlation

functions for perturbations must be invariant under such discrete rotations, but not necessarily under

generic continuous rotations. However, icosahedral rotations are so ‘dense’ (in a colloquial sense)

in SO(3), that the background evolution and the scalar two-point function at long distances happen

to be accidentally isotropic [27]. Beyond these two observables, full isotropy is lost, and one can

check explicitely that already the scalar three-point function and the tensor two-point function are

generically anisotropic. In particular, the scalar three-point function can be maximally anisotropic

[27], i.e., can have vanishing overlap with all isotropic templates used in data analyses, and the

tensor power spectrum can have nonzero mixed correlators between the two helicities [64].

How do we lock down that the symmetry we want is the icosahedral symmetry? The argument

is as follows. We would like to find a discrete subgroup of SO(3), so that the theory is intrinsically

anisotropic. However, to be consistent with our observations, this symmetry has to guarantee

the isotropy of the background evolution (or the stress-energy tensor T µν) and the scalar power

spectrum, so that we do not rule out our theory right away by comparing with observations. We

therefore first need T ij to be isotropic. But the constraint we have at hand is that T ij is invariant

under the discrete symmetry we are imposing onto the system. Second, consider the quadratic
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terms in the phonon’s Lagrangian,

L2 = Aijπ̇
iπ̇j +Bijlm∂

iπj∂lπm , (5.1)

which determines the scalar power spectrum. An isotropic scalar power spectrum then amounts to

isotropic Aij and Bijlm, solely as a result of them being invariant under the discrete subgroup we

have in mind. We now have the criterion for the subgroup we are looking for: any two-index or

four-index tensor that is invariant under this subgroup has to be isotropic. This condition can be

tested against all possible discrete subgroups of SO(3), and one can show that the only group that

passes the test is the icosahedral group [27]. However, at the six-index level, tensors can start to be

anisotropic, giving rise to terms that give non-zero anisotropic contributions to bispectra and the

tensor power spectrum.

In the rest of this chapter, we study the mixed scalar-tensor two-point function in icosahedral

inflation. Such amixed correlator vanishes to the lowest order in the derivative expansion. However,

it is generically there once higher derivative corrections are taken into account. This makes

it suppressed within the regime of validity of the derivative expansion, which is the relevant

perturbative expansion for an effective field theory like ours. As a result, it is much smaller than

the scalar spectrum. Still, since the tensor spectrum is also suppressed compared to the scalar one,

there is a consistent choice of parameters that makes the scalar-tensor mixing more important than

the tensor spectrum itself. Schematically,

〈ζγ〉
〈ζζ〉

∼ ∆c2
ζγ ,

〈γγ〉
〈ζζ〉

∼ εc5
L , (5.2)

where ∆c2
ζγ is a small dimensionless mixing parameter, ε = −Ḣ/H2 is the usual slow-roll

parameter, and cL is the propagation speed of scalar perturbations—which at short distances just

reduce to longitudinal phonons, hence the ‘L’. One sees immediately that for εc5
L � ∆c2

ζγ , the

mixed scalar-tensor correlator is bigger than the tensor spectrum.
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5.2 The mixed scalar-tensor two-point function

In solid inflation, cosmological perturbations can be classified in terms of tensors (γij), vec-

tors/transverse phonons (~πT ), and scalars/longitudinal phonons (πL) [24]. At the two-derivative

level, after solving the constraints one finds the quadratic action

S(2) = Sγ + SL + ST , (5.3)

with [24]

Sγ = 1
4
M2

Pl

∫
dt d3x a3

[
1
2
γ̇2
ij − 1

2a2

(
∂mγij

)2
+ 2Ḣc2

T γ
2
ij

]
(5.4)

ST = M2
Pl

∫
dt

∫
~k

a3

[
k2/4

1− k2/4a2Ḣ

∣∣π̇iT ∣∣2 + Ḣc2
T k

2
∣∣πiT ∣∣2] (5.5)

SL = M2
Pl

∫
dt

∫
~k

a3

[
k2/3

1− k2/3a2Ḣ

∣∣π̇L − (Ḣ/H)πL
∣∣2 + Ḣc2

L k
2
∣∣πL∣∣2] . (5.6)

For icosahedral inflation, since the background does not have full SO(3) symmetry, one expects

quadratic mixings among these different polarizations—neither spin nor helicity are good quantum

numbers. However, as pointed out already in [27, 64], such an effect is invisible to lowest order in

the derivative expansion. On the other hand, if one takes into account higher derivative corrections,

it is easy to write down mixing terms that are consistent with icosahedral symmetry. Ref. [64]

considered the leading anisotropy effects for the tensor spectrum, which include a mixed correlator

for helicities +2 and −2. Here we do the same for the scalar-tensor two-point function.

In a derivative expansion, the first icosahedral-invariant bilinear term we can write down that

mixes scalars (and vectors) with tensors is

Smix = −M2
Pl

∫
dtd3x a∆c2

γζ T
ijklmn
6 ∂iπj∂k∂lγmn . (5.7)

Here, ∆c2
γζ is a free dimensionless parameter—which we expect to depend slowly on time, but

which we can take as constant to zeroth-order in the slow-roll expansion—and T6 is the unique
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(up to normalization) spin-6 icosahedral invariant tensor [64]. As we show in Appendix F, the

single power of a(t) is consistent with the near scale-invariance of the solid driving inflation,

which is ultimately related to the slow-roll expansion [24]. There, we also show that, to this

order in derivatives, associated with (5.7) there are no extra scalar-tensor mixings involving N

or N i. Finally, in the spirit of the derivative expansion and according to standard EFT logic, we

need higher-derivative corrections to yield small effects at the scales of interest, that is, for typical

frequencies of order H . This requires ∆c2
γζ to be generically ‘small’; how small will be made

clear in section 5.4. The mixing term above can come from non-minimal couplings between our

solid and the Riemann tensor, e.g. of the form (Rµνρσ∂µφ
I∂νφ

J∂ρφ
K∂σφ

L)3 with suitable index

contractions. We show this in Appendix F.

The fact that, within the regime of validity of the EFT, the term above can only yield small effects

allows us to treat it in perturbation theory. Decomposing the phonon field into its longitudinal and

transverse parts,

πj =
∂j√
−∇2

πL + πjT ,
~∇ · ~πT = 0 , (5.8)

and keeping only the longitudinal one, the mixing term above becomes

Smix = −M2
Pl

∫
dτd3k

(2π)3
a2∆c2

ζγ T
ijklmn
6 kik̂jkkkl πL(~k, τ)γmn(−~k, τ) , (5.9)

where we switched to Fourier space and conformal time. It is customary to parametrize scalar

perturbations in terms of the variable ζ , which for solid inflation is related to πL by ζ = −k πL/3

[24]. Following standard cosmological perturbation theory [65], to first order in ∆c2
ζγ the mixed

two-point function we are after thus is

〈ζ(~k, τ) γs(~q, τ)〉 = −i
∫ τ

−∞
dτ ′〈Ω(−∞)|[ζ(~k, τ)γs(~q, τ), Hint(τ

′)]|Ω(−∞)〉 , (5.10)
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where s = ± is either of the two tensor polarizations,

γij(~k, τ) =
∑
s=±

γs(~k, τ) εsij(
~k) ,

(
εsii = kiε

s
ij = 0 , εsijε

s′∗
ij = 2δss

′)
, (5.11)

and the interaction Hamiltonian is

Hint(τ
′) = −3M2

Pl

∫
dτ ′d3k′

(2π)3
a2 ∆c2

ζγ T
ijklmn
6 k̂′ik̂

′
j k̂
′
kk̂
′
l k
′2ζ(~k′, τ ′)γmn(−~k′, τ ′) (5.12)

Writing our fields as usual as

γs(~k, τ) = γcl(k, τ) as(~k) + γ∗cl(k, τ) as†(−~k) (5.13)

ζ(~k, t) = ζcl(~k, t) b(~k) + ζ∗cl(
~k, t) b†(−~k) , (5.14)

and using the relevant mode functions to lowest order in slow roll [24],

γcl(k, τ) =
1

MPla

e−ikτ√
k

(
1− i

kτ

)
(5.15)

ζcl(k, τ) = − 1

MPla

√
cL
4εk

e−ikcLτ
( i

c2
L

+
1

c3
Lkτ

+
k

3aHcL

)
, (5.16)

after some straightforward (but tedious) algebra we get

〈ζγs〉′ ≡ 〈ζ(~k, τ) γs(~q, τ)〉
(2π)3δ3(~k + ~q)

=
∆c2

ζγ

εM2
Pl

T ijklmn6 k̂ik̂j k̂kk̂l ε
s
mn(~k)× I(τ) , (5.17)

where

I(τ) ≡ 3

2

cL
a2

[( 1

c2
L

− 1

k2c3
Lτ

2
+

1

3cL

) c2
L + 5cL + 3

3kc2
L(1 + cL)2

+
( 1

kc2
Lτ

+
1

kc3
Lτ

+
k

3aHcL

)( 1

k2c3
Lτ
− τ

3cL(1 + cL)

)]
. (5.18)

For late times, kτ → 0−, our two-point function becomes time independent and scale invariant,
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and reduces to

〈ζγs〉′ = 3

2

2c3
L + 4c2

L + 6cL + 3

(1 + cL)2
· T ijklmn6 k̂ik̂j k̂kk̂l ε

s
mn(~k) ·

∆c2
ζγ

εc5
L

H2

M2
Plk

3
(5.19)

Dropping order-one numerical factors,

〈ζγ〉′ ∼
∆c2

ζγ

εc5
L

H2

M2
Plk

3
∼

∆c2
ζγ

εc5
L

〈γγ〉′ , (5.20)

consistently with the estimate in [64], which was derived for cL ∼ 1. Recalling that for solid

inflation models the tensor-to-scalar ratio is roughly r ∼ εc5
L [24], we see that for ∆c2

ζγ � r the

mixed correlator we computed is much bigger than the tensor spectrum itself. As we will see in

section 5.4, such a possibility is still within the regime of validity of the effective theory and of a

perturbative expansion in ∆c2
ζγ .

5.3 Visualizing the two-point function

The two-point function (5.19) depends on the orientation of ~k relative to the underlying icosa-

hedral geometry, through the factor

M ζs(~k) ≡ T ijklmn6 k̂ik̂j k̂kk̂l ε
s
mn(~k) (5.21)

(we are using a notation consistent with that of [64], to facilitate comparison.) As discussed at

length in [64], the phase of the polarization tensor εsmn(~k) is arbitrary, and, as a function of the

direction of ~k, necessarily involves singularities. This makes decomposing M ζs(~k) in spherical

harmonics or plotting its angular dependence not particularly informative.

One possible way out is to consider the squared absolute value ofM ζs(~k), so that the ambiguous
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and singular phases cancel. Using the results of [64],

|M ζ+|2 = |M ζ−|2 = 1
2

∑
s=±1

|M sζ |2

= 1
2
T ijklmn6 T opqrst6 k̂ik̂j k̂kk̂lk̂ok̂pk̂qk̂r

∑
s=±1

εsmn(~k)εs ∗st (~k)

= 1
2
T ijklmn6 T opqrst6 k̂ik̂j k̂kk̂lk̂ok̂pk̂qk̂r(PmsPnt + PmtPns − PmnPst) , (5.22)

where Pij is the transverse projector,

Pij(k̂) ≡ δij − k̂ik̂j . (5.23)

Following [64], we expect |M ζs|2 to contain spherical harmonics with ` = 0, 6, 10, 12 only.

Indeed, with the help of Mathematica we find

|M ζs|2 = 1
2

∑
`m

C`mY
m
` (θ, φ) , (5.24)

with the only nonzero C`m being

` = 0: C0,0 = 1024
√
π

3003
(γ + 1) (5.25)

` = 6: C6,±6 = −
√

5
11
C6,±2 = 32

323

√
11π
273

(γ + 2)

C6,±4 = −
√

7
2
C6,0 = −352

969

√
2π
91

(γ + 1) (5.26)

` = 10: C10,±10 = −
√

255
19
C10,±6 = −

√
255
494

C10,±2 = −20
23

√
21π

46189
(3γ + 1)

C10,±8 = 1
2

√
17
3
C10,±4 = −

√
187
130

C10,0 = −20
23

√
70π
7293

(γ + 1) (5.27)

` = 12: C12,±12 = 5
√

69
154

C12,±8 = 15
17

√
437
187

C12,±4 = 5
58

√
5681
119

C12,0 = 45
2

√
π

676039
(γ + 1)

C12,±10 = −1
5

√
209
21
C12,±6 =

√
209
34
C12,±2 = 33

23

√
3π

29393
(3γ + 1) , (5.28)

where γ is the golden ratio.

In Figure 5.1 we plot the angular dependence of |Mζγ|, alongside the underlying icosahedral
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structure. Clearly, the signal is concentrated around directions pointing towards the edges of the

icosahedron.

(a) |Mζγ | overlapping with our icosahedron (b) |Mζγ | standing alone

Figure 5.1: Angular plot of |Mζγ|.

Another way to get rid of the ambiguous phases is to consider directly the two-point function

〈ζγij〉, because the full γij field—eq. (5.11)—is unambiguous. Using the results above and the

tracelessness of T6, we get

〈ζγij〉 ∝
∑
s=±1

M ζsεsij(−~k)

= T klmnop6 k̂kk̂lk̂mk̂n
∑
s=±1

εsop(
~k)εs ∗ij (~k)

= (PoiPpj + PojPpi − PopPij)T klmnop6 k̂kk̂lk̂mk̂n

=
[
2T klmnij6 − 2(T klmnip6 k̂pk̂j + T klmnjp6 k̂ik̂p) + T klmnop6 k̂ok̂p(δij + k̂ik̂j)

]
k̂kk̂lk̂mk̂n .

(5.29)

This however is a transverse traceless two-index tensor (because γij is), and so it is difficult to

visualize its angular dependence: we cannot trace it or contract it with k̂’s to construct a scalar

angular function.
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5.4 Non-perturbative check

As a check of our results of section 5.2, we now try to calculate the same two-point function in a

non-perturbative way. We will be able do so only in a specific kinematical regime, which however

will still allow us to perform a nontrivial check.

Eventually we will still expand our result to linear order in ∆c2
ζγ , so, we can focus from the

start on a two-field system made up of the scalar perturbations and either polarization of the tensor

ones, because at linear order there cannot be interference among different sources of mixing. In

particular, we can safely neglect the tensor-tensor mixing of ref. [64]. Moreover, it turns out that,

because of the time-dependence of a(τ), even this simple two-field system cannot be diagonalized

for generic momenta (or generic times). We show this in Appendix G. So, here we focus on

modes well inside the sound horizon, cLk/aH � 1, for which the time-dependence of a(τ) can be

neglected.

With these qualifications in mind, to lowest order in slow-roll the quadratic action we need is

(see eqs. (5.4), (5.6), (5.9))

Sγ + SL + Smix → 1
2
M2

Pla
2

∫
dτd3k

(2π)3

[
1
2

(
|γ′s|2 − k2|γs|2

)
+ 2εa2H2(|π′L|2 − c2

Lk
2|πL|2)

−∆c2
ζγk

3
(
M ζs π∗Lγ

s + c.c.
)]

(cLk/aH � 1) , (5.30)

where s is either + or −,M ζs is defined in (5.21), and all the fields and coefficients are evaluated

at (~k, τ). Neglecting the time-dependence of all the coefficients—including a—we can go to

frequency space and rewrite this conveniently in a compact form as

∫
dωd3k

(2π)4
ψ† ·K · ψ , (5.31)
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where

ψ ≡

γs
πL

 , K ≡ 1
2
M2

Pla
2

 1
2
(ω2 − k2) −1

2
∆c2

ζγk
3M ζs∗

−1
2
∆c2

ζγk
3M ζs 2εa2H2(ω2 − c2

Lk
2)

 , (5.32)

and all the fields are now evaluated at (~k, ω).

To compute the equal-time two-point function we are interested in well inside the sound horizon,

we can now simply invert the matrix K, insert the iε’s appropriate for the Feynman prescription

for the poles, and take the integral over ω through standard residue methods. The reason this

procedure is correct in our limit is that in general it gives the ground state’s T -ordered correlation

functions for a quantum system with a time-independent Hamiltonian; in our case, T -ordering does

not matter, because our fields commute at equal time; moreover, in our inside-the-sound-horizon

limit the time-dependence of the perturbations’ Hamiltonian is negligible, and the Bunch-Davies

ground state is equivalent to the flat-space one.

Then, the Fourier-space Feynman propagator of ψ is schematically

〈ψψ†〉ω,~k = i(K + iε)−1 (2π)4δ4 , (5.33)

and so the equal-time two-point function we are interested in is

〈πLγs〉′~k,τ =

∫
dω

(2π)
i(K + iε)−1

12

=
∆c2

ζγ

a2M2
Pl

k3M ζs

∫
dω

(2π)

i

εa2H2(ω2 − k2 + iε)(ω2 − c2
Lk

2 + iε)− 1
4
∆c2

ζγ|M ζs|2k6

' −
∆c2

ζγ

2εH2a4M2
Pl

M ζs 1

cL(1 + cL)
, (5.34)

where in the last step we restricted to the first order in ∆c2
ζγ . Recalling that ζ is related to πL by

ζ = −kπL/3, we see that this result matches precisely our previous one, eq. (5.17), in the high

k/early times limit, cLk|τ | � 1.

This computation also makes it clear how small ∆c2
ζγ should be for a perturbative analysis to
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be applicable: the ω integral above is dominated by poles with ω ' ±k and ω ' ±cLk. The

scalar-tensor mixing shifts these, respectively, by

∆ω

ω
'

(∆c2
ζγ)

2|M ζs|2

8(1− c2
L)

k2

εa2H2
,

∆ω

ω
' −

(∆c2
ζγ)

2|M ζs|2

8c2
L(1− c2

L)

k2

εa2H2
. (5.35)

For these relative shifts to be small up to physical momenta k/a much bigger than H , we need

∆c2
ζγ � cL

√
ε , (5.36)

where we used thatM ζs and (1− c2
L) are both of order one (in solid inflation models, c2

L has to be

smaller than 1/3 [24]).

5.5 Imprints on CMB Anisotropies

We now turn our attention to the effects of a scalar-tensor mixing on CMB anisotropies. In more

standard cases, where the inflationary theory has both rotational and parity symmetry, a mixing

between the so-called E and B modes is forbidden due to symmetry arguments. More precisely,

following the convention in [66],

〈a∗T,lmaT,l′m′〉 =CTT,l δl,l′ δm,m′

〈a∗T,lmaE,l′m′〉 =CTE,l δl,l′ δm,m′

〈a∗E,lmaE,l′m′〉 =CEE,l δl,l′ δm,m′

〈a∗B,lmaB,l′m′〉 =CBB,l δl,l′ δm,m′

〈a∗T,lmaB,l′m′〉 =0

〈a∗E,lmaB,l′m′〉 =0 .
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In particular, the T -B and E-B correlators vanish because under a parity transformation one has

aT,lm → (−1)l aT,lm , aE,lm → (−1)l aE,lm , aB,lm → −(−1)l aB,lm . (5.37)

Therefore, when l = l′, such correlators are forbidden because of parity, while for l 6= l′, they are

forbidden because of rotations.

However, in our case there is no full rotational symmetry, hence modes of different l’s can mix.

As a result, one can generically expect nonzero 〈a∗T,lmaB,l′m′〉 and 〈a∗E,lmaB,l′m′〉 correlators when

l = l′ ± n for odd n (even n’s are still forbidden by parity, which is a symmetry of our theory). A

similar argument has been presented in [67] for pseudoscalar inflation. Adapting the notation of

[67] and [68],

a
(s)
T/E,lm =4π(−i)l

∫
d3k

(2π)3
T (s)
T/E,l(k) ζ~k Y

∗
lm(k̂) (5.38)

a
(t)
T/E,lm =4π(−i)l

∫
d3k

(2π)3
T (t)
T/E,l(k)

[
γ

(+2)
~k −2 Y

∗
lm(k̂) + γ

(−2)
~k 2 Y

∗
l m(k̂)

]
(5.39)

a
(t)
B,lm =4π(−i)l

∫
d3k

(2π)3
T (t)
B,l (k)

[
γ

(+2)
~k −2 Y

∗
lm(k̂)− γ(−2)

~k 2 Y
∗
l m(k̂)

]
(5.40)

Here we use s and t to label contributions from scalar and tensor modes, T (s/t)
T/E/B,l(k) is the

corresponding radiation transfer function (see, e.g., [68] for their explicit forms), and ±2Ylm is

the spin-weighted spherical harmonics of spin ±2. The transfer functions depend only on the

cosmology after inflation, and are thus independent of our inflationary model. Inflation enters the

correlation functions above only through ζ and γ, evaluated at the end of inflation. (See [66, 67,

68, 69, 70] for details). We thus have

〈a(s)∗
T/E,lma

(t)
B,l′m′〉

=(4π)2il−l
′
(−1)l

′ × C × A(l,m),(l′,m′) ×
∫
dk

k
T (s)
T/E,l(k)T (t)

B,l′(k) (5.41)
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where C is a k-independent factor, given by our previous calculation as

C =
3

2

2c3
L + 4c2

L + 6cL + 3

(1 + cL)2

∆c2
ζγH

2

εc5
LM

2
Pl

,

and A(l,m),(l′,m′) is a purely geometric factor, defined as

A(l,m),(l′,m′) ≡
∫
dΩk̂ Ylm(k̂)

[
M ζ+

−2 Y
∗
l′m′(k̂)−M ζ−

2 Y
∗
l′ m′(k̂)

]
. (5.42)

For icosahedral inflation, the parity selection rules spelled out above allow non-vanishing

A(l,m),(l′,m′) only for l = l′ ± n, with n odd. In fact, further investigation with Mathematica shows

that there is no obvious selection rule based on the value ofm−m′.

Notice that the arbitrary and singular phase introduced in M ζ± by the polarization tensors is

still there—it does not cancel out in the combination entering A(l,m),(l′,m′). So, in order to evaluate

these expressions, one should make an explicit choice of polarization tensors. For instance, the

choice of ref. [69] is,

ε±2
mn(k̂) =

√
2 ε±1

m (k̂) ε±1
n (k̂) , ε±1

m (k̂) =
1√
2

(
θ̂(k̂)± iφ̂(k̂)

)
, (5.43)

where θ and φ are the polar and azimuthal angles of k̂, and θ̂ and φ̂ are the corresponding unit

vectors. With this choice, as an example, for l = 3, l′ = 2,m′ = 2, and arbitrarym, we find

A(3,−2),(2,2) =
2 + γ

3
√

21
,

A(3,0),(2,2) =− γ

6
√

70
,

A(3,2),(2,2) =A(3,1),(2,2) = A(3,−1),(2,2) = 0 , (5.44)

where γ is, as before, the golden ratio (we computed the relevant integrals with Mathematica.)

Notice that icosahedral inflation also gives rise to nonzero tensor-tensor T -B and E-B corre-

lators, 〈a(t)∗
T/E,lma

(t)
B,l′m′〉, in addition to the scalar-tensor ones, 〈a(s)∗

T/E,lma
(t)
B,l′m′〉. However, T -B and
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E-B correlators are dominated by the latter contributions, since the anisotropies in the tensor-tensor

spectrum are of order εc5
L � 1 compared to the tensor-scalar mixing [64] 1.

Current CMB observations are able to put constraints on T -B and E-B correlations. In the

CMB literature, such correlations are usually assumed to be coming from cosmic birefringence.

For example, recent constraints on cosmic birefringence effect coming from ACT can be found in

[71] and [72], and similar constraints from Planck can be found in [73] and [74]. However, it is not

straightforward to translate constraints on cosmic birefringence into constraints on the parameters

of our model. We leave performing this analysis for future work.

5.6 Summary and discussion

We have computed the scalar-tensor correlation function in icosahedral inflation [27], and dis-

cussed its possible imprints on CMB anisotropies, in the form of non-vanishing T -E and T -B

spectra. Such correlations are allowed because the inflationary model at hand breaks (sponta-

neously) rotational invariance. Within the regime of validity of the effective field theory, the mixed

scalar-tensor correlator can be parametrically larger that the tensor spectrum itself.

It is useful to compare our results and framework to other models of inflation featuring

anisotropic effects, such as the model studied in [75, 76, 77]. There, the intrinsic anisotropy

of the background evolution enters all correlators of perturbations, including the scalar spectrum.

In our case instead, the model is designed in such a way as to guarantee that the scalar spectrum

is automatically isotropic, while leaving open the possibility of detectable anisotropies in other

correlation functions, such as the scalar three-point function [27], the tensor spectrum [64], and

the scalar-tensor two-point function (the case considered here). The reason behind this choice is

spelled out in section 1.3.2: the scalar spectrum is the only primordial correlation function we have

detected, and it appears to be consistent with statistical isotropy.

1As shown in Appendix F, the parameter ∆c2γ that corrects the tensor modes’ propagation speed in an anisotropic
fashion in ref. [64] is generically of the same order as our mixing parameter ∆c2ζγ , since the two effects can arise from
the same non-linear combinations of matter fields and curvature tensors.
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Conclusion

Symmetry is a core aspect of the theoretical study of physical systems. We have seen in

this thesis a (far from complete) set of tools and applications rooted in symmetry considerations.

Developing these tools and applications help us refine our understanding of physical systems from

condensed matter states to the primordial universe.

We reviewed and improved Noether’s theorem for spacetime symmetries. Based on the intrinsic

ambiguities in Noether’s theorem, we worked out systematically the improvement terms to the

stress-energy tensor without any guesswork, according to the symmetry properties of the theories

in consideration. For Lorentz invariant theories, our prescription produces the symmetric stress-

energy tensor, even off-shell, while agreeingwith Belinfante’s result on-shell. Similarly, for theories

with scale-invariant symmetry, we derived the traceless stress-energy tensor, and for those with

conformal symmetry a stress-energy tensor that is both symmetric and traceless, even off-shell.

Further, our method unifies the translation Noether theorem with those of the additional spacetime

symmetries, yielding at the same time both the improved stress-energy tensor and the additional

Noether currents. We hope that the improvements can at least help make computations of stress-

energy tensors seem less arbitrary, and it might also shed light on the scale vs. conformal invariance

debate, discussed in [38] and the references therein. Possible extensions include turning on higher

derivative terms in the Lagrangian, considering non-linearly realized symmetries, and incorporating

gauge-invariance.

We then emphasize that spontaneous symmetry breaking leads to a vast variety of gapless

excitations. Since the broken symmetries are realized non-linearly, the task of writing down all
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terms that are compatible with these symmetries in an effective field theory of the Goldstone modes

could be laborious. The coset construction is developed to help with this exact situation. However,

there has been little attempt to extend the coset construction to include particles with non-zero

spins. We therefore extended the coset construction to the cases of relativistic point particles with

arbitrary spins. To do so, we introduced a new philosophy for coset construction, one that reflects

the diverse possibilities with broken Poincaré symmetries by associating with every symmetry

generator, broken or unbroken, a Goldstone field, and selecting a proper subset of them when

constructing the EFT by choosing a particular set of gauge symmetries. We also emphasized that

to describe a particle with spin s, one needs to implement an N = 2s supersymmetric worldline

reparameterization gauge symmetry. Since we will be breaking spacetime symmetry, the number

of Goldstone modes does not necessarily match the number of broken symmetries, and one needs

to go through the inverse Higgs constraints, which we extended under our philosophy. The detailed

procedures were then shown with specific examples – massless and massive particles with spin-0,

spin-1/2, or higher spin. We hope that this extended coset construction can help us better understand

more varieties of physical systems, especially those with Fermionic degrees of freedom.

One interesting application of spontaneous symmetry breaking is that we can classify condensed

matter systems by the Poincaré symmetries they break. Among all the possibilities, the framid is

the one that breaks the least amount of symmetries – they only break boosts. Although the framid

system breaks boosts spontaneously, its stress-energy tensor has the peculiar behavior of still being

Lorentz-invariant. We checked through explicit calculations that this property holds up to the

one-loop level. One may think of this as a technical analog of the cosmological constant problem,

where the observed vacuum energy is stupendously smaller than a “natural” value; for the framid

stress-energy tensor, on the other hand, the Lorentz-breaking terms are forced to vanish, seemingly

by the broken symmetry. It is unclear whether this phenomenon has a deeper explanation rooted in

some symmetry reasons. We hope to better understand it in the near future so that we might have

a chance to also improve our understanding of the cosmological constant problem.

Lastly, one may use the tools that we have developed to write down an effective field action

117



for solids, and furthermore, to use it to drive inflation in the primordial universe. Such solid

inflation models do not break time translation spontaneously. Depending on the kind of internal

symmetry the system preserves, we can build different kinds of solid inflationary models. In

particular, we can construct icosahedral inflation, when the system has an icosahedral symmetry.

Invariance under the icosahedral group will guarantee isotropic background evolution and scalar

power spectrum. However, since the model is intrinsically anisotropic, anisotropies show up in

higher point correlation functions, as well as in the tensor power spectrum. At the same time,

a non-zero mixed tensor-scalar correlation is allowed. We calculated the power spectrum of this

mixed correlation, and mentioned some observational implications. A more detailed analysis of the

observational consequences is close to being completed and will be published in the near future.

To conclude, in this thesis we have discussed and extended the Noether’s theorem and the coset

construction, and presented two applications when spontaneous symmetry breaking is combined

with EFT principles in the cases of framids and solids, relating condensed matter systems to

cosmology. We have pushed our understandings of these specific topics further, which are among

the countless tools and applications that have their roots in symmetries of theories.
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Appendix A: Worldline SUSY

In order to construct an effective action for spin-1/2 particles, we will need to endow the

particle’s worldline with local SUSY. In this section, we review the basics of both global and local

SUSY in one dimension. For an in-depth discussion of N = 1 SUSY, consult [78].

We begin by considering global worldline SUSY. There are many possible starting-points for a

discussion of SUSY, but for our purposes, it is most convenient to work in superspace. Superspace

is essentially a mathematical trick to make SUSY manifest. Suppose that our coordinates are

σM = (τ, θ)M , where τ is a standard, bosonic (i.e. commuting, or Grassmann even) coordinate and

θ is a fermionic (i.e. anti-commuting, or Grassmann odd) coordinate. In other words, θ2 = 0. It is

sometimes convenient to use the notation σ0 = τ and σ1 = θ. Suppose we have a Grassmann-even

field defined on these coordinates,X(τ, θ). Then, because θ2 = 0, Taylor expanding to linear order

in θ gives an exact result, so we may write

X(τ, θ) = X(τ) + iθψ(τ), (A.1)

where X is a real-valued field and ψ is a Grassman-odd field. Thus, X is Grassmann-even.

We define integration and differentiation with respect to θ as equivalent operations, given by

∫
dθX = ∂θX = iψ. (A.2)

The global SUSY and worldline translation transformations act on the coordinates by

(τ, θ)→ (τ ′, θ′) = (τ − ξ − iθε, θ − ε), (A.3)

where ξ is a constant real number and ε is a Grassmann-odd constant. It is straightforward to check
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that there are two linear combinations of of the partial derivatives ∂τ and ∂θ that do not transform

under SUSY, namely

D0 ≡ ∂τ , D1 ≡ ∂θ + iθ∂τ . (A.4)

Additionally, it can be checked that D2
1 = D0. Often D1 is referred to as the covariant derivative

(not to be confused with the covariant derivatives in the coset construction). We will refer to both

of them as the SUSY covariant derivative.

We now define the (flat) SUSY zweibein EA
M for A,M = 1, 2 as the 2× 2 matrix1

E
A
M =

 1 0

−iθ 1


M

A

. (A.5)

With this definition, we can succinctly express both SUSY covariant derivatives as the components

of DA ≡ EM
A ∂M , where ∂M ≡ (∂τ , ∂θ)M and EM

A is the inverse of EA
M .

We now promote SUSY to the full reparameterization invariance of the superspace, namely

σM → σM − αM(σ), (A.6)

where αM is a generic infinitesimal function of σ. Now the superzweibein becomes dynamical and

transforms under this symmetry by

δEA
M = ∂Mα

N
E
A
N + αN∂NE

A
M . (A.7)

The scalar field X(σ) transforms by

δX = αM∂MX. (A.8)

Now the SUSY covariant derivatives are defined by DA ≡ E
M
A ∂M . With this definition, DAX

transforms as a scalar under (A.6).

1We useM,N as superspace coordinates indices and A,B as super tangent-space indices.
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But now that we have introduced a dynamical superzweibein, we have an additional gauge

symmetry, namely local transformations of the tangent space. In particular, we have the symmetries

δE0
M = 0, δE1

M = E
0
Mϕ, (A.9)

where ϕ is an infinitesimal Grassmann-odd function of σ. We would like to reduce the number

of gauge symmetries to simplify matters. We choose a gauge-fixing condition that may appear

somewhat strange, but is useful in the sense that the residual gauge symmetries are the standard

gauged SUSY transformations. In particular, we postulate that the superzweibein take the form

E
A
M =

E+ iθχ χ

−iθ 1


M

A

, E(τ, θ) ≡ e(τ) + iθχ(τ), (A.10)

and thus the inverse superzweibein is

E
M
A =

1

E

 1 −χ

iθ e


A

M

, (A.11)

where e(τ) is a real-valued field and χ(τ) is a Grassmann-odd field. We also require that the

residual super-reparameterization symmetry have a restricted αM , namely

αM(σ) =

(
ξ(τ) +

i

e
θε(τ), ε(τ)− i

e
θε(τ)χ

)M
, (A.12)

where ξ is a real-valued infinitesimal function of τ and ε is a Grassmann-odd infinitesimal function

of τ . This restricted form of αM allows the inverse superzweibein to remain in the desired

form (A.11) if we endow e(τ) and χ(τ) with the transformation properties

δe = ∂τ (ξe) + 2iεχ, δχ = ∂τ (ξχ) + ε̇. (A.13)
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We can therefore identify e as the worldline einbein and χ as its superpartner, i.e. the gravitino. In

this gauge, the covariant derivatives are

D0 =
1

E
(∂τ − χ∂θ), D1 =

1

E
(iθ∂τ + e∂θ), (A.14)

and the invariant integration measure is

∫
d2σ sdet(EA

M) =

∫
dτdθ E, (A.15)

where sdet is the superdeterminant defined as follows. Let A,D be Grassman-even and B,C be

Grassmann-odd matrices. Then define

sdet

A B

C D

 = det(A)det(D − C · A−1 ·B)−1. (A.16)

It is straightforward to check that sdet(EA
M) = E.
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Appendix B: Extended worldline SUSY

To construct an effective action for a particle of arbitrary spin s ∈ N/2, we will need to endow

the particle’s worldline with a local extended N = 2s SUSY. In this section, we will extend the

superspace formalism of Appendix A to allow for multiple supercharges. To our knowledge no such

superspace formalism exists in the current literature; however many common elements can be found

in [50]. It will turn out that for N > 2, the superspace formalism will have to be supplemented by

a multiplet calculus, which is a straight-forward extension of the one presented in [39].

B.1 Superspace revisited

As before, let us begin by considering global SUSY. We define the coordinates of superspace

by

σM = (τ, θ1, . . . , θN )M , (B.1)

where σ0 ≡ τ ∈ R and σa ≡ θa for a = 1, . . . ,N are Grassmann odd. Suppose we have a field

defined on these coordinates, X(τ, ~θ). Because θaθb = −θbθa, the Taylor expansion in θa will

terminate afterN + 1-terms. It turns out, however, that only the first two terms are dynamical. We

have

X(τ, ~θ) = X + i~θ · ~ψ + · · · , (B.2)

whereX(τ) is a real-valued field and ~ψ(τ) is a vector ofGrassmann odd fields; thusX is Grassmann-

even. The terms subsumed by · · · in the above equation end up being non-dynamical fields whose

only purpose is to allow SUSY to close off-shell. See an explicit example in section 3.5.1.

We define integration and differentiation with respect to the Grassmann coordinates as equiva-
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lent operations, given by ∫
dθaX = ∂aX = iψa, (B.3)

where ∂a ≡ ∂/∂θa.

Now we promote the global SUSY transformation to a local, gauge symmetry. Instead of

introducing full superspace reparameterization invariance as we did in Appendix A, we will cut to

the chase. We postulate that the supervielbein takes the block-matrix form

E
A
M =

E+ i~θ · ~Γ Γb

−iθa δab


M

A

, (B.4)

whereE = e+ i~θ · ~χ and Γa = χa+Aabθb. Here, e, χa andAab are fields defined on the coordinate

τ . Then the inverse supervielbein is

E
M
A =

1

E

 1 −Γb

iθa Eδab − iθaΓb


A

M

. (B.5)

In order for the supervielbein to retain the desired form, we take our reparameterization symmetries

to be a restricted subset of coordinate transformations given by σM → σM − αM(σ), such that

α0(σ) = ξ(τ) +
i

E

~θ · ~ε(τ),

αa(σ) = εa(τ)− i

E

~θ · ~ε(τ)Γa + θbβab(τ),

(B.6)

where ξ(τ) and βab(τ) = −βba(τ) are infinitesimal and real-valued, while εa(τ) are infinitesimal

and Grassmann-odd. Under this coordinate transformation, the component fields of the superviel-
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bein transform as

δe = ∂τ (ξe) + 2i~ε · ~χ,

δχa = ∂τ (ξχ
a) + ε̇a + Aabεb − βabχb,

δAab = ∂τ (ξA
ab) + β̇ab + βacAcb − βbcAca.

(B.7)

We can therefore interpret e as the worldline einbein, χa as the gravitinos and Aab as an O(N )

gauge field. Notice that in the case N = 1, Aab vanishes, which is why we did not encounter it in

the spin-1/2 case.

The covariant derivatives are given by DA ≡ EM
A ∂M . Explicitly, we have

D0 =
1

E
(∂τ − ~Γ · ~∂), Da ≡ iθaD0 + ∂a. (B.8)

When acting on the scalar field X, we have

D0X =
1

E
(z + i~θ · ~ζ) · · · ,

DaX =
i

E
θa
(
z + i~θ · ~ζ

)
+ iψa + · · · ,

(B.9)

where z ≡ Ẋ − i~χ · ~ψ and ζa ≡ ψ̇a + Aabψb and · · · denote terms with non-dynamical fields.

Finally, the invariant integration measure is
∫
dτdN θ E.

B.2 Method of multiplets

The construction of a SUSY-invariant action using the superspace formalism by integrating a

Lagrangian over the whole of superspace for N > 2 is still an unsolved problem. In fact, there is

good reason to believe that it is impossible, which we address in section 3.5.2. Further, even if we

were to accomplish such a feat, the resulting action would contain a potentially very large number

of auxiliary fields that are entirely non-dynamical and would only serve to ensure that the SUSY

transformations close off-shell. We could then integrate out such non-dynamical fields to obtain a
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simpler action that would enjoy SUSY only on-shell. It is the aim of this subsection to explain how

to directly construct the on-shell SUSY action without worrying about the non-dynamical fields.

We term this approach the method of multiplets.

Our multiplet approach will enable us to construct off-shell SUSY-invariant actions for global

SUSY. Only at the end will we gauge this symmetry to obtain the desired local on-shell SUSY-

invariant action. We begin by defining bosonic and fermionic multiplets. A bosonic multiplet is an

ordered pair

Σ = (X, ~ψ), (B.10)

whereX isGrassmann even and ~ψ is aGrassmann-oddN -component vector. Under an infinitesimal

global SUSY transformation, we have

δX = ξẊ + i~ε · ~ψ, δψa = ξψ̇a + εaẊ − βabψb, (B.11)

where ξ is an infinitesimal real constant and ~ε and βab = −βba are Grassmann-odd constants. Next,

we define a fermionic multiplet as an ordered pair

Φ = (~f, b), (B.12)

where ~f s a Grassmann-odd N -component vector and b Grassmann even. The components

transform by

δfa = ξḟa + iεab− βabf b, δb = ξḃ+ ~ε · ~̇f. (B.13)

We can add and multiply these multiplets together. The rule for addition is simply component-

wise addition,

(X1, ~ψ1) + (X2, ~ψ2) = (X1 +X2, ~ψ1 + ~ψ2),

(~f1, b1) + (~f2, b2) = (~f1 + ~f2, b1 + b2).

(B.14)

We are not permitted to add a bosonic multiplet to a fermionic multiplet. Next, we have the
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multiplication rules

(X1, ~ψ1)× (X2, ~ψ2) = (X1X2, X1
~ψ2 +X2

~ψ1),

(~f1, b1)× (~f2, b2) = (~f1 · ~f2, b1
~f2 − b2

~f1),

(X, ~ψ)× (~f, b) = (X ~f,Xb+ ~ψ · ~f).

(B.15)

Notice that the first two products yield bosonic multiplets and the last product yields a fermionic

multiplet.

Additionally, we can take derivatives of these multiplets. Acting on a bosonic multiplet we have

D0(X, ~ψ) =
(
Ẋ, ~̇ψ

)
, Da(X, ~ψ) =

(
iψa, Ẋ

)
. (B.16)

It can be checked thatD0(X, ~ψ) andDa(X, ~ψ) are, respectively, bosonic and fermionic multiplets.

Acting on a fermionic multiplet, we have

D0(~f, b) =
(
~̇f, ḃ
)
, Da(~f, b) =

(
ib, ~̇f

)
. (B.17)

It can be checked that D0(~f, b) and Da(~f, b) are, respectively, fermionic and bosonic multiplets.

Oftentimes, we will use the compact notation DA for A = 0, . . . ,N . Lastly, given the fermionic

multiplet Φ = (~f, b), the global SUSY-invariant integral is

∫
SUSY

Φ ≡
∫
dτ b. (B.18)

We therefore see that the aim of the coset construction will be to construct a symmetry-invariant

fermionic multiplet that will then be integrated according to the above rule. After the action is

constructed in this manner, we can include the worldline gauge fields to promote the global SUSY

to a local, gauge symmetry.
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Appendix C: Wightman and Feynman

As we have seen, it is particularly helpful to rewrite the expectation value of the stress-energy

tensor in terms of derivatives acting on Wightman two-point functions. Formally, given a set of

real fields ψa governed by a quadratic Lagrangian, in general one has

〈T µν(0)〉 = lim
x→0

∑
ab

Dµν
ab (∂x)G

ab
W (x) , (C.1)

where Dµν
ab (∂x) is a function of derivatives, usually up to second order, and GW represents the

matrix of Wightman two-point functions,

Gab
W (x) ≡ 〈ψa(x)ψb(0)〉 . (C.2)

Notice that, for real fields, one has

Gba
W (x) = Gab ∗

W (−x) . (C.3)

However, we are more familiar with the calculation of Feynman propagators given a certain

theory, not the Wightman version. How can we relate GW to GF , the Feynman propagator, in a

way that is helpful to our calculations?

To begin with, notice that, by definition,

Gab
F = 〈ψa(x)ψb(0)〉θ(t) + 〈ψb(0)ψa(x)〉θ(−t) (C.4)

= Gab
W (x)θ(t) +Gba

W (−x)θ(−t) (C.5)

= Gab
W (x)θ(t) +Gab ∗

W (x)θ(−t) . (C.6)
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As usual, θ(t) is the step function. This relation can be inverted to give

Gab
W (x) = Gab

F (x)θ(t) +Gab ∗
F (x)θ(−t) . (C.7)

Computations are usually easier in Fourier transform. Using the Fourier representation of the

step function,

θ(t) =

∫
dω

2π

i

ω + iε
e−iωt , (C.8)

we get

G̃ab
W (ω,~k ) =

∫
dω′

2π

[
i

ω − ω′ + iε
G̃ab
F (ω′, ~k )− i

ω − ω′ − iε
G̃ab ∗
F (−ω′,−~k )

]
(C.9)

=

∫
dω′

2π

[
i

ω − ω′ + iε
G̃ab
F (ω′, ~k ) + h.c.

]
, (C.10)

where the last equality follows from G̃ab
F (ω,~k ) = G̃ba

F (−ω,−~k )—a direct consequence of the

definition (C.4). We thus see that G̃ab
W is a hermitian matrix, in agreement with (C.3).

Thematrix of Feynman propagators is easily computed starting from the quadratic actionwritten

in Fourier space,

S =
1

2

∫
d3k

(2π)3

dω

2π
ψ̃∗a(ω,~k )Kab(ω,~k )ψ̃b(ω,~k ) , (C.11)

where the kinetic matrix K is hermitian. In matrix notation, one simply has

G̃F (ω,~k ) = i
(
K(ω,~k ) + iε

)−1
. (C.12)

Focusing on the first term in the integral (C.10), and assuming that, as usual, the Feynman

propagators decay at infinity and have (simple) poles slightly away from the real axis, we can close

the ω′ contour in the lower half plane. We thus only pick up the poles of G̃F that lie under the real

axis—the positive frequency ones, for a stable theory. We get

G̃ab
W (ω,~k ) =

∑
n

i

ω − ωn + iε

[
K−1(ω′, ~k )(ω′ − ωn)

]ab
ω′=ωn

+ h.c. , (C.13)
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where the sum is extended over the positive frequency poles, ωn = ωn(~k ).

Using the distributional identity

1

x+ iε
= P

1

x
− iπδ(x) (C.14)

and the hermiticity of K, we finally get

G̃ab
W (ω,~k ) =

∑
n

[
K−1(ω′, ~k )(ω′ − ωn)

]ab
ω′=ωn

(2π)δ(ω − ωn) . (C.15)

As a check, for a single relativistic massive scalar the kinetic “matrix” is simply

K = ω2 − ~k 2 −m2 , (C.16)

the positive frequency pole is

ωk =

√
~k 2 +m2 , (C.17)

and the Wightman two-point function thus reduces to

G̃W (ω,~k) =
1

2ωk
(2π)δ(ω − ωk) (C.18)

= (2π)θ(ω)δ(k2 +m2) , (C.19)

which is the correct expression. Notice however that, in the general derivation above, we have never

used Lorentz invariance.
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Appendix D: Symmetric stress-energy tensors

One may consider performing our calculations in Chapter 4 starting from the more trusted

symmetric versions of the stress-energy tensor, i.e. the Hilbert and Belinfante tensors. When

deriving the Hilbert tensor for a framid, we have to keep in mind the unit-norm constraint on Aµ,

gµνAµAν = −1, (D.1)

which forbids varying the metric gµν independently of Aµ. One can introduce a vierbein and vary

the action with respect to it instead, yielding [20]

T µνH =
1√
−g

(
2
δS

δgµν
+

δS

δAµ
Aν
)
, (D.2)

where now the functional derivatives are unconstrained.

The tensor above is evidently not symmetric in general. In fact, it is symmetric only on-shell,

i.e upon using the equations of motion, which, taking into account the unit-norm constraint once

more, are simply

(ηµν + AµAν)
δS

δAν
= 0 . (D.3)
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The end result for the (symmetric) Hilbert tensor is

T µνH = L gµν

+ 2c1

[
A(µ∂α∂

ν)Aα − Aα∂α∂(µAν) − ∂αAα∂(µAν) − ∂(µAα∂ν)Aα + ∂αA
(µ∂ν)Aα

]
+ 2c2

[
A(µ∂α∂

ν)Aα − gµνAα∂β∂αAβ − gµν∂αAα∂βAβ
]

+ 2c3

[
A(µ∂α∂

αAν) + ∂αA
(µ∂αAν) − Aα∂α∂(µAν) − ∂αAα∂(µAν) − ∂αA(µ∂ν)Aα

]
+ 2c4

[
AµAν∂αA

β∂βA
α + AαAµAν∂β∂αA

β − AαA(µ∂αA
ν)∂βAβ − AαAβ∂αA(µ∂βAν)

− AαAβA(µ∂β∂αA
ν) + AαA(µ∂αA

β∂βA
ν) − AαA(µ∂αAβ∂

ν)Aβ
]
, (D.4)

where the ca’s are coefficients related to theM2
1 , c2

L, and c2
T coefficients of sect. 4.3 [20]. Manip-

ulating this tensor to compute our quantum corrections clearly requires considerably more effort

compared to the Noether one, eq. (4.25). The same is true for the Belinfante tensor, which turns

out to be exactly the same as the Hilbert one.

Namely, the Belinfante stress-energy tensor in general is defined as [6]

T µνB = T µνN −
i

2
∂κ

[
∂L

∂(∂κΦa)
(J µν)abΦ

b − ∂L

∂(∂µΦa)
(J κν)abΦ

b − ∂L

∂(∂νΦa)
(J κµ)abΦ

b

]
, (D.5)

where T µνN is the Noether stress-energy tensor, and the J µν’s are the Lorentz generators in the

representation appropriate for the fields Φa. For 4-vector fields,

(J ρσ)κλ = i(ησκδρλ − η
ρκδσλ) . (D.6)

Writing down all terms in (D.5), the result is equal to equation (D.4) plus terms that are proportional

to the equations of motion1. We checked that upon expanding the Belinfante and Hilbert stress-

energy tensors to quadratic order in our ~η fields, we get exactly the same expressions for 〈T 00〉 and

〈T ij〉 as those derived from the Noether stress-energy tensor, eqs. (4.28), (4.29).

1Note that the Belinfante tensor is also non-symmetric unless one uses the equations of motion [6].
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Appendix E: The path-integral measure

In order to construct a Lorentz-invariant measure, we can start from the obvious invariant

measure for Aµ,

DAµ ≡
∏
x

d4A(x) , (E.1)

and impose an invariant constraint that removes its norm, e.g.

δ(AµA
µ + 1) . (E.2)

We can then parametrize Aµ in terms of our Goldstone fields ~η(x) and of a radial mode ρ(x),

A0 = ρ cosh |~η | , ~A = ρ
~η

|~η |
sinh |~η | . (E.3)

The path integral then reads

∫
DAµ δ(AµA

µ + 1) eiS · · · =
∫
DρD~η DetJ δ(ρ2 − 1) eiS · · · , (E.4)

where the dots denote insertions of operators, and the functional Jacobian J is

J(x, x′) ≡
δ
(
A0(x), ~A(x)

)
δ
(
ρ(x′), ~η(x′)

) =
∂
(
A0, ~A

)
∂
(
ρ, ~η

) δ(x− x′) . (E.5)

Using standard functional methods [14], its determinant can be written in exponential form as

DetJ = ei∆S , ∆S ≡ −i
(∫ d4k

(2π)4

)∫
d4x log

sinh2 |~η |
|~η |2

, (E.6)
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where we used that, thanks to the delta-function in (E.4), ρ = 1. The integral over ρ can now be

performed explicitly, upon which we are left with the path integral

∫
D~η ei(S+∆S) · · · . (E.7)

We thus reach the conclusion that, to preserve Lorentz invariance in our computations, we should

supplement the ~η effective action with ∆S.

If we use dimensional regularization, ∆S vanishes, because its overall coefficient does. This is

one of the many reasons why dimensional regularization is convenient, and why we usually don’t

track functional determinants coming from field redefinitions in the path integral.

If, on the other hand, we use other UV regulators, we should keep ∆S around. Notice that, like

all effects coming from functional determinants, ∆S is formally of one-loop order. We should then

use it consistently in perturbation theory. For instance, for one-loop computations, we should use

∆S at tree-level.

∆S is a (UV divergent) potential for our Goldstone fields. In particular, it includes a mass term

for them. This is inconsistent with the Goldstone theorem for spontaneously broken boosts [10].

This means that, at one-loop, there must be other contributions that cancel at least the effects of

such a mass term. Or, conversely, if we don’t keep ∆S around, at one-loop we must find nontrivial

contributions to the mass of the Goldstones, in violation of the Goldstone theorem.

We can check this explicitly. For simplicity, let’s consider the cL = cT = 1 case, which is

particularly symmetric [20]. The two-derivative Goldstone action takes the form of a relativistic

non-linear sigma model,

S = −M
2
1

2

∫
d4xfij(~η )∂µη

i∂µηj , (E.8)

with fij given by

fij(~η ) = P
‖
ij(~η ) +

sinh2 |~η |
|~η |2

P⊥ij (~η ) , (E.9)

where P ‖ and P⊥ are the parallel and perpendicular projectors in ~η-space. We can compute at once

all one-loop contributions to the mass and to non-derivative interactions of the Goldstone fields by
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computing the one-loop Coleman-Weinberg potential [62]. Following again standard functional

methods [14], we get

∆ΓCW =
i

2

∫
d4x

d4k

(2π)4
tr log(k2fij(~η )) (E.10)

where the trace is a simple finite-dimensional (3×3) matrix trace. We can split the matrix inside

the trace as

log(k2fij(~η )) = log(k2)δij + log(fij(~η )) . (E.11)

The first term is field independent, and we can discard it. As to the second term, we can evaluate

its trace in a basis in which it is diagonal, such as a basis in which ~η ∝ (1, 0, 0). We thus get

∆ΓCW = i
(∫ d4k

(2π)4

)∫
d4x log

sinh2 |~η |
|~η |2

= −∆S . (E.12)

Regardless of the UV regulator used, this cancels exactly all effects of ∆S at this order, thus

recovering agreement with the boost Goldstone theorem.

In conclusion, when using UV regulators other than dim-reg, the correction ∆S coming from

the path-integral measure should be kept, and used consistently in perturbation theory. In practice,

for our purposes in this work, this ends up not mattering. This is because we computed the one-loop

expectation value of the stress-energy on the framid’s ground state. Since ∆S is formally already

of one-loop order, its contributions to such an expectation value should be considered only at tree

level. That is,

〈T µν〉1−loop = 〈T µν〉01−loop + 〈∆T µν〉tree , (E.13)

where the l.h.s. stands for all one-loop contributions in the full theory (with action S + ∆S), the

first term on the r.h.s. stands for the one-loop contributions in the theory without ∆S, and the

second term on the r.h.s. stands for the correction to the stress-energy tensor operator coming from

∆S, evaluated on the ground state at tree level only. But at tree-level the ground state simply

corresponds to ~η = 0, so ∆S vanishes there, and so does its contribution to our expectation value.
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Appendix F: Origin of the mixing term and powers of a

As emphasized in [27, 64], for icosahedral inflation anisotropies in two-point functions can

only arise from higher derivative corrections to the solid’s action. A possible candidate is a term

schematically of the formT6·(Rµνρσ∂µφ
I∂νφ

J∂ρφ
K∂σφ

L)3, with suitable I-type index contractions.

In fact, for such a term to be compatible with the approximate internal scale invariance associated

with slow-roll [24],

φI → λφI , (F.1)

we need to multiply it by a factor scaling like (BIJ)−6 (to lowest order in slow roll), again with

suitable index contractions.

So, let’s consider a higher-derivative action term schematically of the form

∆S ∼ 1

M2

∫
dτd3x a4 (BIJ)−6 T6 · (Rµνρσ∂µφ

I∂νφ
J∂ρφ

K∂σφ
L)3 , (F.2)

where we introduced an arbitrary dimensionful coupling constant. Notice that we are using directly

conformal time, since it makes the analysis that follows simpler: all components of the unperturbed

metric scale like a2, and so we don’t need to differentiate between time and space.

Consider now expanding such a term in spatially flat slicing gauge about our inflationary

background. We are only interested in bilinear scalar-mixing terms. We expand our fields in

perturbations,

φ→ x+ π , g → a2(τ)(η + h) , (F.3)

where g is shorthand for the metric (with lower indices), and keep in mind that hµν contains tensors

(γij) as well as scalars (h00 and h0i = ∂iψ). We thus need to keep π-h and h-h bilinear terms.

However, to this order in derivatives, the latter cannot contribute to our scalar-tensor mixing. The
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reason is that for the contraction with T6 in (F.2) to yield something nonzero, we need six free

spatial indices on the fields and their derivatives. If we neglect π, the factors of ∂φ and BIJ yield

terms with no derivatives on the fields, whereas the factors of Rµνρσ yield terms with zero, one,

or two-derivative per field. So, among the h-h terms, the only ones that have a chance of giving a

contribution to scalar-tensor mixings are of the form

∂i∂jγkl ×
(
∂m∂nh00 , ∂mh0n , or ∂m∂0h0n

)
(F.4)(

∂0∂iγjk , or ∂iγjk
)
× ∂l∂mh0n , (F.5)

and all come from two factors of Rµνρσ each expanded to linear order in hµν . But then these

terms cannot be there: the spacetime indices of the Riemann tensor are contracted with factors of

∂φ; if we neglect π, ∂µφI = δIµ, which projects all the indices of the Riemann tensor onto spatial

directions; to linear order in the metric fluctuations, this can only yield spatial derivatives of γij

and, in particular, no term involving h00 or h0i.

So, in summary, to figure out our scalar-mixing terms in spatially flat-slicing gauge, we only

need to look for π-γ terms with three derivatives overall, and we can neglect everything else. From

the expansion of ∂φ and BIJ we get first derivatives of π,

∂φ→ 1 + ∂π , BIJ ∼ g−1∂φ∂φ→ 1

a2

(
1 + ∂π

)
, (F.6)

and from the Riemann tensor we get second derivatives of γ,

Rµνρσ ∼ (g−1)3Rµ
νρσ (F.7)

∼ (g−1)3
(
∂Γ + ΓΓ

)
(F.8)

∼ (g−1)5
(
∂g∂g + g ∂2g

)
→ 1

a6

(
a2H2 + ∂2γ

)
, (F.9)

where we used that the Christoffel symbols are schematically Γ ∼ g−1∂g and that ∂τa = a2H .
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Plugging all this into (F.2), and keeping only the bilinear π-γ terms, we get

∆S ∼ 1

M2

∫
dτd3x a4a12(1 + ∂π)−6 T6 a

−18
(
a2H2 + ∂2γ

)3
(1 + ∂π)12 (F.10)

→ H4

M2

∫
dτd3x a2 T6 ∂π ∂

2γ , (F.11)

which, if written in proper time t, is precisely of the form (5.7), with

∆c2
ζγ ∼

H4

M2M2
Pl

, (F.12)

which is of the same order as the tensor-tensor mixing parameter ∆c2
γ of ref. [64]. Notice that,

given the tracelessness and total symmetry of T6, the index contraction displayed in (5.7) is the

only non-vanishing one.

More in general, we can prove that the mixing term (5.7) is the only scalar-tensor bilinear

mixing allowed by gauge invariance. Tominimize the number of extra terms coming from covariant

derivatives, here we use cosmic time t instead of conformal time τ , and h now stands for metric

perturbations about the FRW metric,

g = gFRW + h . (F.13)

First, let’s set the fluctuations of φI to zero by fixing the spatial diffs (unitary gauge),

φI = xI (F.14)

In terms of gauge transformations xµ → xµ + ξµ, we have fixed the spatial components ξi(x).

Under the residual ξ0(x) transformations, h transforms as

h00 → h00 + ∂0ξ0 , h0i → h0i + ∂iξ0 , hij → hij − 2δij ȧaξ0 . (F.15)
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The gauge-invariant building blocks for a possible mixing term thus are

∂0h0i − ∂ih00 and ∂khij + δij∂0

(
a2h0k

)
− a2δij∂kh00 . (F.16)

We can now play the Stueckelberg trick and restore gauge invariance under the broken diffeomor-

phism xi → xi + ξi by promoting the parameters ξi to Goldstone fields:

ξi(x) = πi(x) . (F.17)

Our building blocks, which are now invariant under all gauge transformations, now read

Πi = ∂0h0i − ∂ih00 + ∂0

(
a2∂0πi

)
(F.18)

Ξijk = ∂khij + δij∂0

(
a2h0k

)
− a2δij∂kh00 + a2∂k (∂iπj + ∂jπi) + δij∂0

(
a4∂0πk

)
. (F.19)

Up to integration by parts, the combinations of these building blocks that may give rise to scalar-

tensor mixing terms, with the least number of derivatives and correct number of free indices (six),

are

∂iΠj ∂kΞmnl and Ξijk Ξmnl (F.20)

The first term is suppressed in general because it has more derivatives than the second term.

The second term produces our ∂π∂2γ mixing, the one appearing in (5.7). Notice that the terms

proportional to Kronecker deltas will not contribute to the final result since our icosahedral spin-6

tensor T6 is traceless.
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Appendix G: Diagonalizability

Consider the scalar-tensor sector of our theory, defined by the quadratic action terms (5.4),

(5.6), and (5.9). For simplicity, let’s focus on a two-dimensional field space, made up of the scalars

and a single polarization of the tensors (cf. sect. 5.4). We want to see under what conditions such a

system is diagonalizable. It is easier to work directly with the equations of motion rather than the

action, since for the former there are no integration-by-parts ambiguities. Certainly, if the equations

of motion cannot be made diagonal, neither can the action.

At fixed ~k, upon changing the normalization of πL in a suitable time-dependent fashion, our

equation of motion can be written compactly as

αφ′′ + α′φ′ + αMφ = 0 , (G.1)

where φ is a doublet of fields, α is a scalar function of time, and M is a 2 × 2 matrix, also

time-dependent.

Let us assume that we can diagonalize such an eom through some time-dependent invertible

matrix R(τ). By plugging φ = R(τ)ϕ into the equation above, we get

ϕ′′ +
(
2R−1R′ + α′

α

)
ϕ′ +

(
R−1R′′ + α′

α
R−1R′ +R−1MR

)
ϕ = 0 . (G.2)

For this equation to be diagonal, we need:

1. R−1R′ to be diagonal, because of the ϕ′ term. However, this implies that R−1R′′ is also

diagonal. This follows from

R−1R′′ =
(
R−1R′

)′ − (R−1)′R′ =
(
R−1R′

)′
+ (R−1R′)2 , (G.3)
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where the last equality can be obtained from taking the time derivative of R−1R = 1.

2. R−1MR to be diagonal, because all the other terms multiplying ϕ already are.

But for R−1MR and R−1R′ to be diagonal at the same time, we need them to commute. This

in turn implies thatM commutes withM ′. The reason is that if R−1MR is diagonal at all times,

so is its time derivative, which is simply

(R−1MR)′ = R−1M ′R + [R−1MR,R−1R′] = R−1M ′R . (G.4)

So, R−1M ′R is diagonal, which means that it commutes with R−1MR. Or, equivalently,

[M ′,M ] = 0 . (G.5)

This is a nontrivial condition on the time-dependence ofM . It is easy to check that such a condition

is not satisfied in our case. Therefore, our equation of motion is not diagonalizable.
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