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Abstract

Resource-Efficient Methods in Machine Learning

Kiran Vodrahalli

In this thesis, we consider resource limitations on machine learning algorithms in a variety

of settings. In the first two chapters, we study how to learn nonlinear model classes (monomials

and neural nets) which are structured in various ways – we consider sparse monomials and deep

neural nets whose weight-matrices are low-rank respectively. These kinds of restrictions on the

model class lead to gains in resource efficiency – sparse and low-rank models are

computationally easier to deploy and train. We prove that sparse nonlinear monomials are easier

to learn (smaller sample complexity) while still remaining computationally efficient to both

estimate and deploy, and we give both theoretical and empirical evidence for the benefit of novel

nonlinear initialization schemes for low-rank deep networks. In both cases, we showcase a

blessing of nonlinearity – sparse monomials are in some sense easier to learn compared to a linear

class, and the prior state-of-the-art linear low-rank initialization methods for deep networks are

inferior to our proposed nonlinear method for initialization. To achieve our theoretical results, we

often make use of the theory of Hermite polynomials – an orthogonal function basis over the

Gaussian measure. In the last chapter, we consider resource limitations in an online streaming

setting. In particular, we consider how many data points from an oblivious adversarial stream we

must store from one pass over the stream to output an additive approximation to the Support

Vector Machine (SVM) objective, and prove stronger lower bounds on the memory complexity.
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Chapter 1: Introduction

1.1 Resource Limitations in Modern Machine Learning

In this thesis, we consider resource limitations on machine learning algorithms in various set-

tings. In modern machine learning, models in practice have increasingly large size and are trained

on increasingly large amounts of data. Another practical limitation of modern machine learning

systems is the reality that it is desirable to use “real-time” modern data streams [1]. In particular,

this constraint means that

1. Machine learning systems should make real-time predictions.

2. It is easy to incorporate new data and update models continually.

3. Data is streaming – we may only get one pass over the data stream unless we expend significant

resources on data storage.

These requirements mean that it is necessary for the deployed models to be fast to evaluate, and

also that our models must cope with online streaming settings. Motivated by the difficulties and

opportunities associated with this practice and the desire for resource-efficient methods, my work

has focused on

1. Sparse Nonlinear Models: What are the statistical and computational limits for training models

with simple descriptions (e.g. sparse or low-rank models), and what algorithms attain those

limits?

2. Low-Rank Deep Models: Low-rank deep networks are a popular compressed parameterization

of deep models which replace weight matrices with products of low rank matrices, and thereby

speed up training and learning. Can we come up with initialization schemes which improve

the performance of low-rank models?

1



3. Memory in the Streaming Data Setting: How much data from a stream must we store to accu-

rately train non-smooth, strongly convex models?

1.1.1 Resource-Efficient Structured Model Classes

In the first two chapters, we study how to learn nonlinear model classes (monomials and neu-

ral nets) which are structured in various ways – we consider sparse monomials and deep neural

nets whose weight-matrices are low-rank respectively. These kinds of restrictions on the model

class lead to gains in resource efficiency – sparse and low-rank models are computationally easier

to deploy and train. We prove that sparse nonlinear monomials are easier to learn (smaller sam-

ple complexity) while still remaining computationally efficient to both estimate and deploy, and

we give both theoretical and empirical evidence for the benefit of novel nonlinear initialization

schemes for low-rank deep networks. In both cases, we showcase a blessing of nonlinearity –

sparse monomials are in some sense easier to learn compared to a linear class, and the prior state-

of-the-art linear low-rank initialization methods for deep networks are inferior to our proposed

nonlinear method for initialization. To achieve our theoretical results, we often make use of the

theory of Hermite polynomials – an orthonormal function basis over the Gaussian measure.

1.1.2 Resource Limitations in Streaming Settings

In the last chapter, we consider resource limitations in online streaming settings. In particular,

we consider how many data points from an oblivious adversarial stream we must store from one

pass over the stream in order to output an additive approximation to the Support Vector Machine

(SVM) objective. By proving stronger lower bounds on the memory complexity, we partially

characterize the limitations of deploying streaming algorithms for non-smooth, strongly convex

objectives to low-memory devices.

2



1.2 Our Contributions

1.2.1 Blessings of Non-Linearity

In Chapter 2, we follow the development from [2] and study the problem of learning a real-

valued function of correlated variables. Solving this problem is of interest since many classical

learning results apply only in the case of learning functions of random variables that are inde-

pendent. We show how to recover a high-dimensional, sparse monomial model from Gaussian

examples with sample complexity that is poly-logarithmic in the total number of variables and

polynomial in the number of relevant variables. In particular, we design an attribute-efficient al-

gorithm for learning the function 𝑓 (𝑥) = ∏
𝑖∈𝑆 𝑥

𝛽𝑖
𝑖

, where 𝑥 ∼ D𝑥 = N(0,Φ), that uses sample

size 𝑛 = 𝑂 (𝑘2 · poly(log(𝑝), log(𝑘))) and runs in poly(𝑛, 𝑝, 𝑘) time. In particular, the algorithm

exactly recovers the set 𝑆 and exponents 𝛽𝑖 with high probability. The algorithm does not have

access to Φ, and indeed, the sample size may be too small to learn it accurately. Our algorithm

is based on a transformation of the variables—taking their logarithm—followed by a sparse linear

regression procedure, which is statistically and computationally efficient. While this transforma-

tion is commonly used in applied non-linear regression, its statistical guarantees have never been

rigorously analyzed. We prove that the sparse regression procedure succeeds even in cases where

the original features are highly correlated and fail to satisfy the standard assumptions required for

sparse linear regression. In particular, the nonlinearity of the monomial function – via the nonlin-

ear logarithmic transform of the input features required for the reduction to sparse linear regression

– destroys correlations in the original features and allows a key property of the problem instance,

the restricted minimum eigenvalue, to always be strictly positive (even when the non-transformed

restricted minimum eigenvalue is zero), which in turns yield sample complexity guarantees which

depend only polylogarithmically on the dimension of the input features and polynomially on the

sparsity. This correlation-destroying property of the nonlinear transform we apply in our algorithm

is therefore a blessing of nonlinearity.

In Chapter 3, we follow the development from [3] and propose a novel nonlinear low-rank

3



initialization framework for training low-rank deep neural networks – networks where the weight

parameters are re-parameterized by products of two low-rank matrices. The most successful prior

existing approach, spectral initialization, draws a sample from the initialization distribution for

the full-rank setting and then optimally approximates the full-rank initialization parameters in the

Frobenius norm with a pair of low-rank initialization matrices via singular value decomposition.

Our method is inspired by the insight that approximating the function corresponding to each layer

is more important than approximating the parameter values – in particular, we modify the spectral

initialization objective to take into account layerwise nonlinearities. By training ResNet and Effi-

cientNet models [4, 5] on ImageNet [6], we empirically demonstrate that our nonlinear low-rank

approximation objective outperforms spectral initialization, and moreover that optimizing the non-

linear objective at initialization positively correlates with improved post-training generalization

error. We provably demonstrate that there is a significant gap between these two approaches for

ReLU networks, particularly as the desired rank of the approximating weights decreases and as

the layer width increases when the width is super-linear in dimension. Combining these theoreti-

cal results with our empirical results, we therefore identify rank, width, and dimension settings for

which a different blessing of nonlinearity applies. We also provide practical heuristic algorithms to

solve the layerwise function approximation problem which are no more expensive than the existing

spectral initialization approach.

1.2.2 Stronger Memory Lower Bounds in Streaming Non-Smooth Optimization

In Chapter 4, we strengthen memory lower bounds on the space complexity of one-pass stream-

ing ℓ2-regularized primal SVM, providing an essentially tight space lower bound of Θ
(
1/
√
𝜖

)
in

1 dimension, where 𝜖 is the approximation error of the optimization problem. This result resolves

an open problem on the space complexity of streaming SVM in 1 dimension, and also clearly

applies in 2+ dimensions, and improves the 2-dimensional lower bound as well. Previously, no

lower bounds were known for 1 dimension, and the best known lower bound for 2-dimensions

was Ω(𝜖−1/4). Notably, our 1-dimensional lower bound holds for _ = Θ(1), where _ is the ℓ2
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regularization coefficient – previous lower bounds for 𝑑 < O
(
log(1/𝜖)

)
required _ = Θ(poly(𝜖)).

We attain the 1-dimensional result via a novel reduction to the communication complexity

problem of Augmented Index. Given an instance of Augmented Index (see Definition 1.3.14), we

need to construct a 1-Dimensional Streaming SVM problem instance – this step consists of con-

structing a dataset D and a regularization parameter _ ∈ R+ (Definition 4.1.2). However, there

are several restrictions on how we may construct the dataset. In particular, we must construct the

dataset with Alice and Bob and the restrictions implicit in the information they have available –

that is, Alice must encode the information from her bit string into one part of the dataset, and Bob

must encode his index into the other part of the dataset, only using information from the first 𝑖 − 1

bits of the bitstring. This setup obeys the reduction from communication problems outlined in Sec-

tion 1.3.5. Finally, we show that knowledge of an 𝜖-optimal point for the Streaming SVM problem

instance solves the Augmented Index instance, completing the reduction and the lower bound.

1.3 Preliminaries

1.3.1 Notation

In general, we use the notation [𝑛] to refer to the list [1, 2, . . . 𝑛]. Also, given an ordered set,

list, or vector 𝑋 , we will denote by 𝑋𝑘 the 𝑘 𝑡ℎ element of 𝑋 according to the natural ordering (for

instance, in the case of a vector 𝑥 ∈ R𝑑 , we would index the dimensions from 1 to 𝑑 in increasing

order and refer to 𝑥𝑖 as the value of 𝑥 for coordinate 𝑖). If there is no natural ordering present from

the definition of 𝑋 , assume a lexicographic ordering of the set elements with ties broken arbitrarily

in a fixed manner from the start. We refer to Z+,R+ to denote positive integers and real-valued

numbers respectively, ∥ · ∥𝑝 to refer to the ℓ𝑝 norm

∥𝑥∥𝑝 =
©«
𝑑∑︁
𝑗=1
|𝑥𝑖 |𝑝ª®¬

1/𝑝

for 𝑥 ∈ R𝑑 , and 𝑑ℓ2 to refer to the ℓ𝑝 distance 𝑑ℓ𝑝 (𝑥, 𝑦) = ∥𝑥 − 𝑦∥𝑝.

5



1.3.2 Hermite Polynomials

In Chapters 2 and 3, we work with assumptions of Gaussian data (and in Chapter 3, this as-

sumption also reflects the practical use case as well). Consequently, to achieve our theoretical

results, we make use of the theory of Hermite polynomials – an orthonormal polynomial family

over the Gaussian measure. Hermite polynomials can intuitively be thought of as Fourier analysis

with respect to the Gaussian measure, and allow for the simplification of various objectives in-

volved in learning models over Gaussian data, which makes the analysis easier. In this section we

introduce the main concepts involved in Hermite analysis, and take the definition, required basic

facts, and development from [7].

Definition 1.3.1 (Gaussian Space). Let 𝑓 , 𝑔 : R → R be Borel functions, and define the inner

product 〈
𝑓 , 𝑔

〉
:=

∫ ∞

−∞
𝑓 (𝑥) · 𝑔(𝑥) · 𝜑(𝑥)𝑑𝑥 = E𝑥∼N(0,1)

[
𝑓 (𝑥) · 𝑔(𝑥)

]
,

where

𝜑(𝑥) = 1
√

2𝜋
· exp

(
−𝑥

2

2

)
is the Gaussian density. Then, 𝐿2(N (0, 1)) is the space of Borel functions that satisfy

⟨ 𝑓 , 𝑓 ⟩ = E𝑥∼N(0,1)
[
𝑓 (𝑥)2

]
< ∞.

Definition 1.3.2 (Hermite Polynomials). We define the Hermite polynomials, indexed by the non-

negative integers, as the result of applying the Gram-Schmidt orthonormalization process to the

standard polynomial basis {1, 𝑥, 𝑥2, . . . } with respect to the inner product defined by Gaussian

space (see Definition 1.3.1), and then normalizing so that the Gaussian space norm for each poly-

nomial is 1:

𝐻0(𝑎) = 1, 𝐻1(𝑎) = 𝑎, 𝐻2(𝑎) =
𝑎2 − 1
√

2
, 𝐻3(𝑎) =

𝑎3 − 3𝑎
√

6
, . . .
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In particular, this family of functions is an orthonormal polynomial basis for 𝐿2
(
N(0, 1)

)
. We

refer to these polynomials as the orthonormal Hermite basis functions.

Definition 1.3.3 (Properties of the Hermite Orthonormal Basis (from [7])). The Hermite basis is

an orthonormal basis over 𝐿2(N (0, 1)). In particular, we can write for 𝑓 ∈ 𝐿2
(
N(0, 1)

)
𝑓 (𝑎) =

∞∑︁
ℓ=0

𝑐ℓ𝐻ℓ (𝑎),

where𝐻ℓ (𝑎) is the ℓ𝑡ℎ orthonormal Hermite basis function (Definition 1.3.2), and 𝑐ℓ = E𝑎∼N(0,1) [ 𝑓 (𝑎)𝐻ℓ (𝑎)].

The ℓ𝑡ℎ Hermite basis function satisfies the following relation:

𝐻ℓ (𝑎) :=
1
√
ℓ!
(−1)ℓ
𝜑(𝑎)

𝑑ℓ

𝑑𝑎ℓ
𝜑(𝑎).

We also have the recurrence relation

𝐻ℓ+1(𝑎) =
1

√
ℓ + 1

(
𝑎𝐻ℓ (𝑎) −

𝑑

𝑑𝑎
𝐻ℓ (𝑎)

)
and derivative formula

𝑑

𝑑𝑎
𝐻ℓ (𝑎) =

√
ℓ𝐻ℓ−1(𝑎).

The following important lemma (see [7]) provides a rule for calculating E𝑎,𝑎′
[
𝑓 (𝑎) 𝑓 (𝑎′)

]
when 𝑎, 𝑎′ are correlated standard Gaussian random variables.

Lemma 1.3.4. Let 𝑎, 𝑎′ be standard Gaussian random variables with correlation 𝜌. Then, we have

E𝑎,𝑎′ [𝐻ℓ (𝑎)𝐻ℓ′ (𝑎′)] =


𝜌ℓ if ℓ = ℓ′

0 otherwise.
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and

E𝑎,𝑎′ [ 𝑓 (𝑎) 𝑓 (𝑎′)] =
∞∑︁

ℓ,ℓ′=1
𝑐ℓ𝑐ℓ′E𝑎,𝑎′ [𝐻ℓ (𝑎)𝐻ℓ′ (𝑎′)]

=

∞∑︁
ℓ=0

𝑐2
ℓ𝜌

ℓ,

where 𝑐ℓ, 𝑐ℓ′ are the real-valued coefficients of 𝑓 in the Hermite orthonormal basis.

1.3.3 Compressed Sensing

In Chapter 2, we make use of results from the theory of compressed sensing, since we will

reduce our non-linear sparse recovery problem into a linear sparse recovery problem to which the

existing theory of compressed sensing applies. In this section, we review these useful results,

following the development of [8].

The main problem in compressed sensing is to recover an 𝑠-sparse vector 𝑤 ∈ R𝑝 from ob-

servations of the form 𝐴𝑤 + [ = 𝑏 where 𝐴 ∈ R𝑛×𝑝 is the sensing matrix, 𝑤 ∈ R𝑝 is the

signal vector, [ ∈ R𝑛 is the measurement noise, and 𝑏 ∈ R𝑛 is the observation vector. A

commonly-used estimator is the Lasso [9]: for 𝜗 > 0, a Lasso estimate is defined to be �̂�Lasso(𝜗) ∈{
arg min𝑢∈R𝑝

1
2𝑛 ∥𝐴𝑢 − 𝑏∥

2
2 + 𝜗∥𝑢∥1

}
. Notably, the set defined above can have cardinality greater

than one when when rank(𝐴) < 𝑝, which for instance occurs when 𝑝 > 𝑛 [10]. This estima-

tor succeeds in recovering 𝑤 under certain conditions on 𝐴. One such condition is the restricted

eigenvalue condition introduced by [11] which we review here.

Definition 1.3.5. For 𝑇 ⊂ [𝑝] and 𝑞0 > 0, define C(𝑞0, 𝑇) := {𝑣 ∈ R𝑝 : ∥𝑣∥2 = 1, ∥𝑣𝑇𝑐 ∥1 ≤

𝑞0∥𝑣𝑇 ∥1}. 𝑇 is commonly taken to be the non-zero support 𝑆 of the sparse vector to recover.

We say the (𝑞0, 𝑇, 𝐴)-restricted eigenvalue condition (REC) is satisfied by matrix 𝐴 ∈ R𝑛×𝑝 if

_̃(𝑞0, 𝑇, 𝐴) := min𝑣∈C(𝑞0,𝑇)
1
𝑛
∥𝐴𝑣∥22 > 0. When 𝑞0 and 𝑇 are apparent from context and |𝑇 | = 𝑠,

we will simply write _̃(𝑠, 𝐴).

To certify that a REC is satisfied by 𝐴, it suffices to consider a sparse minimal eigenvalue of
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𝐴𝑇 𝐴.

Definition 1.3.6. For 𝑠 ∈ N, the 𝑠-sparse minimal eigenvalue of matrix 𝑀 is defined by _min(𝑠, 𝑀) :=

min∥𝑣∥2=1,∥𝑣∥0≤𝑠 𝑣
𝑇𝑀𝑣.

It is easy to see that the constraint set in the above definition is equivalent to C(𝑠, 0). Hence,

a matrix 𝐴 satisfies (𝑠, 𝑞0)-REC with _̃(𝑠, 𝑞0) ≥ _min

(
𝑠, 𝐴𝑇 𝐴/𝑛

)
whenever this latter quantity is

positive.

The following well-known result about the performance of the estimator �̂�Lasso(𝜗) is due to

[11]; the specific form we state is taken from [8].

Theorem 1.3.7. Consider the model 𝐴𝑤 + [ = 𝑏, and suppose the support 𝑆 of 𝑤 ∈ R𝑝 has size 𝑘 ,

and the measurement matrix 𝐴 ∈ R𝑛×𝑝 satisfies (𝑞0, 𝑆, 𝐴)-REC with 𝑞0 = 3. For any 𝜗 > 0 such

that 𝜗 ≥ (2/𝑛)∥𝐴𝑇[∥∞, the Lasso estimate �̂�Lasso(𝜗) satisfies

∥𝑤 − �̂�Lasso(𝜗)∥2 ≤
3𝜗
√
𝑘

_̃(𝑘, 3, 𝑆, 𝐴)
.

1.3.4 Convex Optimization

In this section we introduce some concepts from convex optimization used in Chapter 4. In

Chapter 4, we consider the online optimization of a strongly convex function, and require several

structural properties of strongly convex functions in order to prove our memory lower bounds for

streaming strongly convex optimization. We reproduce some standard definitions from convex

optimization theory (see for instance [12]).

Definition 1.3.8 (Sub-Gradient Set). Consider a function 𝑓 : R𝑑 → R. We say a vector 𝑔 ∈ R𝑑 is

a subgradient of 𝑓 at 𝑥 ∈ dom( 𝑓 ) if for all 𝑦 ∈ dom( 𝑓 ),

𝑓 (𝑦) ≥ 𝑓 (𝑥) + 𝑔⊤
(
𝑦 − 𝑥

)
.

We refer to the set of all such 𝑔 as 𝜕 𝑓 (𝑥). If 𝑓 is convex and differentiable, then
��𝜕 𝑓 (𝑥)�� = 1,

and the unique element of 𝜕 𝑓 (𝑥) is named ∇ 𝑓 (𝑥). If 𝑓 is non-convex and differentiable and if the
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subgradient exists at 𝑥, we also use the same definitions. If 𝑓 does not satisfy the condition that

|𝜕 𝑓 (𝑥) | = 1 for all 𝑥 ∈ dom( 𝑓 ), we say it is non-smooth. Here dom( 𝑓 ) refers to the domain of 𝑓 .

Definition 1.3.9 (Convex Function). Consider a function 𝑓 : R𝑑 → R. We say 𝑓 is convex if

|𝜕 𝑓 (𝑥) | > 0 for all points 𝑥 ∈ dom( 𝑓 ) and if it satisfies

𝑓 (𝑦) ≥ 𝑓 (𝑥) + 𝑔⊤
(
𝑦 − 𝑥

)
for any pair of points 𝑥, 𝑦 ∈ dom( 𝑓 ) and any 𝑔 ∈ 𝜕 𝑓 (𝑥).

Definition 1.3.10 (Strongly Convex Function). Consider a function 𝑓 : R𝑑 → R. We say 𝑓 is

_-strongly convex if |𝜕 𝑓 (𝑥) | > 0 for all points 𝑥 ∈ dom( 𝑓 ) and if it satisfies the relation

𝑓 (𝑦) ≥ 𝑓 (𝑥) + 𝑔⊤
(
𝑦 − 𝑥

)
+ _

2
𝑦 − 𝑥2

2

for any pair of points 𝑥, 𝑦 ∈ dom( 𝑓 ) and any 𝑔 ∈ 𝜕 𝑓 (𝑥).

Definition 1.3.11 (Smooth Convex Function). Consider a function 𝑓 : R𝑑 → R. We say 𝑓 is

𝐿-smooth if it is differentiable at every point on its domain, and satisfies the relation

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ∇ 𝑓 (𝑥)⊤
(
𝑦 − 𝑥

)
+ 𝐿

2
𝑦 − 𝑥2

2

for any pair of points 𝑥, 𝑦 ∈ dom( 𝑓 ).

Definition 1.3.12 (Sub-Gradient Optimality Condition for Strongly Convex Functions). Consider

a strongly convex function 𝑓 : R𝑑 → R. We say 𝑥∗ is the unique minimizer of 𝑓 if

0 ∈ 𝜕 𝑓 (𝑥∗).
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1.3.5 Communication Complexity

In this section we introduce some concepts from communication complexity used in Chapter 4.

Communication complexity lower bounds are often useful tools in proving memory lower bounds

for one-pass streaming algorithms, which is the task we are concerned with in Chapter 4. We

present the definition of randomized communication complexity, the Augmented Index communi-

cation problem, and a lower bound on its communication complexity (as developed in [13]).

Definition 1.3.13 (One-Way Two-Party Randomized Communication Protocol). In two-party com-

munication, there are two parties, Alice and Bob. Alice has an input a ∈ {0, 1}𝑎, and Bob has an

input b ∈ {0, 1}𝑏. Neither knows the other’s input. Alice and Bob want to compute a Boolean

function 𝑓 : {0, 1}𝑎 × {0, 1}𝑏 → {0, 1} of a and b. A randomized one-way communication pro-

tocol is a message 𝑀 (a) from Alice to Bob that enables Bob to compute 𝑓 (a, b) accurately based

only on the information 𝑀 (a), b with probability at least 3/4. The randomized communication

complexity of a given function 𝑓 is a lower bound on the number of bits Alice must send Bob in

order for Bob to successfully compute 𝑓 with probability at least 3/4.

Definition 1.3.14 (Index and Augmented Index). Augmented Index is a one-way communication

problem between Alice and Bob. Alice has a bit string a := 𝑎1 . . . 𝑎𝑛 of length 𝑛 with 𝑎𝑖 ∈ {0, 1},

and Bob has an index 𝑖 ∈ [𝑛]. Bob wants to know the value of 𝑎𝑖. A successful communication

protocol of size 𝑚 has Alice send 𝑚 words to Bob, who must then output the correct value of

𝑎𝑖. This is the basic Index problem. In Augmented Index, Bob receives not only index 𝑖, but

also the values of 𝑎1, . . . , 𝑎𝑖−1. Both communication problems have a randomized communication

complexity lower bound of Ω(𝑛) [13] – that is, Alice must send at least a constant fraction of all

her bits to Bob.

Now we elaborate upon the connection between communication lower bounds for communi-

cation protocols and memory lower bounds for one-pass streaming problems.

Definition 1.3.15 (One-Pass Streaming Problem). In one-pass streaming, we receive parts of the

description of the problem specification one at a time in some arbitrary order: call these parts the
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stream 𝑥1, . . . , 𝑥𝑛 – here the positive integer 𝑛 is not known in advance. Then, we wish to compute

some function 𝑔(𝑥1, . . . , 𝑥𝑛) having only seen one pass over the stream. This problem is trivially

solvable if we store the whole stream – we are interested in how small a fraction of the stream

we must store to still be able to reliably compute 𝑔 with success probability at least 3/4 over any

randomness in both the stream and the algorithm we use. Here, the term “reliably” has different

meanings depending on the function 𝑔 – one common instantiation is to compute the value of 𝑔

within some additive error 𝜖 > 0, in the case where 𝑔 may be real-valued.

To prove lower bounds for one-pass streaming problems, the general strategy we implement

is to construct an instance of the problem the streaming algorithm is supposed to solve given a

one-way communication problem. Then, Alice and Bob can use the one-pass streaming algorithm

to solve their communication problem by implementing the following steps:

1. Alice runs the streaming algorithm on her input a.

2. Alice sends the memory state of the streaming algorithm to Bob.

3. Bob finishes running the streaming algorithm, initialized to Alice’s sent memory state, on his

input b, and outputs the answer.

Thus, if a one-pass streaming algorithm for the streaming problem succeeds with memory 𝑚, then

a one-way communication protocol with communication 𝑚 exists as well.
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Chapter 2: Attribute-Efficient Learning of Monomials over

Highly-Correlated Variables

In this chapter, we study resource limitations from the perspective of resource efficiency in

machine learning – in particular, we consider a nonlinear sparse model class. A sparse model

for a high-dimensional input only depends on a small number of the dimensions in the input,

and thus one can hope for a tamer dependence on the dimension for the sample complexity and

the computational complexity of learning. Sparsity is also often desirable from the standpoint of

storage and deployment, given their smaller description complexity. In this chapter, we achieve a

better understanding of when it is possible to learn certain classes of sparse non-linear models. The

following development is based on the paper [14], which was co-authored with Alexandr Andoni,

Rishabh Dudeja, and Daniel Hsu and was accepted to Algorithmic Learning Theory 2019.

2.1 Problem Statement

This section presents the formal learning problem, and introduces technical tools and notations

used in our algorithm and analysis.

We consider the following canonical problem in learning theory. We observe 𝑛 features-

response pairs {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 ⊂ R
𝑝 × R drawn i.i.d. from the following model:

𝑥𝑖 ∼ D𝑥 , 𝑦𝑖 = 𝑓 (𝑥𝑖).

Here, D𝑥 is some distribution on R𝑝. The goal is to design an algorithm to accurately estimate

the unknown function 𝑓 with small sample complexity (𝑛) and small run-time. Moreover, the

unknown function 𝑓 may depend on only 𝑘 out of the 𝑝 features, with 𝑘 ≪ 𝑝. This models the

problem of feature selection in machine learning and statistics. In this situation, a reasonable goal
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is to design algorithms that are attribute-efficient—that is, require 𝑛 = poly(log(𝑝), 𝑘) samples

and poly(𝑛, 𝑝, 𝑘) run-time. While there is a long line of work studying this problem, most existing

work has one or more of the following limitations:

1. Many existing results provide algorithms and hardness results when the features are Boolean,

i.e., D𝑥 is supported {0, 1}𝑝 or {−1, +1}𝑝. These results, however, do not necessarily reflect

the difficulty or qualities of the learning problem when the features are real-valued, which is

common in many practical settings.

2. A long line of work in compressed sensing and high-dimensional statistics assumes 𝑓 is a

(sparse) linear function, but does not extend to non-linear functions.

3. To the best of our knowledge, all existing work for real-valued attributes and non-linear func-

tions 𝑓 assumes that D𝑥 is a product measure, for example a standard normal D𝑥 = N(0, 𝐼𝑝)

[15].

In particular, the question of attribute-efficient learning is not well understood even for simple

classes of non-linear functions and some canonical non-product measures. In this work, we address

this gap by considering the problem of learning sparse monomials in the noiseless setting under

the Gaussian measure. In particular, we assume:

D𝑥 = N(0,Φ), 𝑓 (𝑥) =
∏
𝑖∈𝑆

𝑥
𝛽𝑖
𝑖
.

For simplicity, we assume that covariance matrix Φ satisfies Φ𝑖,𝑖 = 1 for all 𝑖, since we can rescale

the features to have unit variance. The 𝛽𝑖 ∈ N ∪ {0} are degrees of each of the relevant variables

𝑆 ⊆ {1, . . . , 𝑝}, and |𝑆 | = 𝑘 . Even in this simple setup, a number of standard approaches fail to

give an algorithm that runs in poly(𝑛, 𝑝, 𝑘) time and has poly(log(𝑝), 𝑘) sample complexity.

1. One natural approach is to expand the feature space by constructing all possible monomials of

degree ≤ 𝑑 and consisting of at most 𝑘 variables (there are at least Ω(𝑝𝑘 ) such monomials)

and using Empirical Risk Minimization. One expects this procedure to work with sample
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size 𝑛 = 𝑂 (log(𝑝𝑘 )) = 𝑂 (𝑘 log(𝑝)), but the approach is computationally inefficient. Sparse

regression [e.g., 9]) in the expanded feature space has similar sample complexity and run-time

(and may require additional assumptions on the expanded design matrix). [16] analyze this

approach whenD𝑥 is the uniform distribution on {−1, 1}𝑝 and 𝑓 is a sum of 𝑠 monomial terms

and obtain a sample complexity of 𝑂 (𝑝𝑠2) and a run-time of 𝑂 (2𝑝).

2. One can avoid explicit feature expansion by using the kernel trick. Kernel ridge regression is

equivalent to ℓ2-penalized least squares in the expanded feature space, and can be solved in

poly(𝑛, 𝑝, 𝑘) time. Standard analyses of kernel ridge regression imply that the sample com-

plexity of this approach is proportional to the Rademacher complexity of linear classes with

bounded ℓ2 norm in the expanded space [e.g., 17, Lemma 22]. Unfortunately, the latter quan-

tity depends on the average squared norm of the feature vector in the expanded space, which

in the Gaussian case scales like Ω(𝑝𝑘 ). We also refer the reader to Theorem 2 of [18] for a

precise analysis of the 𝐿2 risk bound which makes the 𝑝Ω(𝑑) dependence explicit for kernel

ridge regression when 𝑓 is a degree 𝑑 polynomial and D𝑥 is supported on the unit sphere.

3. [15] describe an algorithm that learns a degree-𝑘 polynomial with at most 𝑠 monomial terms

under a product measure on R𝑝, achieving a run-time and sample complexity of poly(𝑝, 2𝑘 , 𝑠).

There is a natural reduction of our problem to their setting: learn the matrix Φ and then apply

a whitening transformation Φ−1/2 to the feature vectors. However, this reduction may convert

a degree-𝑘 monomial over the original features into a dense polynomial with 𝑠 = Ω(𝑝𝑘 ) terms

over the new features.

We observe 𝑛 i.i.d. feature-response pairs {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 ⊂ R
𝑝 × R from the following model:

𝑥𝑖 ∼ N(0,Φ), 𝑦𝑖 =
∏
𝑗∈𝑆

𝑥
𝛽 𝑗

𝑖, 𝑗
, (2.1)

where 𝑆 ⊆ [𝑝] := {1, . . . , 𝑝} is the set of relevant variables, and 𝛽 ∈ (N ∪ {0})𝑝 is the vector of

degrees (with 𝛽 𝑗 ≠ 0 iff 𝑗 ∈ 𝑆). The total degree of the monomial is ∥𝛽∥1 =
∑
𝑗∈𝑆 𝛽 𝑗 . We say the

monomial is 𝑘-sparse when |𝑆 | = 𝑘 . (Our results also permit 𝛽 𝑗 < 0, but such a model would not
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be a monomial.)

The attribute-efficient learning goal is to recover, with high probability, both 𝑆 and 𝛽 with

sample size 𝑛 = poly(log(𝑝), 𝑘) and run-time poly(𝑛, 𝑝, 𝑘).

For simplicity, we assume that the features are standardized, so the feature variances satisfy

Φ𝑖,𝑖 = 1 for all 𝑖 ∈ [𝑝]. We also assume the cross-correlations satisfy

|Φ𝑖, 𝑗 | ≤ 1 − 𝜖, ∀𝑖 ≠ 𝑗

for some 𝜖 > 0. This latter assumption is necessary so that 𝛽 is identifiable. Indeed, if there are

two perfectly correlated features, then it is impossible to distinguish them, in which case 𝛽 cannot

be uniquely determined. These assumptions are not restrictive and still permit highly correlated

features. In particular, the covariance matrix is permitted to be rank deficient, so some features can

be linear combinations of others.

Restricting ourselves to this minimal assumption allows us to study the case where some of

the data features are highly correlated and the population covariance matrix is low-rank, while

excluding situations involving pairs of identical features.

2.2 Related Work

There are a large number of results on attribute-efficient learning under different assumptions

on D𝑥 and the target function 𝑓 . We discuss representative results from each category.

Learning with Boolean Features

When D𝑥 is supported on {0, 1}𝑝, learning monomials with positive integral degrees is the

same as learning conjunctions. This class was shown to be PAC learnable by [19]. Furthermore,

there also exists a computationally efficient and attribute-efficient learner due to [20]. When D𝑥

is supported on {−1, +1}𝑝, then learning monomials with positive integral degrees corresponds to

learning parities. Parity functions are PAC learnable using Gaussian elimination over F2 in time
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𝑂 (𝑛3) [21].

When a parity function involves only 𝑘 variables, a brute force search over all size-𝑘 sub-

sets of variables PAC learns 𝑘-sparse parities with an attribute-efficient sample complexity of

poly(log(𝑝), 𝑘) but has a run-time of𝑂 (𝑝𝑘 ). Finding an attribute-efficient algorithm with poly(𝑛, 𝑝, 𝑘)

run-time is a long-standing open problem of [22]. Some notable improvements over the brute-force

run-time include an attribute-efficient algorithm with run-time 𝑂 (𝑝𝑘/2) due to Dan Spielman [23],

and an attribute-inefficient improper learner with sample complexity 𝑛 = 𝑂 (𝑝1−1/𝑘 ) and run-time

𝑂 (𝑝4) for the noiseless case with an arbitrary distribution over {−1, +1}𝑝 due to [23]. Finally,

an 𝑂 (𝑝0.8𝑘 poly
(
1/(1 − 2[)

)
-time (but attribute-inefficient) algorithm of [24] learns parities in the

noisy setting (where labels are flipped with probability [) under the uniform distribution.

Average Case Analysis for Learning Parities

The key bottleneck in avoiding the 𝑝𝑂 (𝑘) dependence in run-time while learning 𝑘-sparse pari-

ties over the uniform distribution on {−1, +1}𝑝 in an attribute-efficient manner is that it is not clear

how to decide if a feature is relevant or not without considering its interaction with every possible

set of 𝑘 − 1 features. In light of this, [25] study the problem when 𝑓 is a DNF with 𝑠 terms (𝑘-

sparse parities are DNFs of size 𝑠 = 2𝑘 ) and show that a natural greedy feature selection algorithm

can learn such 𝑓 in time and sample complexity poly(𝑠, 𝑝) under a product distribution whose pa-

rameters are adversarially chosen and then randomly perturbed by a small amount. Similarly, [26]

identify a property of the function 𝑓 called the unique sign property (USP) that facilitates learning.

For functions 𝑓 defined on {−1, +1}𝑝 satisfies USP and depends on just 𝑘 features, their algorithm

learns 𝑓 under the uniform distribution with run-time and sample complexity poly(𝑝, 2𝑘 ). In the

spirit of smoothed analysis, they show the USP is satisfied when an adversarially chosen 𝑘-sparse

function 𝑓 is perturbed by a small amount of random noise.
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Learning with Real-Valued Features

WhenD𝑥 is a product measure and the features are real-valued (for example, the uniform mea-

sure on [−1, 1] 𝑝 or the standard Gaussian measure on R𝑝), [15] consider the problem of learning

sparse polynomials of degree 𝑑 that contain at most 𝑠 monomial terms with additive noise. They

show a surprising result that in contrast to learning sparse parities with noise, it is possible to avoid

a 𝑝𝑑 dependence in run-time. They design an algorithm with poly(𝑝, 2𝑑 , 𝑠) sample complexity

and run-time. At the heart of their approach are linear-time correlation tests that detect if a fea-

ture participates in the highest degree (lexicographically) monomial. Once they detect all features

participating in the highest degree monomial, they remove it, and recurse on the residual poly-

nomial. An interesting property of their algorithm is that it never looks at the signs of either the

responses or the features. This highlights the fact that in the real-valued case the magnitudes of the

observations contain valuable information (which was not present in the case of parities) that can

be leveraged to design algorithms with sub-𝑂 (𝑝𝑑) run-time. The algorithm we propose has the

same property. While the class of functions we can handle is smaller (1-sparse polynomials), we

are able to handle extremely large correlations between features. In this highly-correlated setting,

it is not immediately clear how to analyze the correlation tests proposed by [15]. Hence, we rely

on a completely different technique: computing a log-transform of the responses and using sparse

linear regression.

2.3 Main Results

Our contributions. We design an attribute-efficient algorithm for learning the function 𝑓 (𝑥) =∏
𝑖∈𝑆 𝑥

𝛽𝑖
𝑖

, where 𝑥 ∼ D𝑥 = N(0,Φ), that uses sample size 𝑛 = 𝑂 (𝑘2 · poly(log(𝑝), log(𝑘))) and

runs in poly(𝑛, 𝑝, 𝑘) time. In particular, the algorithm exactly recovers the set 𝑆 and exponents 𝛽𝑖

with high probability. The algorithm does not have access to Φ, and indeed, the sample size may

be too small to learn it accurately.

Our algorithm provably succeeds as long as max𝑖≠ 𝑗 |Φ𝑖, 𝑗 | < 1. This is, in a sense, the minimal
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assumption on Φ: if violated, this model is not even identifiable. To put this into context, it

is instructive to contrast to the case when 𝑓 is a sparse linear function, under the same input

distribution 𝑥 ∼ N(0,Φ). For the latter problem, there is no known computationally efficient and

attribute-efficient algorithm to estimate the set 𝑆 under similarly-weak assumptions on Φ.

The key algorithmic technique is to apply a log-transform to the features and response, and re-

duce the problem to a sparse linear regression problem. While this is a commonly-used technique

in applied statistics, to the best of our knowledge, it has not been rigorously analyzed before. We

show that this log-transform is precisely what allows us to provably learn 𝑓 when it is a mono-

mial. Specifically, we analyze how the covariance matrix changes after the log-transform, showing

that the log-transform eliminates linear dependencies between two or more features – this “bless-

ing of non-linearity” allows us to ensure a restricted strong convexity property always holds (see

Figure 2.1). To again contrast with the case of learning sparse linear functions, the linear depen-

dencies are precisely the obstacle for designing computationally-efficient and attribute-efficient

algorithms.

In this section, we present our learning algorithm and its performance guarantees.
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Figure 2.1: The log transform inflates the spectrum of the resulting data covariance matrix, ensur-
ing we can lower bound the minimum restricted eigenvalue by a positive constant, leading to our
sample complexity bound.
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2.3.1 Algorithm

Our proposed attribute-efficient learning algorithm, given as Algorithm 1, is based on a log-

transformation of the data, followed by sparse linear regression. For concreteness, we use Lasso [9]

for the second step, although other sparse regression methods could also be used.

Algorithm 1 Learn Sparse Monomial

Require: data matrix 𝑋 ∈ R𝑛×𝑝, responses 𝑦 ∈ R𝑛, regularization parameter 𝜗 > 0
1: Apply log

(
| · |

)
transformation to data and responses, element-wise: �̂� ← log

(
|𝑋 |

)
and �̂� ←

log
(
|𝑦 |

)
.

2: Solve Lasso optimization problem: 𝛽← arg min𝛽∈R𝑝
1
2𝑛 ∥ �̂� 𝛽 − 𝑦∥

2
2 + 𝜗∥𝛽∥1.

3: Select variables: 𝑆 ← { 𝑗 ∈ [𝑝] : 𝛽 𝑗 ≠ 0}.
4: return 𝑆 and 𝛽.

The logarithm transformation is a folklore technique in applied statistics [see, e.g., 27] but, to

the best of our knowledge, has not received a non-trivial theoretical analysis in a setting similar to

ours. We compose the log-transform with absolute value in Algorithm 1 to ensure non-negativity.

We make two observations about the log
(
| · |

)
-transformation. First, it converts the monomial

model in Eq. (2.1) to the following:

log
(
|𝑦𝑖 |

)
=

∑︁
𝑗∈𝑆

𝛽 𝑗 log
(
|𝑥𝑖, 𝑗 |

)
. (2.2)

Second, the transformation is only applicable to non-zero entries in the data matrix 𝑋 and response

vector 𝑦. For the Gaussian data in our problem setup, all entries are non-zero almost surely.

So, after the transformation, the problem reduces to a linear sparse recovery problem, which

can be efficiently solved using well-known techniques from compressed sensing under appropriate

conditions on the design matrix (e.g., restricted eigenvalues).

The following simple proposition formalizes the reduction.

Proposition 2.3.1. A unique solution 𝛽 to the transformed model in Eq. (2.2) is the unique solution

to the original model in Eq. (2.1).
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2.3.2 Performance Guarantees

Our approach to analyzing Algorithm 1 is based on applying the performance guarantee for

Lasso from Theorem 1.3.7. Because we apply Lasso to data from the log
(
| · |

)
-transformed model

in Eq. (2.2), we need to prove that REC is satisfied by �̂� = log
(
|𝑋 |

)
. As noted before, it is

sufficient to lower-bound _̃(𝑘, 3, 𝑆, �̂�/
√
𝑛). This is the content of the following theorem.

Theorem 2.3.2. Let 𝛿 ∈ (0, 1) be an arbitrary confidence parameter. Suppose the covariance

matrix Φ satisfies Φ𝑖,𝑖 = 1, ∀𝑖 ∈ [𝑝] and max𝑖≠ 𝑗 |Φ𝑖, 𝑗 | < 1 − 𝜖 . Then, the log
(
| · |

)
-transformed

design matrix �̂� = log
(
|𝑋 |

)
for 𝑋 taken from the model in Eq. (2.1) with true support |𝑆 | = 𝑘

satisfies

_̃

(
𝑘,

1
√
𝑛
�̂�

)
≥ 1

5

√︂
𝜖

log(16𝑘) + 2
,

with probability 1 − 𝛿, provided that

𝑛 ≥ 𝐶 · 𝑘
2 log(2𝑘)

𝜖
· log2

(
2𝑝
𝛿

)
· log2

(
𝑘 log(𝑘)

𝜖
log

(
2𝑝
𝛿

))
. (2.3)

In the above display, 𝐶 is a universal constant.

Therefore, applying Theorem 1.3.7, we immediately get as a corollary the following perfor-

mance guarantee for Algorithm 1.

Corollary 2.3.3. Let 𝛿 ∈ (0, 1) be an arbitrary confidence parameter and 𝜗 be the regularization

parameter. Suppose the covariance matrix Φ satisfies Φ𝑖,𝑖 = 1 for all 𝑖 ∈ [𝑝] and max𝑖≠ 𝑗 |Φ𝑖, 𝑗 | <

1 − 𝜖 , and that the sample size 𝑛 satisfies the inequality in Eq. (2.3). For 𝑋 and 𝑦 taken from the

model in Eq. (2.1) with |𝑆 | = 𝑘 , Algorithm 1 returns 𝛽 such that, with probability at least 1 − 𝛿,

∥𝛽 − 𝛽∥2 ≤ 15𝜗
√︂
𝑘 (log(16𝑘) + 2)

𝜖
.
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Remark 2.3.4. We note that, as 𝜗→ 0, ∥𝛽 − 𝛽∥2 → 0, and hence, Algorithm 1 recovers 𝛽 exactly.

Furthermore, in the limit 𝜗 → 0, Algorithm 1 is equivalent to the Basis Pursuit estimator [28]

defined as:

𝛽BP = arg min
𝑣∈R𝑝

∥𝑣∥1 subject to �̂�𝑣 = �̂�.

In particular, this means that under the conditions of Corollary 2.3.3, the Basis Pursuit estimator

satisfies

𝛽BP
𝑗 = 0 ∀ 𝑗 ∉ 𝑆, 𝛽BP

𝑗 = 𝛽 𝑗 ∀ 𝑗 ∈ 𝑆.

Remark 2.3.5. Suppressing logarithmic factors in 𝑝 and 𝑘 , the above result shows that Algorithm 1

succeeds in recovering the monomial with high probability with �̃� (𝑘2/𝜖) samples.

Remark 2.3.6. If we observe data with multiplicative noise, that is,

𝑦𝑖 = 𝑒
[𝑖 ·

∏
𝑗∈𝑆

𝑥
𝛽 𝑗

𝑖, 𝑗
(2.4)

where [𝑖 ∈ R is a zero-mean sub-gaussian noise (e.g., [𝑖 ∼ N(0, 𝜎2)), then the log | · | transform

reduces our problem to a noisy compressed sensing problem. Hence we can still apply Theo-

rems 1.3.7 and 2.3.2, as long as we set the parameter 𝜗 according to the noise level. If the sample

size is large enough relative to the noise level, we can exactly recover the degrees by rounding 𝛽

to nearest integers. The details are straightforward and omitted.

2.4 Proofs

2.4.1 Additional Notation and Terminology

Let 𝑋 = [𝑥1 | · · · |𝑥𝑛]𝑇 ∈ R𝑛×𝑝 be the data matrix, and let 𝑦 = [𝑦1 | · · · |𝑦𝑛]𝑇 ∈ R𝑛 be the vector

of responses. Throughout, log denotes the natural logarithm, and applying log or absolute value
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to a matrix or vector means these operations are taken element-wise. For any matrix 𝑀 , we write

𝑀 (𝑙) to denote its 𝑙-th Hadamard power, so 𝑀 (𝑙)
𝑖, 𝑗

= 𝑀 𝑙
𝑖, 𝑗

. We define the following notations:

𝑧 := log( |𝑥 |), Σ := E𝑧 [𝑧𝑧𝑇 ], Σ̂ :=
1
𝑛

𝑛∑︁
𝑖=1

𝑧(𝑖)𝑧(𝑖)
𝑇
.

where log( | · |) is applied element-wise and 𝑧(𝑖) denotes the 𝑖𝑡ℎ data point.

2.4.2 Restricted eigenvalues for the log
(
| · |

)
-transformed data

In this section, we present the main technical results used in the proof of Theorem 2.3.2. We

define the following notations:

𝑧 := log( |𝑥 |), Σ := E𝑧 [𝑧𝑧𝑇 ], Σ̂ :=
1
𝑛

𝑛∑︁
𝑖=1

𝑧(𝑖)𝑧(𝑖)
𝑇
.

where log( | · |) is applied elementwise and 𝑧(𝑖) denotes the 𝑖𝑡ℎ empirical data point. We also use 𝑧𝑖

to denote the 𝑖𝑡ℎ feature of 𝑧. The proof of Theorem 2.3.2 involves three steps:

1. We first determine an explicit formula for the population covariance matrix Σ given in Lemma 2.4.1.

2. We leverage this explicit formula to prove a lower bound on _min(Σ) and _̃(𝑘, Σ1/2) in Theo-

rem 2.4.2.

3. Finally, we show that _̃(𝑘, Σ̂1/2) concentrates around _̃(𝑘, Σ1/2) in Lemma 2.4.5.

One of our main technical contributions is a lower bound on _̃min(𝑘, Σ1/2) under very weak

assumptions about the covariance matrix Φ of the original features, namely, |Φ𝑖, 𝑗 | < 1 − 𝜖 for any

𝑖 ≠ 𝑗 . In particular, this holds even in cases where Φ is low-rank or Φ1/2 doesn’t satisfy REC.

Intuitively, this result holds because the logarithm, a highly non-linear operation, destroys the

linear dependence structure of a low-rank matrix as long as no two features are perfectly correlated

(which is anyway necessary for identifiability).
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2.4.3 Properties of log
(
| · |

)
-transform

The following key lemma provides several useful properties of the log | · | transform, culminat-

ing in an explicit and convenient expression for Σ in terms of Φ.

Lemma 2.4.1. Let 𝑥 ∼ N(0,Φ) where Φ𝑖,𝑖 = 1 for all 𝑖 ∈ [𝑝]. Define 𝑧 = log
(
|𝑥 |

)
. Then:

1. The random variable 𝑧𝑖 has bounded variance, in particular, var(𝑧𝑖) = 𝜋2/8.

2. The function 𝑎 ↦→ log( |𝑎 |) admits the following expansion in the Hermite polynomial basis

{𝐻𝑙}𝑙≥0:

log( |𝑎 |) =
∞∑︁
𝑙=0

𝑐2𝑙𝐻2𝑙 (𝑎), 𝑐2𝑙 =
(−1)𝑙−12𝑙−1(𝑙 − 1)!√︁

(2𝑙)!
.

3. E [𝑧𝑖𝑧 𝑗 ] =
∑∞
𝑙=0 𝑐

2
2𝑙Φ

2𝑙
𝑖, 𝑗

.

4. Σ = 𝑐2
01𝑝×𝑝 +

∑∞
𝑙=1 𝑐

2
2𝑙Φ
(2𝑙) , where 1𝑝×𝑝 is the 𝑝 × 𝑝 matrix of all 1’s.

Proof sketch.

1. The challenge in calculating the variance of 𝑧𝑖 is that integrals involving log moments and the

Gaussian measure are not analytically easy to work with. To get around this, we leverage the

fact that for any non-negative random variable 𝑎 and any 𝑚 ∈ N,

E𝑎 [log𝑚 𝑎] = lim
a→0

d𝑚
da𝑚E𝑎 [𝑎

a] .

When 𝑎 = |𝑥𝑖 |, the RHS of the above expression is available in closed-form. (This is the

“Replica Trick” from statistical physics [29].)

2. Since the Hermite polynomials form a complete orthonormal basis for 𝐿2(N (0, 1)), we can

compute 𝑐𝑙 by the integral:

𝑐𝑙 =

∫ ∞

−∞
log

(
|𝑎 |

)
· 𝐻𝑙 (𝑎) ·

𝑒−𝑎
2/2

√
2𝜋

d𝑎.
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We calculate the above integral by-parts and by leveraging the recursive structure of Hermite

Polynomials.

3. The rationale behind expanding the log( |𝑎 |) in the Hermite polynomial basis is that there is

a clean formula between the correlation of Hermite polynomials applied to two correlated

Gaussian random variables [see, e.g., 7]:

E [𝐻𝑙 (𝑥𝑖)𝐻𝑚 (𝑥 𝑗 )] = Φ𝑙
𝑖, 𝑗1{𝑙=𝑚} .

Using this fact and the expansion of log | · | gives us the expression for E [𝑧𝑖𝑧 𝑗 ].

4. The formula for Σ immediately follows given the general expression for Σ𝑖, 𝑗 = E [𝑧𝑖𝑧 𝑗 ].

See Appendix A.2 for a detailed proof. □

2.4.4 Restricted eigenvalues of population covariance matrices

Theorem 2.4.2. Let Φ be any covariance matrix with Φ𝑖,𝑖 = 1 for all 𝑖 and |Φ𝑖, 𝑗 | < 1− 𝜖 for 𝑖 ≠ 𝑗 ,

and let Σ = E𝑧 [𝑧𝑧𝑇 ] for 𝑧 ∼ N(0,Φ). The following inequalities hold.

1. _min (Σ) ≥
𝜋2

8
_min(Φ).

2. _̃
(
𝑘, Σ1/2

)
≥

1
2

⌊
log(16𝑘))
log( 1

1−𝜖 )

⌋
∑︁
ℓ=1

_̃

(
𝑘, [Φ(2ℓ)]1/2

)
5ℓ3/2 + 2

5

√√√ 2 log((1 − 𝜖)−1)

log
(

16𝑘
1−𝜖

)
+max{2, log((1 − 𝜖)−1)}

.

Remark 2.4.3. If Φ already has a positive minimum eigenvalue, we automatically have a con-

stant multiplicative factor improvement after applying the log
(
| · |

)
-transformation. But even if

_min(Φ) = 0, we still obtain a positive lower bound on _̃ (𝑘, Σ).

Remark 2.4.4. In Appendix A.3 (specifically Theorem A.3.5), we also prove a simpler minimum

eigenvalue lower bound of _min(Σ) ≥ Ω(
√︁
𝜖/log(𝑝)), which is similar to the lower bound on

_̃(𝑘, Σ1/2) except with log(𝑘) replaced by log(𝑝). The improvement in Theorem 2.4.2, which has

no explicit dependence on the ambient dimension 𝑝, uses a restricted form of Gershgorin’s Circle
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Theorem (Lemma A.3.7). Using either lower bound is sufficient to obtain the sample complex-

ity guarantees in Theorem 2.3.2, but the improved bound highlights the power of the log
(
| · |

)
-

transformation and may be of independent interest.

Proof sketch. We recall the explicit expression for Σ from Lemma 2.4.1:

Σ = 𝑐2
01𝑝×𝑝 +

∞∑︁
𝑙=1

𝑐2
𝑙Φ
(𝑙) .

The definitions of _min(·) and _̃(𝑘, ·) imply both are superadditive:

_̃(𝑘, Σ1/2) ≥
∞∑︁
𝑙=1

𝑐2
𝑙 _̃(𝑘, [Φ

(𝑙)]1/2).

We obtained the bound on _min(Σ) by applying a linear algebraic result from [30] which implies

that _min(Φ(𝑙)) ≥ _min(Φ). As for the second expression, we split the infinite sum into two parts

and apply a restricted version of the Gershgorin Circle Theorem to the second part (see Lemma

A.3.7 in Appendix A.3.2). We then analyze how fast the coefficients 𝑐𝑙 of the remaining terms

decay to 0. We refer the reader to Appendix A.3 for a complete proof. □

2.4.5 Analysis of the empirical covariance matrix

The last piece required to complete the proof Theorem 2.3.2 is a concentration result about

|_̃(𝑘, Σ1/2) − _̃(𝑘, Σ̂1/2) |. This is stated in the following lemma.

Lemma 2.4.5. Let 𝛿 ∈ (0, 1) be an arbitrary confidence parameter. With probability 1 − 𝛿,

|_̃(𝑘, Σ1/2) − _̃(𝑘, Σ̂1/2) | ≤ 𝐶𝑘
(√︂
(log(3/𝛿) + 2 log(𝑝))

𝑛
+ log2(𝑛) (log(3/𝛿) + 2 log(𝑝))2

𝑛

)
.

In the above display 𝐶 is a universal constant.

Proof sketch. We apply Theorem 4.2 of [31] after verifying that the log-transformed features 𝑧𝑖 are

entry-wise sub-exponential. See Appendix A.4 for a detailed proof. □
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Table 2.1: The results of our exact recovery simulation for various choices of sample size 𝑛 and
sparsity 𝑘 over 100 independent trials.

Estimated probability of exact recovery
𝑘 = 2 𝑘 = 4 𝑘 = 6 𝑘 = 8

𝑛 = 128 0.99 0.76 0.01 0.00
𝑛 = 384 1.00 1.00 0.97 0.22
𝑛 = 640 1.00 1.00 1.00 0.88

2.5 Simulations

We conducted a simple simulation to evaluate the robustness of our procedure to small additive

noise (which our analysis does not cover). The 𝑝 = 512-dimensional feature vectors are 𝑥𝑖 ∼

N(0,Φ) for a rank-𝑝/2 covariance matrix Φ given by

Φ :=


𝐼

√︃
2
𝑝
𝐻√︃

2
𝑝
𝐻 𝐼

 .
Above, 𝐼 is the (𝑝/2) × (𝑝/2) identity matrix, and 𝐻 is the (𝑝/2) × (𝑝/2) Hadamard matrix.

The responses are 𝑦𝑖 =
∏

𝑗∈𝑆 𝑥𝑖, 𝑗 + [𝑖 for independent [𝑖 ∼ N(0, 𝜎2), where 𝜎 = 10−3, and

𝑆 = {1, . . . , 𝑘/2, 𝑝/2 + 1, . . . , 𝑝/2 + 𝑘/2}.

Algorithm 1 was implemented with a setting of 𝜗 = 𝜗(𝑛, 𝑝, 𝜎) as suggested by [11]. For

different values of the cardinality 𝑘 = |𝑆 | and sample size 𝑛, we estimated the probability of exact

recovery of 𝑆 on 100 independent trials:

The results suggest that our procedure tolerates some level of additive noise, but that the sample

size may need to increase significantly with the sparsity level 𝑘 . This is reasonable, as the signal-

to-noise ratio decreases exponentially with 𝑘 .
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Chapter 3: Nonlinear Initialization Methods for Low-Rank Neural

Networks

In this chapter, we study resource limitations in machine learning from the perspective of

resource-efficiency: By restricting the weight matrices of deep neural networks to be low-rank,

both the forward and backward passes of the network become more computationally efficient to

execute. We consider deep neural networks whose weight matrices are parameterized by products

of two low-rank matrices, e.g. 𝑊 = 𝑈𝑉⊤ where 𝑊 ∈ R𝑚×𝑑 ,𝑈 ∈ R𝑚×𝑟 , 𝑉 ∈ R𝑑×𝑟 . Since both

the evaluation and training of deep networks depends on matrix-vector products, the number of

addition and multiplication operations in the evaluation of𝑊𝑥 (corresponding to a fully-connected

layer) decreases from Θ(𝑑 · 𝑚) to Θ(𝑟 · (𝑑 + 𝑚)).

The work in this section was performed at Google Brain during a Research Internship lasting

from June 2021 to February 2022 with Rakesh Shivanna, Maheswaran Sathiamoorthy, Sagar Jain,

and Ed Chi. The paper [3] is currently in submission.

3.1 Problem Statement

Training deep networks is a canonical task in modern machine learning. Training and serving

deep networks with very large parameter counts efficiently is of paramount importance in recent

years, since significant performance gains on a variety of tasks are possible simply by scaling up

parameter counts [32, 33, 34, 35, 36, 37]. Further theoretical evidence suggests that requiring

the resulting learned networks to be smooth functions (and therefore, in some sense, robust to

perturbations) entails even larger parameter counts [38].

However, there are significant computational difficulties with both training and deploying such

large models. Most existing works focus on efficiently deploying trained deep networks and uses
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a variety of approaches including sparsifying neural network weights [39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50], model distillation [51, 52], low-rank post-processing [53, 54, 55], and mixtures

thereof [56]. Unfortunately, these methods do not address the question of efficient training.

We study the problem of learning low-rank neural networks in this chapter and ask:

1. Are there better initialization schemes for low-rank deep neural networks that improve post-

training generalization error?

2. What factors govern the theory of choosing a low-rank initialization method?

3.2 Related Work

3.2.1 Training-Time Efficient Deep Networks

Another general approach to improving speed and memory at both train and inference time is

to replace each weight matrix 𝑊 ∈ R𝑑×𝑚 with a computationally efficient representation which

improves the training speed of standard gradient-based optimization methods, while ideally not

losing out on the representation capacity too much. A variety of papers have taken this approach

with varying techniques including fast Fourier transform-inspired sparse matrix decompositions,

low-rank factorizations, orthogonal basis kernel approximations, and sketching-based approaches

[57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. In the sparse deep network literature, there also exist

methods to perform pruning before or during training (to also get efficiency gains during training)

[67, 68, 69, 48, 49, 70].

3.2.2 Low-Rank Factorized Networks

Given the broad spectrum of proposed methodologies, it may be unclear to practitioners which

families of methods are most practical to use. Two recently popular approaches are unstructured

sparse pruning and low-rank factorization. Low-rank methods do not require specialized hardware

to convert smaller parameter counts into compute savings, unlike the sparse methods [71, 72, 73].
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For a fully-connected layer, the basic idea of a low-rank layer (or a factored layer) is to param-

eterize the network weights𝑊 ∈ R𝑑×𝑚 with a low-rank matrix product𝑈𝑉⊤, where𝑈 ∈ R𝑑×𝑟 , 𝑉 ∈

R𝑚×𝑟 and 𝑟 is the (user-selected) rank. Simple generalizations exist for other standard layers includ-

ing convolution and attention layers [58]. Low-rank deep networks reduce parameter counts (thus

saving memory) as well as the number of ops required for matrix-vector multiplication: (𝑑 +𝑚) · 𝑟

vs. 𝑑 · 𝑚.

[58] demonstrate that if one pays attention to proper initialization and regularization, low-rank

methods outperform sparse pruning approaches in many domains, contrary to existing beliefs that

sparse methods outperform low-rank methods in parameter count savings. In particular, a low-

rank initialization scheme called spectral initialization is crucial to achieve better performance

– initialization schemes are in general quite important for achieving good performance in neural

network training [74, 75, 76, 77, 78, 79, 80, 81, 82]. Spectral initialization samples a full-rank

matrix𝑊 ∈ R𝑑×𝑚 from a known init distribution, factorizes𝑊 as 𝐴Σ1/2, Σ1/2𝐵⊤ via singular value

decomposition (SVD), and initializes𝑈 and 𝑉⊤ with these factors.

However, there are no explanations for why this approach, which approximates the full-rank

weight parameters at initialization, yields improved performance. Thus, it is a natural next step to

develop better theoretical understanding of the properties of the low-rank network learning prob-

lem, with the hope that it will aid us in finding improved methods for training low-rank versions

of deep networks and in uncovering the principles of learning low-rank network approximations.

3.2.3 Low-Rank Approximation Theory

At the heart of the approach we take (see Problem 3.3.6 in Section 3.3.4) is the idea that we want

to make an alternate (nonlinear) low-rank approximation to a matrix 𝑊 . Low-rank approximation

has been long studied in the theoretical computer science literature (see [83, 84] for thorough

surveys of the topic). One particularly related line of work is the masked low-rank approximation

literature [85]. The basic idea of masked low-rank approximation is that we want to find a low-

rank 𝑌 that minimizes
𝑀 ◦ (𝑊 − 𝑌 )2

𝐹
, where 𝑀 is a mask applied as an elementwise product
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(the Hadamard product). This problem captures many different problems studied in the literature

under various structural assumptions on 𝑀 (for instance, the case where 𝑀 is a real-valued non-

negative is known as weighted low-rank approximation, and was studied by [86]). [85] study the

case where 𝑀 is a binary mask and provide bicriteria approximation guarantees since the problem

is hard in general. It is interesting to consider the connection between the binary masked low-

rank approximation problem of [85] and our problem, where we apply ReLU to Gaussian samples

and mask only the output. It would be interesting to establish further connections between our

problem setting and other low-rank approximation settings, perhaps by adopting our setup from

Problem 3.3.6 but possibly changing the input distribution. It seems plausible that for some choices

of input distribution, one could make the problem computationally hard. For more background on

the low-rank approximation literature, see the discussion in [85].

3.3 Main Results

Our main contributions are as follows:

1. The identification of the function approximation at initialization framework (Definitions 3.3.4,

3.3.5) and the simpler (and parallelized) Nonlinear Low-Rank Approximation objective (NLRA)

(Problem 3.3.6) for initializing low-rank networks (and it also applies to other structured net-

work approximation schemes);

2. Practical algorithms (Algorithms 2, 3) and corresponding empirical results which validate that

our layerwise low-rank initialization scheme works as an efficient drop-in replacement for

the commonly used spectral initialization with improved performance (on average 0.3% top-1

accuracy gain on ImageNet [6], and as much as up to 1.2% accuracy improvement);

3. Empirical observations that taking nonlinearities of layers into account for the initialization

scheme improves accuracy for lower-rank layers and larger input dimension and width;

4. Theoretical proof that in settings used in practice, the sub-optimality of the spectral initial-

ization with respect to the NLRA objective grows with decreasing rank and increasing width
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when width is super-linear in input dimension;

5. Empirical confirmation that optimization of the NLRA objective at initialization positively cor-

relates with decreasing post-training test error, thereby also suggesting that function approxi-

mation at initialization is a more useful initialization approach than parameter approximation

at initialization for downstream test error.

3.3.1 Additional Notation and Terminology

Definition 3.3.1 (Deep Feed-forward Neural Network). A feed-forward neural network of depth

𝐿 is a function 𝑓 : R𝑑 → R𝑚 that is parameterized by a list of matrices 𝑊1, . . . ,𝑊𝐿 and a list of

non-linearity functions 𝜎𝑖 : R𝑚𝑖 → R𝑚𝑖

𝑓 (𝑥) := 𝜎𝐿
(
𝑊𝐿𝜎𝐿−1(𝑊𝐿−1𝜎1(. . .𝑊1𝑥))

)
,

where 𝑥 ∈ R𝑑 ,𝑊𝑖 ∈ R𝑑𝑖×𝑚𝑖 for 𝑑𝑖, 𝑚𝑖 ∈ Z+ for 𝑖 ∈ [𝐿] and where we refer to 𝑑1 as 𝑑 and 𝑚𝐿 as 𝑚.

One can impose further structure upon the matrices𝑊𝑖 to recover more specific classes of neural

network. For instance, the popular 2-dimensional convolutional neural networks, which are com-

monly used in computer vision, interpret the input 𝑥 ∈ R𝑑 as a 2-dimensional grid (corresponding

to a picture, for instance), and require the matrices 𝑊𝑖 to satisfy a block-diagonal structure where

each block is a sparse matrix corresponding to a 2-dimensional convolution across the grid. These

blocks need not have the same dimensions.

It is common for the non-linearities 𝜎𝑖 from Definition 3.3.1 to be the same for 𝑖 ∈ [𝐿 − 1],

and specified via a one-dimensional function which is then applied element-wise. In Chapter 3,

we will often take the non-linearity to be the Rectified Linear Unit (ReLU), which is defined by

𝜎ReLU(𝑥) := max(0, 𝑥) for 𝑥 ∈ R. The final non-linearity is chosen depending on the learning task

– one common choice for 𝜎𝐿 is the softmax operation:
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Definition 3.3.2 (Softmax Function). The softmax is defined as a function from R𝑚 → R𝑚

softmax(𝑧) [𝑘] :=
exp(𝑧𝑘 )∑𝑚
𝑗=1 exp(𝑧 𝑗 )

,

for 𝑧 ∈ R𝑚, yielding a probability distribution on the probability simplex Δ𝑚−1 (the ℓ1 ball of radius

1 restricted to the positive orthant of R𝑚).

The softmax layer is often used to convert neural net outputs into probabilities over multiple

classes in the context of multi-class prediction tasks.

We letD be a common initialization distribution used for each weight matrix, typically defined

as a product distribution over the entries of the matrix. We denote the Frobenius norm by ∥ · ∥𝐹 .

The singular value decomposition (SVD) has 𝑊 = 𝑈Σ𝑉𝑇 , with 𝑈 ∈ R𝑑×𝑚, Σ ∈ R𝑚×𝑚, 𝑉 ∈

R𝑚×𝑚. 𝑈 and 𝑉 have orthogonal columns hand Σ is a diagonal matrix. The rank-𝑟 compressed sin-

gular value decomposition of a matrix𝑊 ∈ R𝑑×𝑚, we write𝑊𝑟 = 𝑈𝑟Σ𝑟𝑉
⊤
𝑟 , where𝑈𝑟 ∈ R𝑑×𝑟 , Σ𝑟 ∈

R𝑟×𝑟 , and 𝑉𝑟 ∈ R𝑚×𝑟 , and where the columns of 𝑈𝑟 and 𝑉𝑟 are orthogonal and Σ𝑟 is a diagonal

matrix. The 𝑟 coordinates that are chosen correspond to the top 𝑟 singular values of 𝑊 . The

uncompressed form of the rank-𝑟 SVD appends additional 0s to the diagonal of Σ𝑟 and a set of

orthonormal vectors to the columns of𝑈 and 𝑉 (which are respectively orthonormal to the existing

columns of𝑈 and 𝑉). By default we use the compressed form unless otherwise noted. We also use

Unif( [𝑛]) to denote the uniform distribution over the elements of [𝑛].

3.3.2 Function Approximation at Initialization

In this section, we propose a general framework for initializing low-rank deep networks given a

full-rank initialization scheme. We also describe a special case of our framework which is provably

efficient to implement when the non-linearity is ReLU and the target rank 𝑟 is a constant.
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Function Approximation at Initialization Framework

The key idea behind our approach is to mimic the full-rank initialization distribution as closely

as possible. [58] follows this principle to argue for the spectral initialization approach to initialize

the low-rank weights: the idea is to match the weight matrices in Frobenius norm as closely as

possible using SVD. More precisely:

Definition 3.3.3 (Spectral Initialization). Given a full-rank weight𝑊 ∈ R𝑑×𝑚 initialized according

to distribution D and a target rank 𝑟 , spectral initialization is the following procedure:

1. Sample𝑊 ∼ D.

2. Factorize𝑈Σ𝑉⊤ = 𝑊 via singular value decomposition, where𝑈 ∈ R𝑑×𝑟 , Σ ∈ R𝑟×𝑟 , 𝑉 ∈ R𝑚×𝑟 .

3. Output factor initialization �̂� = 𝑈Σ1/2, �̂� = 𝑉Σ1/2.

In words, we initialize the factors which best approximate 𝑊 , the sampled full-rank initialization,

in Frobenius norm.

However, it is not clear that this metric for matching low-rank to full-rank functions accurately

captures what is important in the approximation: Ultimately, we are initializing highly nonlinear

functions, and various terms in the weights may be less important than others (in a post-training

setting, [53] demonstrates the efficacy of taking nonlinearities into account). Thus, we consider a

function-approximation viewpoint rather than a weight-approximation viewpoint at initialization:

Definition 3.3.4 (Function Approximation at Initialization). Given a full-rank weight distribution

D, we find a low-rank weight matrix of rank 𝑟 for initialization as follows:

1. Sample𝑊 = [𝑊1, . . . ,𝑊𝑘 ] ∼ D with𝑊𝑖 ∈ R𝑑𝑖×𝑚𝑖 .

2. Solve �̂�, �̂� = arg min𝑈,𝑉 E𝑥∼N(0,𝐼)
[ (
𝑓𝑈,𝑉 (𝑥) − 𝑓𝑊 (𝑥)

)2] , where 𝑓 denotes the deep network

class we consider, and �̂� = [�̂�1, . . . , �̂�𝑘 ] and �̂� = [�̂�1, . . . , �̂�𝑘 ], where �̂�𝑖 ∈ R𝑑𝑖×𝑟 and �̂�𝑖 ∈

R𝑚𝑖×𝑟 .

3. Use �̂�, �̂� as the initialization for the low-rank weights.
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Thus, we attempt to match the function values of the networks, rather than simply the weights,

making our approach non-linearity-aware. Here we have chosen to measure the similarity of the

network outputs over a standard Gaussian input distribution; however, this aspect can easily be

modified to be samples over a particular distribution of interest.

Since this approach is essentially function approximation of the initialization network (rather

than the trained network, as in other work), we refer to our general approach as function approx-

imation at initialization. To implement this approach, one can optimize the low-rank parameters

with a gradient-based method with some automatic differentiation framework like Tensorflow [87].

We now proceed to outline a simplification to this general approach which is more tractable and

easier to use in practice.

3.3.3 Layerwise Function Approximation at Initialization

To make the approximation problem more tractable to solve in practice, we propose a simpli-

fication to the general approach: keep the relevance of the non-linearity, but instead approximate

each layer separately rather than the entire network. This approach has the benefits of a) being a

simpler problem to solve, and b) being embarrassingly parallel to distribute. Thus, we can obtain

a significant speedup in the initialization method compared to the full function approximation at

initialization approach.

We propose an empirical sample-based stochastic optimization approach for solving the prob-

lem using gradient methods:

Definition 3.3.5 (Layerwise Function Approximation at Initialization (LFAI)). Given a deep neural

network 𝑓 , define the function corresponding to the 𝑖th layer with weights 𝑊𝑖 as 𝑓𝑊𝑖
. Then, given

a full-rank weight distribution D, we find a low-rank weight matrix of rank 𝑟 for initialization as

follows:

1. Sample𝑊𝑖 ∼ D;

2. Solve �̂�𝑖, �̂�𝑖 = arg min𝑈𝑖 ,𝑉𝑖
E𝑥∼N(0,𝐼)

[ (
𝑓𝑈𝑖 ,𝑉𝑖 (𝑥)− 𝑓𝑊𝑖

(𝑥)
)2] for all layers 𝑖 in parallel;
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3. Use �̂�𝑖, �̂�𝑖 as the low-rank initialization for layer 𝑖.

We can optimize the parameters directly using some gradient-based method over Gaussian1

samples. In this case, we are essentially throwing out information about 𝑊𝑖, since we only access

information about 𝑊𝑖 via samples which are fed into the gradient-based method. This algorithm

is run in parallel across all layers of the network. We present the algorithm at a single layer in

Algorithm 2.

Algorithm 2 LFAI-Gradient

Require: 𝑟 < 𝑑 < 𝑚, sample access to full-rank init distribution D over R𝑑×𝑚, iterative gradient
method A, number of samples 𝑁

1: Sample𝑊 ∼ D.
2: Sample {𝑥𝑘 }𝑁𝑘=1 i.i.d. from N(0, 𝐼𝑑×𝑑).
3: Run A using gradient ∇𝑈,𝑉 1

𝑁

∑𝑁
𝑘=1

[ (
𝑓𝑈,𝑉 (𝑥𝑘 ) − 𝑓𝑊 (𝑥𝑘 )

)2] until convergence.
4: Return: �̂� ∈ R𝑑×𝑟 , �̂� ∈ R𝑚×𝑟 .

To further improve efficiency, we can feed the initialization algorithm some prior information

about 𝑊 by initializing the low-rank weights with spectral initialization (Definition 3.3.3) – we

call this step the “spectral warm start,” and observe that it helps with learning empirically (see

Section 3.4). We can think of this step as reducing the sample complexity required for optimizing

only from samples (𝑥𝑘 , 𝑓 (𝑥𝑘 )). The algorithm is presented in Algorithm 3.

Algorithm 3 LFAI-WS-Gradient

Require: 𝑟 < 𝑑 < 𝑚, sample access to full-rank init distribution D over R𝑑×𝑚, iterative gradient
method A, number of samples 𝑁

1: Sample𝑊 ∼ D.
2: Sample {𝑥𝑘 }𝑁𝑘=1 i.i.d. from N(0, 𝐼𝑑×𝑑).
3: Compute rank-𝑟 SVD𝑊 = 𝑈𝑟Σ𝑟𝑉

⊤
𝑟 .

4: Initialize𝑈0 := 𝑈𝑟Σ1/2
𝑟 ; 𝑉0 := 𝑉𝑟Σ1/2

𝑟 .
5: Run A using gradient ∇𝑈,𝑉 1

𝑁

∑𝑁
𝑘=1

[ (
𝑓𝑈,𝑉 (𝑥𝑘 ) − 𝑓𝑊 (𝑥𝑘 )

)2] until convergence.
6: Return: �̂� ∈ R𝑑×𝑟 , �̂� ∈ R𝑚×𝑟 .

1See Remark 3.4.1 for a discussion of other input distributions.
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3.3.4 Nonlinear Low-Rank Approximation

In this section, we demonstrate settings in which we can expect the results of using layer-wise

function approximation at initialization for the ReLU activation to be significantly different from

using spectral initialization, and we also resolve an open theoretical question on the computational

tractability of low-rank ReLU approximation. We defer all proofs to the appendix. Throughout

this section, we will refer to 𝜎ReLU as 𝜎 for simplicity. First we instantiate the layer-wise function

approximation objective for fully-connected layers:

Problem 3.3.6 (Nonlinear Low-Rank Approximation (NLRA)). Consider the objective

R(𝑌 ) := E𝑥∼N(0,𝐼)
[𝜎ReLU(𝑥⊤𝑌 ) − 𝜎ReLU(𝑥⊤𝑊)

2
2

]
(3.1)

where 𝜎ReLU(𝑥) = max(0, 𝑥) is the ReLU activation, 𝑊,𝑌 ∈ R𝑑×𝑚, and 𝑊 are fixed ground-truth

full-rank weights. Let opt := R (𝑌 ∗), where 𝑌 ∗ is the argmin over matrices of rank 𝑟. Our goal is to

give a computationally efficient algorithm for outputting a rank 𝑟 matrix𝑌 such that R(𝑌 ) < opt+𝜖 .

We will derive some structural properties of this objective which will allow us to lower bound

the gap between the quality of the spectral solution (linear approximation) and the quality of the

(optimal) nonlinear low-rank approximation with respect to this nonlinear error measure.

Using our analysis, we uncover some conditions on the full-rank matrix which yield a more

significant gap. In particular, as the rank gets smaller or as the layer width increases, the gap be-

tween the initialization methods blows up with dimension (Theorem 3.3.9 and Corollaries B.3.7,

B.3.9). It is also the case that full-rank matrices 𝑊 ∈ R𝑑×𝑚 with more approximately orthogonal

columns yields a larger gap. As a technical tool, we prove a characterization of the nonlinear func-

tion approximation problem (Theorem 3.3.8), which applies specifically to one-hidden-layer ReLU

networks (rather than easily invertible activations). We then exploit the properties of this charac-

terization to prove Theorem 3.3.9. We defer all proofs and full theorem statements to Section B.3

of the Appendix. Despite the restriction to ReLU, we believe our results to be characteristic for

other activation functions, as we empirically demonstrate for the Swish activation in Section 3.4.
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These results only apply to the difference between SVD (the spectral solution) and the optimal

nonlinear low-rank approximation. While this result is useful for understanding what properties of

the full-rank matrix 𝑊 govern the extreme cases where the two initialization approaches are very

similar or very different, these initialization results do not directly prove anything about down-

stream generalization error, except in the setting where the true optimal weights are close to the

initialization distribution. Nevertheless, we empirically demonstrate the connection between good

nonlinear low-rank approximation and improved downstream generalization error for deep low-

rank models in Section 3.4.

3.3.5 Characterizing NLRA for the ReLU Activation

We prove a lower bound on the gap between the output of spectral initialization and our NLRA

method for one-hidden-layer ReLU network. To achieve this bound, we further develop theory

characterizing the optimal low-rank matrix for Problem 3.3.6 for the ReLU activation. We begin

with a useful definition of a function that arises in our analysis. In the proofs of Theorems 3.3.8

and 3.3.9, we re-write the objective in Problem 3.3.6 by recognizing that the following well-known

kernel shows up in the objective expression when the non-linearity is given by the ReLU function:

Definition 3.3.7 (ReLU Kernel: 1𝑠𝑡-Order Arc-Cosine Kernel). The first-order arc-cosine kernel

[88] is defined by 𝑘 (𝑥, 𝑦) := ∥𝑥∥2∥𝑦∥2 ·
√
ℎ(𝜌𝑥𝑦), where 𝜌𝑥𝑦 := 𝑥⊤𝑦

∥𝑥∥2∥𝑦∥2 and
√
ℎ(𝜌𝑥𝑦) =

(√︃
1 − 𝜌2

𝑥𝑦+

(𝜋 − cos−1(𝜌𝑥𝑦))𝜌𝑥𝑦
)
/𝜋.

Now we present a characterization of the NLRA problem for the ReLU activation. This char-

acterization reveals more structure of the ReLU kernel which allows us to easily lower bound the

sub-optimality of standard Frobenius low-rank approximation computed using SVD.

Theorem 3.3.8 (ReLU SVD). Consider the goal of finding the optimal rank-𝑟 solution to the

objective R(𝑌 ) in Problem 3.3.6 with known 𝑊 ∈ R𝑑×𝑚. Then, an equivalent form of the problem
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is

max
𝑌∈R𝑑×𝑚 is rank 𝑟
∥𝑌𝑖 ∥2=∥𝑊𝑖 ∥2

√
ℎ(𝜌𝑖)

𝜌𝑖=
𝑌⊤
𝑖
𝑊𝑖

∥𝑌𝑖 ∥2 ∥𝑊𝑖 ∥2

1
2

𝑚∑︁
𝑖=1
∥𝑊𝑖∥22 · ℎ(𝜌𝑖).

where𝑊 = 𝑈Σ𝑉⊤ with𝑈 ∈ R𝑑×𝑑 , Σ ∈ R𝑑×𝑑 is diagonal, and 𝑉 ∈ R𝑚×𝑑 , with𝑈⊤𝑈 = 𝐼𝑑×𝑑 , 𝑉⊤𝑉 =

𝐼𝑑×𝑑 and 𝑉𝑖 ∈ R𝑑 is the 𝑖𝑡ℎ column of 𝑉⊤, and where ℎ is defined in Definition 3.3.7.

Proof. First, we expand

E𝑥∼N(0,𝐼)
[𝜎(𝑥⊤𝑌 ) − 𝜎(𝑥⊤𝑊)2

2

]
= E𝑥∼N(0,𝐼)

[𝜎(𝑥⊤𝑌 )2
2

]
+ E𝑥∼N(0,𝐼)

[𝜎(𝑥⊤𝑊)2
2

]
− 2E𝑥∼N(0,𝐼)

[
⟨𝜎(𝑥⊤𝑌 ), 𝜎(𝑥⊤𝑊)⟩

]
= 𝐶 + 1

2
∥𝑌 ∥2𝐹 − 2E𝑥∼N(0,𝐼)

[
⟨𝜎(𝑥⊤𝑌 ), 𝜎(𝑥⊤𝑊)⟩

]
= 𝐶 + 1

2
∥𝑌 ∥2𝐹 −

𝑚∑︁
𝑖=1
∥𝑊𝑖∥2∥𝑌𝑖∥2 ·

√
ℎ

(
𝑌⊤
𝑖
𝑊𝑖

∥𝑊𝑖∥2∥𝑌𝑖∥2

)
= 𝐶 −

𝑚∑︁
𝑖=1

[(
∥𝑊𝑖∥2

√
ℎ(𝜌𝑖)

)
𝛽𝑖 −

1
2
𝛽2
𝑖

]
(3.2)

where 𝐶 = 1
2 ∥𝑊 ∥

2
𝐹

is a constant independent of choice of 𝑌 , and letting 𝜌𝑖 =
𝑌⊤
𝑖
𝑊𝑖

∥𝑌𝑖 ∥2∥𝑊𝑖 ∥2 and

𝛽𝑖 = ∥𝑌𝑖∥2, where 𝑌𝑖 and 𝑊𝑖 are column 𝑖 of 𝑌,𝑊 respectively. In the above display, we used

Lemma B.3.3 and Lemma B.2.3.

Now, we can re-write the minimization problem as a maximization problem:

max
𝜌,𝛽:𝑌∈R𝑑×𝑚 is rank 𝑟

𝑚∑︁
𝑖=1

[(
∥𝑊𝑖∥2

√
ℎ(𝜌𝑖)

)
𝛽𝑖 −

1
2
𝛽2
𝑖

]
.

Note we can write this as an optimization problem over just 𝜌 ∈ R𝑚, since the choice of norm

𝛽𝑖 = ∥𝑌𝑖∥2 is independent of the value of 𝜌𝑖. Since the objective as a function of 𝛽𝑖 is separable

and concave in each term of the sum, we can easily solve the maximization problem by setting the
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derivative to 0:

𝛽∗𝑖 = ∥𝑊𝑖∥2
√
ℎ(𝜌𝑖).

Plugging in this optimal choice of 𝛽𝑖 for any choice of 𝜌 (and remembering that we must correctly

re-normalize later), we get the new objective:

max
𝜌:𝑌∈R𝑑×𝑚 is rank 𝑟
∥𝑌𝑖 ∥2=∥𝑊𝑖 ∥2

√
ℎ(𝜌𝑖)

1
2

𝑚∑︁
𝑖=1
∥𝑊𝑖∥22 · ℎ(𝜌𝑖). (3.3)

□

3.3.6 Lower Bounding the Gap: Frobenius Approximation vs. NLRA

We now use the developed theory to prove a lower bound on the sub-optimality of using the

SVD to optimize the objective of Problem 3.3.6 when given 𝑊 . We defer the proofs to the ap-

pendix. Our main characterization theorem is as follows:

Theorem 3.3.9 (Lower Bound on Suboptimality of SVD for NLRA). Recall the objective R(𝑌 )

from Problem 3.3.6, where we require that 𝑌 ∈ R𝑑×𝑚 is a rank-𝑟 matrix. Let 𝑊 = 𝑈Σ𝑉⊤ ∈ R𝑑×𝑚

be the SVD of 𝑊 . Define 𝜌∗𝜎 ∈ R𝑚 as the correlations ∥Λ∗𝐷∗⊤�̂�𝑖∥2 for column 𝑖 of 𝑊 , where

Λ∗ ∈ R𝑟×𝑟 and 𝐷∗ ∈ R𝑑×𝑟 are as in Lemma B.3.5 and �̂�𝑖 = 𝑊𝑖/∥𝑊𝑖∥2. As shorthand, denote

𝑌 (𝜌) as the associated low-rank matrix for correlation vector 𝜌 ∈ R𝑚 (computed as described

in Theorem 3.3.8). Denote 𝜌∗SVD to be the optimal correlations in the case where we pick Λ∗ to

correspond to the top 𝑟 singular values, and 𝐷∗ = 𝑈 as in SVD. Then, we have the following lower

bound for the suboptimality of the SVD solution 𝑌SVD:

(
R(𝑌SVD)) − R(𝑌 (𝜌∗𝜎))

)
≥ 1

2
∥𝑤 ⊙

√︃
ℎ(𝜌∗SVD) − 𝜌

∗
SVD∥

2
2 (3.4)

where ℎ is defined in Definition B.1, where 𝑤 =

[
∥𝑊1∥1, . . . , ∥𝑊𝑚 ∥2

]
is a vector of column norms

of𝑊 , and where ⊙ is the element-wise product.

Corollary 3.3.10 provides some intuition for Theorem 3.3.9:
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Corollary 3.3.10 (Relationship between SVD and ReLU SVD). Suppose 𝑊 = 𝑈Σ𝑉⊤ ∈ R𝑑×𝑚.

Consider the solution for rank-𝑟 ReLU SVD (given by 𝑌 ∗) as described in Theorem 3.3.8. If ℎ(𝜌)

is replaced with 𝜌2, and we always choose Λ∗ to correspond to the top 𝑟 singular values of Σ and

𝐷∗ to correspond to𝑈, then 𝑌 ∗ is the standard SVD solution.

The intuition for this theorem’s proof is given in Figure 3.1.
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Figure 3.1: Intuition for the proof of Theorem 3.3.9.

Figure 3.2: We plot the gap growth 1
2𝑑 ∥
√
ℎ(𝜌) − 𝜌∥22 (see Theorem 3.3.9) for 𝑊 ∈ R𝑑×𝑚 with

𝑚 = 𝑛1.5 and 𝑑 = 0.2𝑛 with respect to the ReLU non-linearity. Note here the width is super-linear
in dimension: 𝑚 = Ω(𝑛1+𝜖 ) for all 𝜖 > 0. The entries of ground truth matrix 𝑊 are drawn from
N(0, 1), and then we normalize ∥𝑊𝑖∥2 = 1, ∀𝑖 ∈ [𝑚]. We observe that the gap increases with
increasing dimension and decreasing rank scale. Note that the behavior demonstrated matches the
theoretical predictions: the gap increases as Θ((𝑑1/2 · (1 −

√︁
𝑟/𝑑)2) as per Corollary 3.3.11.

43



Using the lower bound in Theorem 3.3.9, we can now characterize the conditions on the full-

rank matrix𝑊 ∈ R𝑑×𝑚, where the solution to Problem 3.3.6 and the SVD solution are significantly

different. First, smaller correlations 𝜌∗SVD result in better solutions – this case roughly corresponds

to the columns of 𝑊 being approximately orthogonal (Corollary B.3.7, Remark B.3.8). When

max𝑖 𝜌∗SVD(𝑖) < 1, we can prove that the sub-optimality gap grows as the width 𝑚 increases, and

furthermore the sub-optimality gap is monotone non-decreasing as 𝑟 decreases (Corollary B.3.9).

Finally, we prove a stronger version of Corollary B.3.9 under the assumption of uniform spherically

distributed columns of𝑊 ∈ R𝑑×𝑚, and recover the actual dependence on the rank scale 𝑟/𝑑:

Corollary 3.3.11 (Spherical Weights). Suppose the columns of 𝑊 ∈ R𝑑×𝑚 are drawn from the

uniform distribution over the surface of the unit sphere2. Consider target rank 𝑟 ≤ 𝑑 and assume

𝑚 grows super-linearly in 𝑑, e.g. 𝑚 > Ω(𝑑). Now define

𝐿 (𝑥) :=
(√︁

1 − 𝑥2 − arccos (𝑥) · 𝑥
)2
.

Let 𝑐, 𝐶 > 0 be universal constants. Then, as𝑚 →∞, with probability at least 1−2 exp(−𝑐 ·𝐶2 ·𝑑),

we have

1
𝑚
E𝑊

[
R(𝑌SVD)) − R(𝑌 (𝜌∗𝜎))

]
≥ 1

2𝑚
E𝑊

[√ℎ(𝜌∗SVD) − 𝜌
∗
SVD

2

2

]
≥ 1

2𝜋2 · 𝐿
(√︂

𝑟

𝑑

)
. (3.5)

We also have the following high probability bound as 𝑚 →∞. Let 0 < 𝑡 < 1 −
√︁
𝑟/𝑑. Then

P𝑊

(
1
𝑚

(
R(𝑌SVD)) − R(𝑌 (𝜌∗𝜎))

)
≥ 1

2𝜋2 · 𝐿
(√︁
𝑟/𝑑 + 𝑡

))
≥ 1 − 2 exp

(
−Θ (𝑚 · 𝑡)

)
− 2 exp(−𝑐 · 𝐶2 · 𝑑),

(3.6)

which limits→ 1 − 2 exp(−𝑐 · 𝐶2 · 𝑑) as 𝑚 →∞ for any fixed 𝑡.
2This assumption is reasonable, given the many similar initialization distributions used in practice (e.g., the He

and Glorot initialization distributions [89, 90]). The same result holds for an appropriately scaled Gaussian vector
initialization as well.
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Proof. First,

E𝑊
[
R(𝑌SVD)) − R(𝑌 (𝜌∗𝜎))

]
≥ 1

2
E𝑊

[√ℎ(𝜌∗SVD) − 𝜌
∗
SVD

2

2

]
=

1
2
E𝑊


𝑚∑︁
𝑖=1

(√
ℎ(𝜌∗SVD(𝑖)) − 𝜌

∗
SVD(𝑖)

)2
 ,

since the inequality holds for every choice of 𝑊 inside the expectation, as we proved in Theo-

rem 3.3.9. Then we can also write

E𝑊
[
R(𝑌SVD)) − R(𝑌 (𝜌∗𝜎))

]
≥ 𝑚

2
· E𝑊,𝑖∼Unif( [𝑚])

[(√
ℎ(𝜌∗SVD(𝑖)) − 𝜌

∗
SVD(𝑖)

)2
]
.

We will bound the latter term. Consider the gap function 𝑓 (𝜌) =
(√︁
ℎ(𝜌) − 𝜌

)2
. This function is

convex (Lemma B.3.10), so by Jensen’s inequality we have that E𝜌
[
𝑓 (𝜌)

]
≥ 𝑓 (E𝜌

[
𝜌
]
). Then,

since 𝑓 is monotone non-increasing as a function of 𝜌 (Lemma B.3.10), we have that if we prove

a bound E𝜌
[
𝜌
]
≤ 𝐵upper, then

E𝜌
[
𝑓 (𝜌)

]
≥ 𝑓 (E𝜌

[
𝜌
]
) ≥ 𝑓 (𝐵upper).

Thus, our next task is to upper bound E𝑊,𝑖∼Unif( [𝑚])
[
𝜌∗SVD(𝑖)

]
. From Theorem 3.3.9, we have

𝜌∗SVD(𝑖) = ∥Σ𝐸𝑟𝑉𝑖∥2/∥𝑊𝑖∥2

where𝑊 = 𝑈Σ𝑉⊤ with 𝑉𝑖 ∈ 𝑅𝑑 being a column of 𝑉⊤ and 𝐸𝑟 = diag (Λ∗), where Λ∗ ∈ {0, 1}𝑑 is

a binary vector with 𝑟 non-zero entries selecting the top 𝑟 singular vectors of𝑊 . Note 𝜌∗SVD(𝑖) ≤ 1

since ∥𝑊𝑖∥2 = ∥Σ𝑉𝑖∥2. Thus, we have

∥Σ𝐸𝑟𝑉𝑖∥2
∥Σ𝑉𝑖∥2

=
∥𝐸𝑟Σ𝑉𝑖∥2
∥Σ𝑉𝑖∥2

=

𝐸𝑟 Σ𝑉𝑖

∥Σ𝑉𝑖∥2


2

which holds since Σ is diagonal.

Now, treating 𝑊 and its SVD as random variables, note that 𝑊 = 𝑈Σ𝑉⊤, whose columns are
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uniformly distributed on the surface of the sphere, can be written as a matrix of 𝑚 i.i.d. Gaussian

vectors drawn from N (0, 𝐼𝑑×𝑑) with normalized columns, and that 𝑈 ∈ R𝑑×𝑑 is an orthogonal

matrix. By the fact that the Gaussian is rotationally symmetric, multiplying by𝑈⊤ does not change

the distribution. Thus we find that Σ𝑉⊤ ∈ 𝑅𝑑×𝑚 is also a matrix of 𝑚 independent Gaussians

distributed according to N (0, 𝐼𝑑×𝑑).

Now note that 𝐸𝑟 is a random variable with dependencies on Σ𝑉𝑖, since 𝜌∗SVD(𝑖) is defined with

the choice of the top 𝑟 singular vectors depending on the realization𝑊 .

Thus, we write

E𝑊,𝑖∼Unif( [𝑚])
[
𝜌∗SVD(𝑖)

]
= E𝑊,𝑖∼Unif( [𝑚])

[𝐸𝑟 Σ𝑉𝑖

∥Σ𝑉𝑖∥2


2

]
.

Since 𝑊 ∈ R𝑑×𝑚 is a matrix with sub-gaussian columns (see Definition 5.22 and Example 5.25

in [91]), the minimum and maximum singular vectors of 𝑊 satisfy the following upper and lower

bounds with probability at least 1 − 2 exp
(
−𝑐 · 𝜖2

)
, as per Theorem 5.39 in [91], where 𝐶, 𝑐 > 0

are universal constants corresponding to the sub-gaussian norm of the (i.i.d.) columns of 𝑊 and

𝜖 > 0:
√
𝑚 − 𝐶

√
𝑑 − 𝜖 ≤ 𝜎min(𝑊) ≤ 𝜎max(𝑊) ≤

√
𝑚 + 𝐶

√
𝑑 + 𝜖 .

Therefore, setting 𝜖 = 𝐶
√
𝑑, with probability at least 1 − 2 exp

(
−𝑐 · 𝐶2 · 𝑑

)
, we have that

𝜎max(𝑊)
𝜎min(𝑊)

≤
√
𝑚 + 2𝐶

√
𝑑

√
𝑚 − 2𝐶

√
𝑑
.

Since 𝑚 → ∞ and 𝑚 is super-linear in 𝑑, the ratio converges to 1, and the spectrum is uniform

across all values. In this limiting case, 𝐸𝑟 can be chosen to be any selection of 𝑟 of the 𝑑 dimensions

– thus, we can fix 𝐸𝑟 to have the first 𝑟 coordinates set to 1 and the rest to 0. Then, we can write

E𝑊,𝑖∼Unif( [𝑚])

[𝐸𝑟 Σ𝑉𝑖

∥Σ𝑉𝑖∥2


2

]
≤ E𝑖∼Unif( [𝑚])

[
E𝑢𝑖∼Unif(S𝑑−1)

[√︃
𝑢⊤
𝑖
𝐸𝑟𝑢𝑖

] ]
,
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where we used the fact that a normalized Gaussian random variable is also a random variable that

is uniformly distributed over the surface of the sphere. Then, we have

E𝑖∼Unif( [𝑚])

[
E𝑢𝑖∼Unif(S𝑑−1)

[√︃
𝑢⊤
𝑖
𝐸𝑟𝑢𝑖

] ]
≤ E𝑖∼Unif( [𝑚])

[
E𝑢𝑖∼Unif(S𝑑−1)

[√︃
𝑢⊤
𝑖
𝐸𝑟𝑢𝑖

] ]
,

where we used the monotonicity of the square root function. Since the square root is a concave

function, we can apply Jensen’s inequality again to get:

E𝑖∼Unif( [𝑚])

[
E𝑢𝑖∼Unif(S𝑑−1)

[√︃
𝑢⊤
𝑖
𝐸𝑟𝑢𝑖

] ]
≤

√︂
E𝑖∼Unif( [𝑚])

[
E𝑢𝑖∼Unif(S𝑑−1)

[
𝑢⊤
𝑖
𝐸𝑟𝑢𝑖

] ]
=

√︂
𝑟

𝑑
,

where we apply Lemma B.3.11 and the fact that the distributions are identical for all 𝑖 ∈ [𝑚] in the

last step. Thus 𝐵upper =
√︁
𝑟
𝑑

, and the result directly follows by plugging this value in to our lower

bound and expanding the definition of
(√
ℎ(𝜌) − 𝜌

)2
.

Now we prove that our lower bound concentrates – that is, with high probability over the choice

of𝑊 with uniform spherical columns, our lower bound holds. We still have the lower bound

R(𝑌SVD)) − R(𝑌 (𝜌∗𝜎)) ≥
1
2

√ℎ(𝜌∗SVD) − 𝜌
∗
SVD

2

2
=
𝑚

2
· 1
𝑚

𝑚∑︁
𝑖=1

(√
ℎ(𝜌∗SVD(𝑖)) − 𝜌

∗
SVD(𝑖)

)2
.

We can then apply the same Jensen and monotonicity arguments as above to bring the uniform

expectation over 𝑖 ∈ [𝑚] inside, so that we have a lower bound in terms of the the average 𝜌∗SVD(𝑖)

over 𝑖 ∈ [𝑚]:

R(𝑌SVD)) − R(𝑌 (𝜌∗𝜎)) ≥
𝑚

2
·
(√
ℎ

(
E𝑖∼Unif( [𝑚])

[
𝜌∗SVD(𝑖)

] )
− E𝑖∼Unif( [𝑚])

[
𝜌∗SVD(𝑖)

] )2
.

Now, we give a concentration bound over the distribution of 𝑊 that limits the probability that
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E𝑖∼Unif( [𝑚])
[
𝜌∗SVD(𝑖)

]
is much larger than its average over the distribution of𝑊 . We upper bound

P𝑢𝑖∼Unif(S𝑑−1)∀𝑖∈[𝑚]
©«
������ 1
𝑚

𝑚∑︁
𝑖=1

𝑟∑︁
𝑗=1

(
𝑢⊤𝑖 𝑒 𝑗

)2 − 𝑟
𝑑

������ > 𝑡ª®®¬ < 2 exp

(
−𝑚 · 𝑡2/2

1 + 𝑡/3

)
.

This bound holds since
∑𝑟
𝑗=1

(
𝑢⊤
𝑖
𝑒 𝑗

)2
< 1 and is identically distributed for all 𝑖 ∈ [𝑚] and all

𝑗 ∈ [𝑑], and we can apply Bernstein’s inequality (see Theorem 2.8.4 in [92]). Therefore, the

desired upper bound holds with high probability.

□

Therefore, we see that in the case of uniform spherical columns for 𝑊 , the sub-optimality gap

increases as either the width increases or as the rank scale decreases. We also note that as the width

increases, our lower bound more tightly concentrates.

Remark 3.3.12 (Non-Limiting Case). In the case where we do not take the limit as 𝑚 → ∞ and

want to understand what happens for small 𝑚, we can apply the following approach to upper bound

𝜌∗SVD: First,

E𝑊,𝑖∼Unif( [𝑚])
[
𝜌∗SVD(𝑖)

]
≤ E𝑊,𝑖∼Unif( [𝑚])

[
max
�̂�𝑟

�̂�𝑟 Σ𝑉𝑖

∥Σ𝑉𝑖∥2


2

]
.

The above inequality holds since the value induced by the selection of the top 𝑟 singular values

given 𝑊𝑖 is less than or equal to the maximizing choice of 𝑟-sparse diagonal matrix �̂�𝑟 . Conve-

niently, this removes 𝐸𝑟 as a random variable and we no longer have to worry about dependencies,

since in the case of small 𝑚, 𝐸𝑟 and the uniform spherical random variable have dependencies. We

also note, however, that this bound is not tight since the selection of the top 𝑟 singular values is not

necessarily going to be the worst case every time – this approach just makes the object to bound

easier to work with. We proceed similarly to Corollary 3.3.11 to see that we must upper bound√√√√√
E𝑖∼Unif( [𝑚])

E𝑢𝑖∼Unif(S𝑑−1)

[
max
�̂�𝑟

𝑢⊤
𝑖
�̂�𝑟𝑢𝑖

] .
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We then can use the standard fact that 𝑢⊤
𝑖
�̂�𝑟𝑢𝑖 is marginally distributed as Beta(𝑟/2, 𝑑/2), and

apply the log moment generating function approach (see [93], Section 5.1 for an introduction) to

upper bound this random variable over the set of possible �̂�𝑟 (e.g., the set of 𝑟-sparse 𝑑-dimensional

binary vectors, of which the logarithm of the size is at most Θ(𝑟 log(𝑑/𝑟))). Note that this approach

is approximately tight for independent random variables, and so is not necessarily tight for our

situation where the set of 𝑢⊤
𝑖
�̂�𝑟𝑢𝑖 are not independent. In particular we have that√√√√√

E𝑖∼Unif( [𝑚])

E𝑢𝑖∼Unif(S𝑑−1)

[
max
�̂�𝑟

𝑢⊤
𝑖
�̂�𝑟𝑢𝑖

] ≤
√︄

inf
_>0

𝑟 log(𝑑/𝑟) + log
(
1𝐹1(𝑟/2; 𝑑/2;_)

)
_

,

where 1𝐹1(𝑎; 𝑏;_) is the confluent hypergeometric function of the first kind (or Kummer’s func-

tion) [94]. After plugging in 𝑎 = 𝑟/2, 𝑏 = 𝑑/2, we get the moment generating function for

Beta(𝑟/2, 𝑑/2). The optimum can be numerically solved via binary search in one-dimension since

the gradient is initially negative and is also monotone non-decreasing, and there is a unique min-

imizer. This bound is always non-trivial since taking _ → ∞ can be fairly easily seen to limit

to 1 from below. We visualize how the upper bound on E [𝜌SVD] changes as a function of 𝑚 in

Figure 3.3.

3.4 Experiments and Discussion

We present some empirical results for our low-rank initialization scheme for training Efficient-

Nets [5] on the ImageNet dataset [6] with stochastic gradient descent and momentum, with tuned

parameters and learning rate schedule. We study low-rank variants of these networks for various

choices of rank scale – for parameter matrix𝑊 ∈ R𝑑×𝑚, the rank scale is the fraction of min(𝑑, 𝑚)

that we require for our low-rank factorization𝑈𝑉⊤. We view the choice of rank scale as a trade-off

parameter between computation and accuracy since in our settings, lower rank uniformly means

worse generalization (though this may be false for other tasks and datasets). We compare the fol-

lowing initialization methods: 1) Baseline Low-Rank – apply the full-rank init distribution for𝑊 to
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Figure 3.3: We visualize the effect of the choice of width, 𝑚, on the upper bound on E [𝜌]. For
small 𝑚, the upper bound is close to the worst case where we upper bound with the maximum
choice of 𝐸𝑟 as described in Remark 3.3.12, and for larger 𝑚, we see that the upper bound quickly
approaches the asymptotic case corresponding to the upper bound of

√︁
𝑟/𝑑.
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low-rank factors𝑈 ∈ R𝑚×𝑟 , 𝑉 ∈ R𝑑×𝑟 ; 2) Spectral (Definition 3.3.3); 3) LFAI-Adam (Algorithm 2),

implemented with Adam [95]; 4) LFAI-WS-Adam (Algorithm 3).

3.4.1 Details on Main Experimental Setup

We train ResNet50 [4] and EfficientNet [5] models with stochastic gradient descent and mo-

mentum on the 2012 ImageNet dataset [6], with tuned parameters and learning rate schedule. The

low-rank version of this model simply replaces the convolution layers with low-rank convolu-

tions, as described in [58]. The full-rank weight initialization is a truncated normal distribution

N(0, 1/𝑑), where 𝑑 is the number of input units for the layer, and where “truncation” refers to

discarding and re-sampling any samples which are more than two standard deviations from the

mean.

We also consider two kinds of regularization on the objective:

1. Weight decay: This method is the standard Frobenius norm regularization on the weights of

the layers. In the low-rank setting, instead of penalizing ∥𝑊 ∥2
𝐹

, we penalize ∥𝑈∥2
𝐹
+ ∥𝑉 ∥2

𝐹
.

2. Frobenius decay: This regularization approach is demonstrated by [58] to outperform weight

decay in several settings they consider. Instead of separately regularizing the low rank factors,

this approach penalizes ∥𝑈𝑉𝑇 ∥2
𝐹

.

We tune the regularization strength separately for both approaches and report the performance

of the best regularization strength. Tuning the Frobenius decay regularization strength did not

succeed for the EfficientNet models due to divergence during training. Thus we only report the

weight decay results for the EfficientNet models. For ResNet-50, for Frobenius decay, we use a

regularization strength of 0.3. For ResNet-50 weight decay, we use a regularization strength of

10−4. For the EfficientNet models with weight decay, we use a regularization strength of 10−5. We

compare across multiple choices of rank scale 𝑟
𝑑

: 0.05, 0.1, 0.15, 0.2.

We run each experiment three times for three different random seeds and average the results and

include the standard error up to one standard deviation on the mean performance. The differences
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across each experiment instance are due to the changes in random seeds used in both sampling

at initialization and for sampling batches during optimization. We trained the models on TPU

hardware.

For NLRA-based approaches, we choose the standard Gaussian as the input distribution. How-

ever, other choices are also feasible:

Remark 3.4.1 (On the Choice of Input Distribution). We minimize the function approximation

loss over the Gaussian distribution. In practice, we may view this choice as a hyper-parameter to

tune. For instance, another reasonable (but computationally expensive) approach is to minimize

the function approximation loss over the real data distribution (after being transformed by the

previous input layers). In our experiments, we did not notice much difference by switching to this

initialization distribution, but it is plausible that in other problem settings other input distributions

might perform better.

Model Architecture

The EfficientNet architecture for b0, b3, and b7 is standard and available in libraries such as

Tensorflow [87]. For EfficientNet-b9, we define the width scale parameter to be 3.0, and the depth-

scale parameter to be 3.2. For both architectures, we used the Swish non-linearity [96]. The Swish

non-linearity can be expressed as swish(𝑥) = 𝑥 · 1
1+exp(−𝑥) , and is a smooth approximation to the

ReLU nonlinearity that allows for small negative activation outputs for small magnitude inputs.

For ResNet-50, we also simply use the standard available architecture in Tensorflow.

Hyperparameters for Layerwise Initialization

In our experiments, we implement both LFAI-Adam and LFAI-WS-Adam using the Adam

optimizer [95]. Since our networks consist of low-rank convolutional layers (see [58] for guidance

on how to efficiently define a low-rank convolutional layer), sample 1000 Gaussian vectors in

the shape (64, 64, num. input filters) – we arbitrarily choose 64 × 64 patches since the specific

dimension of the “image” does not matter too much, and we want to avoid making the dimension
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of our training problem too large. The number of input filters is determined by the layer and the

architecture – for the first layer, there are 3 input filters.

For Adam, we set the learning rate to 5 × 10−3, the batch size to 512, and the number of

steps per epoch to 128 after hyper-parameter searching over these parameters to determine the

quickest convergence rate. With these parameters, Adam converges to the optimum for all low-

rank layerwise optimization problems we tried within 6 epochs.

We reported results both for initializing Adam with spectral initialization (LFAI-WS-Adam)

and with baseline initialization (LFAI-Adam) – almost universally LFAI-WS-Adam is better.

Hyperparameters for Post-Initialization Optimization

For ResNet-50 and each EfficientNet model, we trained the network for 62000 epochs using

Stochastic Gradient Descent (SGD) with Momentum. We set the batch size to 4096. We set the

momentum parameter to 0.9 and the learning rate schedule to follow a linear warm-up schedule for

1560 steps (choose values for the learning rate from 0 to an initial rate of 1.6), followed by a cosine

curve with an initial rate of 1.6, decaying over the remaining 60440 steps (see the CosineDecay

learning rate schedule in Tensorflow). We did not modify this training scheme across our exper-

iments for simplicity (our goal was to compare the performance of different init schemes rather

than to attain the optimal performance), explaining why our full-rank EfficientNet numbers do not

match the numbers in the original EfficientNet paper [5].

3.4.2 Results

It turns out that either LFAI-WS-Adam or LFAI-Adam typically outperform the other initial-

ization schemes across multiple rank scales and architecture widths. On average across all exper-

iments (including on ResNet [4], our method gains on the order of 0.3% in accuracy, though the

gain is larger for smaller rank scales and larger width networks. These results are also significant

– we demonstrate a clear separation of our approach compared to others in 1-standard deviation

confidence intervals, and our method tends to have lower variance in performance. Furthermore,
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Table 3.1: The reported metrics are average top-1 accuracy as a percent on EfficientNet models of
increasing width and depth, trained with Weight Decay regularization. We report standard error
over three samples up to one standard deviation. The EfficientNet model variants we consider have
width and depth scale parameters set to be (1, 1); (1.2, 1.4); (2.0, 3.1); (3.0, 3.2), corresponding to
the b0, b3, b7, and b9 variants respectively. We see the empirical effect described in Section 3.3.4 –
our methods (LFAI-Adam and LFAI-WS-Adam) have more significant improvements for smaller
rank scales and larger width models.

Rank Scale Method EfficientNet-b9 EfficientNet-b7 EfficientNet-b3 EfficientNet-b0

0.05

Baseline 66.36 ± 0.23 58.61 ± 0.45 37.34 ± 0.29 31.22 ± 0.62
Spectral 66.64 ± 0.23 58.84 ± 0.38 38.3 ± 0.09 30.96 ± 0.32

LFAI-Adam 65.84 ± 0.28 59.00 ± 0.18 38.22 ± 0.28 32.39 ± 0.26
LFAI-WS-Adam 66.90 ± 0.11 59.63 ± 0.37 38.04 ± 0.03 30.8 ± 0.19

0.10

Baseline 71.67 ± 0.19 68.89 ± 0.07 57.06 ± 0.24 48.24 ± 0.13
Spectral 72.07 ± 0.15 68.83 ± 0.16 56.66 ± 0.35 47.79 ± 0.17

LFAI-Adam 71.02 ± 0.32 68.52 ± 0.04 56.96 ± 0.19 47.42 ± 0.30
LFAI-WS-Adam 72.28 ± 0.04 69.09 ± 0.16 56.76 ± 0.11 47.84 ± 0.24

0.15

Baseline 73.20 ± 0.05 71.67 ± 0.19 62.56 ± 0.07 54.99 ± 0.05
Spectral 73.55 ± 0.15 71.55 ± 0.20 63.02 ± 0.07 54.97 ± 0.10

LFAI-Adam 72.70 ± 0.18 71.25 ± 0.12 62.86 ± 0.12 54.85 ± 0.09
LFAI-WS-Adam 73.31 ± 0.04 71.74 ± 0.02 63.55 ± 0.16 55.19 ± 0.10

0.20

Baseline 73.84 ± 0.04 72.16 ± 0.27 66.05 ± 0.23 59.78 ± 0.17
Spectral 74.14 ± 0.19 72.45 ± 0.17 65.96 ± 0.29 59.42 ± 0.32

LFAI-Adam 73.91 ± 0.09 72.32 ± 0.18 65.93 ± 0.06 59.20 ± 0.11
LFAI-WS-Adam 74.01 ± 0.11 72.72 ± 0.03 66.32 ± 0.02 59.38 ± 0.18

1.0 Full-Rank 79.62 ± 0.05 78.70 ± 0.02 76.63 ± 0.19 74.50 ± 0.13

we also find empirical evidence of our theoretical claims in Section 3.3.4, despite the fact that we

use the Swish activation while our theory was ReLU-based: we see the trend that as the rank-scale

decreases, or as the widths of the networks increase (higher number EfficientNets correspond to

larger widths), we see improvement in the top-1 accuracy gain, see Table 3.1.

While Frobenius Decay outperforms Weight Decay for smaller rank scales, the advantage

erodes for larger rank scales. This effect was not observed by [58], possibly because we study

larger models and datasets. We note that our method improves over other initialization methods

regardless of the initialization scheme.

We also note that in our EfficientNet experiments (Table 3.1), the effect of width does not

appear to be as strong as the effect of the rank scale. On the other hand, the effect of the smaller
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Figure 3.4: We vary the number of optimization steps used to implement WS-NLRA and plot the
average normalized error across layers against the average downstream validation top-1 accuracy
for training an EfficientNet-b7 model on ImageNet. Decreasing the function approximation error
at init is beneficial for top-1 accuracy.

Table 3.2: Comparison of LFAI-WS-Adam Across Rank Scales for EfficientNet-b9. We show by
how many percent points the best performing method, LFAI-WS-Adam, beats the other methods,
for the Weight Decay regularization.

Rank Scale Top-1 Accuracy for LFAI-WS-Adam
0.05 66.90 ± 0.11 (best by 0.36)
0.1 72.28 ± 0.04 (best by 0.21)
0.15 73.31 ± 0.04 (sub-optimal)
0.2 74.01 ± 0.11 (overlaps w/best)
Full-Rank 79.62 ± 0.05

rank scale is quite apparent in our experiments.

It would be interesting to develop a more thorough characterization of the impact of the ratios

of the inputs and outputs of layers in a deep architecture on the effectiveness of the LFAI-Adam

framework – it seems plausible that we would have to take into account some notion of average

ratio between input and output sizes, and possibly the structure of the architecture itself as well.

In Table 3.6, we present our results for the ResNet-50 architecture [4]. In Tables 3.2, 3.3, 3.4,

3.5, 3.7, and 3.8, we summarize the performance of our best initialization method compared to the

others.
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Table 3.3: Comparison of LFAI-WS-Adam Across Rank Scales for EfficientNet-b7. We show by
how many percent points the best performing method, LFAI-WS-Adam, beats the other methods,
for the Weight Decay regularization.

Rank Scale Top-1 Accuracy for LFAI-WS-Adam
0.05 59.63 ± 0.37 (best by 0.63)
0.1 69.09 ± 0.16 (best by 0.20)
0.15 71.74 ± 0.02 (best by 0.07)
0.2 72.72 ± 0.03 (best by 0.27)
Full-Rank 78.70 ± 0.02

Table 3.4: Comparison of LFAI-Adam Across Rank Scales for EfficientNet-b3. We show by how
many percent points the best performing method, LFAI-Adam, beats the other methods, for the
Weight Decay regularization.

Rank Scale Top-1 Accuracy for LFAI-Adam
0.05 38.22 ± 0.28 (overlaps w/best)
0.1 56.96 ± 0.19 (overlaps w/best)
0.15 63.55 ± 0.16 (best by 0.53)
0.2 66.32 ± 0.02 (best by 0.27)
Full-Rank 76.63 ± 0.19

Table 3.5: Comparison of LFAI-Adam and LFAI-WS-Adam Across Rank Scales for EfficientNet-
b0. We show by how many percent points LFAI-WS-Adam compares against the other methods,
for the Weight Decay regularization.

Rank Scale Top-1 Accuracy for LFAI-Adam or LFAI-WS-Adam
0.05 32.39 ± 0.26 (best by 1.17)
0.1 47.84 ± 0.24 (suboptimal)
0.15 55.19 ± 0.10 (best by 0.20)
0.2 59.38 ± 0.18 (suboptimal)
Full-Rank 74.50 ± 0.13
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Table 3.6: Average Top-1 accuracy on ResNet-50 with different regularization methods. Note that
our method tends to outperform the baselines regardless of whether Weight Decay or Frobenius
Decay is used. For each rank scale, we display in bold all methods whose confidence intervals
overlap.

Rank Scale Method Weight Decay Frobenius Decay

0.05

Baseline 56.92 ± 0.14 57.73 ± 0.23
Spectral 56.28 ± 0.39 57.42 ± 0.38

LFAI-Adam 56.55 ± 0.04 57.61 ± 0.15
LFAI-WS-Adam 57.37 ± 0.08 58.22 ± 0.31

0.10

Baseline 64.09 ± 0.12 65.61 ± 0.09
Spectral 64.06 ± 0.19 65.69 ± 0.12

LFAI-Adam 64.02 ± 0.17 65.55 ± 0.05
LFAI-WS-Adam 64.74 ± 0.04 65.93 ± 0.05

0.15

Baseline 67.58 ± 0.15 68.15 ± 0.20
Spectral 66.95 ± 0.16 68.21 ± 0.08

LFAI-Adam 67.24 ± 0.26 67.13 ± 0.51
LFAI-WS-Adam 67.74 ± 0.03 67.83 ± 0.42

0.20

Baseline 69.04 ± 0.33 69.22 ± 0.05
Spectral 68.59 ± 0.19 69.04 ± 0.14

LFAI-Adam 68.93 ± 0.20 68.87 ± 0.10
LFAI-WS-Adam 69.37 ± 0.07 69.47 ± 0.09

1.0 Full-Rank 78.1 78.1

3.4.3 Downstream Generalization Error

While existing literature has studied the effects of various initializations on optimization, no

results as far as we are aware connect the choice of initialization to downstream generalization

performance, though this effect has been demonstrated empirically.

Thus, we empirically justify the benefits of function approximation at initialization for low-

rank networks. We perform the following experiment: We fix rank scale 0.10, EfficientNet-b7 and

initialization algorithm LFAI-WS-Adam, and investigate the effect of layerwise function approxi-

mation at initialization on downstream generalization. We implement layerwise function approxi-

mation with Adam, as mentioned above. We train the network on ImageNet training data starting

from the initialization produced after 0 − 6 epochs of running Adam starting from the spectral

initialization, and measure the top-1 validation accuracy. For each number of epochs of training,

57



Table 3.7: Comparison of LFAI-WS-Adam Across Rank Scales for ResNet-50. We show by how
many percent points the best performing method, LFAI-WS-Adam, beats the other methods, for
the Weight Decay regularization.

Rank Scale Top-1 Accuracy for LFAI-WS-Adam
0.05 57.37 ± 0.08 (best by 0.45)
0.1 64.74 ± 0.04 (best by 0.65)
0.15 67.74 ± 0.03 (best by 0.16)
0.2 69.37 ± 0.07 (best by 0.33)
0.25 70.37 ± 0.06 (best by 0.25)
Full-Rank 78.1

Table 3.8: Comparison of LFAI-WS-Adam Across Rank Scales for ResNet-50. We show by how
many percent points the best performing method, LFAI-WS-Adam, beats the other methods, for
the Frobenius Decay regularization.

Rank Scale Top-1 Accuracy for LFAI-WS-Adam
0.05 58.22 ± 0.31 (best by 0.49)
0.1 65.93 ± 0.05 (best by 0.24)
0.15 67.83 ± 0.42 (sub-optimal)
0.2 69.47 ± 0.09 (best by 0.25)
0.25 70.16 ± 0.09 (best by 0.19)
Full-Rank 78.1
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we run the experiment 3 times and take the average.

Then, on the 𝑥-axis, for each number of initialization training epochs, we plot the average multi-

plicative error across the 107 layers of EfficientNet-b7, paired with the corresponding downstream

generalization error. In particular, if the optimum value of our objective (defined in Problem 3.3.6)

at a given layer (at init) is opt, and we have reached (1 + 𝜖layer 𝑖) · opt, then we record the average

𝜖 across all layers for that number of epochs, and plot alongside it the corresponding average over

downstream top-1 validation accuracy. We find that after 4 epochs, training converges and the

optimization procedure has reached the optimum.

We plot our results in Figure 3.4, and observe that as LFAI-WS-Adam optimizes, accuracy im-

proves, demonstrating that optimal function approximation at initialization improves downstream

generalization.
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Chapter 4: Stronger Lower Bounds for Streaming SVM

In this chapter, we consider resource limitations from another perspective: in modern machine

learning, large data streams are prevalent in practice (see [1]). For example, in the ads/recommender

system setting, very large amounts of data arrive in a streaming fashion (as a concrete example:

consider the Twitter Firehose [97]). It is not clear that the data arrive in an i.i.d. fashion, and it

is also not the case that we can necessarily store all of the data without some cost. Thus, we are

motivated to consider the streaming setting for machine learning: we want to know how much data

we must store after one pass of the data stream in order to optimize a model. This work is currently

in progress with my advisors Daniel Hsu and Alexandr Andoni.

4.1 Problem Statement

Concretely, we will consider the ℓ2 regularized SVM objective [98], since it is a common and

simple objective function often applied in the practice of training linear models. Since it is simple

to optimize, it is often a good baseline to use before resorting to fancier, more compute-heavy,

methods.

The SVM objective is an interesting case study also because it is both strongly convex (Def-

inition 1.3.10) and non-smooth (Definition 1.3.8). Existing works in the streaming literature (for

instance, regarding the streaming optimization of generalized linear models) deal with smooth ob-

jectives [99]. As other prevalent methods (like ReLU deep networks) are also non-smooth (though

non-convex), the SVM is also a good starting point for understanding the challenges arising in

non-smooth optimization in the streaming setting.

Definition 4.1.1 (Primal Soft-Margin SVM Objective). For 𝑁 labelled data points (𝑥𝑖, 𝑦𝑖) ∈ R𝑑 ×

{−1, 1} with ∥𝑥𝑖∥2 ≤ 1 and 𝑤 ∈ R𝑑 the unknown model parameters, the primal soft-margin SVM

60



objective is defined as:

𝐹_ (𝑤) =
_

2
∥𝑤∥22 +

1
𝑁

𝑁∑︁
𝑖=1
[1 − 𝑦𝑖 (𝑤⊤𝑥𝑖)]+

for regularization strength _ > 0 where [·]+ denotes max(0, ·). We also refer to _ as the strong con-

vexity parameter, since it determines the strong convexity constant for 𝐹_ (see Definition 1.3.10).

We consider the primal soft-margin SVM objective in the streaming setting. The goal is to

minimize 𝐹_ (𝑤) over 𝑤 ∈ R𝑑 . The Streaming SVM problem is as follows:

Definition 4.1.2 (𝜖-Optimal One-Pass Streaming SVM Problem). We receive data points (𝑥𝑖, 𝑦𝑖) ∈

R𝑑 × {±1} with ∥𝑥𝑖∥2 ≤ 1 from a stream of length 𝑁 in some pre-fixed but arbitrary order. We

are also given a regularization parameter _ ∈ R+ which ensures the objective is strongly convex.

At the end of the stream, we must output a weight vector �̂� ∈ R𝑑 such that it is an 𝜖-approximate

solution, i.e.

𝐹_ (�̂�) − 𝐹_ (𝑤) ≤ 𝜖,

with probability at least 3/4 over any randomness used to fix the stream order and any randomness

used by the streaming algorithm.

Note that we consider the one-pass streaming setting. Our key interest will be in the space

complexity of an algorithm that solves this problem. Particularly, we ask: Does any one-pass

(randomized) streaming algorithm that solves the 1-dimensional 𝜖-optimal streaming SVM require

Ω(1/
√
𝜖) memory?

4.2 Related Work

The most significant prior work that we build on is [100], which considers the same problem

and achieves some preliminary results. In dimensions 1 and 2, [100] provide algorithms that

outperform the naive method of using resevoir sampling to subsample the stream for 1/_𝜖 points,

and then running stochastic gradient descent over these points [101]. The algorithm proposed

for the 1-dimensional problem takes space O
(

1√
𝜖

√︁
log(1/𝜖)

)
. The algorithm proposed for the 2-
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dimensional problem takes space Õ(𝜖−4/5), where the tilde hides logarithmic factors of 1/𝜖 . [100]

also provides a space complexity lower bound for one pass streaming of Ω(1/
√
𝜖) for dimensions

3 and higher; however, this lower bound requires _ = Θ(
√
𝜖) and does not apply to the case

where _ = Θ(1). Thus far, there is no space lower bound for the 1-dimensional problem, and

for dimension 2, the best known space lower bound is Ω(𝜖−1/4) (and this lower bound requires

_ = Θ(𝜖)).

When the data is separable with margin 𝛾, it is possible to obtain space dependencies which

depend on 𝛾. Consider the following algorithm: Subsample 1/𝜖𝛾2 elements from the stream

using resevoir sampling, and implement the leave-one-out online-to-batch conversion using the

Perceptron algorithm [102] on the subsampled stream. This algorithm has a space upper bound of

Θ(𝑑/𝜖𝛾2). If 𝛾 grows large enough as a function of 1/𝜖 (say for instance 𝛾 = 1/
√
𝜖), it is possible

to attain space complexity sub-linear in 1/𝜖 . Dimension reduction approaches in this setting can

further remove the dependence on 𝑑 via random projections; however, this method introduces poly-

logarithmic dependencies on 𝑁 (see e.g. [103], which attains a Θ(log2(𝑁)/𝜖 ·𝛾4) memory bound).

4.3 Main Result

We prove a nearly tight space lower bound for one-pass streaming SVM in 1 dimension, re-

solving the open problem. This lower bound also clearly applies in 2+ dimensions, and improves

the 2-dimensional lower bound as well. Furthermore, our lower bound holds for _ = Θ(1) – pre-

viously, such lower bounds were only known for 𝑑 = Θ
(
log(1/𝜖)

)
. Our approach relies on the

general reduction to communication lower bounds outlines in Section 1.3.5. In our case, we will

consider the standard Augmented Index communication problem (see Section 1.3.5 for a defini-

tion), and come up with a novel reduction in 1 dimension. The theorem is as follows:

Theorem 4.3.1 (Lower Bound: 1-Dim Streaming SVM). Consider any 1-dimensional 𝜖-optimal

One-Pass Streaming SVM problem instance satisfying 𝜖 < 2_ and _ < 3
2−
√

2, where _ is the strong

convexity parameter defined in Definition 4.1.2. Then, any successful (randomized) streaming

algorithm for the Streaming SVM problem (Definition 4.1.2) requires memory at least Ω
(
1/
√
𝜖

)
.
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4.4 Proofs

4.4.1 Additional Notation and Terminology

Definition 4.4.1 (Hinge Loss). We define the hinge loss ℓ(𝑧)hinge : R𝑑 → R for point 𝑧 ∈ R𝑑 to be

ℓ
(𝑧)
hinge(𝑤) :=

[
1 − 𝑧⊤𝑤

]
+ where [·]+ = max(0, ·).

Definition 4.4.2 (Hinge Points in 1-Dimension). We will refer to the points of non-smoothness

of the 1-dimensional SVM objective 𝐹_ (𝑤) as hinge points – these are the points which have a

sub-differential set of size > 1. Considering the terms in the objective defined by the data points

(e.g. 𝑓𝑖 (𝑤) = [1 − 𝑤𝑧𝑖]+), the hinge points will correspond to the points 𝑤 = 1/𝑧𝑖.

4.4.2 Main Technique: Reduction from Augmented Index

Given an instance of Augmented Index (see Definition 1.3.14), we need to construct a 1-

Dimensional Streaming SVM problem instance – this step consists of constructing a dataset D

and a parameter _ ∈ R+ (Definition 4.1.2). However, there are several restrictions on how we

may construct the dataset. In particular, we must construct the dataset with Alice and Bob and the

restrictions implicit in the information they have available – that is, Alice must encode the infor-

mation from her bit string into one part of the dataset, and Bob must encode his index into the other

part of the dataset, only using information from the first 𝑖 − 1 bits of the bitstring. This setup obeys

the reduction from communication problems outlined in Section 1.3.5. Then we need to show that

knowledge of an 𝜖-optimal point for the Streaming SVM problem instance solves the Augmented

Index instance. First we give a useful definition:

Definition 4.4.3 (Defining the 𝑠Bob Function). Consider a set 𝑋 = [𝑋1, . . . , 𝑋𝑚] ⊂ 𝑅 of size

|𝑋 | = 𝑚. Then define

𝑠Bob(𝑋) := −
𝑚∑︁
𝑘=1

1
𝑋𝑘
.
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If 𝑋 is chosen as a function of some integer index 𝑖 > 0, then we adopt the shorthand

𝑠Bob(𝑖) := 𝑠Bob(𝑋 (𝑖)).

We term this function 𝑠Bob to correspond to the phrase “Bob’s slope”, which will be relevant in

the forthcoming reduction.

We now construct a Streaming SVM problem instance from an Augmented Index instance,

which consists of defining a dataset 𝐷 and regularization parameter (strong convexity parameter)

_ ∈ R+:

Construction 4.4.4 (Streaming SVM Dataset 𝐷 from Augmented Index Instance). Let 𝑛 > 0

be a positive integer. We begin with an Augmented Index instance parameterized by (a, 𝑖) ∈

{0, 1}𝑛 × [𝑛]. In this instance, Alice has 𝑛 bits a := {𝑎 𝑗 }𝑛𝑗=1, and Bob has an index 𝑖 ∈ [𝑛]. Let

𝑐Alice ∈ (0, 1) – we will specify its value shortly. We now define a Streaming SVM instance over

𝑁 =
⌊
𝑛/𝑐Alice

⌋
data points given the Augmented Index data, and we specify a choice of _ as well

as 𝑐Alice below. See Figures 4.1 and 4.2 for a visualization. We define the complete Streaming

SVM problem instance (_,D):

1. First, select any real number _ ∈ (0, 3
2 −
√

2).

2. Select 𝑐Alice =
1
2 − _ −

√
2_.

3. Define an ordered list of points 𝐴 =

[
1, . . . , 1 +

√︃
1
2_

]
⊂ R+ to be 𝑛 evenly spaced points. Here,

we use 𝐴[ 𝑗] to denote the 𝑗 𝑡ℎ element in this list.

4. Each point 𝐴[ 𝑗] ∈ 𝐴 is associated with a hinge loss term 𝑓 𝑗 (𝑤) :=
[
1 − (𝑤/𝐴[ 𝑗])

]
+. Note

𝑓 𝑗 (𝑤) = 0 for 𝑤 ≥ 𝐴[ 𝑗].

5. Define

𝐾 (𝑖) := −_𝑁 · 𝐴[𝑛 − 𝑖 + 1] + 1
2𝐴[𝑛 − 𝑖 + 1] .

We define an ordered list of 𝑁 − 𝑛 real-valued points 𝐵 ⊂ R which collectively are a function
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of 𝑖: We require that 𝐵 satisfies the relation

𝑠Bob(𝐵(𝑖)) =
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] + 𝐾 (𝑖).

In words, Bob will add several hinge losses so that the total slope due to Bob ensures that the

optimum is at index 𝐴[𝑛 − 𝑖 + 1] if 𝑎𝑖 = 1, and far enough away otherwise (see Lemma 4.4.7).

We also require that for all 𝑘 ∈ [𝑁 − 𝑛] and for all 𝑖 ∈ [𝑛], 𝐵𝑘 (𝑖) satisfies the condition that

either 𝐵𝑘 (𝑖) < 0 or 𝐵𝑘 (𝑖) ≥ 𝐴[𝑛].

6. We now define the dataset D := {𝑧𝑖}𝑁𝑖=1 where 𝑧𝑖 ∈ R using (a, 𝑖): For each 𝑗 ∈ [𝑛], if a[ 𝑗] = 1,

include 1/𝐴[𝑛− 𝑗 + 1] in D. Otherwise, include a copy of 0. For the remaining data points, we

use index 𝑖 and add the set {1/𝐵𝑘 (𝑖)}𝑁−𝑛𝑘=1 to D. Each of Bob’s data points is associated with a

hinge loss term 𝑔𝑘 (𝑤, 𝑖) :=
[
1 − (𝑤/𝐵𝑘 (𝑖))

]
+ where 𝑔𝑘 (𝑤, 𝑖) = 0 for 𝑤

𝐵𝑘 (𝑖) ≥ 1. Our constraints

on 𝐵𝑘 (𝑖) ensure that 𝑔𝑘 (𝑤, 𝑖) = 1 − (𝑤/𝐵𝑘 (𝑖)) for all 𝑤 ∈ (0, 𝐴[𝑛]].
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Figure 4.1: Alice’s partial construction of dataset D.

(a) Bob shifts the optimum to the left. (b) Bob shifts the optimum to the right.

Figure 4.2: Bob’s partial construction of dataset D.
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Now we present the lower bound proof. First recall the statement of the theorem:

Theorem 4.3.1 (Lower Bound: 1-Dim Streaming SVM). Consider any 1-dimensional 𝜖-optimal

One-Pass Streaming SVM problem instance satisfying 𝜖 < 2_ and _ < 3
2−
√

2, where _ is the strong

convexity parameter defined in Definition 4.1.2. Then, any successful (randomized) streaming

algorithm for the Streaming SVM problem (Definition 4.1.2) requires memory at least Ω
(
1/
√
𝜖

)
.

We introduce and prove several lemmas before we give the full proof:

1. In Lemma 4.4.5, we establish conditions so that the optimum of the dataset corresponding to

any Augmented Index instance (as specified in Construction 4.4.4) is located to the right of

𝐴[1] > 0.

2. In Lemmas 4.4.7 and 4.4.8, we establish that the optima for the constructed Streaming SVM

instance corresponding to cases 𝑎𝑖 = 0 or 1 in the corresponding Augmented Index instances

are sufficiently separated so that a Θ(𝜖)-optimal algorithm for the Streaming SVM problem

(Definition 4.1.2) can distinguish between the two cases.

3. Finally, in Lemma 4.4.9, we assert that the instance constructed in Construction 4.4.4 given

an Augmented Index instance is feasible given the constraints implied by the knowledge that

Alice and Bob have individually.

We now proceed to state and prove these pieces of the proof formally.

Lemma 4.4.5 (Bounds on the Location of the Minimizer). Recall the constructed Streaming SVM

instance from Construction 4.4.4. If 𝑠Bob(𝑖) satisfies

𝑠Bob(𝑖) ≤
𝑛∑︁
𝑗=1

(
𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1]

)
− _ · 𝑁 · 𝐴[1],

then 𝑤∗ ≥ 𝐴[1].

Proof. First, let us write down the SVM function given the construction in Construction 4.4.4: We
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have

𝐹_ (𝑤) =
_

2
𝑤2 + 1

𝑁

𝑛∑︁
𝑗=1

[
1 − 𝑎 𝑗 ·

𝑤

𝐴[𝑛 − 𝑗 + 1]

]
+
+ 1
𝑁

𝑁−𝑛∑︁
𝑘=1

[
1 − 𝑤

𝐵𝑘 (𝑖)

]
+
. (4.1)

Now note that for any max
𝑘∈[𝑁−𝑛]:𝐵𝑘 (𝑖)<0

𝐵𝑘 (𝑖) ≤ 𝑤 ≤ 0, the sub-gradient (slope) of 𝐹_ (𝑤) is

unique and satisfies

𝑑

𝑑𝑤
𝐹_ (𝑤) = _𝑤 −

1
𝑁

𝑛∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] −
1
𝑁

𝑁−𝑛∑︁
𝑘=1

1
𝐵𝑘 (𝑖)

≤ − 1
𝑁

𝑛∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] +
1
𝑁
𝑠Bob(𝑖)

≤ − 1
𝑁

𝑛∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] +
1
𝑁

𝑛∑︁
𝑗=1

(
𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] −
_

𝑐Alice
𝐴[1]

)
≤ −_ · 𝐴[1]

< 0

(4.2)

applying the condition in the lemma statement. Now also note that 𝑑
𝑑𝑤
𝐹_ (𝑤) < 0 also applies

for 𝑤 < max
𝑘∈[𝑁−𝑛]:𝐵𝑘 (𝑖)<0

𝐵𝑘 (𝑖), since the value of the slope can only be smaller for any such 𝑤

(from positive slope to zero slope). Thus we can also rule out 𝑤∗ < max
𝑘∈[𝑁−𝑛]:𝐵𝑘 (𝑖)<0

𝐵𝑘 (𝑖) as well.

Therefore, we must have 𝑤∗ > 0 since 𝐹_ (𝑤) is strongly convex.

Next, we will show that 𝑤∗ ≥ 𝐴[1] under our condition. Suppose for sake of contradiction that

𝑤∗ ∈ (0, 𝐴[1]) while

𝑠Bob(𝑖) ≤
𝑛∑︁
𝑗=1

(
𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] −
_

𝑐Alice
𝐴[1]

)
.

Then, 𝐹_ (𝑤) is differentiable in this region since in this region,
[
1 − 𝑎 𝑗 · 𝑤

𝐴[𝑛− 𝑗+1]

]
+
= 1 − 𝑎 𝑗 ·

𝑤
𝐴[𝑛− 𝑗+1] (as all 𝐴[𝑛 − 𝑗 + 1] ≥ 𝐴[1]) and

[
1 − 𝑤

𝐵𝑘 (𝑖)

]
+
= 1 − 𝑤

𝐵𝑘 (𝑖) , which holds when 𝐵𝑘 (𝑖) ≤

−𝐴[1] = 1 and also when 𝐵𝑘 (𝑖) = 𝐴[𝑛] if 𝑤 ≤ 𝐴[𝑛]. Thus, under our assumption that 𝑤∗ ∈

(0, 𝐴[1]), the optimality conditions of differentiable convex functions imply that the gradient of

𝐹_ (𝑤) is zero at some 𝑤∗ in (0, 𝐴[1]). Since 𝐹_ (𝑤) is also strongly convex, this point is unique.
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Thus, the optimality conditions for a smooth convex function directly imply

_𝑤∗ + 1
𝑁

©«𝑠Bob(𝑖) −
𝑛∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1]
ª®¬ = 0, (4.3)

and solving for 𝑤∗ yields

𝑤∗ =
1

_ · 𝑁
©«
𝑛∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] − 𝑠Bob(𝑖)
ª®¬ . (4.4)

Recalling the hypothesis for the sake of contradiction, we must have 𝑤∗ < 𝐴[1]. We thus have

𝑛∑︁
𝑗=1

(
𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] −
_

𝑐Alice
𝐴[1]

)
< 𝑠Bob(𝑖),

which contradicts our assumption. Therefore, the condition

𝑠Bob(𝑖) ≤
𝑛∑︁
𝑗=1

(
𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] −
_

𝑐Alice
𝐴[1]

)
ensures that 𝑤∗ ∉ (0, 𝐴[1]). Since 𝑤∗ > 0 and 𝑤∗ ∉ (0, 𝐴[1]), we have therefore established that

𝑤∗ ≥ 𝐴[1]. By the strong convexity of 𝐹_ (𝑤), 𝑤∗ is at a finite point ≥ 𝐴[1] and is unique. □

Remark 4.4.6 (Edge Case for Applying Lemma 4.4.5). We note that given the values for 𝐵 and

thus 𝑠Bob(𝑖) from Construction 4.4.4, the restriction in the statement of Lemma 4.4.5 is satisfied in

all cases except when Alice’s bit string a is the string of all 0 bits. In this case, as we will see in

Lemma 4.4.7, the optimum value can be slightly smaller than 𝐴[1].

Lemma 4.4.7 (Testing the Minimizer). Recall the Streaming SVM instance constructed in Con-

struction 4.4.4. Let 𝑤∗𝑎𝑖 refer to the optimal point of the function depending on the value of 𝑎𝑖. If

𝑎𝑖 = 1,

𝑤∗1 = 𝐴[𝑛 − 𝑖 + 1] .
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Otherwise, if 𝑎𝑖 = 0, either

𝑤∗0 = 𝐴[𝑛 − 𝑖 + 1] − 1
2_𝑁 · 𝐴[𝑛 − 𝑖 + 1] .

or

𝑤∗0 ≤ 𝐴[𝑛 − 𝑖] .

Proof. Let 𝐹𝑎𝑖
_

refer to the function as it depends on the value of 𝑎𝑖 = 0 or 1. First we consider the

case 𝑎𝑖 = 1. We have 𝑤∗1 = 𝐴[𝑛− 𝑖 + 1] if and only if we have 0 ∈ 𝜕𝐹1
_
(𝐴[𝑛− 𝑖 + 1]), by the strong

convexity of 𝐹1
_

. Since 𝐹1
_

is piece-wise convex quadratic and the hinge points are the points of

non-smoothness, we will prove that Bob’s dataset 𝐵 (chosen in Construction 4.4.4) induces a value

of 𝑠Bob(𝑖) such that for 𝑤 ∈ (𝐴[𝑛−𝑖], 𝐴[𝑛−𝑖+1]), 𝑑𝐹
1
_
(𝑤)

𝑑𝑤
< 0 and for 𝑤 ∈ (𝐴[𝑛−𝑖+1], 𝐴[𝑛−𝑖+2]),

𝑑𝐹1
_
(𝑤)

𝑑𝑤
> 0. These conditions ensure by strong convexity that 0 ∈ 𝜕𝐹1

_
(𝐴[𝑛 − 𝑖 + 1]), and thus that

𝑤∗1 = 𝐴[𝑛 − 𝑖 + 1]. To begin, recall the value of 𝑠Bob(𝑖) induced by the selection of Bob’s dataset

𝐵 from Construction 4.4.4:

𝑠Bob(𝑖) =
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] + 𝐾 (𝑖) =
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] − _𝑁 · 𝐴[𝑛 − 𝑖 + 1] + 1
2𝐴[𝑛 − 𝑖 + 1] .

Next, we calculate the most negative and most positive sub-gradients at 𝐴[𝑛 − 𝑖 + 1] using the

sub-gradient of 𝐹1
_
(𝑤) along the intervals 𝑤 ∈ (𝐴[𝑛 − 𝑖], 𝐴[𝑛 − 𝑖 + 1]) and for 𝑤 ∈ (𝐴[𝑛 − 𝑖 +

1], 𝐴[𝑛 − 𝑖 + 2]) respectively, and demonstrate that they satisfy

min
𝑔∈𝜕𝐹_ (𝐴[𝑛−𝑖+1])

𝑔 = _𝐴[𝑛 − 𝑖 + 1] + 1
𝑁

©«𝑠Bob(𝑖) −
𝑖∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1]
ª®¬ < 0

and

max
𝑔∈𝜕𝐹_ (𝐴[𝑛−𝑖+1])

𝑔 = _𝐴[𝑛 − 𝑖 + 1] + 1
𝑁

©«𝑠Bob(𝑖) −
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1]
ª®¬ > 0.

In particular, these constraints hold (and prove that 𝑤∗1 = 𝐴[𝑛− 𝑖 + 1] since 0 ∈ 𝜕𝐹1
_
(𝐴[𝑛− 𝑖 + 1]))
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since after simplifying with respect to 𝑠Bob(𝑖), we see that they are equivalent to the constraint

𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] − _𝑁 · 𝐴[𝑛 − 𝑖 + 1] < 𝑠Bob(𝑖) <
𝑖∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] − _𝑁 · 𝐴[𝑛 − 𝑖 + 1] .

which clearly holds for the induced value of 𝑠Bob(𝑖) when 𝑎𝑖 = 1.

Now we handle the case 𝑎𝑖 = 0: How much does the optimum of 𝐹0
_

differ from the optimum

of 𝐹0
_

? The sub-gradient set of 𝐹0
_

at 𝐴[𝑛 − 𝑖 + 1] satisfies

min
𝑔∈𝜕𝐹0

_
(𝐴[𝑛−𝑖+1])

𝑔 = _𝐴[𝑛 − 𝑖 + 1] + 1
𝑁

©«
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] + 𝐾 (𝑖) − 0 −
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1]
ª®¬

= _𝐴[𝑛 − 𝑖 + 1] + 1
𝑁

(
1

2𝐴[𝑛 − 𝑖 + 1] − _𝑁𝐴[𝑛 − 𝑖 + 1]
)

=
1

2𝑁 · 𝐴[𝑛 − 𝑖 + 1]

> 0

(4.5)

and thus the objective is differentiable and sub-optimal at 𝐴[𝑛 − 𝑖 + 1]. Instead, since the slope

at 𝐴[𝑛 − 𝑖 + 1] is positive, we must have 𝑤∗ < 𝐴[𝑛 − 𝑖 + 1]. Now we have to identify the

value of the optimum – how far away does it shift? There are two cases: 𝑤∗ ≤ 𝐴[𝑛 − 𝑖], or

𝑤∗ ∈ (𝐴[𝑛 − 𝑖], 𝐴[𝑛 − 𝑖 + 1]). First we consider the second case. We have to set the value of the

slope to 0 and solve, since there are no hinge points in (𝐴[𝑛 − 𝑖], 𝐴[𝑛 − 𝑖 + 1]) by definition (and

thus any optimizer in this regime has a sub-gradient set of cardinality 1 and 𝐹0
_

is differentiable

everywhere in the interval). In particular:

𝑑𝐹0
_

𝑑𝑤
(𝑤∗) = _𝑤∗ + 1

𝑁

©«
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] + 𝐾 (𝑖) −
𝑖∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1]
ª®¬ = 0.
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Using 𝑎𝑖 = 0, we get

_𝑤∗ + 1
𝑁

©«
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] − _𝑁𝐴[𝑛 − 𝑖 + 1] + 1
2𝐴[𝑛 − 𝑖 + 1] −

𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1]
ª®¬

= 0,

(4.6)

or simplifying,

_𝑤∗ + 1
𝑁

(
−_𝑁𝐴[𝑛 − 𝑖 + 1] + 1

2𝐴[𝑛 − 𝑖 + 1]

)
= 0,

and thus

𝑤∗ = 𝐴[𝑛 − 𝑖 + 1] − 1
2_𝑁𝐴[𝑛 − 𝑖 + 1] .

Then we need to check our assumption that 𝑤∗ ∈ (𝐴[𝑛 − 𝑖], 𝐴[𝑛 − 𝑖 + 1]). We require

𝐴[𝑛 − 𝑖 + 1] − 1
2_𝑁𝐴[𝑛 − 𝑖 + 1] ≥ 𝐴[𝑛 − 𝑖]

for this solution to not contradict the assumptions we used to derive it. If this holds, we are done.

Otherwise, the first case must hold, and 𝑤∗ ≤ 𝐴[𝑛 − 𝑖]. □

Now we prove a lemma asserting that given an 𝜖/16-optimal solution �̂� to the streaming SVM

objective derived from Construction 4.4.4, �̂� can distinguish between the cases 𝑎𝑖 = 0, 1 in the

Augmented Index instance.

Lemma 4.4.8 (Sufficient Sub-optimality). Let 𝑤∗1 and 𝑤∗0 be the minimizers of the SVM objective

defined by Construction 4.4.4 with strong convexity parameter _ < 3/2 −
√

2 and size 𝑁 = |D| =

1/2
√
𝜖 in the two cases where 𝑎𝑖 = 0 or 1. Let

Δ :=
��𝑤∗1 − 𝑤∗0�� .
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Then, given an 𝜖/16-sub-optimal solution �̂� to the streaming SVM problem, we have that

���̂� − 𝑤∗�� < 1
2
· Δ

Proof. Recall that 𝐴[𝑛 − 𝑖 + 1] ≤ 1 +
√︃

1
2_ . From Lemma 4.4.7, there are two cases. We have that

one of the following two statements holds:

1. 𝑤∗1 − 𝑤
∗
0 ≥

1
2_𝑁 ·𝐴[𝑛] , since 𝐴[𝑛] ≥ 𝐴[ 𝑗] for all 𝑗 ∈ [𝑛].

2. 𝑤∗1 − 𝑤
∗
0 ≥ 𝐴[𝑛 − 𝑖 + 1] − 𝐴[𝑛 − 𝑖] = 1

𝑛
√

2_
, from the definition of 𝐴 in Construction 4.4.4.

In the first case, since 𝐴[𝑛] = 1 +
√︃

1
2_ , we have

𝑤∗1 − 𝑤
∗
0 ≥

1

2_𝑁 ·
(
1 +

√︃
1
2_

)
=

2
√
𝜖

2_ ·
(
1 +

√︃
1
2_

)
=

√
𝜖

_ +
√︃
_
2

.

(4.7)

The same lower bound holds in the second case: we have

𝑤∗1 − 𝑤
∗
0 ≥

1
𝑐Alice · 𝑁 ·

√
2_

>
2
√
𝜖
√
_

>

√
𝜖

_ +
√︃
_
2

.

(4.8)

since 𝑐Alice < 1/2 and 2
√
_ > _ +

√︁
_/2 as _ < 1. Therefore, to be able to distinguish between the

cases 𝑎𝑖 = 0, 1 with probability > 3/4, we must have that after conditioning on the success event
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of an 𝜖/16-optimal one pass Streaming SVM algorithm, its output �̂� satisfies

|𝑤∗0 or 1 − �̂� | <
1
2
·
√
𝜖

_ +
√︃
_
2

.

We demonstrate this is true. By _-strong convexity of both 𝐹0
_

and 𝐹1
_

, we have that for an 𝜖/16-

optimal streaming algorithm

_

2
·
(
(𝑤∗0 or 1) − �̂�

)2
≤

���𝐹0 or 1
_ (𝑤∗0 or 1) − 𝐹

0 or 1
_ (�̂�)

��� ≤ 𝜖

16��(𝑤∗0 or 1) − �̂�
�� ≤ √︂

𝜖

8_
=

1
2
·
√︂
𝜖

2_

<
1
2
·
√
𝜖

_ +
√︃
_
2

(4.9)

which holds when _ satisfies
√

2_ > _ +
√︂
_

2

which holds when _ < 1/2, which is true since we assume _ < 3
2 −
√

2 < 1/2. □

Lemma 4.4.9 (Feasibility of Choosing 𝑠Bob(𝑖)). Fix the list of 𝑁 − 𝑛 real-valued points 𝐵 and

strong convexity parameter _ < 3/2−
√

2 from Construction 4.4.4. If 𝑁 > 1
2_+
√

8_
, it is possible for

Bob to choose a list 𝐵 that satisfies the required relation from Construction 4.4.4 given knowledge

of only 𝑎1, . . . , 𝑎𝑖−1 and index 𝑖 ∈ [𝑛], namely that

𝑠Bob(𝐵(𝑖)) =
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] − _𝑁 · 𝐴[𝑛 − 𝑖 + 1] + 1
2𝐴[𝑛 − 𝑖 + 1] ,

Proof. Bob must construct a list of 𝑁 − 𝑛 real-valued points 𝐵 so that they satisfy

𝑠Bob(𝐵(𝑖)) =
𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] − _𝑁 · 𝐴[𝑛 − 𝑖 + 1] + 1
2𝐴[𝑛 − 𝑖 + 1] ,

The right-hand side of the above expression only depends on the first 𝑖−1 terms of a and 𝑖 from the
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Augmented Index instance, which is exactly the information that Bob receives. Now it remains to

show that Bob can achieve any magnitude of 𝑠Bob(𝑖) that might be necessary, given varying values

of a and 𝑖. First we observe upper and lower bounds on

𝑠Bob(𝑖) = 𝑀𝑖 +
1

2𝐴[𝑛 − 𝑖 + 1] ,

where

𝑀𝑖 =

𝑖−1∑︁
𝑗=1

𝑎 𝑗

𝐴[𝑛 − 𝑗 + 1] − _ · 𝑁 · 𝐴[𝑛 − 𝑖 + 1] .

We can upper bound 𝑠Bob(𝑖) by taking 𝑎 𝑗 = 1 for all 𝑗 ∈ [𝑛] and upper bounding −_ · 𝑁 · 𝐴[𝑛 −

𝑖 + 1] + 1
2𝐴[𝑛−𝑖+1] ≤ −_ · 𝑁 · 𝐴[1] +

1
2 . We can lower bound 𝑠Bob(𝑖) by taking 𝑎 𝑗 = 0 for all 𝑗 ∈ [𝑛]

and lower bounding −_ · 𝑁 · 𝐴[𝑛 − 𝑖 + 1] ≥ −_𝑁 · 𝐴[𝑛]. Therefore:

−_ · 𝑁 · 𝐴[𝑛] ≤ 𝑠Bob(𝑖) ≤
1
2
+

𝑛∑︁
𝑗=1

1
𝐴[ 𝑗] − _ · 𝑁 · 𝐴[1] .

Now we show that Bob only requires 𝑁 − 𝑛 data points to achieve these magnitudes of 𝑠Bob(𝑖),

with hinge loss terms which will have non-zero slope at any point in 𝐴. First, we show that Bob

can attain the lower bound: Suppose that Bob sets 𝐵𝑘 (𝑖) = 𝐴[𝑛] for all 𝑁 − 𝑛 of his data points

(note that these slopes are all negative and apply for all 𝑤 ≤ 𝐴[𝑛]). Then we need

_𝑁𝐴[𝑛] = (𝑁 − 𝑛) · 1
𝐴[𝑛]

and thus

_𝐴[𝑛]2 = (1 − 𝑐Alice)

since 𝑁 − 𝑛 = (1 − 𝑐Alice) · 𝑁 . Therefore, for 𝑐Alice ∈ (0, 1), we require

𝑐Alice = 1 − _𝐴[𝑛]2 ∈ (0, 1).
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Thus, plugging in 𝐴[𝑛] = 1 +
√︃

1
2_ , we have

1 − _𝐴[𝑛]2 = 1 −
(√
_ +

√︁
1/2

)2
=

1
2
− _ −

√
2_

from which follows the requirement that

1
2
− _ −

√
2_ ∈ (0, 1)

and thus

_ +
√

2_ <
1
2

and _ +
√

2_ > −1/2,

the second of which is trivially true since _ > 0. The first equation is satisfied for _ < 3
2 −
√

2 ≈

0.08, which holds under our assumption on _. Thus we can choose a valid 𝑐Alice:

𝑐Alice =
1
2
− _ −

√
2_ < 1/2.

Since Bob sets 𝐵𝑘 (𝑖) = 𝐴[𝑛] for all 𝑘 ∈ [𝑁 − 𝑛], the corresponding slopes of the hinge functions

are non-zero for all 𝐴[𝑖] ∈ 𝐴.

Now we show that Bob can attain the upper bound. We consider two cases. First suppose

1/2 − _𝑁 · 𝐴[1] ≤ 0, and the upper bound we must attain is at most 𝑛/𝐴[1]. In this case, it is

easy to see that Bob can set 𝐵𝑘 (𝑖) = −𝐴[1] for 𝑛 < 𝑁 − 𝑛 of his 𝑁 − 𝑛 points to attain the slope

of 𝑛/𝐴[1], since 𝑛 < 𝑁/2 because 𝑐Alice < 1 − 𝑐Alice for our choice of 𝑐Alice. Since the function[
1 + 𝑤

𝐴[1]

]
+
= 1 + 𝑤

𝐴[1] for all 𝑤 ≥ −𝐴[1], and all 𝐴[ 𝑗] ∈ 𝐴 satisfy 𝐴[ 𝑗] > −𝐴[1], the slopes due

to these terms apply at all 𝐴[ 𝑗] for 𝑗 ∈ [𝑛]. In the other case, 0 < 1/2 − _𝑁 · 𝐴[1] ≤ 1/2 instead.

Bob only needs to add a data point 𝐵𝑘 (𝑖) = −2 to recover the extra term of 1/2 (the slope will be

1/2 for any point in 𝐴 since −2 < 𝐴[1]). Thus, as long as

𝑐Alice +
1
𝑁
< 1 − 𝑐Alice,
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and thus

𝑁 >
1

1 − 2𝑐Alice
=

1

1 − 2
(

1
2 − _ −

√
2_

) =
1

2_ +
√

8_
,

this modified argument works. Therefore, we have established that Bob can construct both 𝑠Bob(𝑖)

as small as −_𝐴[𝑛] and as large as
∑𝑛
𝑗=1

1
𝐴[1] ≥

∑𝑛
𝑗=1

(
1

𝐴[ 𝑗] − _
)
.

Thus, all that remains is to show that Bob can reach any magnitude in-between these two

extremes. This fact is also simple to see: Bob is allowed to set 𝐵𝑘 (𝑖) < 0 or 𝐵𝑘 (𝑖) > 𝐴[𝑛]

to obtain exact values for 𝑠Bob(𝑖). Since we can attain the maximum and the minimum, we can

replace the points in the minimizing set as needed with real-valued 𝐵𝑘 (𝑖) < 0 to adjust the value

of 𝑠Bob(𝑖) all the way up to the maximal value attainable with 𝑁 − 𝑛 points, while not changing the

total number of points needed.

We remark that every choice of Bob is either setting 𝐵𝑘 (𝑖) = 𝐴[𝑛] for negative slope, or

setting 𝐵𝑘 (𝑖) < 0 for a positive slope. Thus, there are no new points where the slope is disjoint in

[1, 𝐴[𝑛]]. Finally, we also note that all choices of 𝑠Bob(𝑖) are valid in the sense that they preserve

the property that the optimum satisfies 𝑤∗ ≥ 𝐴[1] (see Lemma 4.4.5), since the required upper

bound on 𝑠Bob(𝑖) for this statement to hold obeys the constraint by definition (with an unimportant

exception in the case where a = (0, . . . , 0), see Remark 4.4.6). □

Now we give the proof of Theorem 4.3.1.

Proof. Given an instance of Augmented Index of size
(

1
2 − _ −

√
2_

)
· 1
2
√
𝜖
, we construct the Stream-

ing SVM instance from Construction 4.4.4 of size 𝑁 = 1
2
√
𝜖

(in the language of Construction 4.4.4,

𝑐Alice = 1
2 − _ −

√
2_). Lemmas 4.4.5 and 4.4.9 ensure the construction is valid: the optimum

is guaranteed to lie near a point in 𝐴 and Bob can legitimately construct the desired magnitude

of 𝑠Bob(𝑖) given only 𝑖 and 𝑎1, . . . , 𝑎𝑖−1 (the definition of Bob’s input in the Augmented Index

instance) with 𝑁 − 𝑛 points. Note that in Lemma 4.4.9, there is a requirement that

𝑁 >
1

2_ +
√

8_
.
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When 𝑁 = 1/2
√
𝜖 and 𝜖 < 2_ both hold, this requirement is satisfied. Lemma 4.4.9 is also the

reason we must restrict the magnitude of the points in 𝐴 to satisfy ≤ Θ(1/
√
_) (see Remark 4.4.10).

Then, we claim that the minimizers 𝑤∗0 and 𝑤∗1 in the two cases (𝑎𝑖 = 0 or 𝑎𝑖 = 1) are spaced

distance Δ apart with respect to the ℓ2 distance (Lemma 4.4.7). Then, in Lemma 4.4.8, we show

that given the output �̂� of an 𝜖/16-optimal streaming SVM algorithm (and conditioning on the

success event),

𝑑ℓ2 (�̂�, 𝑤∗) <
Δ

2
.

Thus, a (randomized) one-pass streaming algorithm that solves the 𝜖/16-optimal one-pass Stream-

ing SVM problem (Definition 4.1.2) determines whether 𝑎𝑖 = 0 or 𝑎𝑖 = 1 via a distance test which

succeeds with probability at least 3/4. Finally, applying the communication lower bound for Aug-

mented Index of Ω(𝑛) [13], we have proven a communication lower bound of Ω

(
1
2−_−

√
2_

8
√
𝜖

)
=

Ω(1/
√
𝜖) as desired (since 1

2 − _ −
√

2_ > 0 and is treated like a constant function of 𝜖 for our

restrictions on _). □

Remark 4.4.10. The upper bound constraint on the size of 𝐴[𝑛] comes from the requirement that

_𝐴[𝑛]2 = 1 − 𝑐Alice ∈ (0, 1) in Lemma 4.4.9. In particular, we must have

𝐴[𝑛] ≤ 1
√
_
.

Since 𝐴[1] < 𝐴[𝑛], we must also require _ < 1/𝐴[1]2, but this inequality already holds under our

assumptions (𝐴[1] = 1, _ < 3/2 −
√

2 < 1/2).
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Chapter 5: Conclusion and Future Work

In this thesis, we studied resource-limited algorithms for machine learning in the context of

resource-efficient structured model classes and machine learning in the online streaming setting.

We conclude by summarizing each chapter’s results and pointing to directions for future work.

5.1 Sparse Monomials

In Chapter 2, we studied the problem of learning sparse monomials of highly-correlated fea-

tures. Our work provides the first attribute-efficient analysis (handling arbitrarily high correlations)

in a non-product distribution setting, which has been a major challenge in the prior work (e.g., [25];

[15]). By leveraging a folklore technique from applied statistics, namely applying the log( |·|) trans-

form to the features and responses, we reduced this problem to a sparse linear regression problem.

By analyzing how the covariance matrix changes after the log( | · |) transform, we show that our

procedure works under the minimal conditions required for the model to be identifiable.

We summarize the conceptual contributions of the chapter as follows.

1. Learning degree-𝑘 sparse polynomial functions with poly(log(𝑝), 𝑘) samples in 𝑝𝑜(𝑘)-time

under non-product distributions is a challenging problem. Our work gives a new algorithmic

line-of-attack for this problem, namely transforming both the response and the features such

that each relevant variable participates in an𝑂 (1)-degree interaction in the transformed model,

reducing the computational burden of searching for relevant variables from 𝑝Ω(𝑘) to 𝑝𝑂 (1) .

Although we study this general principle in a specialized setting, we believe our techniques

(Lemma 2.4.1) can be useful for analyzing other instances of this algorithmic idea. The fact

that no existing approach gives attribute-efficient algorithms with 𝑝𝑜(𝑘) run-time for the com-

paratively simple sparse monomial problem underscores the promise of this approach.
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2. Our analysis uncovers a blessing of non-linearity. Specifically, the assumptions on the corre-

lation structure needed to learn a class of sparse non-linear functions are less restrictive than

those needed to learn sparse linear functions. We require only minimal assumptions on the

dependence structure to ensure identifiability, a significant departure from previous results.

3. We demonstrate the minimum eigenvalue of the log-transformed data covariance matrix is

strictly positive with high probability, regardless of the initial rank. Thus, nonlinear data trans-

formations can destroy low-rank covariance structure, a principle which may be useful for other

estimation problems.

We conclude with a few open problems. The most immediate is to find an efficient algorithm

for learning sparse monomials in the presence of additive noise. [104] proved a Statistical Query

(SQ) lower bound for the problem of learning sparse monomials in the agnostic setting, and thus no

efficient SQ algorithm exists for this problem – it remains open whether a non-SQ algorithm exists.

Another interesting question is to relax the Gaussian distribution assumption (e.g., to rotations of

general product distributions), and to also try to handle larger families of sparse polynomials over

highly-correlated features. Finally, it would be nice to obtain a better dependence on the maximum

correlation parameter, since our sample complexity currently blows up as it approaches 1.

5.2 Low-Rank Initialization

In Chapter 3, we introduced a novel low-rank initialization framework for deep learning: Algo-

rithms 2 and 3 empirically tend to outperform the existing method of choice, spectral initialization,

while being essentially as efficient to implement. We view our approach as a simple drop-in sub-

stitute to spectral initialization that practitioners can try to increase performance. While we do not

expect huge performance increases, since the method is simple and does not require significantly

more compute or memory, Table 3.1 demonstrates a relatively reliable performance increase in

generalization accuracy.

This chapter also contributes to the understanding of the mechanism behind successful low-

rank initialization methods for deep learning: a critical component of methods like spectral ini-
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tialization and our NLRA framework is the quality of the function approximation of the full-rank

initialized parameters, rather than parameter approximation. We demonstrate this with empirical

results showcasing the positive correlation between decreasing nonlinear low-rank approximation

error and decreasing generalization error, and with theoretical guarantees and intuition for when

our methods should outperform classic approaches (high input dimension together with larger net-

work width and smaller target ranks) (Theorem 3.3.9 and Corollary 3.3.11).

We close with a few directions for future work: It would be interesting to 1) provably character-

ize the impact of initialization schemes on downstream generalization, low-rank or otherwise; 2)

identify optimal distributions to sample low-rank weights from without optimization; 3) discover

better low-rank training methods; 4) extend our theory beyond 1-hidden-layer ReLU networks to

other activations, depths, and architectures; 5) extend our initialization framework to “efficiently-

parameterized” networks beyond low-rank; 6) determine the complexity of the nonlinear low-rank

approximation problem both in the general case as well as in an average case setting (perhaps

when the weight matrix𝑊 has columns drawn from the uniform spherical distribution), as well as

understand the sample complexity and computational complexity of the problem when one is only

provided sample access to the weights in both general and average case settings.

5.3 Memory-Bounded Streaming Optimization

The main task is to close the gap between upper and lower bounds in dimensions larger than 1 –

in high dimension (say 𝑑 > log(1/𝜖)), this gap is quadratic. We believe that stronger lower bounds

are possible which can essentially close the gap using structural lemmas characterizing the prop-

erties of the SVM objective via local perturbation analysis near the optimum, and proving these

lower bounds is currently a work in progress. Beyond streaming SVM, it would be interesting to

consider the memory requirements for other non-smooth classes of streaming algorithms, though

similar lower bounds likely hold for a broader class of instances beyond SVM (which is addition-

ally strongly convex). It would also be fruitful to consider multi-pass settings of the problem, and

to understand whether multiple rounds can non-trivially mitigate the memory cost.
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Appendix A: Deferred Proofs from Chapter 2

A.1 Proof of Proposition 2.3.1.

Proposition A.1.1. A unique solution 𝛽 to the transformed model in Eq. (2.2)) is the unique solu-

tion to the original model in Eq. (2.1).

Proof. We proceed by reversing each step of the transformation and demonstrating that the solu-

tions do not change. First, note that the logarithm is invertible over the positive reals, which allows

us to undo the log transformation without any effect, since absolute value ensures the domain is

non-negative. Thus only consider the modified problem using data �̂�𝑖 = |𝑦𝑖 |, 𝑥𝑖, 𝑗 = |𝑥𝑖, 𝑗 |. Since ab-

solute value distributes under multiplication, �̂�𝑖 = |𝑦𝑖 | = |
∏

𝑗∈𝑆 𝑥
𝛽 𝑗

𝑖, 𝑗
| = ∏

𝑗∈𝑆 |𝑥𝑖, 𝑗 |𝛽 𝑗 =
∏

𝑗∈𝑆 𝑥
𝛽 𝑗

𝑖, 𝑗
and

the resulting data points (𝑥𝑖, �̂�𝑖) still satisfy the monomial model. Thus, if there is a unique solution

on the transformed data (log |𝑥𝑖 |, log |𝑦𝑖 |), it must also be the unique solution on all of the data. □

A.2 Supporting Lemmas and Proof for Lemma 2.4.1

A.2.1 Calculating the First and Second Log-Moments

In order to use the ideas from Section 1.3.2, we first need to show that the function log | · | ∈

𝐿2(N (0, 1)), e.g., that E𝑤∼N(0,1) [log2 |𝑤 |] = 𝛼 < ∞. Along the way, it will also be useful to

calculate and record E𝑤∼N(0,1) [log |𝑤 |] = 𝜏 < ∞. In order to directly calculate these quantities,

we use an idea from statistical physics called the replica trick ([29]). The idea is to note that

𝑑
𝑑a
E [𝑎a] = E [ 𝑑

𝑑a
𝑎a] = E [(log 𝑎)𝑎a]. In general, if one takes 𝑚 derivatives, the result will be

𝑑𝑚

𝑑a𝑚
E [𝑎a] = E [𝑎a log𝑚 (𝑎)]. Then, taking the limit as a → 0 yields
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Lemma A.2.1 (Replica trick). Let 𝑎 be a non-negative random variable. Then,

E𝑎 [log𝑚 𝑎] = lim
a→0

𝑑𝑚

𝑑a𝑚
E𝑎 [𝑎a] . (A.1)

We refer to the LHS expression in Eq. (A.1) as the 𝑚𝑡ℎ log-moment of 𝑎. Thus, as long as

we can get an analytic expression for E𝑎 [𝑎a] which is valid for a ∈ R+, we can take the contin-

uous limit and derive expressions for the first and second log-moments of 𝑎, where 𝑎 = |𝑤 |, 𝑤 ∼

N(0, 1). We also note that in the upcoming discussion, 𝛾 refers to the Euler-Mascheroni constant.

We will apply the replica trick to calculate the first two log-moments. We first need to collect

some lemmas from the literature.

Lemma A.2.2 (Moments of Absolute Gaussian Distribution). We have for a ∈ R+ with 𝑤 ∼

N(0, 1)

E𝑤 [|𝑤 |a] =
1
√
𝜋

2a/2Γ
(
a + 1

2

)
where Γ is the gamma function.

Proof. For derivation, see [105]. □

We will need some properties of the gamma function, several of which depend on the polygamma

function 𝜓. We take these facts from [106], [94], and [107].

Definition A.2.3 (Polygamma function). The polygamma function of order 0 is defined by

𝜓(𝑥) :=
𝑑

𝑑𝑥
log(Γ(𝑥)) = Γ′(𝑥)

Γ(𝑥) .

The polygamma function of order 𝑖 ≥ 1 is defined by

𝜓 (𝑖) (𝑥) :=
𝑑𝑖

𝑑𝑥𝑖
𝜓(𝑥).
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Lemma A.2.4 (Properties of the Gamma and Polygamma functions). The derivative of Γ(𝑥) is

given by

𝑑

𝑑𝑥
Γ(𝑥) = Γ(𝑥)𝜓(𝑥).

The Taylor series expansions for 𝜓 (𝑖) (1 + 𝑥) are

𝜓(𝑥 + 1) = −𝛾 +
∞∑︁
𝑗=1
(−1) 𝑗+1Z ( 𝑗 + 1)𝑥 𝑗

𝜓 (𝑖) (𝑥 + 1) =
∞∑︁
𝑗=0
(−1)𝑖+ 𝑗+1 (𝑖 + 𝑗)!

𝑗!
Z (𝑖 + 𝑗 + 1)𝑥 𝑗 for 𝑖 ≥ 1

(convergence is for |𝑥 | < 1). Above, 𝛾 is the Euler-Mascheroni constant and Z (𝑠) = ∑∞
𝑛=1

1
𝑛𝑠

is the

zeta function.

The first identity above follows from [94] and the antisymmetric formula for 𝛾 given in [107].

Now, we can use these facts to calculate the first two log-moments of |𝑤 |.

Lemma A.2.5 (First log-moment (𝜏)). Define

𝜏 := E𝑤 [log |𝑤 |] = −1
2

(
log(2) + 𝛾

)
≈ −0.635.

We also record that 𝜏2 ≈ 0.403.
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Proof. We apply the replica trick to get

E𝑤 [log |𝑤 |] = lim
a→0

𝑑

𝑑a

1
√
𝜋

2a/2Γ( a + 1
2
)

=
1
2

log(2) + 1
2
√
𝜋

lim
a→0

Γ′
(
1 + a

2

) √
2
a

=
1
2

log(2) + 1
2
√
𝜋

(
1 ·
√
𝜋 · lim

a→0
𝜓

(
1 + a

2

))
=

1
2

(
log(2) + 𝜓

(
1
2

))
where we used the derivative of Γ and the fact that the limit existed individually for each term in

the second product. Applying the Taylor expansion of 𝜓(𝑥 + 1) and plugging in 𝑥 = −1/2, we get

using properties of infinite geometric series that

𝜓(1/2) = −𝛾 +
∞∑︁
𝑗=1
(−1) 𝑗+1Z ( 𝑗 + 1) (−1/2) 𝑗

= − ©«𝛾 +
∞∑︁
𝑗=1

1
2 𝑗
Z ( 𝑗 + 1)ª®¬

= − ©«𝛾 +
∞∑︁
𝑗 ,𝑛=1

1
2 𝑗

1
𝑛 𝑗+1

ª®¬
= − ©«𝛾 +

∞∑︁
𝑛=1

1
𝑛

∞∑︁
𝑗=1

1
(2𝑛) 𝑗

ª®¬
= − ©«𝛾 +

∞∑︁
𝑛=1

1
𝑛

(
1/2𝑛

1 − 1/2𝑛

)ª®¬
= − ©«𝛾 +

∞∑︁
𝑛=1

1
𝑛(2𝑛 − 1)

ª®¬
Then, consider the Taylor series for log(𝑥) centered at 𝑥 = 1, which has radius of convergence
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|𝑥 − 1| ≤ 1. We have, plugging in 𝑥 = 2,

log(𝑥) =
∞∑︁
𝑛=1
(−1)𝑛+1 (𝑥 − 1)𝑛

𝑛

log(2) =
∞∑︁
𝑛=1
(−1)𝑛+1 1

𝑛

= (1 − 1
2
) + (1

3
− 1

4
) + (1

5
− 1

6
) + . . .

=
1
2

∞∑︁
𝑛=1

1
𝑛(2𝑛 − 1) .

Thus, we conclude that 𝜓(1/2) = −(𝛾 + 2 log(2)), and overall that

𝜏 =
1
2

(
log(2) − 𝛾 − 2 log(2)

)
= −1

2
(
log(2) + 𝛾

)
.

□

Lemma A.2.6 (Second log-moment (𝛼)).

𝛼 := E𝑤 [log2 |𝑤 |] = 1
4

(
𝛾2 + 𝜋

2

2
+ log2(2) + 𝛾 log(4)

)
≈ 1.637.

We also record that 𝛼 − 𝜏2 ≈ 1.234.

Proof. We calculate the second derivative with respect to a and evaluate it at a = 0, using the

product rule and the derivatives of Γ and 𝜓:

E𝑤 [log2 |𝑤 |] = 𝑑2

𝑑a2E𝑤 [|𝑤 |
a] |a=0

=
1

2
√
𝜋

[
log(2)

(
log(
√

2)𝑒a log(
√

2)Γ

(
1 + a

2

)
+ 1

2
𝑒a log(

√
2)Γ

(
1 + a

2

)
𝜓

(
1 + a

2

))
+ 𝜓

(
1 + a

2

)
𝑑

𝑑a

(
√

2
a
Γ

(
1 + a

2

))
+ 1

2
√

2
a
Γ

(
1 + a

2

)
𝜓 (1)

(
1 + a

2

) ] ���
a=0

=
1
4

[ (
log2(2) − 2 log(2) (𝛾 + log(4)) + (𝛾 + log(4))2

)
+

[
𝜓 (1)

(
1 + a

2

)] �����
a=0

]
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where we used the results from Lemma A.2.1 to simplify, keeping in mind that we will shortly

show that 𝜓 (1) (1/2) exists. We use the Taylor series for 𝜓 (1) (𝑥 + 1) which converges for |𝑥 | < 1

and plug in 𝑥 = −1/2:

𝜓 (1) (𝑥 + 1) =
∞∑︁
𝑗=0
(−1) 𝑗+2 ( 𝑗 + 1)!

𝑗!
Z ( 𝑗 + 2)𝑥 𝑗

𝜓 (1) (1/2) =
∞∑︁
𝑗=0

𝑗 + 1
2 𝑗

∞∑︁
𝑛=1

1
𝑛 𝑗+2

= 2
∞∑︁
𝑛=1

1
𝑛

∞∑︁
𝑗=1

𝑗

(
1
2𝑛

) 𝑗
= 4

∞∑︁
𝑛=1

1
(2𝑛 − 1)2

= 4 ©«
∞∑︁
𝑛=1

1
𝑛2 −

∞∑︁
𝑛=1

1
(2𝑛)2

ª®¬ = 4

(
𝜋2

6
− 𝜋

2

24

)
=
𝜋2

2

recalling that
∑∞
𝑗=1 𝑗𝑐

𝑗 = 𝑐
1−𝑐 +

𝑐2

1−𝑐 + . . . =
𝑐

(1−𝑐)2 and the fact that
∑∞
𝑛=1

1
𝑛2 = 𝜋2

6 . Plugging this

value in to our previous formula, we conclude

𝛼 =
1
4

[
log2(2) − 2 log(2) (𝛾 + log(4)) + (𝛾 + log(4))2 + 𝜋

2

2

]
=

1
4

[
log2(2) + 𝜋

2

2
− 2𝛾 log(2) − log2(4) + 𝛾2 + 2𝛾 log(4) + log2(4)

]
=

1
4

[
𝛾2 + log2(2) + 𝜋

2

2
+ 𝛾 log(4)

]
.

□

The next lemma will be useful in the next section of the appendix, and uses similar ideas.

Lemma A.2.7.

E𝑤 [𝑤2 log( |𝑤 |)] = 1 + 𝜏.

96



Proof. We have by integration by parts and the fact that 𝜑′(𝑤) = −𝑤𝜑(𝑤)

∫
𝑤2 log( |𝑤 |)𝜑(𝑤)𝑑𝑤

�����
R

=

∫
𝑤 log( |𝑤 |)𝑤𝜑(𝑤)𝑑𝑤

�����
R

= −
∫

𝑤 log( |𝑤 |) 𝑑
𝑑𝑤

𝜑(𝑤)𝑑𝑤
�����
R

= −
(
𝑤 log( |𝑤 |)𝜑(𝑤) −

∫
(1 + log( |𝑤 |))𝜑(𝑤)𝑑𝑤

) �����
R

= 0 + 1 +
∫

log( |𝑤 |)𝜑(𝑤)𝑑𝑤
�����
R

= 1 + 𝜏

since lim𝑤→±∞ 𝑤 log( |𝑤 |)𝜑(𝑤) = 0. □

A.2.2 Coefficients of the Hermite Expansion of log( | · |)

Lemma A.2.8 (Coefficients of the Hermite Expansion for log( | · |)). The Hermite expansion of

log
(
| · |

)
log(𝑎) =

∞∑︁
ℓ=0

𝑐ℓ𝐻ℓ (𝑎)

has 𝑐0 = 𝜏, and for ℓ ≥ 1,

𝑐2ℓ−1 = 0, 𝑐2ℓ =
(−1)ℓ−12ℓ−1(ℓ − 1)!√︁

(2ℓ)!
.

Moreover,

lim
ℓ→∞

𝑐2
2ℓ · ℓ

3/2 =

√
𝜋

4
,

and for ℓ ≥ 2,

𝑐2
2ℓ ≥

1
5
· 1
ℓ3/2 .
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Proof. Our goal is to calculate E𝑤 [𝐻ℓ (𝑤) log( |𝑤 |)]. Recall that 𝜑(𝑤) is the standard Gaussian

density. We proceed by making use of several properties of Hermite polynomials from Section

1.3.2 and applying integration by parts. First define the indefinite integral and apply the property

𝐻′
𝑖+1(𝑤) =

√
𝑖 + 1𝐻𝑖 (𝑤):

𝐴𝑖 =

∫
log( |𝑤 |)𝐻𝑖 (𝑤)𝜑(𝑤)𝑑𝑤

=
1
√
𝑖 + 1

∫
𝐻′𝑖+1(𝑤) log( |𝑤 |)𝜑(𝑤)𝑑𝑤

=
1
√
𝑖 + 1

(
𝐻𝑖+1(𝑤) log( |𝑤 |)𝜑(𝑤) −

∫
𝐻𝑖+1(𝑤)

(
1
𝑤
− 𝑤 log( |𝑤 |)

)
𝜑(𝑤)𝑑𝑤

)

where we used the fact 𝑑
𝑑𝑤

log( |𝑤 |)𝜑(𝑤) =
(

1
𝑤
− 𝑤 log( |𝑤 |)

)
𝜑(𝑤). Let𝑉𝑖 (𝑤) = 𝐻𝑖 (𝑤) log( |𝑤 |)𝜑(𝑤).

Then, applying the relation 𝑤𝐻𝑖 (𝑤) = 𝐻′𝑖 (𝑤) +
√
𝑖 + 1𝐻𝑖+1(𝑤), we get

𝐴𝑖 =
1
√
𝑖 + 1

(
𝑉𝑖+1(𝑤) +

∫ (
𝐻′𝑖+1(𝑤) +

√
𝑖 + 2𝐻𝑖+2(𝑤)

)
log( |𝑤 |)𝜑(𝑤)𝑑𝑤

−
∫

1
√
𝑖 + 1

𝑤𝐻𝑖 (𝑤) − 𝐻′𝑖 (𝑤)
𝑤

𝜑(𝑤)𝑑𝑤
)

=
1
√
𝑖 + 1

(
𝑉𝑖+1(𝑤) +

√
𝑖 + 2𝐴𝑖+2 +

√
𝑖 + 1𝐴𝑖 −

1
√
𝑖 + 1

∫ (
𝐻𝑖 (𝑤) −

1
𝑤
𝐻′𝑖 (𝑤)

)
𝜑(𝑤)𝑑𝑤

)
.

Assuming that 𝑖 > 0, orthogonality implies
∫
R
𝐻𝑖 (𝑤)𝜑(𝑤)𝑑𝑤 = 0, and we cancel it out now (since

eventually we will evaluate everything over R). We simplify the equation to

𝑉𝑖+1(𝑤) +
√
𝑖 + 2𝐴𝑖+2 +

√︂
𝑖

𝑖 + 1

∫
1
𝑤
𝐻𝑖−1(𝑤)𝜑(𝑤)𝑑𝑤 = 0.

Then we calculate 𝑑
𝑑𝑤
𝐻𝑖−1(𝑤)𝜑(𝑤) = 𝜑(𝑤)

(√
𝑖 − 1𝐻𝑖−2(𝑤) − 𝑤𝐻𝑖−1(𝑤)

)
and apply integration
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by parts to the last integral to get

∫
1
𝑤
𝐻𝑖−1(𝑤)𝜑(𝑤)𝑑𝑤

= 𝑉𝑖 (𝑤) −
∫ (√

𝑖 − 1 log( |𝑤 |)𝐻𝑖−2(𝑤) − log( |𝑤 |)
(
𝑤𝐻𝑖−1(𝑤)

) )
𝜑(𝑤)𝑑𝑤

= 𝑉𝑖 (𝑤) −
√
𝑖 − 1𝐴𝑖−2 +

∫
log( |𝑤 |)

(
𝐻′𝑖−1(𝑤) +

√
𝑖𝐻𝑖 (𝑤)

)
𝜑(𝑤)𝑑𝑤

= 𝑉𝑖 (𝑤) −
√
𝑖 − 1𝐴𝑖−2 +

√
𝑖 − 1𝐴𝑖−2 +

√
𝑖𝐴𝑖

= 𝑉𝑖 (𝑤) +
√
𝑖𝐴𝑖 .

Plugging this equality back in and then evaluating the integrals on R yields[
𝑉𝑖+1(𝑤) +

√︂
𝑖

𝑖 + 1
𝑉𝑖 (𝑤)

] �����
R

+
√
𝑖 + 2𝐴𝑖+2

�����
R

+ 𝑖
√
𝑖 + 1

𝐴𝑖

�����
R

= 0,

√
𝑖 + 2𝑐𝑖+2 = − 𝑖

√
𝑖 + 1

𝑐𝑖,

−𝑖√︁
(𝑖 + 1) (𝑖 + 2)

𝑐𝑖 = 𝑐𝑖+2 (A.2)

since lim𝑤→±∞𝑉𝑖 (𝑤) = 0 for any 𝑖, as 𝜑(𝑤) decays much faster than log( |𝑤 |) · poly(𝑤) grows.

Note that this recurrence is only valid for 𝑖 > 0, since we used that in the analysis. Now, recall that

by definition, 𝑐0 = 𝜏 since 𝐻0(𝑤) = 1. Furthermore, since 𝐻1(𝑤) = 𝑤, 𝑐1 = E𝑤 [𝑤 log( |𝑤 |)] = 0

since 𝑤 log( |𝑤 |) is an odd function and the Gaussian distribution is symmetric. Then, we can

calculate 𝐻2(𝑤) = 1√
2
(𝑥2 − 1) and thus that

𝑐2 =
1
√

2

(
E𝑤 [𝑤2 log( |𝑤 |)] − E𝑤 [log( |𝑤 |)]

)
=

1
√

2
(1 + 𝜏 − 𝜏) = 1

√
2

using Lemma A.2.7. The rest of the coefficients are defined recursively by Eq. (A.2). In particular,

we can find a closed form. First, note that since 𝑐1 = 0, 𝑐2𝑛−1 = 0 for all strictly positive integers
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𝑛. Iterating Eq. (A.2) gives

𝑐2𝑛 =
(−1)𝑛−12𝑛−1(𝑛 − 1)!√︁

(2𝑛)!
.

Now, we can apply the well-known Stirling’s approximation
(
𝑛! ≍
√

2𝜋𝑛
(
𝑛/𝑒

)𝑛) to get the asymp-

totic behavior of this quantity. We have

𝑐2𝑛 ≍ (−1)𝑛−12𝑛−1

√︄√
𝜋(𝑛 − 1)
√
𝑛

𝑒

𝑛 − 1

(
𝑛 − 1
𝑛

)𝑛
2−𝑛

= (−1)𝑛−1 𝜋
1/4

2

(
(𝑛 − 1)

√
𝑛

)−1/2
𝑒

(
1 − 1

𝑛

)𝑛
≍ (−1)𝑛−1 𝜋

1/4

2
𝑛−3/4

after noting that lim𝑛→∞
(
1 − 1

𝑛

)𝑛
= 𝑒−1. Therefore, the behavior of 𝑐2

2𝑛 is given by

𝑐2
2𝑛 ≍

√
𝜋

4
· 1
𝑛3/2 .

We note that this asymptotic behavior is quite tight, even up to constants, for sufficiently large 𝑛.

We can also prove a fairly tight lower bound using [108], which gives the bound

√
2𝜋𝑛𝑛𝑛𝑒−𝑛𝑒1/(12𝑛+1) ≤ 𝑛! ≤

√
2𝜋𝑛𝑛𝑛𝑒−𝑛𝑒1/12𝑛

Plugging in the upper bound for (𝑛 + 1)! and the lower bound for (2𝑛)!, we get that

2𝑛−1 (𝑛 − 1)!√︁
(2𝑛)!

≥ 𝑒𝜋
1/4

2

√︄
1
𝑛
√
𝑛

(
𝑛 − 1
𝑛

)𝑛
𝑒

36𝑛+11
48𝑛(12𝑛−11)

≥ 𝑒𝜋
1/4

8
· 1 · 𝑛−3/4
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for 𝑛 ≥ 2. Thus, for 𝑛 ≥ 2,

𝑐2
2𝑛 ≥

𝑒2√𝜋
64

𝑛−3/2 >
1
5
𝑛−3/2.

□

Lemma A.2.9 (Integrals of the Hermite Coefficients). Suppose |𝑏 | < 1 and 𝑎 > 0. Then

∫ ∞

𝑎

ℓ−3/2𝑑ℓ =
2
√
𝑎

and

∫ ∞

𝑎

ℓ−3/2 |𝑏 |2ℓ𝑑ℓ = 2|𝑏 |2𝑎
√
𝑎
+ 2

√︃
2𝜋 log |𝑏 |−1

(
−1 + Erf

(√︃
𝑎 log |𝑏 |−2

))
where

Erf(𝑥) = 2
√
𝜋

∫ 𝑥

0
𝑒−𝑡

2
𝑑𝑡.

We also have the following upper bound:

∫ ∞

𝑎

ℓ−3/2 |𝑏 |2ℓ𝑑ℓ ≤ 2|𝑏 |2𝑎
√
𝑎
− 4

√︃
2 log |𝑏 |−1 𝑒2𝑎 log |𝑏 |√︁

log |𝑏 |−2𝑎 +
√︁

2 + log |𝑏 |−2𝑎
.

Proof. The first equality is by direct integration. Now we tackle the second equality. We apply
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integration by parts to get

∫
ℓ−3/2 |𝑏 |2ℓ𝑑ℓ = |𝑏 |2ℓ (−2ℓ−1/2) +

∫
2ℓ−1/2 · (2 log( |𝑏 |)) |𝑏 |2ℓ𝑑ℓ

= |𝑏 |2ℓ (−2ℓ−1/2) + 4 log( |𝑏 |)
∫
|𝑏 |2𝑢2

2𝑑𝑢

= |𝑏 |2ℓ (−2ℓ−1/2) + 8 log( |𝑏 |)
∫

𝑒
−𝑢2/

(
1
2

1
log( |𝑏 |−1)

)
𝑑𝑢

= |𝑏 |2ℓ (−2ℓ−1/2) + −8 log( |𝑏 |−1)√︁
2 log( |𝑏 |−1)

√
𝜋

2
2
√
𝜋

∫
𝑒−𝑣

2
𝑑𝑣

= −2

(
|𝑏 |2ℓ (ℓ−1/2) +

√︃
2𝜋 log( |𝑏 |−1)Erf

(√︃
2ℓ log( |𝑏 |−1)

))
.

Then since Erf(∞) = 1, we simply evaluate the integral and note that the Erf term (depending on

𝑎) is positive:

∫ ∞

𝑎

ℓ−3/2 |𝑏 |2ℓ𝑑ℓ = −2
√︃

2𝜋 log( |𝑏 |−1) + 2

(
|𝑏 |2𝑎𝑎−1/2 +

√︃
2𝜋 log( |𝑏 |−1)Erf

(√︃
2𝑎 log( |𝑏 |−1)

))
.

Section 7.1.13 of [94] gives

1
𝑥 +
√
𝑥2 + 2

< 𝑒𝑥
2
∫ ∞

𝑥

𝑒−𝑡
2
𝑑𝑡 ≤ 1

𝑥 +
√︃
𝑥2 + 4

𝜋

,

1 − 2
√
𝜋

𝑒−𝑥
2

𝑥 +
√︃
𝑥2 + 4

𝜋

≤ Erf(𝑥) < 1 − 2
√
𝜋

𝑒−𝑥
2

𝑥 +
√
𝑥2 + 2

.

We can apply the upper bound on Erf to in order to get the final upper bound on the integral. □

A.3 Supporting Lemmas and Proofs for Theorem 2.4.2

A.3.1 Matrix Inequalities and Hadamard Powers of Matrices

In this section, we record some useful definitions and theorems about matrices and their Hadamard

powers.
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Theorem A.3.1 (Gershgorin Circle Theorem). For matrix 𝐴 ∈ R𝑝×𝑝, every eigenvalue _(𝐴) satis-

fies

_(𝐴) ≥ 𝐴𝑖𝑖 −
∑︁
𝑖≠ 𝑗

|𝐴𝑖 𝑗 |.

In particular,

_min(𝐴) ≥ min
𝑖
|𝐴𝑖𝑖 | − (𝑝 − 1)max

𝑖≠ 𝑗
|𝐴𝑖 𝑗 |.

Proof. See [109]. □

Definition A.3.2 (Hadamard Product and Power). The Hadamard product of matrices 𝐴, 𝐵 is given

by

[𝐴 ◦ 𝐵]𝑖, 𝑗 = 𝐴𝑖, 𝑗𝐵𝑖, 𝑗 .

The 𝑚𝑡ℎ Hadamard power of 𝐴 is given by

𝐴(𝑚) = 𝐴 ◦ 𝐴 ◦ . . . ◦ 𝐴︸             ︷︷             ︸
𝑚 times

.

Theorem A.3.3 (Schur Product Theorem (weak version)). Suppose 𝐴, 𝐵 are both symmetric PSD

square matrices. Then 𝐴 ◦ 𝐵 is also PSD.

Proof. Write eigendecompositions of 𝐴 =
∑
𝑖 `𝑖𝑎𝑖𝑎

𝑇
𝑖

and 𝐵 =
∑
𝑖 a𝑖𝑏𝑖𝑏

𝑇
𝑖

. Then

𝐴 ◦ 𝐵 =
∑︁
𝑖, 𝑗

`𝑖a 𝑗

(
𝑎𝑖𝑎

𝑇
𝑖

)
◦

(
𝑏 𝑗𝑏

𝑇
𝑗

)
=

∑︁
𝑖, 𝑗

`𝑖a 𝑗
(
𝑎𝑖 ◦ 𝑏 𝑗

) (
𝑎𝑖 ◦ 𝑏 𝑗

)𝑇 (A.3)

Then we have that `𝑖, a𝑖 ≥ 0 and
(
𝑎𝑖 ◦ 𝑏 𝑗

) (
𝑎𝑖 ◦ 𝑏 𝑗

)𝑇 is PSD. Thus 𝐴 ◦ 𝐵 is PSD. □
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Theorem A.3.4 (Eigenvalues of Hadamard Powers). Suppose 𝐴, 𝐵 ∈ R𝑝×𝑝 both PSD. Let 𝑏 denote

𝐵’s diagonal. Then

𝑝∏
𝑖= 𝑗

_𝑖 (𝐴 ◦ 𝐵) ≥
𝑝∏
𝑖= 𝑗

_𝑖 (𝐴)𝑏𝑖 (A.4)

for all 𝑗 ∈ [𝑝], where _𝑖 is the 𝑖𝑡ℎ smallest eigenvalue.

Proof. See Theorem 3 from [30]. □

A.3.2 Proof of Theorem 2.4.2

Lower Bounding the Population Minimal Eigenvalue

As a warm-up, we first prove prove a lower bound on _min(Σ).

Theorem A.3.5 (Minimum Eigenvalue of Population Correlation Matrix). The following lower

bounds on _min(Σ) hold:

1. _min (Σ) ≥
𝜋2

8
_min(Φ).

2. _min (Σ) ≥

1
2

⌊
log(𝑝−1)
log( 1

1−𝜖 )

⌋
∑︁
ℓ=1

_min

(
Φ(2ℓ)

)
5ℓ3/2 + 2

5

√√√ 2 log((1 − 𝜖)−1)

log
(
𝑝−1
1−𝜖

)
+max{2, log((1 − 𝜖)−1)}

.

Note that the first lower bound is positive whenever Φ is full-rank, and the second bound is always

strictly positive, even if Φ is low-rank.

Remark A.3.6 (Intuition for Theorem 2.4.2). In the case that Φ is not low-rank, we automatically

have a constant multiplicative factor improvement on the minimum eigenvalue when applying the

log transformation. However, the true magic happens in the second bound – even if _min(Φ) = 0,

we can still achieve a positive lower bound on _min

(
E𝑧 [𝑧𝑧𝑇 ]

)
. The intuitive reason this phe-

nomenon occurs is because the Hadamard power destroys the potential co-linear structure in Φ –

this is precisely how the nonlinearity of the logarithm comes into play.
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Proof. For ease of notation, through out this proof, we define |𝜌max | = 1 − 𝜖 . We recall that

Σ = E [𝑧𝑧𝑇 ] where 𝑧 = log |𝑥 |, 𝑥 ∼ N(0,Φ). By Lemma 1.3.4, we have

Σ𝑖, 𝑗 =

∞∑︁
ℓ=0

𝑐2
ℓΦ

ℓ
𝑖, 𝑗

where 𝑐ℓ = E𝑤 [𝐻ℓ (𝑤) log( |𝑤 |)]. This means,

Σ =

∞∑︁
ℓ=0

𝑐2
ℓΦ
(ℓ) .

Continuing with the proof, we have

_min

(
E𝑧 [𝑧𝑧𝑇 ]

)
= min
∥𝑣∥2=1

𝑝∑︁
𝑖, 𝑗=1

𝑣𝑖𝑣 𝑗

∞∑︁
ℓ=0

𝑐2
ℓΦ

ℓ
𝑖, 𝑗

= min
∥𝑣∥2=1

∞∑︁
ℓ=0

𝑐2
ℓ

𝑝∑︁
𝑖, 𝑗=1

𝑣𝑖𝑣 𝑗Φ
ℓ
𝑖 𝑗

≥
∞∑︁
ℓ=0

𝑐2
ℓ

©« min
∥𝑣∥2=1

𝑝∑︁
𝑖, 𝑗=1

𝑣𝑖𝑣 𝑗Φ
ℓ
𝑖, 𝑗

ª®¬ (A.5)

=

∞∑︁
ℓ=0

𝑐2
ℓ_min

(
Φ(ℓ)

)
= 𝑐2

0

0︷        ︸︸        ︷
_min

(
1𝑝×𝑝

)
+
∞∑︁
ℓ=1

𝑐2
ℓ_min

(
Φ(ℓ)

)
=

∞∑︁
ℓ=1

𝑐2
ℓ_min

(
Φ(ℓ)

)
where Φ(ℓ) denotes the ℓ𝑡ℎ element-wise (Hadamard) power of Φ (see Definition A.3.2). Then,

using Theorem A.3.4, we have that _min(𝐴 ◦ 𝐵) ≥ _min(𝐴) · 𝐵𝑝,𝑝, where ◦ denotes Hadamard

product. Therefore, since the diagonal entries are all 1 and 1ℓ = 1, we have for all ℓ ≥ 1 that

_min

(
Φ(ℓ)

)
≥ _min (Φ) · 1
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and we immediately get the bound

_min

(
E𝑧 [𝑧𝑧𝑇 ]

)
≥
∞∑︁
ℓ=1

𝑐2
ℓ_min (Φ) = _min(Φ)

∞∑︁
ℓ=1

𝑐2
ℓ =

(
𝛼 − 𝜏2

)
_min(Φ) =

𝜋2

8
_min(Φ).

However, this bound can be greatly improved by judiciously applying the well-known Gershgorin

circle theorem (Theorem A.3.1). In order to apply this bound, we need to ensure that the Gersh-

gorin bound will be strictly positive. Therefore, we truncate the summation carefully. Define

ℓthreshold = 1 +
⌈

log(𝑝 − 1)
log(1/|𝜌max |)

⌉
.

Note that for ℓ ≥ ℓthreshold, we have

(𝑝 − 1) |𝜌max |ℓ ≤ (𝑝 − 1) |𝜌max |
1+

⌈
log(𝑝−1)

log(1/ |𝜌max |)

⌉
≤ |𝜌max | (𝑝 − 1)

𝑝 − 1
< 1

Applying Gershgorin to the truncated tail of the sum, we bound

_min

(
E𝑧 [𝑧𝑧𝑇 ]

)
≥
∞∑︁
ℓ=1

𝑐2
ℓ_min

(
Φ(ℓ)

)
=

ℓthreshold−1∑︁
ℓ=1

𝑐2
ℓ_min

(
Φ(ℓ)

)
+

∞∑︁
ℓ=ℓthreshold

𝑐2
ℓ

(
1 − (𝑝 − 1) |𝜌max |ℓ

)
.

We know from Theorem A.3.3 that taking the Hadamard power of a PSD matrix yields a PSD

matrix, thus the first summation term is non-negative.

We can further control this bound by plugging in estimates for 𝑐2
ℓ

from Lemma A.2.8: Recall

that we have 𝑐2
2ℓ ≥

1
5

1
ℓ3/2 and 𝑐2

2ℓ−1 = 0. Then, supposing ℓthreshold is even for simplicity, we can
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re-write our bound as

_min

(
E𝑧 [𝑧𝑧𝑇 ]

)
≥
(ℓthreshold−2)/2∑︁

ℓ=1
𝑐2

2ℓ_min

(
Φ(2ℓ)

)
+ 1

5

∞∑︁
ℓ=ℓthreshold/2

ℓ−3/2
(
1 − (𝑝 − 1) |𝜌max |2ℓ

)
=

(ℓthreshold−2)/2∑︁
ℓ=1

_min

(
Φ(2ℓ)

)
5ℓ3/2 + 1

5
©«

∞∑︁
ℓ=ℓthreshold/2

ℓ−3/2 − (𝑝 − 1)
∞∑︁

ℓ=ℓthreshold/2
ℓ−3/2 |𝜌max |2ℓ

ª®¬ .
We now focus on lower bounding the second term further, letting

𝐿 =

(ℓthreshold−2)/2∑︁
ℓ=1

_min

(
Φ(2ℓ)

)
5ℓ3/2 .

Recall that for a non-negative function 𝑓 , we can upper and lower bound its summation as follows:

∫ ∞

𝑎

𝑓 (ℓ)𝑑ℓ ≤
∞∑︁
ℓ=𝑎

𝑓 (ℓ) ≤ 𝑓 (ℓ) +
∞∑︁

ℓ=𝑎+1
𝑓 (ℓ) ≤ 𝑓 (ℓ) +

∫ ∞

𝑎

𝑓 (ℓ)𝑑ℓ.

Then, applying Lemma A.2.9, and plugging in the integral bounds, we get

_min

(
E𝑧 [𝑧𝑧𝑇 ]

)
≥ 𝐿 + 1

5

(
2 − 2(𝑝 − 1) |𝜌max |ℓthreshold√︁

ℓthreshold/2
+

4(𝑝 − 1)
√︁

2 log( |𝜌max |−1)𝑒−ℓthreshold log( |𝜌max |−1)√︁
ℓthreshold log( |𝜌max |−1) +

√︁
2 + ℓthreshold log( |𝜌max |−1)

)
= 𝐿 + 2

5

(
1√︁

ℓthreshold/2
(1 − |𝜌max |) +

2(𝑝 − 1) |𝜌max |ℓthreshold
√︁

2 log( |𝜌max |−1)√︁
log( |𝜌max |−ℓthreshold) +

√︁
2 + log( |𝜌max |−ℓthreshold)

)

> 𝐿 + 2
5

©«(1 − |𝜌max |)
√√√ 2

1 +
⌈

log(𝑝−1)
log(1/|𝜌max |)

⌉ + |𝜌max |
√√√2 log( |𝜌max |−1)

log
(
𝑝−1
|𝜌max |

)
+ 2

ª®®®¬
> 𝐿 + 2

5
©«(1 − |𝜌max |)

√√√ 2 log( |𝜌max |−1)

log
(
𝑝−1
|𝜌max |

)
+ log( |𝜌max |−1)

+ |𝜌max |
√√√2 log( |𝜌max |−1)

log
(
𝑝−1
|𝜌max |

)
+ 2

ª®®¬
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where we upper bounded ⌈𝑥⌉ ≤ 𝑥 + 1. Then, we can simplify the expression to

_min

(
E𝑧 [𝑧𝑧𝑇 ]

)
> 𝐿 + 2

5

√√√ 2 log( |𝜌max |−1)

log
(
𝑝−1
|𝜌max |

)
+max(2, log( |𝜌max |−1))

where if |𝜌max | ≥ 𝑒−2, we have that log( |𝜌max |−1) ≤ 2, which is the desired result. □

Bounds that use Sparsity

In this section, we demonstrate bounds on the minimum eigenvalue which are independent of

dimension 𝑝: instead, the sparsity 𝑘 plays a role.

In order to fully take advantage of the sparsity assumption, we prove a restricted analogue to

the Gershgorin circle theorem ([109]) we used previously.

Lemma A.3.7 (Restricted Gershgorin Circle Theorem). Let 𝐴 ∈ R𝑝×𝑝 be a symmetric matrix. Let

𝛼 ≥ 1 and 𝑇 ⊂ [𝑝]. Then,

_̃(𝛼,𝑇, 𝐴1/2) ≥ min
𝑖
𝐴𝑖𝑖 − |𝑇 | · (1 + 𝛼)2 ·max

𝑖≠ 𝑗
|𝐴𝑖 𝑗 |.

Proof. Given in Appendix A.5. □

We can use these results directly to replace dimension 𝑝 with sparsity 𝑘 in the statements in

Theorem 2.4.2. The proof is by direct application of Lemma A.3.7.

Corollary A.3.8. The following lower bound holds:

_̃

(
𝑘, Σ1/2

)
≥

1
2

⌊
log(16𝑘))
log( 1

1−𝜖 )

⌋
∑︁
ℓ=1

_̃

(
𝑘, [Φ(2ℓ)]1/2

)
5ℓ3/2 + 2

5

√√√ 2 log((1 − 𝜖)−1)

log
(

16𝑘
1−𝜖

)
+max{2, log((1 − 𝜖)−1)}

(A.6)

This improvement is quite notable in that it completely removes dependence on dimension

𝑝. Potentially, the bound could be a lot better as typically 𝑘 ≪ 𝑝 in high-dimensional settings.
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This improvement is also valuable because it now shifts dependence on _min(Φ) to dependence on

_̃(𝑘,Φ1/2), which is potentially much larger and positive even in the case where _min(Φ) = 0.

A.4 Proof of Lemma 2.4.5 and Theorem 2.3.2.

A.4.1 Bounding the Empirical Restricted Eigenvalue

We denote the sample and population covariance matrices of the log-transformed covariates by

Σ and Σ̂:

Σ := E𝑧 [𝑧𝑧𝑇 ]

Σ̂ :=
1
𝑛

𝑛∑︁
𝑖=1

𝑧(𝑖)𝑧(𝑖)
𝑇
.

Theorem 2.4.2 gives us a bound on _̃(𝑘, Σ1/2). In this section we apply the results of [31] to convert

this into a bound on _̃(𝑘, Σ̂1/2) by analyzing |_̃(𝑘, Σ1/2)−_̃(𝑘, Σ̂1/2) |. The following lemma shows

that it is sufficient to analyze ∥Σ − Σ̂∥∞.

Lemma A.4.1. We have,

|_̃(𝑘, Σ1/2) − _̃(𝑘, Σ̂1/2) | ≤ 16𝑘 ∥Σ − Σ̂∥∞.

Where, ∥ · ∥∞ denotes the entry-wise∞−norm.

Proof. We note that,

|_̃(𝑘, Σ1/2) − _̃(𝑘, Σ̂1/2) | ≤ max
𝑣:∥𝑣∥2=1,∥𝑣𝑐

𝑆
∥1≤3∥𝑣𝑆 ∥1

𝑣𝑇 (Σ − Σ̂)𝑣.
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Furthermore for any 𝑣 which satisfies ∥𝑣∥2 = 1, ∥𝑣𝑆𝑐 ∥1 ≤ 3∥𝑣𝑆∥1, we have,

𝑣𝑇 (Σ − Σ̂)𝑣
(1)
≤ ∥𝑣∥1∥(Σ − Σ̂)𝑣∥∞

= ∥𝑣∥1 max
𝑖
|⟨Σ𝑖,· − Σ̂𝑖,·, 𝑣⟩|

(2)
≤ ∥𝑣∥21∥Σ − Σ̂∥∞.

In the above display, the inequalities marked (1) and (2) both follow from Holder’s Inequality.

Furthermore,

∥𝑣∥1 = ∥𝑣𝑆∥1 + ∥𝑣𝑆𝑐 ∥1
(3)
≤ (1 + 3)∥𝑣𝑆∥1

≤ 4
√
𝑘 ∥𝑣𝑆∥2

(4)
≤ 4
√
𝑘.

In the above display, the inequality marked (3) follows from ∥𝑣𝑆𝑐 ∥1 ≤ 3∥𝑣𝑆∥1, the inequality

marked (4) follows from ∥𝑣𝑆∥2 ≤ ∥𝑣∥2 ≤ 1. Consequently, we have,

|_̃(𝑘, Σ1/2) − _̃(𝑘, Σ̂1/2) | ≤ 16𝑘 ∥Σ − Σ̂∥∞.

□

To analyze ∥Σ − Σ̂∥∞ we appeal to the concentration results from [31]. To do so we need to

verify two conditions on our covariates:

1. The log-transformed covariates 𝑧𝑖 are entry-wise (marginally) subexponential. This is done in

Lemma A.4.2.
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2. An upper bound on the quantity Γ defined as:

Γ2 := max
𝑗 ,𝑘∈[𝑝]

1
𝑛

𝑛∑︁
𝑖=1

var
(
𝑧
(𝑖)
𝑗
𝑧
(𝑖)
𝑘

)
.

This is done in Lemma A.4.3.

Lemma A.4.2. Let 𝑤 ∼ N(0, 1). Then, 𝑧 = log( |𝑤 |) is 1-subexponential.

Proof. It is sufficient to show that, ∀𝑡 > 0,

P
[
| log( |𝑤 |) | > 𝑡

]
≤ 2 exp(−𝑡).

To show this, we bound the upper tail and the lower tail separately. First let us consider the upper

tail,

P[log( |𝑤 |) > 𝑡] = P[|𝑤 | > 𝑒𝑡]

= 2P[𝑤 > 𝑒𝑡]

(1)
≤

√︂
2
𝜋

𝑒−𝑒
2𝑡/2

𝑒𝑡

≤
√︂

2
𝜋
𝑒−𝑡 .

In the inequality marked (1) we used the standard estimate for Gaussian tails: P[𝑤 > 𝛿] ≤√︃
2
𝜋

exp(−𝛿2/2)
𝛿

. To bound the lower tail, we use standard estimates on Gaussian anti-concentration,

P[log( |𝑤 |) < −𝑡] = P[|𝑤 | < 𝑒−𝑡]

=
1
√

2𝜋

∫ 𝑒−𝑡

−𝑒−𝑡
exp(−𝑎2/2)𝑑𝑎

≤
√︂

2
𝜋
𝑒−𝑡 .
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Combining the estimates of the lower and upper tail, we get,

P
[
| log( |𝑤 |) | > 𝑡

]
≤ 2

√︂
2
𝜋

exp(−𝑡) < 2 exp(−𝑡)

as desired. □

Lemma A.4.3. We have the following upper bound on Γ:

Γ2 ≤ 48.

Proof. Since 𝑧𝑖 are identically distributed,

Γ2 = max
𝑗 ,𝑘∈[𝑝]

var
(
𝑧 𝑗 𝑧𝑘

)
.

We have,

var(𝑧 𝑗 𝑧𝑘 ) ≤ E [(𝑧 𝑗 𝑧𝑘 )2]
(1)
≤

√︃
E [𝑧4

𝑖
]E [𝑧4

𝑗
]

(2)
= E [𝑧4𝑖 ] .

In the above display we used the Cauchy-Schwarz Inequality to obtain the inequality marked (1)

and the fact that 𝑧𝑖 and 𝑧 𝑗 have the same marginal distribution in the equality marked (2). To bound
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E [𝑧4
𝑖
] we use the concentration result proved in Lemma A.4.2.

E [𝑧4𝑖 ] =
∫ ∞

0
P(𝑧4𝑖 > 𝑡) 𝑑𝑡

=

∫ ∞

0
P( |𝑧𝑖 | > 𝑡1/4) 𝑑𝑡

(3)
≤

∫ ∞

0
2 exp(−𝑡1/4) 𝑑𝑡

= 48.

In the above display, we used Lemma A.4.2 for the inequality marked (3). □

We can now apply Theorem 4.1 of [31] to control ∥Σ − Σ̂∥∞ and hence control |_̃(𝑘, Σ1/2) −

_̃(𝑘, Σ̂1/2) |.

Lemma A.4.4. Let 𝛿 ∈ (0, 1) be an arbitrary confidence parameter. With probability 1 − 𝛿,

|_̃(𝑘, Σ1/2) − _̃(𝑘, Σ̂1/2) | ≤ 𝐶𝑘
(√︂
(log(3/𝛿) + 2 log(𝑝))

𝑛
+ log2(𝑛) (log(3/𝛿) + 2 log(𝑝))2

𝑛

)
.

In the above display 𝐶 is a universal constant.

Proof. From Lemma A.4.2, we know that the log-transformed covariates are marginally subexpo-

nential. Applying Theorem 4.1 of [31] for marginally subexponential random variables, we have

with probability atleast 1 − 3𝑒−𝑡 ,

∥Σ − Σ̂∥∞ ≤ 𝐶
(√︂

Γ(𝑡 + 2 log(𝑝))
𝑛

+ log2(𝑛) (𝑡 + 2 log(𝑝))2
𝑛

)
,

where 𝐶 is a universal constant. Substituting the bound on Γ from Lemma A.4.3 and then applying

Lemma A.4.1 we get,

|_̃(𝑘, Σ1/2) − _̃(𝑘, Σ̂1/2) | ≤ 𝐶𝑘
(√︂
(𝑡 + 2 log(𝑝))

𝑛
+ log2(𝑛) (𝑡 + 2 log(𝑝))2

𝑛

)
.

Substituting 𝑡 = log(3/𝛿) gives us the required bound. □
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We are now ready to present the proof of Theorem 2.3.2 which is restated and proved below.

Theorem A.4.5. Let 𝛿 ∈ (0, 1) be an arbitrary confidence parameter. Suppose the covariance

matrix Φ satisfies Φ𝑖,𝑖 = 1, ∀𝑖 ∈ [𝑝] and max𝑖≠ 𝑗 |Φ𝑖, 𝑗 | < 1− 𝜖 . Then, we have that log-transformed

design matrix satisfies the restricted eigenvalue bound:

_̃(𝑘, Σ̂1/2) ≥ 1
5

√︂
𝜖

log(16𝑘) + 2
,

with probability 1 − 𝛿, provided,

𝑛 ≥ 𝐶𝑘
2

𝜖
log2

(
2𝑝𝑘
𝛿

)
log2

(
𝑘

𝜖
log

(
2𝑝𝑘
𝛿

))
.

In the above display, 𝐶 is a universal constant.

Proof. For the ease of notation, we define |𝜌max | = 1 − 𝜖 . From Theorem A.3.2, we know that,

_̃(𝑘, Σ1/2) ≥ 2
5

©«
2 log

(
1

1−𝜖

)
log

(
16𝑘
1−𝜖

)
+max{2, log

(
1

1−𝜖

)
}

ª®®¬
1/2

(1)
≥ 2

5

√√√√√√ 2 log
(

1
1−𝜖

)
log(16𝑘) + 2 + 2 log

(
1

1−𝜖

)
(2)
≥
√

2
5

min
©«1,

√√√
log

(
1

1−𝜖

)
2 + log(16𝑘)

ª®®®¬
In the display marked above, we used the fact that max(𝑎, 𝑏) ≤ 𝑎 + 𝑏 in the inequality marked (1).

In the inequality marked (2) we used the fact for any 𝑥, 𝑐 ≥ 0, we have 𝑥
𝑥+𝑐 ≥

1
2 min

(
𝑥
𝑐
, 1

)
. By
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Lemma A.4.4, we know that with probability 1 − 𝛿,

_̃(𝑘, Σ̂1/2) ≥
√

2
5

min
©«1,

√√√
log

(
1

1−𝜖

)
2 + log(16𝑘)

ª®®®¬
− 𝐶𝑘

(√︂
(log(3/𝛿) + 2 log(𝑝))

𝑛
+ log2(𝑛) (log(3/𝛿) + 2 log(𝑝))2

𝑛

)
.

Hence there exists a constant 𝐶 such that if,

𝑛

log2(𝑛)
≥ 𝐶𝑘2 (

log(3/𝛿) + 2 log(𝑝)
)2 max

©«1,
log(16𝑘) + 2

log
(

1
1−𝜖

) ª®®¬ ,
we have that Σ̂ satisfies the restricted eigenvalue bound:

_̃(𝑘, Σ̂1/2) ≥ 1
5

min
©«1,

√√√
log

(
1

1−𝜖

)
2 + log(16𝑘)

ª®®®¬
Finally, we clean up this bound. First we note that log

(
1

1−𝜖

)
≥ 𝜖 . Hence, if 𝑛 is large enough so

that,

𝑛

log2(𝑛)
≥ 𝐶𝑘

2 log(2𝑘)
𝜖

log2
(
2𝑝
𝛿

)
,

we have, with probability 1 − 𝛿,

_̃(𝑘, Σ̂1/2) ≥ 1
5

√︂
𝜖

2 + log(16𝑘)

Finally, we note to satisfy the requirement on the sample size, it is sufficient that,

𝑛 ≥ 𝐶𝑘
2 log(2𝑘)
𝜖

log2
(
2𝑝
𝛿

)
log2

(
𝑘 log(2𝑘)

𝜖
log

(
2𝑝
𝛿

))
.
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□

A.5 Proof of the Gershgorin’s Circle Theorem for Restricted Eigenvalue

In this section, we prove the Gershgorin’s theorem for the restricted eigenvalue. Let 𝐴 be a

𝑝× 𝑝 symmetric matrix and 𝑆 be an arbitrary subset of [𝑝]. Let _̃(𝛼, 𝑆, 𝐴1/2) denote the Restricted

eigenvalue defined as:

_̃(𝛼, 𝑆, 𝐴1/2) = min 𝑣𝑇 𝐴𝑣 subject to: ∥𝑣∥2 = 1, ∥𝑣𝑆𝑐 ∥1 ≤ 𝛼∥𝑣𝑆∥1.

The goal is to prove the following theorem.

Theorem A.5.1. For 𝛼 ≥ 1, we have,

_̃(𝛼, 𝑆, 𝐴1/2) ≥ min
𝑖∈[𝑝]

𝐴𝑖,𝑖 − (1 + 𝛼)2 · |𝑆 | ·max
𝑖≠ 𝑗
|𝐴𝑖 𝑗 |.

Let 𝑣★ be the optimizer of the Restricted Eigenvalue problem. To simplify notation, we will

short hand the optimal objective _̃(𝛼, 𝑆, 𝐴1/2) as _★. Without loss of generality we can assume

|𝑣★
𝑖
| > 0 ∀𝑖 ∈ [𝑝]. This is because of the following reason: Let 𝑇 denote the support of the optimal

𝑣★. It is straightforward to see that _★ and 𝑣★(𝑇) are the optimal objective value and the optimizer

of the following problem:

min 𝑣𝑇 𝐴(𝑇,𝑇)𝑣 subject to: ∥𝑣∥2 = 1, ∥𝑣𝑇∩𝑆𝑐 ∥1 ≤ 𝛼∥𝑣𝑇∩𝑆∥1.

If 𝑇 ≠ [𝑝], then we can make the arguments that follow for the optimization problem defined in

the display above.

The proof of the usual Gershgorin Theorem begins with the optimality condition for the un-

constrained eigenvalue problem. Taking cue from the original proof, we first derive an optimality

condition for the restricted eigenvalue problem. We then utilize this to prove a lower bound on _★.
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Proof. We first write the local optimality condition at 𝑣★. For _ ∈ R and 𝑞 ≥ 0, we form the

Lagrangian:

𝐿 (𝑣, _, 𝑞) = 𝑣𝑇 𝐴𝑣 − _∥𝑣∥22 + 2𝑞
(
∥𝑣𝑆𝑐 ∥1 − 𝛼∥𝑣𝑆∥1

)
.

Since |𝑣★
𝑖
| > 0 ∀𝑖, by the method of Lagrange multipliers, the local optimality condition at 𝑣★ is:

∃_ ∈ R, 𝑞 ≥ 0 such that ∇𝑣𝐿 (𝑣★, _, 𝑞) = 0.

This means,

𝐴𝑣★ − _𝑣★ − 𝑞𝑢 = 0. (A.7)

Where, the vector 𝑢 ∈ R𝑝 is defined as:

𝑢𝑖 =


𝛼sign(𝑣★

𝑖
) 𝑖 ∈ 𝑆

−sign(𝑣★
𝑖
) 𝑖 ∉ 𝑆.

Taking dot-product with 𝑣★ on both sides of equation A.7, we get,

_★ = _ + 𝑞(𝛼∥𝑣𝑆∥1 − ∥𝑣𝑆𝑐 ∥1)

≥ _.

Hence to lower bound _★, it is sufficient to lower bound _. Let 𝑖 be the coordinate that maximizes

|𝑣★
𝑖
|. Then, we have,

∑︁
𝑗≠𝑖

𝐴𝑖 𝑗𝑣
★
𝑗 + 𝐴𝑖𝑖𝑣★𝑖 − _𝑣★𝑖 = 𝑞𝑢𝑖 . (A.8)

However, since 𝑞 is unknown, to eliminate it we consider another coordinate 𝑘 . This coordinate 𝑘
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is chosen so that: If 𝑖 ∈ 𝑆, 𝑘 ∉ 𝑆 and if 𝑖 ∉ 𝑆, then 𝑘 ∈ 𝑆. We have,

∑︁
𝑗≠𝑘

𝐴𝑘 𝑗𝑣
★
𝑗 + 𝐴𝑘𝑘𝑣★𝑘 − _𝑣

★
𝑘 = 𝑞𝑢𝑘 . (A.9)

Hence, we can eliminate 𝑞 between equations A.8 and A.9,

𝑣★
𝑖

𝑢𝑖
𝐴𝑖𝑖 −

𝑣★
𝑘

𝑢𝑘
𝐴𝑘𝑘 − _

(
𝑣★
𝑖

𝑢𝑖
−
𝑣★
𝑘

𝑢𝑘

)
=

1
𝑢𝑘

©«
∑︁
𝑗≠𝑘

𝐴𝑘 𝑗𝑣
★
𝑗

ª®¬ − 1
𝑢𝑖

©«
∑︁
𝑗≠𝑖

𝐴𝑖 𝑗𝑣
★
𝑗

ª®¬ .
Taking absolute values,������𝑣★𝑖𝑢𝑖 𝐴𝑖𝑖 − 𝑣★𝑘𝑢𝑘 𝐴𝑘𝑘 − _

(
𝑣★
𝑖

𝑢𝑖
−
𝑣★
𝑘

𝑢𝑘

)������ =
������ 1
𝑢𝑘

©«
∑︁
𝑗≠𝑘

𝐴𝑘 𝑗𝑣
★
𝑗

ª®¬ − 1
𝑢𝑖

©«
∑︁
𝑗≠𝑖

𝐴𝑖 𝑗𝑣
★
𝑗

ª®¬
������ .

Dividing throughout by | 𝑣
★
𝑖

𝑢𝑖
|:������𝐴𝑖𝑖 − 𝑣★𝑘𝑢𝑖𝑢𝑘𝑣

★
𝑖

𝐴𝑘𝑘 − _
(
1 −

𝑣★
𝑘
𝑢𝑖

𝑣★
𝑖
𝑢𝑘

)������ =
������ 𝑢𝑖𝑢𝑘 ©«

∑︁
𝑗≠𝑘

𝐴𝑘 𝑗
𝑣★
𝑗

𝑣★
𝑖

ª®¬ − ©«
∑︁
𝑗≠𝑖

𝐴𝑖 𝑗
𝑣★
𝑗

𝑣★
𝑖

ª®¬
������

≤ |𝑆 | · (1 + 𝛼) ·
(
max
𝑙≠𝑚
|𝐴𝑙𝑚 |

)
·
(
|𝑢𝑖 |
|𝑢𝑘 |
+ 1

)
≤ |𝑆 | · (1 + 𝛼)2 ·

(
max
𝑙≠𝑚
|𝐴𝑙𝑚 |

)
.

Next we note because of the choice of 𝑘 (if 𝑖 ∈ 𝑆, 𝑘 ∉ 𝑆, if 𝑖 ∉ 𝑆, 𝑘 ∈ 𝑆) and the definition of 𝑢,

𝜌 := −
𝑣★
𝑘
𝑢𝑖

𝑢𝑘𝑣
★
𝑖

≥ 0.

Dividing through out by 1 + 𝜌 gives,����𝐴𝑖𝑖 + 𝜌𝐴𝑘𝑘1 + 𝜌 − _
���� ≤ |𝑆 | · (1 + 𝛼)2 · (max𝑙≠𝑚 |𝐴𝑙𝑚 |

)
1 + 𝜌 ≤ |𝑆 | · (1 + 𝛼)2 ·

(
max
𝑙≠𝑚
|𝐴𝑙𝑚 |

)
.
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Next noting that,

𝐴𝑖𝑖 + 𝜌𝐴𝑘𝑘
1 + 𝜌 ≥ min

𝑖
𝐴𝑖𝑖,

we have the following lower bound,

_★ ≥ _ ≥ (min
𝑖
𝐴𝑖𝑖) − |𝑆 | · (1 + 𝛼)2 ·

(
max
𝑙≠𝑚
|𝐴𝑙𝑚 |

)
.

□
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Appendix B: Deferred Proofs from Chapter 3

B.1 Problem Statement Remarks

We also have the following two remarks regarding our framing of the problem.

Remark B.1.1 (Recovering Low-Rank Factors). Note that we have framed the learning problem

in terms of recovering a low-rank matrix 𝑌 ∗. To fulfill the promise of improved computational

efficiency, the original motivation for considering this learning problem, we would apply a final

post-processing step after learning 𝑌 ∗ by exactly decomposing it into the product of two rank 𝑟

matrices using SVD.

Remark B.1.2 (Convolutional Architecture). In this problem we only consider fully-connected

architecture. However, since a convolution is a linear operator, we can make use of results which

efficiently learn one-layer convolutional ReLU networks [110] to first recover the convolutional

filters before reducing to our low-rank recovery procedure.

B.2 Hermite Decomposition of ReLU

[111] derives properties of the Hermite expansion for the univariate ReLU:

Lemma B.2.1 (Hermite Expansion Properties for Univariate ReLU [111]). Let {𝑐𝑖}∞𝑖=0 be the Her-

mite coefficients for ReLU. Then,

𝑐𝑘 =



1/
√

2𝜋 if 𝑘 = 0,

1
2 if 𝑘 = 1,

1√
2𝜋𝑘!

(
𝐻𝑘 (0) + 𝑘𝐻𝑘−2(0)

)
if 𝑘 ≥ 2.
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Using the above properties, we can derive the explicit form of the Hermite coefficients for the

ReLU activation:

Lemma B.2.2 (Hermite Coefficients for ReLU). Let {𝑐𝑖}∞𝑖=0 be the Hermite coefficients for ReLU.

Then,

𝑐𝑘 =



1/
√

2𝜋 if 𝑘 = 0,

1
2 if 𝑘 = 1,

0 if 𝑘 = 2𝑚 + 1, 𝑚 ≥ 1,√︃
1

2𝜋
1

4𝑚 ·
(2𝑚
𝑚

)
· 1
(2𝑚−1)2 if 𝑘 = 2𝑚, 𝑚 ≥ 1.

Proof. First we show that 𝑐𝑘 = 0 for odd 𝑘 > 1. This is easy to check since if 𝑘 is odd, so is 𝑘 − 2

and checking that there is no constant term for odd Hermite polynomials 𝐻𝑘 yields that the whole

expression is 0.

For the rest of the even terms, plug in the standard formula

𝐻2𝑚 (0) = (−1)𝑚 (2𝑚)!
𝑚! · 2𝑚

to the recurrence given in the expansion properties and simplify using
(2𝑚
𝑚

)
=
(2𝑚)!
𝑚!𝑚! . □

Lemma B.2.3 (Hermite Analysis of ReLU Correlation). Suppose we have univariate standard

Gaussians 𝑔1, 𝑔2 which are 𝜌-correlated (𝜌 ∈ [0, 1]). Let 𝜎(𝑥) = max(0, 𝑥) be the ReLU activa-

tion. Then,

2E𝑔1,𝑔2 [𝜎(𝑔1)𝜎(𝑔2)]

=
1
𝜋

©«1 + 𝜋
2
𝜌 +

∞∑︁
ℓ=1

1
4ℓ
·
(
2ℓ
ℓ

)
· 1
(2ℓ − 1)2

𝜌2ℓª®¬
=:
√
ℎ(𝜌).

(B.1)

Proof. Apply Lemma 1.3.4 and Lemma B.2.2 and simplify the algebra. □
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Figure B.1:
√︁
ℎ(𝜌) (see Definition 3.3.7) plotted against the linear function 𝜌. Here, 𝜌 is a corre-

lation between the inputs to the arc-cosine kernel.

Lemma B.2.4 (Convexity and Monotonicity of
√
ℎ and ℎ). The function

√
ℎ defined by Defini-

tion B.1 is both convex and monotone non-decreasing on [−1, 1], and is also bounded between

[0, 1] for inputs in [−1, 1].

Proof. First we compute the derivative:

𝑑
√
ℎ(𝜌)
𝑑𝜌

=
1
2
+ 1
𝜋

∞∑︁
ℓ=1

1
4ℓ

(
2ℓ
ℓ

)
2ℓ

(2ℓ − 1)2
𝜌2ℓ−1.

Now we observe the derivative is non-negative for 𝜌 ∈ [−1, 1]. To prove this fact, first note that

since the coefficients of the derivative are all positive and all powers of 𝜌 are odd, the derivative is

minimized at 𝜌 = −1. Thus, evaluating

1
2
− 1
𝜋

∞∑︁
ℓ=1

1
4ℓ

(
2ℓ
ℓ

)
2ℓ

(2ℓ − 1)2
= 0,

we see that the derivative is lower bounded by 0 and thus
√
ℎ(𝜌) is monotone non-decreasing on

[−1, 1]. Since
√
ℎ(𝜌) is a positive combination of convex functions (linear functions and even

powers are convex), it is also convex. To prove it is bounded, using monotonicity, we only need

consider the extremes at 𝜌 = 0, 1. We have ℎ(0) = 1
𝜋

, and we have (using the closed form given by
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Definition 3.3.7)

ℎ(1) =

(√
1 − 12 + (𝜋 − 0) · 1

)
𝜋

= 1

which proves the statement. □

Remark B.2.5 (Convexity and Monotonicity of C-Maps). It is worth noting that the analysis in

[112] proves that a wide variety of related functions to
√
ℎ are convex and monotone.

B.3 Proofs for Section 3.3.4

We recall the following useful definition:

Definition B.3.1 (ReLU Kernel: 1𝑠𝑡-Order Arc-Cosine Kernel). We define a function known in the

literature as the first-order arc-cosine kernel [88], and is defined by

𝑘 (𝑥, 𝑦) := ∥𝑥∥2∥𝑦∥2 ·
√
ℎ(𝜌𝑥𝑦)

where

𝜌𝑥𝑦 :=
𝑥⊤𝑦

∥𝑥∥2∥𝑦∥2

and

√
ℎ(𝜌𝑥𝑦) =

(√︃
1 − 𝜌2

𝑥𝑦 +
(
𝜋 − cos−1 (

𝜌𝑥𝑦
) )
𝜌𝑥𝑦

)
𝜋

.

This function will be very relevant to our analysis of ReLU SVD.

We provide an accompanying Hermite expansion of
√
ℎ in Lemma B.2.3.

Characterizing the ReLU SVD

Lemma B.3.2 (ReLU Decomposition). Let ReLU be defined by 𝜎(𝑥) = max(0, 𝑥). Then,

𝜎(𝑥) = 𝑥 + |𝑥 |
2

. (B.2)
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Proof. Observe that if 𝑥 ≤ 0, 𝜎(𝑥) = 0. Otherwise, it equals 𝑥. □

Lemma B.3.3 (ReLU Norm).

E𝑥∼N(0,𝐼)
[𝜎(𝑥⊤𝑌 )2

2

]
=

1
2
∥𝑌 ∥2𝐹 . (B.3)

Proof. We have

𝜎(𝑌⊤𝑥)2
2 =

𝑚∑︁
𝑖=1

𝜎(𝑌⊤𝑖 𝑥)2

=
1
4

𝑚∑︁
𝑖=1

(
𝑌⊤𝑖 𝑥 + |𝑌⊤𝑖 𝑥 |

)2

=
1
4

𝑚∑︁
𝑖=1

2
(
𝑌⊤𝑖 𝑥

)2 + 2
(
𝑌⊤𝑖 𝑥

)
|𝑌⊤𝑖 𝑥 |

=
1
2

𝑌⊤𝑥2
2 +

1
2

𝑚∑︁
𝑖=1

(
𝑌⊤𝑖 𝑥

)2 sgn(𝑌⊤𝑖 𝑥).

(B.4)

Now we take expectation over 𝑥 ∼ N(0, 𝐼).

E𝑥∼N(0,𝐼)
[𝑌⊤𝑥2

2

]
= E𝑥∼N(0,𝐼)

[
Tr

(
𝑥⊤𝑌𝑌⊤𝑥

) ]
= Tr

(
𝑌⊤E𝑥∼N(0,𝐼)

[
𝑥𝑥⊤

]
𝑌

)
= Tr

(
𝑌⊤𝑌

)
= ∥𝑌 ∥2𝐹 .

(B.5)

For the second term, apply linearity of expectation and condition on the events that 𝑌⊤
𝑖
𝑥 > 0 and

𝑌⊤
𝑖
𝑥 < 0. Since 𝑌𝑖 is fixed and 𝑥 is an isotropic Gaussian (which is spherically symmetric), the
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probability that 𝑌⊤
𝑖
𝑥 > 0 is equal to the probability that 𝑌⊤

𝑖
𝑥 < 0. Thus, letting 𝑞𝑖 = P

(
𝑌⊤
𝑖
𝑥 > 0

)
,

𝑞𝑖 ·
𝑚∑︁
𝑖=1
E𝑥∼N(0,𝐼)

[ (
𝑌⊤𝑖 𝑥

)2 sgn(𝑌⊤𝑖 𝑥) |𝑌⊤𝑖 𝑥 > 0
]

+(1 − 𝑞𝑖)·
𝑚∑︁
𝑖=1
E𝑥∼N(0,𝐼)

[ (
𝑌⊤𝑖 𝑥

)2 sgn(𝑌⊤𝑖 𝑥) |𝑌⊤𝑖 𝑥 < 0
]

= 0

(B.6)

and we get the desired result. □

Lemma B.3.4 (Reduction to 1-Dimensional Correlation). Consider𝑊,𝑌 ∈ R𝑑×𝑚, and ReLU non-

linearity 𝜎, which is applied elementwise. Then,

E𝑥∼N(0,𝐼)
[
⟨𝜎(𝑥⊤𝑌 ), 𝜎(𝑥⊤𝑊)⟩

]
(B.7)

=

𝑚∑︁
𝑖=1
∥𝑊𝑖∥2∥𝑌𝑖∥2 · E𝑔1

𝑖
,𝑔2

𝑖
[𝜎(𝑔1

𝑖 )𝜎(𝑔2
𝑖 )] (B.8)

where 𝑔1
𝑖
, 𝑔2
𝑖

are univariate standard Gaussians with correlation E𝑔1
𝑖
,𝑔2

𝑖
[𝑔1
𝑖

⊤
𝑔2
𝑖
] = 𝜌𝑖 and 𝜌𝑖 =

𝑊⊤
𝑖
𝑌𝑖

∥𝑊𝑖 ∥2∥𝑌𝑖 ∥2 ∈ [0, 1]. 𝑊𝑖, 𝑌𝑖 are the columns of𝑊,𝑌 respectively.

Proof. First apply linearity of expectation to get a sum over 𝑚 correlations corresponding to col-

umn vectors 𝑌𝑖,𝑊𝑖. Then, using the positive homogeneous property of ReLU (𝜎(𝑐 · 𝑥) = 𝑐 · 𝜎(𝑥)

for 𝑐 ≥ 0), we can normalize 𝑌𝑖,𝑊𝑖 and pull out their ℓ2 norms. Then using joint Gaussinity, we

can replace 𝑌⊤
𝑖
𝑥 and𝑊⊤

𝑖
𝑥 with 𝑔1

𝑖
, 𝑔2
𝑖
. Finally, observe

E𝑥∼N(0,𝐼) [Tr
(
𝑌⊤𝑖 𝑥𝑥

⊤𝑊𝑖

)
] · 1
∥𝑌𝑖∥2∥𝑊𝑖∥2

=

Tr
(
𝑌⊤
𝑖
𝐼𝑊𝑖

)
∥𝑌𝑖∥2∥𝑊𝑖∥2

=
𝑌⊤
𝑖
𝑊𝑖

∥𝑌𝑖∥2∥𝑊𝑖∥2
.

(B.9)

□
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Lower Bounding the Gap

First we begin with a characterization of the optimal vector 𝜌 from Theorem 3.3.8.

Lemma B.3.5 (Re-writing 𝜌). Consider the optimal choice of 𝜌 ∈ R𝑚 from Theorem 3.3.8. Then,

for all 𝑖 ∈ [𝑚], we can write

𝜌∗𝑖 =
𝑍∗�̂�𝑖


2
,

for 𝑍∗ ∈ R𝑟×𝑑 a matrix with orthogonal rows (of potentially non-unit norm) and where we define

�̂�𝑖 = 𝑊𝑖/∥𝑊𝑖∥2.

Proof. First recall we have

𝜌𝑖 =
𝑌⊤
𝑖
𝑊𝑖

∥𝑌𝑖∥2∥𝑊𝑖∥2

from Theorem 3.3.8. We utilize a special property of the function ℎ: ℎ is convex and monotone-

increasing for all 𝜌 ∈ [−1, 1] (Lemma B.2.4). This property ensures that any choice of 𝜌𝑖 < 0 is

always dominated by a choice of 𝜌𝑖 = 0.

Therefore, we always want to maximize the value of 𝜌𝑖 subject to the low-rank constraint

whenever it is the case that the parameter choices made for 𝜌𝑖 do not affect the other 𝜌𝑖 (since

overall we want to maximize
∑𝑚
𝑖=1 ∥𝑊𝑖∥22 · ℎ(𝜌𝑖)) – in other words, we first optimize over the

separable parameters. Now applying SVD, write 𝑌𝑖 = 𝐷Λ𝐵𝑖 for column 𝑖 ∈ [𝑚] of 𝑌 . Here we

have 𝐷 ∈ R𝑑×𝑟 , Λ ∈ R𝑟×𝑟 , and 𝐵𝑖 ∈ R𝑟 . Thus

𝑌⊤𝑖 𝑊𝑖 = 𝐵
⊤
𝑖 𝑍𝑊𝑖,

where 𝑍 = Λ𝐷⊤ ∈ R𝑟×𝑑 ensures that 𝑌 is rank 𝑟. We know that we must maximize 𝜌𝑖 for each

𝑖 ∈ [𝑚]. We first fix an arbitrary choice of Λ∗, 𝐷∗ and thus 𝑍∗ and then optimize over 𝐵𝑖 for each

𝑖 ∈ [𝑚]. By Cauchy-Schwarz, 𝐵∗
𝑖
= 𝑍∗𝑊𝑖. Plugging this back in yields

𝜌∗𝑖 =
∥𝑍∗𝑊𝑖∥22

∥𝑍∗𝑊𝑖∥2∥𝑊𝑖∥2
=
∥𝑍∗𝑊𝑖∥2
∥𝑊𝑖∥2

=

𝑍∗�̂�𝑖


2
,
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where we define �̂�𝑖 = 𝑊𝑖/∥𝑊𝑖∥2 and note that 𝑍∗ ∈ R𝑟×𝑑 has the property that 𝑍∗𝑍∗⊤ = Λ∗2 ∈ R𝑟×𝑟

is a diagonal matrix.

□

Theorem B.3.6 (Lower Bound on Suboptimality of SVD). Recall the objective R(𝑌 ) from Prob-

lem 3.3.6, where we require that 𝑌 ∈ R𝑑×𝑚 is a rank-𝑟 matrix. Let𝑊 = 𝑈Σ𝑉⊤ ∈ R𝑑×𝑚 be the SVD

of 𝑊 . Define 𝜌∗𝜎 ∈ R𝑚 as the correlations ∥Λ∗𝐷∗⊤�̂�𝑖∥2 for column 𝑖 of 𝑊 , where Λ∗ ∈ R𝑟×𝑟 and

𝐷∗ ∈ R𝑑×𝑟 are as in Lemma B.3.5 and �̂�𝑖 = 𝑊𝑖/∥𝑊𝑖∥2. As shorthand, denote 𝑌 (𝜌) as the asso-

ciated low-rank matrix for correlation vector 𝜌 ∈ R𝑚 (computed as described in Theorem 3.3.8).

Denote 𝜌∗SVD to be the optimal correlations in the case where we pick Λ∗ to correspond to the

top 𝑟 singular values, and 𝐷∗ = 𝑈 as in SVD. Then, we have the following lower bound for the

suboptimality of the SVD solution 𝑌SVD:

(
R(𝑌SVD)) − R(𝑌 (𝜌∗𝜎))

)
≥ 1

2
∥𝑤 ⊙

√︃
ℎ(𝜌∗SVD) − 𝜌

∗
SVD∥

2
2 (B.10)

where ℎ is defined in Definition B.1, where 𝑤 =

[
∥𝑊1∥1, . . . , ∥𝑊𝑚 ∥2

]
is a vector of column norms

of𝑊 , and where ⊙ is the element-wise product.

Proof. First consider that the value of the ReLU SVD objective as a function of arbitrary 𝜌 and

𝛽𝑖 = ∥𝑌𝑖∥2 for column 𝑖 of 𝑌 is

∥𝑊 ∥2
𝐹

2
−

𝑚∑︁
𝑖=1

[
∥𝑊𝑖∥2

√
ℎ(𝜌𝑖)𝛽𝑖 −

1
2
𝛽2
𝑖

]
as computed in Theorem 3.3.8. We know that choosing Λ∗ to correspond to the top 𝑟 singular

values and 𝐷∗ = 𝑈 is not necessarily optimal, and so if we bound the difference between the SVD

solution and the choice of 𝜌∗SVD with correct scaling, we are also lower bounding the difference

between the SVD solution and the optimal choice of 𝜌∗𝜎 (and correct scaling). If we choose Λ∗

to correspond to the top 𝑟 singular values and 𝐷∗ = 𝑈 (sub-optimally) and then set 𝛽𝑖 = ∥𝑊𝑖∥2 ·

127



√
ℎ(𝜌∗SVD(𝑖)) optimally, we get that the value of the objective is

∥𝑊 ∥2
𝐹

2
− 1

2

𝑚∑︁
𝑖=1
∥𝑊𝑖∥22 · ℎ(𝜌

∗
SVD(𝑖)).

On the other hand, if we use the SVD solution, we can note that since we pick the same Λ∗

and 𝐷∗, the SVD solution only differs in that we plug in 𝛽𝑖 = 𝜌∗SVD(𝑖) to the objective instead

(Lemma 3.3.10): Thus, the resulting value of that objective is

∥𝑊 ∥2
𝐹

2
−

𝑚∑︁
𝑖=1

[
∥𝑊𝑖∥2 ·

√
ℎ(𝜌∗SVD(𝑖))𝜌

∗
SVD(𝑖) −

1
2
𝜌∗SVD(𝑖)

2
]
.

Therefore, computing the absolute difference to get the suboptimality gap, we get

𝑚∑︁
𝑖=1
∥𝑊𝑖∥2 ·

√
ℎ(𝜌∗SVD(𝑖))𝜌

∗
SVD(𝑖) −

1
2
𝜌∗SVD(𝑖)

2

+
𝑚∑︁
𝑖=1

1
2
∥𝑊𝑖∥22 · ℎ(𝜌

∗
SVD(𝑖))

=
1
2

𝑚∑︁
𝑖=1

(
∥𝑊𝑖∥2 ·

√
ℎ(𝜌∗SVD(𝑖)) − 𝜌

∗
SVD(𝑖)

)2
.

(B.11)

□

Using the lower bound in Theorem 3.3.9, we can now characterize the conditions on the full-

rank matrix 𝑊 ∈ R𝑑×𝑚 where the optimum of R(𝑌 ) from Problem 3.3.6 and the SVD solution are

significantly different.

Corollary B.3.7. Consider𝑊 ∈ R𝑑×𝑚 and the problem of finding the best nonlinear approximation

low-rank 𝑌 ∈ R𝑑×𝑚, as described in Theorem 3.3.8. Then, cases where more correlation terms

𝜌∗SVD(𝑖) are smaller result in the SVD solution having larger sub-optimality gaps (measured with

respect to R(𝑌 ) defined in Problem 3.3.6).

Proof. From the proofs of Theorem 3.3.8 and Theorem 3.3.9, we only need to consider the dif-

ference between
√
ℎ(𝜌∗SVD(𝑖)) and 𝜌∗SVD(𝑖). Note that the gap between

√
ℎ(𝜌∗SVD(𝑖)) and 𝜌∗SVD(𝑖)
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increases as 𝜌∗SVD(𝑖) decreases (since
√
ℎ(𝜌∗SVD(𝑖)) is a convex and monotone increasing upper

bound to 𝜌∗SVD(𝑖) which converges at 𝜌∗SVD(𝑖) = 1, see Lemma B.2.4 and Corollary B.1). □

Remark B.3.8 (Orthogonality Intuition for Corollary B.3.7). Corollary B.3.7 roughly translates

to a statement about the approximate orthogonality of the columns of 𝑊 – if the columns of 𝑊

are all mostly orthogonal, it is hard to achieve large correlations 𝜌𝑖 = ⟨ 𝑊𝑖

∥𝑊𝑖 ∥2 ,
𝑌𝑖
∥𝑌𝑖 ∥2 ⟩ with a low-

rank 𝑌 ∈ R𝑑×𝑚 since we can only select 𝑌𝑖 which span a certain subspace – if the columns are

approximately orthogonal, they do not live in a degenerate subspace and if for instance they are

chosen uniformly randomly on the sphere, they will typically be near orthogonal to the vectors of

the low-rank subspace spanned by the columns of 𝑌 . Therefore, since the 𝜌𝑖 will be typically small

in this setting, by Corollary B.3.7, there will be a larger sub-optimality gap for the SVD.

When max𝑖 𝜌∗SVD(𝑖) < 1 (larger 𝜌∗SVD(𝑖) correspond to smaller gaps), we can prove a stronger

result:

Corollary B.3.9. Suppose the columns of 𝑊 ∈ R𝑑×𝑚 satisfy ∥𝑊𝑖∥2 = 1 for all 𝑖 ∈ [𝑚]. If we have

that max𝑖∈[𝑚] 𝜌∗SVD(𝑖) < 𝜌max < 1, then the sub-optimality gap grows as 𝑚 increases. Further-

more, the sub-optimality gap is monotone non-decreasing as 𝑟 decreases.

Proof. Using Theorem 3.3.9 and the fact that ∥𝑊𝑖∥2 = 1 for all 𝑖 ∈ [𝑚], we have

1
2

√ℎ(𝜌∗SVD) − 𝜌
∗
SVD

2

2

=
1
2

𝑚∑︁
𝑖=1

(√
ℎ(𝜌∗SVD(𝑖)) − 𝜌

∗
SVD(𝑖)

)2

≥ 𝑚
2
·
(√
ℎ(𝜌max) − 𝜌max

)2
,

(B.12)

where we used the fact that
√
ℎ(𝜌∗SVD(𝑖)) − 𝜌

∗
SVD(𝑖) decreases as 𝜌∗SVD(𝑖) increases. Then note

that the maximum correlation attainable by the low-rank SVD approximation, 𝜌max, is a monotone

non-decreasing function of the rank 𝑟. This fact follows because by reducing the rank, we only

further restrict the choice of subspace which the columns 𝑌𝑖 ∈ R𝑑 can live in. Applying this fact,

we have that as 𝑟 decreases, by Corollary B.3.7,
(√
ℎ(𝜌∗max) − 𝜌∗max

)2
does not decrease. □
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Lemma B.3.10. For 𝜌 ∈ R, let

𝑓 (𝜌) :=
(√
ℎ(𝜌) − 𝜌

)2
.

Then, 𝑓 : R→ R is convex and non-increasing in 𝜌.

Proof. We compute 𝑓 ′(𝜌) to get

𝑓 ′(𝜌) = −2
𝜋2 · arccos(𝜌) ·

(√︃
1 − 𝜌2 − 𝜌 · arccos(𝜌)

)
Note that

√
ℎ(𝜌)−𝜌 > 0 for 𝜌 ∈ [0, 1] (Lemma B.2.3) and also arccos(𝜌) ≥ 0 for 𝜌 ∈ [0, 1]. Thus,

𝑓 ′(𝜌) ≤ 0. Now also note from our previous characterization (Lemma B.2.3) that
√
ℎ(𝜌) − 𝜌 > 0

is monotone non-increasing in 𝜌 for 𝜌 ∈ [0, 1], and that this is likewise true for arccos(𝜌) – thus

the function is also monotone non-increasing. Putting these two facts together gives the result. □

Lemma B.3.11. For 𝑢 ∈ R𝑑 uniformly distributed on the ℓ2 sphere and 𝐸𝑟 a diagonal binary

matrix consisting of 𝑟 ones, we have that

E𝑢
[
𝑢⊤𝐸𝑟𝑢

]
=
𝑟

𝑑
.

Proof. Note that 𝑢 is radially symmetric, and thus for standard basis vectors 𝑒1, . . . , 𝑒𝑑 , we have

𝑢⊤𝑒𝑖 has the same distribution for all 𝑖 ∈ [𝑑]. Since ∥𝑢∥2 = 1, we have

1 = E
[
𝑢⊤𝑢

]
=

𝑑∑︁
𝑗=1
E

[ (
𝑢⊤𝑒 𝑗

)2
]
= 𝑑 · E

[ (
𝑢⊤𝑒1

)2
]
,

and therefore

E
[ (
𝑢⊤𝑒1

)2
]
= 1/𝑑.

Thus

E𝑢
[
𝑢⊤𝐸𝑟𝑢

]
=

𝑟∑︁
𝑗=1

(
𝑢⊤𝑒 𝑗

)2
= 𝑟/𝑑.

□
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