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Radioisotope constraints of Arctic deep water
export to the North Atlantic
Lauren E. Kipp 1,2,3✉, Jerry F. McManus1,4 & Markus Kienast 2

The export of deep water from the Arctic to the Atlantic contributes to the formation of North

Atlantic Deep Water, a crucial component of global ocean circulation. Records of

protactinium-231 (231Pa) and thorium-230 (230Th) in Arctic sediments can provide a mea-

sure of this export, but well-constrained sedimentary budgets of these isotopes have been

difficult to achieve in the Arctic Ocean. Previous studies revealed a deficit of 231Pa in central

Arctic sediments, implying that some 231Pa is either transported to the margins, where it may

be removed in areas of higher particle flux, or exported from the Arctic via deep water

advection. Here we investigate this “missing sink” of Arctic 231Pa and find moderately

increased 231Pa deposition along Arctic margins. Nonetheless, we determine that most 231Pa

missing from the central basin must be lost via advection into the Nordic Seas, requiring deep

water advection of 1.1 – 6.4 Sv through Fram Strait.
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Deep water export from the Arctic to the North Atlantic
through the Nordic Seas affects the formation of North
Atlantic Deep Water (NADW)1,2, a critical component of

thermohaline circulation. Because NADW plays a prominent role
in the oceanic transport of latent and sensible heat and the
sequestration of atmospheric CO2, a well-defined record of Arctic
contributions to NADW formation is critically important.

The ratio of 231Pa (t1/2= 3.2 × 104 y) and 230Th (t1/2= 7.5 ×
104 y) in deep-sea sediments can be used as a proxy for deep
water circulation and help constrain changes in Arctic outflow.
These two naturally occurring radioactive isotopes are produced
constantly and ubiquitously in the water column through the
decay of uranium isotopes. Due to their long oceanic residence
times, uranium isotopes have relatively uniform concentrations
and produce 231Pa and 230Th in a constant ratio of 0.093. Unlike
their soluble uranium parents, 231Pa and 230Th are particle
reactive, and their contrasting removal rates by adsorption onto
settling particles (scavenging) can be exploited to gain informa-
tion about ocean circulation and particle fluxes.

Thorium-230 has a high particle affinity, and thus a short
oceanic residence time of ~20–40 years3. As a result, this isotope
is generally removed from solution in the same geographic
location as it is produced, such that the inventory of 230Th in
sediments balances its production in the overlying water column4.
Protactinium-231 is somewhat more soluble, with an oceanic
residence time of ~100–200 years, and can therefore be pre-
ferentially affected by lateral transport, including advection,
before scavenging and deposition in sediments3. This differential
scavenging results in sedimentary 231Pa/230Th ratios that diverge
from the water column production ratio of 0.0933,5–7. In areas of
low particle flux, some 231Pa can escape scavenging and be lat-
erally transported, resulting in low 231Pa/230Th ratios (<0.093) in
underlying sediments. In areas of high particle flux, such as ocean
margins, a greater proportion of dissolved 231Pa and 230Th are
removed via scavenging (a process called boundary
scavenging5,8). Because there may be additional 231Pa in the
water column that was transported from areas of low particle flux,
this enhanced removal can result in sedimentary 231Pa/230Th
ratios > 0.093.

Sedimentary 231Pa/230Th ratios across the central Arctic are
low9–15, indicating that 231Pa is laterally transported away from
this region of low particle flux. However, the low spatial resolu-
tion of sedimentary observations along the margins of the Arctic
basin has made it difficult to determine if the 231Pa missing from
the central basin is deposited in margin sediments as a result of
boundary scavenging or if 231Pa is being exported out of the
Arctic. The Fram Strait is the only deep conduit in the Arctic,
connecting the Eurasian Basin to the North Atlantic through the
Nordic Seas (Fig. 1), thus a loss of 231Pa from the Arctic indicates
southward advection of deep water into the Nordic Seas. Finding
the “missing sink” of 231Pa is therefore essential to the inter-
pretation of sedimentary 231Pa/230Th ratios as a proxy for deep
water transport out of the Arctic10,11.

Here, we expand the geographic coverage of 231Pa/230Th
measurements in Arctic sediments and find slightly elevated
231Pa/230Th ratios along the margins, consistent with enhanced
231Pa deposition via boundary scavenging. Still, a mass balance
calculation indicates that most of the 231Pa missing from the
central basin must be lost via advection into the Nordic Seas. This
revised budget is consistent with 231Pa loss via the advection of
Arctic intermediate and deep waters to the Nordic Seas and
North Atlantic, demonstrating the utility of the 231Pa/230Th
ratio as a proxy for past changes in Arctic contributions to
NADW. Further, this mass balance provides a geochemical
constraint on modern advection through Fram Strait, indicating
that the southward flow of Arctic intermediate and deep water is

~1.1–6.4 Sv, averaged over the 100–200 y residence time of this
radioisotope.

Results and discussion
Coretop 231Pa/230Th ratios. To improve the Arctic-wide 231Pa
budget, we have expanded the coverage of 231Pa/230Th mea-
surements in surface sediments along the margins of the Arctic
Ocean (continental slopes on the periphery of the Eurasian and
Amerasian Basins) and in the central Canada Basin. Because the
majority of our samples were collected from elevated locations
near continental margins where sedimentation rates are high, we
assume that the 231Pa/230Th ratios are not appreciably influenced
by radioactive decay, bioturbation, or turbidites. Although sedi-
mentation rates are significantly lower in the basins, these
assumptions are unlikely to change the final 231Pa/230Th ratios by
more than a few percent (see Supplementary Discussion).

231Pa/230Th ratios in margin sediments are generally higher
than those in the basin (Fig. 2). The average 231Pa/230Th ratio
based on previously published data from the central basin9–15 was
0.063 ± 0.003 (±SE, n= 36); this ratio is not significantly changed
by the addition of our new data, increasing slightly to 0.068 ±
0.003 (n= 45) (Fig. 3). However, the addition of 40 new samples
at the margins notably increases the average margin ratio from
0.077 ± 0.007 (n= 15; previous studies10,15,16) to 0.101 ± 0.005
(n= 55). Because the surface sediment samples are not evenly
distributed throughout the study area, we also determined area-
normalized averages by gridding the data into equal-area bins
(Supplementary Fig. 1). This area-normalization does not change
the margin 231Pa/230Th (0.101 ± 0.005; n= 40), and only slightly
decreases the basin average to 0.065 ± 0.004 (n= 33).

Protactinium-231 mass balance. The addition of many new
margin samples with 231Pa/230Th ratios near or slightly above the
water column production ratio of 0.093 provides evidence of
boundary scavenging of 231Pa: the enhanced accumulation of

Fig. 1 Map of the Arctic Ocean. Blue shading denotes the region
considered to be the central basin for the purposes of this study, generally
following the 1500m isobath (bold contour).
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231Pa in sediments resulting from higher particle fluxes. To
quantify how much of the 231Pa missing from the central basin is
deposited along the margins, we follow the mass balance
approach developed by Luo and Lippold16, which first assumes
that all of the 231Pa missing from the central basin is balanced by
boundary scavenging along the margins, in order to determine
the expected margin 231Pa/230Th ratio (231Pa/230Thmargin). This
expected 231Pa/230Thmargin is then compared to the observed
231Pa/230Thmargin to determine the fraction of 231Pa that can be

explained by boundary scavenging. Importantly, this method
assumes that the inventory of 230Th in sediments is balanced by
its inventory in the overlying water column (i.e., any changes in
the 231Pa/230Th ratio are due to the addition or removal of 231Pa).
Previous studies have shown minimal export of 230Th from the
Arctic, supporting this assumption10,13,17.

Comparing the area-normalized average 231Pa/230Th in the
basin (231Pa/230Thbasin; 0.065 ± 0.004) to the expected production
ratio of 0.093 and assuming that 100% of the 230Th produced is
buried in underlying sediments10,13,17 indicates that 70 ± 4% of
the 231Pa produced in the basin is buried there. If all of the
missing 231Pa is deposited along the margins, the expected 231Pa/
230Thmargin is 0.305 ± 0.024. However, the observed area-
normalized average 231Pa/230Thmargin is 0.101 ± 0.005, thus only
4 ± 1% of the 231Pa produced in the basin can be accounted for at
the margins, and the remaining 26 ± 2% must be exported to the
Nordic Seas.

Recent water column measurements of 231Pa support a net
export of 231Pa through Fram Strait15, and previous Arctic-wide
assessments of surface sediments (based on very few 231Pa/230Th
measurements along the margins) concluded that ~30–40% of the
231Pa produced in the Arctic is exported10,11. The greatly
improved spatial coverage in this study therefore provides a
much better constrained (and slightly decreased) estimate of
231Pa leaving the Arctic of ~26%, but upholds the conclusion that
advection through Fram Strait is the main sink for the 231Pa that
is missing from central basin sediments.

Advection through Fram Strait. While the circulation and fluxes
of Arctic surface waters have been the subject of detailed
investigation2,18,19, less is known about deep water circulation
and fluxes. Fram Strait (~2600 m) is the only entry and exit point
for intermediate and deep waters; additional water inputs through
the Barents Sea (200–300 m) and Bering Strait (~50 m), and
outputs through the Canadian Archipelago (150–230 m), are all
shallow. Atlantic inflow through Fram Strait is therefore the

Fig. 2 Excess protactinium-231/thorium-230 activity ratios in bulk surface sediments. Symbol shape indicates the data source; new data provided by
this study are shown in circles. Orange and red symbols indicate 231Pa/230Th ratios above the production ratio (0.093), blue symbols indicate 231Pa/230Th
ratios below the production ratio. The 1500m isobath is shown in bold.
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Fig. 3 Violin plot of excess 231Pa/230Th ratios in margin samples
(orange) and basin samples (blue). The shape of each plot represents the
kernel density estimation, the white dot represents the median, the thick
black bar represents the interquartile range, and the thin black line
represents the upper and lower adjacent values (±1.5 interquartile range).
Wider sections of the plot indicate a higher probability that a data point in
the group will have that value, while narrow sections indicate a low
probability that the data in the group falls in that range.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23877-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3658 | https://doi.org/10.1038/s41467-021-23877-4 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


primary source of intermediate and deep waters, with additional
contributions from the subduction of dense water formed
through brine formation and winter convection on Arctic
shelves2,20. Intermediate waters (extending from the halocline
down to ~1500–1700 m) circulate cyclonically along the margins
of the Eurasian and Amerasian Basins, with pathways following
the Lomonosov and Gakkel Ridges in the Eurasian Basin, and
recirculating cyclonic loops in the Makarov and Canada Basins2.
Deep water (>1700 m) circulation pathways are less understood,
but are thought to follow a cyclonic circulation from the Eurasian
Basin into the Amerasian Basin. Southward flowing cold, dense
intermediate and deep waters are transported through Fram Strait
and contribute to Denmark Strait Overflow Water and
NADW2,21–23.

Protactinium-231 is an excellent geochemical tracer of inter-
mediate and deep circulation because 231Pa concentrations are low
in surface waters (<0.05–0.1 dpmm−3 above 500m)9,15,24–26 but
increase with depth. A mass balance of 231Pa in the Arctic can
therefore reasonably exclude surface waters and focus on
intermediate and deep water exchange through Fram Strait.

Using surface sediment ratios, we have determined that ~74%
of the 231Pa produced in the Arctic is buried there, and ~26%
must be exported via intermediate and deep water advection. By
combining these estimates with water column concentrations, we
can determine the amount of intermediate and deep water
exchange that must occur through Fram Strait. At steady state,
the sources of 231Pa to the Arctic Ocean (production of 231Pa via
radioactive decay and advection of intermediate and deep waters
from the Greenland Sea into the Arctic) are balanced by losses
(particle scavenging and subsequent deposition in sediments, and
advection of intermediate and deep waters out of the Arctic). The
advective sources and sinks of 231Pa depend on the water fluxes
through Fram Strait and the concentrations of 231Pa in the
Greenland Sea and Arctic Ocean. To our knowledge, there is only
one published measurement of 231Pa in the Greenland Sea: 0.15
dpmm−3 (at 1700 m)10. However, similar activities of 0.11–0.16
dpmm−3 were measured in Fram Strait Branch water in the
Nansen Basin north of the Barents Sea15; this is water that
has just recently entered the Arctic through Fram Strait. We
therefore use a range of 0.11–0.16 dpmm−3 for inflowing
intermediate and deep waters. Activities in Canada Basin
intermediate and deep waters typically increase from ~0.1 dpm
m−3 around 500 m to ~0.6 dpmm−3 near the bottom (>3000 m),
while Eurasian Basin intermediate and deep waters increase from
~0.1 to ~0.5 dpmm−3,9,15,24–27. We therefore assume that
average 231Pa activities in intermediate and deep waters exported
from the Arctic are 0.2–0.3 dpmm−3.

Geostrophic estimates of water transport through Fram Strait
suggest a net transport of ~2 Sv out of the Arctic2,28. However,
most of this transport occurs at the surface. Marnela et al.29

suggest that the exchange of intermediate and deep waters
(defined therein as σ > 28.06) results in a net southward export of
~0.4 Sv. Assuming that the Arctic intermediate and deep water
outflow is 0.4 Sv greater than the Greenland Sea inflow, the 231Pa
mass balance indicates a southward outflow of Arctic waters of
1.1–4.8 Sv, and an inflow of 0.7– 4.4 Sv from the Greenland Sea
(minimum and maximum exchanges based on the range in water
column 231Pa activities). Alternatively, we can assume that the
inflow and outflow of intermediate and deep waters are equal; an
inverse model of volume fluxes through Arctic gateways suggests
that deep water inflow and outflow through Fram Strait are
approximately balanced30. In this case, the mass balance yields an
exchange of 1.3–6.4 Sv. Consequently, an export of 1.1–6.4 Sv of

southward flowing Arctic intermediate and deep waters is
needed to explain the observed 231Pa deficit in Arctic surface
sediments.

This estimate is within the lower bounds of the significantly
larger range of fluxes inferred previously from geostrophy and
ADCP analyses, which range from 1.8 to 18.4 Sv18,28,29,31,
depending on the density or depth range chosen and the
measurement approach. Our geochemistry-based estimate also
offers an advantage over more direct volume measurements,
because the activities of 231Pa reflect conditions integrated over
the water column residence time of this isotope (~100–200 years),
unlike snapshot measurements. Our 231Pa-based estimate
could be improved by increasing the number of dissolved 231Pa
measurements in the Greenland Sea, which would refine the
estimate of the northward 231Pa flux through Fram Strait. If the
231Pa activity of inflowing water is higher than the range
estimated here (0.11–0.16 dpmm−3), it would increase the
flux of southward flowing intermediate and deep waters, and
vice-versa.

Export of 1.1– 6.4 Sv from an Arctic Ocean basin volume of
1.1474 × 107 km3 (>1500 m, Fig. 1) implies that the residence time
of water below 1500 m is 57–331 y. Previously reported residence
times for Arctic intermediate waters are on the order of
decades32–39, while deep water residence time estimates range
from ~200 to 600 years in the Amerasian Basin and ~150–300
years in the Eurasian Basin38–41. Our estimate includes both deep
waters and intermediate waters, thus it is reasonable that our
range falls on the lower end of previous estimates for deep water
residence times.

The revised Arctic 231Pa budget presented herein provides a
geochemical constraint on modern circulation in Fram Strait
while also providing evidence that the 231Pa/230Th ratio can be
applied as a proxy for past changes in Arctic circulation. Given
these improved constraints on the 231Pa/230Th ratios of Holocene
Arctic sediments, future work should focus on developing
downcore records to investigate how changing Arctic outflows
may have influenced the formation of NADW through time. In
particular, further constraints on the amount of Arctic ventilation
during the Last Glacial Maximum are needed to resolve
conflicting records of persistent deep water export11,16 and
indications of an isolated, stagnant Arctic basin during this
period42.

Methods
Study region and sample locations. Samples were collected from existing cores
archived in multiple international repositories (Woods Hole Oceanographic
Institution, USA; U.S. Geological Survey, USA; Institute of Ocean Sciences,
Canada; Alfred Wegener Institute, Germany; GEOMAR Helmholtz Centre for
Ocean Research Kiel, Germany). Most samples were taken from the top 0 to 1 cm
of cores, however in some of the cores collected along the Beaufort shelf and slope
(MC-12, MC-21, MC-26, MC-42, MC-46) the top of the core was missing and
samples were collected from the shallowest available depth (deepest interval was
4–5 cm).

Isotopic analyses. Thorium (230Th, 232Th), protactinium (231Pa), and uranium
(234U, 238U) concentrations were measured using isotope dilution and mass
spectrometry on an Element 2 inductively coupled plasma mass spectrometer
(ICP-MS) at the Lamont-Doherty Earth Observatory of Columbia University.
Approximately 100 mg of sediment was spiked with 229Th, 233Pa, and 236U before
digestion in HClO4, HNO3 and HF43. Isotopes were separated by co-precipitation
with Fe(OH)3 followed by anion exchange column chemistry (AG1-X8 anion
resin)44,45. Reproducibility was assessed using internal standards of homogenized
Arctic sediments and North Atlantic sediments; relative standard deviations were
<6% for all isotopes. Background contamination was corrected for with Milli-Q
water blanks that were digested and analyzed using the same procedure as samples.
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Excess 230Th and 231Pa (230Thxs, 231Paxs) were calculated by subtracting
lithogenic 230Th and 231Pa (230Thlith, 231Palith) from total 230Th and 231Pa (230Thtot,
231Patot), respectively (all in activity per sample mass, or dpm/g):

230Thxs ¼ 230Thtot � 230Thlith ð1Þ

231Paxs ¼ 231Patot � 231Palith ð2Þ
This corrects for 230Th and 231Pa sourced from continental material rather than

produced via U decay in the water column. The lithogenic 230Th activity was
determined for each sample using the activity ratio of 238U and 232Th in lithogenic
material, (238U/232Th)lith, and the measured activity of 232Th (dpm/g), which is
solely of lithogenic origin46:

230Thlith ¼ ð238U=232ThÞlith*232Th ð3Þ
Similarly, lithogenic 231Pa activity was calculated using Eq. 3 multiplied by

0.046, the natural 235U/238U activity ratio:

231Palith ¼ 0:046*ð238U=232ThÞlith*232Th ð4Þ
This approach assumes that 238U and 235U are in secular equilibrium with

230Th and 231Pa, respectively, and that (238U/232Th)lith is known. Previous pan-
Arctic studies have used (238U/232Th)lith ratios between 0.5 and 0.7, most
commonly 0.6 ± 0.110,11,15,16. However, the Amerasian Basin is likely to have a
higher average (238U/232Th)lith than the Eurasian Basin due to the presence of
detrital carbonates in the Canadian Shield47, which can have 238U/232Th ratios as
high as 448. The bulk sediment 238U/232Th ratios measured in our samples were
higher in the Canada Basin compared to the Makarov, Nansen, and Amundsen
Basins, in line with previous studies10,14 (Supplementary Fig. 2). Due to this
geographic variation, we use a 238U/232Th ratio of 0.7 ± 0.1 to correct for lithogenic
inputs in the Canada Basin, and a ratio of 0.6 ± 0.1 to correct for lithogenic inputs
elsewhere. Using a higher lithogenic ratio causes the 231Paxs/230Thxs ratio (referred
to hereafter and in the main text as 231Pa/230Th ratio) to increase slightly.

Authigenic 230Th and 231Pa (produced through the in-situ decay of U that has
precipitated in reducing sediments) were not accounted for because we assume a surface
sediment age of 0 ka, thus no time has elapsed during which 230Th and 231Pa could have
accumulated from authigenic U decay (see Supplementary Discussion).

Errors on individual 231Pa/230Th ratios are reported as 2σ. As the errors on the
ICP measurements are only a few percent, the largest sources of error are the
sizeable lithogenic correction and the error on the detrital (238U/232Th)lith ratio.
Errors on averaged 231Pa/230Th ratios are reported as standard error (SE= σ=

ffiffiffi

n
p

),
to reflect increased confidence in the value as data coverage improves.

To compare our results with published data, we recalculated previously reported
231Pa/230Th ratios in the Canada Basin using a (238U/232Th)lith ratio of 0.7 when
possible10,11,15. For two samples in the Canada Basin near the Alpha-Mendeleev
Ridge, total 231Pa and 230Th were not reported and excess activities were based on
measured uranium activities rather than the (238U/232Th)lith ratio12,14.

Margin-basin designation. Samples were separated into central basin and margin
bins by eye based on proximity to the continental slope. As ridges are the second
largest physiographic province in the Arctic (preceded by continental shelves)49, it
is impossible to use a cutoff based on depth or distance to an isobath; this approach
would incorrectly place many of the samples collected from ridges into the margin
category. Sensitivity tests were performed to ensure that samples located in areas
that could be considered part of either bin (e.g., near the Chukchi Plateau,
Lomonosov Ridge near Siberia) did not change the conclusions of this study. In all
cases, moving these samples from one bin to another changed the average 231Pa/
230Th ratios of the margin and basin bins by <2%. Samples located in the
Greenland Sea and on the shallow shelf (<400 m) were not included in either the
basin or margin groups (n= 4).

Equal-area grid. Area-normalized averages were determined by gridding the data
into equal-area bins (Supplementary Fig. 1). Each bin has a height of 1-degree, and
an area of ~12,400 km2. The longitude range of each bin grows larger toward the
pole, as the number of bins per degree of latitude decreases. The assignment of each
bin as basin or margin is based on the location of the samples inside the bin, rather
than the center of the bin. Changing the bin size does not notably affect the results;
doubling the height of each bin from 1 to 2-degrees of latitude increases the average
margin 231Pa/230Th ratio by 5% and does not change the average basin ratio.

Sediment mass balance of protactinium-231. If all the 231Pa lost from the central
basin was balanced by boundary scavenging along the margins (i.e., if the Arctic had no
deep water connection to the Atlantic), then the deficit of 231Pa reflected in 231Pa/230Th
ratios measured in the central basin (231Pa/230Thbasin) multiplied by the volume of the
central basin (Vbasin) must be balanced by 231Pa excesses in the margin ratios (231Pa/
230Thmargin) multiplied by the volume of the margin box (Vmargin)16:

ð231Pa=230Thmargin � 0:093Þ*Vmargin ¼ ð0:093� 231Pa=230ThbasinÞ*Vbasin ð5Þ
In reality, not all of the 231Pa missing from the central basin is deposited along

the margins, but some is exported to the Nordic Seas. To determine the fraction of
missing 231Pa that can be found at the margins (f), the observed margin ratio is

compared to the expected value determined in Eq. 5:16

f ¼
ðmeasured231Pa=230Thmargin � 0:093Þ
ðexpected231Pa=230Thmargin � 0:093Þ ´ 100% ð6Þ

The volume of the central basin was determined by drawing a polygon following
the 1500m isobath but including the ridges, such that regions shallower than 1500
m inside the polygon were considered part of the basin (Fig. 1). The volume inside
the polygon (Vbasin) is 1.1474 × 107 km3 (based on the ETOPO2_v2 2 min gridded
bathymetry from NOAA; www.ngdc.noaa.gov/mgg/global/etopo2.html). The
volume of the margins (Vmargin; shelves and slope down to 1500m) was determined
to be 0.1516 × 107 km3 by subtracting the basin volume from the total Arctic volume
(1.2990 × 107 km3)50.

Water column mass balance of protactinium-231. The mass balance of 231Pa in
the Arctic water column is summarized in Eq. 7:

VAO*∂
231Pa=∂t ¼ β231VAO � S231VAO þ ð231PaGSÞFGS � ð231PaAOÞFAO ð7Þ

Where β231 is the production rate of 231Pa (dpm m−3 y−1), S231 is the
scavenging rate of 231Pa (dpm m−3 y−1), 231PaGS and 231PaAO are the activities of
231Pa in the Greenland Sea and Arctic Ocean, respectively (dpm m−3), FGS and FAO
are the northward and southward water fluxes through Fram Strait, respectively
(m3 y−1), VAO is the total volume of the Arctic Ocean50, and ∂231Pa/ ∂t is the
change in Arctic 231Pa concentration through time. At steady state, ∂231Pa/ ∂t is
zero. Based on our 231Pa sediment mass balance, S231 is equal to 0.74 β231. Because
both FGS and FAO are unknowns, another equation is needed to solve for the
volume exchange through Fram Strait. If we assume that the inflow and outflow of
intermediate and deep waters is the same (F= FGS= FAO), Eq. 7 then simplifies to:

F ¼ 0:26β231VAO=ð231PaAO � 231PaGSÞ ð8Þ
If we assume a net southward export of 0.4 Sv (1.26 × 1013 m3 y−1)29, then FAO

= FGS+ 1.26 × 1013 m3 y−1 and Eq. 9 can be solved for FAO:

FAO ¼ ð231PaGS*1:26 ´ 1013 � 0:26β231Þ=ð231PaGS � 231PaAOÞ ð9Þ

Data availability
The data that support the findings of this study are available through the World Data
Service for Paleoclimatology (https://www.ncdc.noaa.gov/paleo-search/study/31932) and
in Supplementary Dataset 1.
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