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Abstract 

New insights on how changing hydroclimate might affect crop yields -- and a way to avoid the 
worst of it 

 
Corey Samuel Lesk 

 Climate change threatens global food security by increasing extreme-weather shocks and 

reducing the productivity of major global crops. While recent research has highlighted the risk of 

rising extreme heat, comparatively little is known about how the intensity distribution of rainfall, 

and rainfall’s interactions with heat, influence global crops. Further, as the broader climate 

transition gains momentum, the industrial activities needed to mitigate and adapt to climate change 

will emit CO2. These emissions remain unquantified and largely ignored in research and policy, 

and thus present an under-assessed risk to crops and society at large. 

This thesis advances the understanding of present and future agricultural risks from two 

aspects of hydroclimatic complexity: hourly rainfall intensity and temperature-moisture (T-M) 

couplings. Both aspects are expected to shift under climate change, with highly uncertain crop 

impacts.  It further simulates the adaptation and mitigation emissions embedded in the broader 

climate transition, illuminating a previously under-appreciated benefit of enhance climate 

ambition. 

Climate warming is expected to intensify rainfall, decreasing the frequency of drizzle while 

boosting heavy and extreme events. I show that surprisingly heavy rainfall is optimal for US maize 

and soy yields, with yield loss due to drizzle and very extreme downpours. As a result, the future 

concentration of rainfall into fewer, heavier hourly events will benefit crop yields 2-3%, partly 

offsetting larger damages from warming.  



 

T-M couplings arising from land-air interactions and atmospheric circulation may shift 

under 21st Century warming, altering the likelihood of concurrent heat and drought extremes, with 

uncertain risks to crops. I demonstrate that maize and soy grown in regions with strong T-M 

couplings historically suffered enhanced crop sensitivity to heat. These couplings will strengthen 

over most of global croplands this century, worsening the impact of warming on crops by 5% 

globally, with large regional variations.  

The energetic demands of the broader climate transition – such as steel for wind turbines, 

and concrete for coastal barriers – will initially be satisfied by fossil fuels. I show that simulated 

mitigation and adaptation will emit 185GtCO2 by 2100 under a transition path consistent with 

current policies (~2.7°C warming by 2100), equivalent to half the remaining carbon budget for 

1.5°C. However, these emissions can be reduced by 90% under a 1.5°C transition path, a 

previously unidentified co-benefit of enhanced climate ambition. 
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Introduction 

The global emissions trajectory and the future of climate extremes 

The 26th Conference of the Parties (COP 26) to the United Nations Framework Convention 

on Climate Change in 2021 was at once watershed and a missed opportunity. Most countries 

enhanced their national greenhouse gas mitigation pledges, inching their aggregate climate 

pathway 0.3°C closer to the 1.5°C maximum warming goal agreed to in Paris (Rogelj et al., 2016). 

However, even if these enhanced pledges come to fruition, the planet is on track for additional 

warming of 1.8-2.3°C (Climate Action Tracker, 2021; UNEP, 2020).  

The watershed was spiritual – there is now wind in the sails of the clean energy transition 

and the imperative of adaptation. The broader climate transition – including mitigation and 

adaptation – is no longer a question of ‘if’, but ‘when ’and ‘how’. The missed opportunity was to 

actually align policy pledges with the strong biogeoscientific consensus that any warming above 

1.5°C is a risk to planetary and human wellbeing not worth taking (Hoegh-Guldberg et al., 2018). 

Drastic mitigation effort would be needed throughout the 2020s, but pledges are still falling short, 

and global policy priorities have shifted to address more near-term concerns of pandemics and 

conflicts. 

Given this status quo, some serious consequences of climate change are unlikely to be 

avoided. While gradual warming and changes in precipitation will affect ecosystems and human 

societies, the bulk of climate damages are likely to be concentrated in worsening extreme climate 

events including droughts, extreme heat, and extreme precipitation (Sippel et al., 2018; E. Vogel 

et al., 2019). These events have already become more frequent, intense, and widespread in recent 

decades, and are robustly projected to continue in that direction as long as humans emit net 

greenhouses gases into the atmosphere (Seneviratne, 2019). 
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Of particular concern are compound extreme events, a topic that has drawn substantial 

academic interest and societal anxiety in the past few years. Various forms and conceptualizations 

of compound extremes have been identified and proposed (Leonard et al., 2013; Raymond et al., 

2020; Zscheischler et al., 2020), but they all address two potentials. First, interactions among 

physical climate process in the genesis of extremes can cause them to take on unique multivariate, 

spatial, and temporal characteristics, and pose unique challenges (Zscheischler & Seneviratne, 

2017). Second, extremes with compound multivariate, spatial, and temporal dimensions often 

induce unique and severe impacts on human and natural systems (Van Der Wiel et al., 2020). For 

instance, a heat wave can have outsize impacts on vegetation during meteorological drought 

(Gampe et al., 2021), not only because the atmospheric drivers of heat and drought are connected 

and mutually amplifying (Seneviratne et al., 2010), but because combined heat-and-drought 

stresses can trigger especially severe disruption to plant physiology and photosynthesis (Suzuki et 

al., 2014). 

 

Compound extremes and global stable crops 

 Climate is a major driver of temporal and spatial variation in crop yield (i.e., harvested 

product per unit area, or productivity). Although the number of calories produced only partly 

determines food security—questions of access and distribution are also fundamental—productive 

crops underpin the global food system, commodity prices, human wellbeing, and rural 

livelihoods. Other social and natural factors such as policy and pathogens also influence crop 

production, and can complicate detecting climate signals. Nevertheless, up to half of year-to-year 

variation in crop yields globally can be explained by variation in climate (Frieler et al., 2017; 
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Ray et al., 2015), with extreme events playing a particularly important role (E. Vogel et al., 

2019). 

As climate-related hazards mount, temperature extremes, drought, and moisture excess are 

increasingly colliding in space and time (Lesk & Anderson, 2021; Ridder et al., 2022; Sarhadi et 

al., 2018; Zscheischler et al., 2020). The compound effects of multiple, interacting climate 

extremes pose a challenge to understanding how climate variability affects staple crop yields, 

projecting the impacts of multifaceted future climate change, and adapting cropping and food 

systems. Further, changing interactions between heat, moisture, atmospheric CO2 concentration 

and plants are among the largest uncertainties surrounding how climate change will affect global 

crop productivity.  

For example, pioneering statistical modeling of agricultural data revealed a particular 

sensitivity of staple crop yields to extreme heat (Lobell et al., 2011; Schlenker & Roberts, 2009). 

However, while extreme temperatures can directly disrupt metabolism, damage crop tissue, and 

reduce yield capacity, they can also induce moisture stress by raising evaporative demand 

(Buckley, 2019; Grossiord et al., 2020). Land-surface drying also often amplifies atmospherically-

driven heating, physically linking the two extremes (Miralles et al., 2019; Brigitte Mueller & 

Seneviratne, 2012). Furthermore, crop responses to combined drought and heat stresses are 

physiologically distinct from those to individual stresses (Cohen et al., 2021; Ostmeyer et al., 

2020), and often more severe (Matiu et al., 2017). Such connections between water and heat in the 

physics of climate extremes and the biology of their crop impacts raise the potential for compound, 

interactive effects of changing precipitation, temperature, and aridity. 

Recent data and experimental advances have enabled disentangling and diagnosing 

correlated climate drivers of crop yields, and more complete and accurate projection of future 
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agricultural risks and opportunities. Applications of satellite observations of root-zone soil 

moisture, for instance from the Soil Moisture Active-Passive (SMAP) project (Entekhabi et al., 

2010), have provided the most direct evidence to date of the importance for crop yields of soil 

water supply relative to atmospheric demand (Ortiz-Bobea et al., 2019; Rigden et al., 2020). These 

results help explain the resistance of irrigated crop yields to high temperatures that would strongly 

suppress the yield of rainfed crops (Carter et al., 2016; Schauberger et al., 2017). They further 

provide mechanistic clarity on the particularly severe yield effects of combined heat and drought 

(Matiu et al., 2017). 

Future changes in crop productivity will thus depend on the evolution of many climate 

variables and their interactions. However, projections of the response of some of these variables 

to anthropogenic greenhouse gas emissions are highly uncertain. Critically, the response of soil 

moisture to climate warming is complicated by uncertainty over future changes in precipitation 

and its partitioning to soil moisture, runoff, and evapotranspiration (Allan et al., 2020; Ault, 2020; 

Fowler et al., 2021; Scheff et al., 2021; Ukkola et al., 2020). Future warming is, by contrast, 

projected with relatively high confidence. But the degree to which warming will benefit or hurt 

crop yields will ultimately depend on hydrologic variables and their co-variability with 

temperature. 

The emerging mechanistic understanding of compound climate impacts on crops thus 

raises new scientific questions and presents challenges for adapting crops and farming systems to 

climate change. The overarching goal of the first two chapters of this thesis is to understand the 

historical and future implications for crop yields of two modes of heat-moisture co-variability that 

drive compound extremes. The first is the dependence of sub-daily rainfall intensity on 

temperature, and the second is the seasonal temperature-moisture couplings that control 
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imbalances of moisture supply and demand. Below, I briefly characterize the present 

understanding of – and key knowledge gaps in – these two modes of heat-moisture co-variability 

and their crop impacts. 

 

Sub-daily rainfall intensification and its crop implications (prelude to Chapter 1) 

Although early statistical analyses of crop-climate relationships found little global 

influence of seasonal total precipitation on yields (Lobell et al., 2011; Schlenker & Roberts, 2009), 

more recent studies have demonstrated improved prediction of historical crop yields using 

microwave soil moisture observations (Ortiz-Bobea et al., 2019; Rigden et al., 2020), at least in 

the US where observations are sufficiently available. In particular, these studies stress the 

importance of plant-available soil moisture relative to atmospheric vapor demand. A possible 

explanation for the weak statistical link between crop yields and seasonal precipitation is that the 

latter may only weakly determine the sub-seasonal evolution of soil moisture. Many factors can 

mediate whether falling precipitation becomes plant-available as soil moisture or is lost to runoff 

or evaporation, including canopy structure, interception dynamics, and soil texture and 

permeability. However, the relevance of these factors ultimately depends on the intensity of the 

incoming precipitation, which on sub-daily timescales can vary by up to three orders of magnitude 

and is closely dependent on temperature. 

On sub-daily timescales, warmer temperatures are linked to heavier rainfall because water-

holding capacity of the atmosphere rises approximately 7%/°C (or, more precisely, because the 

water vapor pressure at which free-surface condensation and vaporization reach equilibrium 

increases by 7%/°C, such that at saturation, warmer air contains more vapor than cooler air). 

Further, surface heat can favor rising air (convection), additionally fueling thunderstorms 
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dynamically and boosting rainfall intensification up to 40%/°C. Future change in this moisture-

heat interaction is relevant for crops for two reasons.  

First, overall rainfall intensity is expected to increase with long-term warming, shifting the 

sub-seasonal rainfall distribution. Hourly to daily rainfall events have intensified in recent decades 

according to observational trends at rates exceeding earlier model- or theory-based projections, 

with greater increases at sub-daily time scales  (Ali et al., 2021; Fowler et al., 2021; Westra, S., 

Fowler, H. J., Evans et al., 2014). The concentration of total rainfall into fewer, heavier events 

implies that precipitation frequency may decrease overall (Dai et al., 2020). The crop yield 

implications of these rainfall intensity and frequency changes across sub-seasonal timescales 

remain uncertain. For example, studies using daily rainfall totals estimate yield losses with rainfall 

intensification due to the decreasing number of rainy days during the growing season, even if total 

growing season precipitation remains constant or increases (Fishman, 2016; Shortridge, 2019). 

However, analyses at the daily scale aggregate a wide diversity of sub-daily rainfall intensities – a 

daily 25mm rainfall total can occur as a single hour of severe thunderstorms, or as a full day of 

steady drizzle. The crop yield response to hourly rainfall intensity remains crucially understudied, 

yet essential to project the crop implications of simultaneous rainfall changes across sub-daily to 

seasonal timescales.  

Second, since heavy short-duration rainfall is more likely on hot days in many regions, 

future extreme heat and precipitation may become increasingly concurrent. Rainfall intensities 

have been observed to increase with temperature on hourly-to-daily scales, consistent with theory 

(Fowler et al., 2021; Westra, S., Fowler, H. J., Evans et al., 2014). As such, compound extreme 

heat-precipitation events are relatively common – for instance, over 1960-2016 in China, 23% of 

precipitation extremes immediately followed a heat event (Ning et al., 2022). However, the 
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understanding of compound or compensating extreme heat-precipitation impacts on crop yields is 

limited. Further research is needed on the extent to which future rainfall intensification on hot days 

– or other convection-related covariates such as cloud cover – might alleviate or exacerbate the 

crop yield impacts of increasing extreme heat. 

Chapter 1 of this thesis examines the historical sensitivity of US crop yields to hourly 

rainfall intensity, and projects the yield impacts of rainfall intensification under warming. It 

constitutes a novel effort to understand the influence of sub-daily rainfall intensity on crops, and 

lays groundwork for integrating insights at that timescale across sub-seasonal timescales. Further, 

it provides an initial estimate of the extent to which rainfall intensification may counteract the 

impacts of hotter future heat extremes. 

 

Temperature-moisture couplings and compound climate risks to crops (prelude to 

Chapter 2) 

The land-atmosphere system is connected through large-scale atmospheric circulation 

(dynamics), the land surface water-energy balance (thermodynamics), and regulation of land-

surface water and energy fluxes by vegetation (physiology). These mechanisms often occur 

simultaneously, and together strongly determine the co-variability of temperature and moisture, 

and thus the occurrence of compound extremes like combined heat and drought, which so strongly 

impact crop yields. 

Heat waves are generally driven by atmospheric blocking, which results in high pressure 

atmospheric circulation patterns favoring clear skies, warm and descending winds, and high solar 

radiation (Horton et al. 2016). Such heat-wave patterns thus typically co-occur with low 

precipitation (Trenberth & Shea, 2005). These large-scale dynamic land-atmosphere interactions 
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can amplify (Koster et al., 2016), mitigate (Zhou et al., 2021), or shape the timing and location (A. 

Berg et al., 2017) of hot-dry extremes by altering moisture convergence or monsoon onset.  

Thermodynamic land-atmosphere interactions primarily concern the partitioning of 

incoming energy at the land surface into that used to evaporate water (latent heating) and that 

which increases surface temperatures (sensible heating). If the land surface becomes water-limited, 

air temperatures rise quicker, as more energy is partitioned to sensible heating, creating a positive 

feedback between decreasing soil moisture and increasing temperature (A. Berg et al., 2016; 

Miralles et al., 2019; Seneviratne et al., 2010). This feedback occurs most strongly in semi-humid 

to semi-arid (i.e, transitional) zones, including important breadbaskets in Central Europe and the 

North American Great Plains (Zscheischler & Seneviratne, 2017). In these regions climate change 

is expected to strengthen this land-atmosphere feedback by increasing evaporative demand and 

drying surface and root-zone soil moisture (Cook et al., 2020), boosting the occurrence of joint 

hot-dry extremes in the warm season (A. Berg et al., 2014, 2016; Zscheischler & Seneviratne, 

2017). These interactions have likewise been observed to work in reverse over more humid mid-

latitude and tropical breadbaskets, where increased evapotranspiration from soils and natural 

vegetation cools summertime temperatures (N. D. Mueller et al., 2017; Singh et al., 2018). In these 

regions, climate change may nonetheless strengthen land-atmosphere interactions during droughts, 

resulting in extremely dry days that are hotter than would be expected from warming alone (Byrne, 

2021). 

Natural vegetation and its physiological responses to climate further alter 

evapotranspiration, the terrestrial water cycle, and the evolution of compound climate extremes 

(Lian et al., 2018; Wei et al., 2017). For instance, stomatal closure during high temperatures and 

VPD can conserve soil moisture, but boost land temperatures (Miralles et al., 2019; Teuling et al., 
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2010). The influence of natural vegetation on regional climate extremes will likely shift as higher 

atmospheric CO2 concentrations alter vegetation physiology (McDermid et al., 2021; Skinner et 

al., 2018; Swann et al., 2016). However, the magnitude and even sign of these changes are actively 

debated (Cook et al., 2020; Allan et al. 2020). 

Heat and moisture variations are closely linked not only in the climate system through these 

three categories of interaction, but within crops through complex physiological interactions at the 

molecular to plant scales. Crop physiological responses to combinations of extremes – such as 

extreme heat and low soil moisture – are often unique and cannot be adequately extrapolated from 

responses of the individual components (Choudhury et al., 2017; H. Zhang & Sonnewald, 2017). 

Additionally, the order of occurrence of these extreme (e.g., co-occurring or sequential) elicits 

varying degrees of complex responses - defined by different, and sometimes opposing, signaling 

pathways (Suzuki et al., 2014). Ultimate yield impacts of compound extremes thus reflect 

intertwined physiological responses to multiple aspects of climate. 

Climate change entails not only changes in long-term means and extremes of temperature, 

precipitation, and soil moisture, but also in their co-variability, which is largely determined by the 

processes described above. The historical climate dynamics and future evolution of these processes 

is a topic of ongoing interest. However, their relevance to global crop yields, now and in the future, 

remains largely unstudied. In Chapter 2, I statistically characterize the strength of temperature-

moisture couplings over global croplands, examine how the strength of these couplings has 

historically influenced crop yield sensitivity to temperature, and apply a suite of climate model 

projections to assess the likely impacts of future changes in the couplings. By connecting the 

known crop risks of compound heat-drought events with their underlying climate dynamics, I draw 

new insights that help constrain future risks and better define the challenge of adaptation. 
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The incremental risk of warming to crops and the need for an effective climate 

transition (a rationale for Chapter 3) 

As I will show, the hydroclimatic nuances explored in Chapters 1 and 2 are important to 

understand to what degree and by which mechanisms future climates will result in crop yield 

changes in the absence of adaptation. Further, by clarifying the mechanisms of impacts, the results 

of these chapters provide useful guidance to crop adaptation, which I expand briefly upon in the 

chapters and the Conclusions. However, these results broadly confirm their motivating concern: 

climate change will on average reduce crop productivity this century.  

While fossil fuel combustion has provided easy energy to power rising living standards 

globally, its by-products now threaten the most basic underpinnings of human wellbeing. 

Nevertheless, process-based crop model projections suggest the majority of crop impacts can be 

avoided by limiting greenhouse gas emissions and climate warming (Jonas Jägermeyr et al., 2021; 

Schleussner et al., 2018). Under a high-emissions scenario (SSP5-8.5, ~4°C warming by 2100), 

global average maize yields decline by 30% in 2100 in the ensemble mean, compared with 6% in 

a moderately-ambitious mitigation scenario (SSP1-2.6, 1.8°C warming) (Jonas Jägermeyr et al., 

2021). Between 1.5 and 2°C, uncertainties related to CO2 physiological effects are strong 

compared to temperature signals, making definitive claims of differential impacts challenging 

(Schleussner et al., 2018). However, any amount of additional warming will reduce crop yields in 

the tropics, where households are most reliant on subsistence agriculture and where adaptive 

capacity is generally weakest.  

For this and myriad other reasons, prompt, rapid, sustained, and effective mitigation of 

greenhouse gas emissions is overwhelmingly necessary. In this thesis, I focus on the clean energy 
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transition component of mitigation (as opposed to, for instance, reducing land-use emissions), 

partly because fossil fuel combustion is the largest source of emissions, and for technical reasons 

discussed in Chapter 3. The economic, technical, and political dimensions of clean energy 

transition proposals have been debated extensively (F. C. Moore et al., 2022; Pahle et al., 2022), 

and low-emissions energy systems are already being implemented at an accelerating rate (IEA, 

2021). Alongside this trend, the imperative of adapting to the climate impacts we cannot (or choose 

not) to avoid is becoming clear (Berrang-Ford et al., 2021). Together, the twinned projects of 

deploying of clean energy systems and adapting to climate impacts can be thought of as a broader 

climate transition.  

This transition will entail a massive global industrial project lasting at least decades. 

Initially, this project will inevitably be powered by fossil fuels as the dominant energy source at 

present, and will thus emit greenhouse gases. Rigorous accounting of the emissions produced by 

the current and future global economy is essential to effectively plan and execute the climate 

transition. Emissions accounting is also being increasing applied in the private sector for climate 

risk disclosure, with attendant potential for greenwashing. However, the broader climate transition 

is presently a small part of the economy, and its likely future emissions have not yet been 

constrained. This among other accounting omissions come with a risk that underappreciated future 

emissions sources jeopardize meeting globally agreed-upon mitigation targets. In Chapter 3, I aim 

to fill this gap by modeling the emissions likely to result from selected mitigation and interventions 

during the broader climate transition.  
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Chapter 1: Net benefits to US soy and maize yields from intensifying 
hourly rainfall 

Published 10 August 2020, Nature Climate Change, https://doi.org/10.1038/s41558-020-0830-0 

 

Many varieties of short-duration extreme weather pose a threat to global crop production, food 

security, and farmer livelihoods (Lesk et al., 2016; Schlenker & Roberts, 2009; Troy et al., 2015; 

E. Vogel et al., 2019). Hourly exposure to extreme heat has been identified as detrimental to crop 

yields (D. B. Lobell et al., 2013; Schlenker & Roberts, 2009), however the influence of hourly 

rainfall intensity and extremes on yields remains unknown (Rosenzweig et al., 2002; Troy et al., 

2015; van der Velde et al., 2010). Here, we show that while maize and soy yields in the US are 

severely damaged by the rarest hourly rainfall extremes (≥50mm hr-1), they benefit from heavy 

rainfall up to 20 mm hr-1, roughly the heaviest downpour of the year on average. We also find that 

yields decrease in response to drizzle (0.1-1 mm hr-1), revealing a complex pattern of yield 

sensitivity across the range of hourly intensities. We project that crop yields will benefit by ~1-3% 

on average due to projected future rainfall intensification under climate warming (O’Gorman & 

Schneider, 2009; Westra, S., Fowler, H. J., Evans et al., 2014), slightly offsetting larger expected 

yield declines from excess heat, with the benefits of more heavy rainfall hours outweighing the 

damages due to additional extremes. Our results challenge the view that an increasing frequency 

of high-intensity rainfall events poses an unequivocal risk to crop yields (Rosenzweig et al., 2002; 

E. Vogel et al., 2019; Zhu & Troy, 2018) and provide insights that may guide adaptive crop 

management and improve crop models. 
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1) Introduction 

Crop production is sensitive to variation in climate and weather, with 30-40% of variability in 

global crop yields attributable to monthly and seasonal climate (Lobell & Field, 2007a; Ray et al., 

2015). Recent research has emphasized the important impacts of short-duration weather extremes 

on crop yields, particularly the steep reductions from hourly exposure to high temperatures (Lobell 

et al., 2013; Schlenker & Roberts, 2009). However, the influence of short-duration rainfall 

intensity and extremes on yields remains scarcely understood and is widely omitted from historical 

analyses, crop models, and climate risk projections (Li et al., 2019; Rosenzweig et al., 2002; Troy 

et al., 2015; Urban, Roberts, et al., 2015; van der Velde et al., 2010; E. Vogel et al., 2019). 

Assessments of the effects of rainfall variability on crop yields have focused on monthly 

to seasonal total accumulation, detecting regionally variable and often weak relationships(Lobell 

et al., 2013; D. B. Lobell & Gourdji, 2012; Lobell & Burke, 2008; David B Lobell & Field, 2007a; 

Ray et al., 2015; Schlenker & Roberts, 2009). However, rainfall occurs in events with mean 

duration of several hours that vary in intensity by up to three orders of magnitude, from less than 

1 to over 100mm hr-1 (Palecki et al., 2005; Thorp & Scott, 1982). The response of crop yields to 

both extreme and common rainfall intensities remains obscured by analyses using longer-term 

rainfall totals. Given that the largest changes to rainfall climatology under global warming are 

projected to occur at sub-daily time scales (Westra, S., Fowler, H. J., Evans et al., 2014; W. Zhang 

et al., 2017), anticipating and adapting to the impacts of climate change on global crop production 

require a detailed understanding of the yield response to short-duration rainfall intensity. 

In this study, we assess the sensitivity of crop yields in the United States to hourly rainfall 

intensity and extremes over 2002-2017. Combining high spatial resolution hourly rainfall 

observations with county-level maize and soy yield data, we identify threshold intensities of 
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extreme downpours with damaging effects on yields and two additional non-extreme intensity 

zones with significant impacts. We then illustrate the importance of hourly rainfall intensity to 

crops by comparing its influence to that of rainfall distribution across other timescales. Finally, we 

project future crop yield impacts under three scenarios of changing rainfall intensity in response 

to climate warming.  

2) Results and discussion 

We find substantial deleterious effects of the most extreme rainfall events on crop yields. County-

level maize yields decline by 23-45bu ac-1 per hour of exposure to rainfall with intensities of 80-

90mm hr-1 (P < 0.05, Fig. 1a-b, Appendix A Table 1), or 16-32% of the national mean yield. Soy 

yields decline at lower intensity thresholds of 50-70mm hr-1 and by a smaller amount of 2 to 4bu 

ac-1 per hour of exposure, or 5-10% of the national mean (P < 0.01, Fig. 1c-d, Appendix A Table 

1). This yield reduction is similar for soy and larger for maize compared with daily exposure to 

extreme temperatures of 40℃ (~7% per day) (Schlenker & Roberts, 2009).  

The impacts of such extreme rainfall events may result from direct damage to plant tissue, 

either by rainfall or the wind and hail that often accompany such storms (Lepore et al., 2016). 

Indirect mechanisms such as waterlogging and rhizosphere anoxia (Ashraf & Habib-ur-Rehman, 

1999; Rosenzweig et al., 2002) or soil erosion (Martínez-Casasnovas et al., 2002) and soluble 

nutrient leaching (Meisinger & Delgado, 2002) may also cause or compound the yield reduction. 

These potential mechanisms may explain the differing responses between crops: soy may be 

damaged at a lower intensity than maize due to its broader foliar configuration and weaker stems, 

while the magnitude of damage may be mitigated by its nitrogen fixation capacity (Meisinger & 

Delgado, 2002; Zahran, 1999).  
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Figure 1: Sensitivity of maize and soy yields to hourly rainfall intensity. a) National mean 
county-level maize yield sensitivity (±SE) to hourly rainfall intensity per hour of exposure over 
2002-2017. b) Same as a, but on symmetric logarithmic axes. c-d) Same as a-b, but for soy. Vertical 
dashed lines denote the indicated percentiles of climatological rainfall intensity. Sensitivities are 
inferred from a model controlling for exposure to beneficial and excessive heat and seasonal total 
rainfall. Sample sizes reflect county-year pairs. Dark green and red points indicate significant 
positive and negative sensitivities (two-sided P < 0.05, Appendix A Table 1). Transformed 
standard error estimates are omitted in b and d for clarity. 
 

The damaging rainfall extremes exceed the 99.95th percentile of hourly intensity, representing 

once-per-decade to once-per-century events (Fig. 1, Fig. 2, Appendix A Table 2). In contrast, crop 

yields benefit from heavy rainfall up to the 99.5th percentile of hourly intensity, roughly a once-

per-year event. Yields increase by ~1bu ac-1 hr-1 for maize and ~0.1bu ac-1 hr-1 for soy from 

exposure to heavy rainfall ranging from 5-20mm hr-1 (P < 0.001, Fig. 1a-d). Meanwhile, exposure 

to very light ‘drizzle ’(0.1 to 1mm hr-1) corresponds to significant yield reductions in both maize 

(~0.1bu ac-1 hr-1, P < 10-8) and soy (~0.01bu ac-1 hr-1, P < 10-8). This drizzle effect is significant 

from 0.1-2.2mm hr-1 for maize and 0.1-1.4mm hr-1 for soy, and largest in magnitude between 1 and 

2mm hr-1 (Appendix A Fig. 3).  
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Figure 2: Frequency distribution of hourly rainfall intensities. National average county-level 
number of exposure hours per season (blue bars) and estimated national return frequency (yellow 
curve) for each hourly rainfall intensity bin over 2002-2017. Fine dotted line represents a once-
per-year occurrence (mean hours per season of 1), such that bars above the line occur annually 
on average while bars below the line occur less than once per year. For the return frequency, a 
value of 1 (horizontal dashed line) indicates an event that occurs in every year for each county in 
the sample. Vertical dashed lines denote the indicated percentiles of climatological rainfall 
intensity. 
 

Our analysis thus reveals a pattern of yield responses to rainfall intensity that varies 

substantially across the range of hourly intensities and is broadly consistent between the two crops. 

The estimated magnitude of yield responses to drizzle and heavy rainfall are at least as large as 

those to the more widely-studied seasonal total rainfall and multi-day extremes (Fig. 3). Crucially, 

we find positive or statistically insignificant yield sensitivities to annual maxima of hourly and 

daily rainfall (Fig. 3), likely because these measures capture beneficial heavy hourly intensities (E. 

Vogel et al., 2019; Zhu & Troy, 2018) (the mean national maximum hourly rainfall is 29mm hr-1, 

Fig. 2, Appendix A Fig. 6). These findings underline the importance of accounting explicitly for 

sub-daily intensity in understanding and projecting the impact of rainfall on crops, as simple annual 
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maxima or percentile-based definitions may conceal crucial complexities and non-linear responses 

(Li et al., 2019; Urban, Roberts, et al., 2015; E. Vogel et al., 2019; Zhu & Troy, 2018). 

 
Figure 3: Crop yield sensitivity to rainfall distribution across timescales. Yield sensitivity 
estimates (±SE) to five measures of sub-seasonal rainfall distribution and select hourly intensities 
over 2002-2017 for a) maize, and b) soy. Sub-seasonal measures include seasonal total rainfall 
(mm), duration of the longest dry spell (days), and seasonal maxima of 5-day, 1-day, and hourly 
total accumulations (mm). Sensitivities are standardized to enable comparison among measures 
of differing units and variances. All p-values are two-sided and NS denotes coefficients P > 0.05. 
 
 

Because we control for seasonal total rainfall, our estimated yield sensitivities reflect the yield 

impact of an incremental hour at a given rainfall intensity aside from its contribution to integrated 

moisture conditions. Our results thus suggest that heavy rainfall benefits crops because of its 

intensity, not merely because it contributes greater moisture than lower intensities. The significant 

benefits to crop yields from zero rainfall hours are consistent with this interpretation (Fig. 1): given 

the seasonal total rainfall control and the fixed total number of hours per growing season, each 
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incremental dry hour reduces the incidence of damaging drizzle and increases that of beneficial 

heavy rainfall (Fig. 1).  

Regional differences in the pattern of yield response to rainfall intensity suggest that heavy 

rainfall benefits yields by providing moisture that is more plant-available than drizzle (Dastane, 

1978; Van Elewijk, 1989). A higher fraction of heavier rainfall infiltrates the root zone, while a 

higher fraction of drizzle evaporates from the canopy, evading the crop. By this logic, heavy rain 

would offer a greater advantage to more moisture-limited crops. Indeed, we find contrasting yield 

responses to drizzle versus heavy rainfall consistent with the national pattern in the more moisture-

limited northeastern and western portions of our study region, but not in the wetter southeast where 

heavy rainfall is ~25% more frequent (Appendix A Fig. 2, Appendix A Table 3, see Methods). 

Consistent with this potential mechanism, we find a weaker contrast between drizzle and heavy 

rainfall effects on yield in more heavily irrigated counties (Appendix A Fig. 3). The damaging 

effect of drizzle most likely reflects a missed opportunity to receive heavy rainfall, but may also 

arise partly from conditions conducive to foliar fungal pathogens (Harvell et al., 2002; Munkvold, 

2003). Further research into interactions between rainfall intensity and the canopy-soil continuum 

may clarify the mechanism behind the contrasting impacts of heavy rainfall and drizzle.  

In contrast to rare damaging extremes, drizzle and heavy rainfall occur essentially every year 

for each county in our sample (Fig. 2). To account for the variable incidence of differing rainfall 

intensities, we estimate the integrated seasonal yield sensitivity by weighting the per-hour 

sensitivities (Fig. 1) by the average seasonal total exposure hours for each intensity bin (Fig. 2, 

Appendix A Table 2, see Methods). Despite large per-hour sensitivity to extreme rainfall, the 

magnitude of the integrated seasonal sensitivity to heavy rainfall and drizzle (order 1-10bu ac-1) 

exceeds that of extremes (order 0.01-0.1bu ac-1) due to their relative commonness (Fig. 2, Fig. 4a-
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b, Appendix A Table 2). In the current climate, we estimate a combined net negative yield impact 

from the hourly rainfall intensity distribution (2.2% of the mean national yield for maize and 1.6% 

for soy), with the dominant negative influence of drizzle only partly offset by the benefit of heavy 

rainfall (Fig. 4c-f). This indicates sup-optimal hourly rainfall distribution in the current climate. 

In a warming climate, heavy and extreme rainfall events are expected to intensify because the 

saturation vapour pressure of air increases by ~7%/K, boosting precipitable water in the 

atmosphere (O’Gorman & Schneider, 2009; Westra, S., Fowler, H. J., Evans et al., 2014). 

However, rainfall intensification may exceed this scaling as condensation and latent heating 

enhance convection (P. Berg et al., 2013; Lenderink & Van Meijgaard, 2008), an effect which may 

be amplified for higher rainfall intensities (Chou et al., 2012; Prein et al., 2017). We project the 

change in net intensity effects under three idealized intensification scenarios derived from recent 

empirical and modeling studies: uniform low- and high-change (7 and 14%/K) across the intensity 

distribution (P. Berg et al., 2013; Lenderink & Van Meijgaard, 2008), and amplified change 

increasing with intensity from 7-40%/K (Chou et al., 2012; Kendon et al., 2014; Prein et al., 2017) 

(Appendix A Fig. 4, see Methods).  

To assess the implications of hourly rainfall intensification for crop yields under climate 

warming, we apply the scaling factors for each scenario to intensities ≥5mm hr-1 under idealized 

warming of 1, 2, and 4K compared to present. We keep all other variables constant to isolate the 

impact of rainfall intensification. We find that under all three scenarios, crop yields increase 

meaningfully with intensifying hourly rainfall (Fig. 4c-d), primarily due to increased incidence of 

beneficial heavy events (Fig. 4e-f, Appendix A Fig. 4). In response to rainfall intensification from 

2K warming, we project yield increases ranging from 0.9-2.1% across scenarios for maize and 1.3-

2.5% for soy, approximately equivalent to recent harvests of Ethiopian maize and Russian soy. 
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Soy yields increase by 0.7% and maize yields decrease by 0.6% under the amplified scenario with 

4K warming, the worst-case among the three scenarios due to greatest rises in damaging extremes 

(Fig. 4e-f, yellow curve). Our projections thus suggest that, on average, yields will most likely 

benefit slightly from rainfall intensification itself. However, this yield boost would only partly 

offset larger expected losses from heat stress (~10-30% for maize and ~0-15% for soy under 2K 

warming (Zhao et al., 2017)).  

 

Figure 4: Current and projected future net yield impacts of hourly rainfall intensity. a-b) 
Integrated seasonal yield sensitivity for a) maize and b) soy, estimated by weighting the per-hour 
sensitivity by total exposure hours. c-d) Net impacts across all intensities on c) maize and d) soy 
yields under the 2002-2017 climate and for 1, 2, and 4K warming for 3 rainfall intensification 
scenarios: low-change (red), high-change (yellow), and amplified (purple). Shaded area shows 
the 90% confidence interval accounting for regression and scenario uncertainties. Net impacts are 
presented as percentages of the national mean yield. e-f) Same as c-d for the 14%/K scenario, but 
with yield impacts partitioned by intensity zone. For other scenarios, see Appendix A Fig. 5. 
 

3) Conclusions 

Several limitations of our study should be noted. First, although we focus on United States maize 

and soy as globally-important and widely-cultivated crops, attention to other crops and regions 
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may yield important insights into the ecophysiology and generalizability of our results. Second, 

while our analysis focuses on the full growing season, future work may investigate the importance 

of the duration, timing, and sequences of hourly rainfall, especially relative to crop growth phases 

(de Bruyn & de Jager, 1978) and regionally-varying growing seasons. Third, our method precludes 

projecting impacts due to unprecedented rainfall intensities and changes in the temporal and spatial 

structure of rainfall events. Interactive effects of changing heat, rainfall intensity, and seasonal 

total rainfall on crop yields also merit further attention. Finally, variables such as hail and wind, 

pests and disease, soil characteristics (Li et al., 2019), and antecedent moisture (Urban, Roberts, 

et al., 2015) are unavailable at sufficient spatial resolution for inclusion in our analysis, but likely 

compound or mediate the yield responses and may explain their regional variation.  

We draw the following three overall conclusions from our study. First, rainfall intensity 

exerts an important influence on crop yields that varies substantially across the range of hourly 

intensities. Yields are reduced by drizzle but benefit from heavy rainfall, with damages only from 

exceptionally extreme events. Second, although extremes are severely damaging to crops, their 

rareness limits their overall influence on yields. As a result, crops are most responsive overall to 

drizzle and heavy rainfall rather than rare extremes. Third, rainfall intensification will on average 

benefit rather than harm crop yields, as damaging extremes remain much rarer than heavy rainfall 

under most plausible climate change scenarios.  These benefits will not, however, outweigh 

expected losses from higher temperatures. 

Our findings may help identify new opportunities for climate-adaptive crop management 

and improved modeling. For instance, we propose potential mechanisms behind the contrasting 

yield response to drizzle and heavy rainfall that, if corroborated, may help refine optimal sowing 

densities for both the current and future climate. Further, incorporating rainfall intensity effects 
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into crop models may enhance their experimental and predictive value (van der Velde et al., 2010). 

Most fundamentally, our results suggest that beyond extreme events, the crop yield response to 

more common rainfall intensities merits further attention. 

 

4) Methods 

We employ the Stage IV gridded mosaic of radar-derived hourly rainfall data for the continental 

United States at 4km resolution, obtained for 2002-2017 from the National Center for Environment 

Prediction (NCEP) (Lin, 2011). The Stage IV data are bias-corrected and quality-controlled using 

gauge-based observations. To the best of our knowledge, this is the first application of radar-

derived data to analyze the impact of hourly rainfall on crop yields. Annual county-level maize 

and soy yield data were compiled from USDA National Agriculture Statistical Survey Quick Stats 

(USDA, n.d.). Daily temperature data were obtained from NCEP CPC’s observational gridded 

dataset at 0.5-degree resolution. We also use daily 1-km gridded total incident surface shortwave 

radiation data from Daymet (Thornton et al., 2016). All datasets supporting the results of this paper 

are freely available from the references and links listed in Appendix A Table 4. 

All sub-county and sub-seasonal scale data were aggregated to the seasonal and county 

scales to correspond with the annual county level yield data, which constituted the limiting spatial 

and temporal sampling resolution in the dataset. Temporal aggregation was based on the national 

average maize and soy growing season of March-September, i.e. the full envelope of the national 

growing season, to avoid erroneous exclusion of rainfall events that may result from downscaling 

available state-level crop progress data to the study resolution. Our reported pattern of yield 

sensitivity is also robust when using a growing season of March-August in the southern portion of 

the study region and April-September in the north (i.e. a 1-month shift), to broadly reflect variable 
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cropping seasons across the region (Appendix A Fig. 7). Daily temperatures were aggregated to 

the growing season via growing and killing degree days (GDD and KDD) as measures of aggregate 

exposure to beneficial and excessive heat, respectively (Butler & Huybers, 2013). We do not 

spatially downscale daily temperature observations used to compute GDD and KDD to the sub-

county scale as temperature is less variable on fine spatial scales than rainfall. Our estimated 

sensitivity to KDD on a national average concurs with estimates based on station data (Butler & 

Huybers, 2013). 

Hourly rainfall data were aggregated to the seasonal scale by computing intensity-binned 

histograms summarizing all hours in each growing season and county, and via summing across all 

hours for the seasonal total rainfall control. Fig. 2 shows the mean intensity-binned histogram 

averaged across all counties and years. The intensity binning scheme was chosen to reflect 

conventional meteorological classifications of rainfall (e.g., 0.1mm hr-1 as intensities above trace 

rainfall, and 2.5mm hr-1 to represent the upper limit of drizzle intensities), and results are robust to 

varying bin widths and centers (Appendix A Figures 6 and 8). The occurrence of extreme rainfall 

in our sample was relatively uniform in time over 2002-2017 (Appendix A Fig. 9). To match the 

county-level spatial resolution of the yield data, all final derived temperature and rainfall measures 

were aggregated to the county scale by averaging over all grid cells within each county. Finally, 

the spatial domain of the analysis was limited to counties east of the 104th meridian, as the density 

of radar stations west of this limit dropped sufficiently to raise concerns about data quality. The 

region included in the analysis comprises the majority of US maize and soy production areas. 

To examine effects on crop yields due to specific hourly rainfall intensity, we apply a linear 

fixed-effects multiple regression model of the form:  

𝑦
^

𝑖,𝑡,𝑏
= 𝐶𝑖 + 𝑇𝑡 + 𝛽

1
𝑊𝑖,𝑡 + 𝛽

𝑏
𝐻𝑖,𝑡,𝑏    (1) 
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where𝑦
^

𝑖,𝑡,𝑏
 is the predicted yield for year t in county i and intensity bin b. The first two terms are 

controls including a county-specific intercept vector (Ci) to account for time-invariant spatial yield 

heterogeneity and a national time fixed effect (Tt) to account for broader yield time trends 

(Appendix A Table 5). We account for long-term yield trends using a time fixed-effect rather than 

a linear or quadratic time trend, as the short time period of the analysis is insufficient for reliable 

trend estimation.  The third term is a vector of seasonal weather measures Wi,t (with corresponding 

coefficient vector β1) including linear terms for GDD and KDD, which together capture the non-

linear yield response to temperature, and a quadratic term for seasonal total rainfall predictors, 

which captures damaging yield effects of both drought and seasonal excess moisture.  

We estimate the national mean sensitivity of county-level yields to specific hourly 

rainfall intensities as the coefficient βb on seasonal total exposure hours to rainfall intensities in 

bin b (Hi,t,b) in Equation 1. This term regresses yields against each bin in the county-specific 

seasonal rainfall intensity histogram, resulting in a national mean estimate of county-level yield 

sensitivity per hour of exposure. We use names consistent with common meteorological 

conventions to identify the three intensity zones for which we find significant effects on yield, 

namely drizzle (0.1-1mm hr-1), heavy (5-20mm hr-1), and extreme (≥50mm hr-1). The binning 

scheme for hourly rainfall intensity was also selected to match these meteorological conventions, 

and we show results under a finer binning scheme for drizzle in Appendix A Fig. 8. No 

significant effects on maize yields were found for rainfall above 100mm hr-1, with similar but 

less pronounced patterns above 80mm hr-1 for soy (Fig. 1). The lack of sustained significant 

yield-damaging effects at these high intensities may reflect small sub-grid scale spatial extent of 

such rainfall events, insufficient sample size to detect a signal, or greater propensity for error in 

the Stage IV data at such high intensities (Krajewski W.F. & Smith J.A., 2002).  
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The inclusion of the Wi,t  term enables the isolation of intensity-specific yield effects, 

beyond their contribution to the total rainfall. Sensitivities to Wi,t terms are reported in Appendix 

A Table 1 and are broadly consistent across bins. The model has r2 of 0.75 for maize and 0.76 for 

soy. Occurrence of each rainfall intensity is correlated to varying degrees with both extreme heat 

and seasonal total rainfall (Appendix A Fig. 1)20. However, we do not find a coherent 

relationship between the pattern of observed yield sensitivity to hourly rainfall intensity and the 

correlation among these variables. KDD, which reflects detrimental heat extremes, is most 

positively correlated with moderate rainfall intensity (r ~ 0.2), for which positive yield effects are 

observed, and most negatively correlated with drizzle (r ~ -0.5), for which yield effects are 

negative. Meanwhile, correlation between KDD and extreme rainfall intensities is small (r < 0.2). 

Similarly, total rainfall is positively correlated with all non-zero rainfall intensity bins, and the 

peak correlation between 2.5 and 10 mm hr-1 (r ~ 0.9) is not consistently aligned with the 

observed zones of yield sensitivity. Collinearity between rainfall intensity and total rainfall thus 

cannot explain observed yield responses to intensity, suggesting independent effects of rainfall 

intensity on yields. Reported yield sensitivities are robust to including a linear term for total 

seasonal incident shortwave radiation in equation 1 as an explicit control for solar radiation 

(Appendix A Fig. 10). 

Our model is analogous to that in ref. 1, except that we estimate yield sensitivity to each 

intensity bin separately rather than additively to eliminate the risk of type II errors from standard 

error inflation due to collinearity between adjacent bins (the r2 between adjacent bins is about 

0.5, generally <0.1 in the second bin, and approaching 0 beyond Appendix A Fig. 7). Observed 

distinct zones of sensitivity for drizzle, heavy, and extreme rainfall are separated by more than 

the radius of considerable correlation (~2 bins, r2 < 0.1). Based on this separation, we consider 
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exposure hours among identified zones of significant sensitivity to be independent. Since 

adjacent bins within zones are not independent, however, we do not strongly interpret differences 

or trends in coefficient magnitudes within the zones.  

To test the influence of collinearity between the rainfall intensity zones on the estimated 

yield sensitivities, we conduct a post-hoc re-binning of the drizzle, moderate, and extreme 

significant impact zones into a single model (in contrast to the individual estimation in equation 

1). The model is of the form: 

𝑦
^

𝑖,𝑡
= 𝐶𝑖 + 𝑇𝑡 + 𝛽

1
𝑊𝑖,𝑡 + 𝛽

𝐷
𝐷𝑖,𝑡 + 𝛽

𝐻
𝐻𝑖,𝑡 + 𝛽

𝐸
𝐸𝑖,𝑡 

where D, H, and E represent county total seasonal exposure hours in the drizzle, heavy, 

and extreme zones of significant impact (summed across bins within each zone), with 

corresponding coefficients from which sensitivity is inferred (Appendix A Fig. 6). The estimated 

yield sensitivities to each zone are consistent with those estimated using equation 1 (Fig. 1), 

suggesting limited influence of collinearity between rainfall intensity zones on the results.   

Hourly rainfall intensity percentiles are estimated as the fractional rank of a given rainfall 

intensity within the national mean intensity distribution excluding zero-rainfall hours, averaged 

across all counties (Fig. 1, Fig. 2). National mean return frequency is estimated as the ratio of the 

number of county-years with non-zero exposure hours to the total county-years in the sample for 

each intensity bin (Fig. 2, yellow curve), i.e. only accounting for binary occurrence and not the 

number of events per season. This measure reflects the rareness of heavy and extreme rainfall 

intensities on a national average relative to the common events that occur each year and in each 

county.  

The regional analysis divides the spatial domain of the dataset into 3 regions with roughly 

equal sample sizes, with the west defined as west of the 93rd meridian, the northeast as east of the 
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93rd meridian and north of the 40th parallel, and the southeast as east of the 93rd meridian and south 

of the 40th parallel (Appendix A Fig. 2a). These regional boundaries correspond approximately to 

climatological rainfall contours, with seasonal mean rainfall  ±SD of 660  ±200mm, 750  ±167mm, 

and 850  ±200mm in the west, northeast, and southeast, respectively. For this analysis, we applied 

the regression model in equation 1 limited to bins less than 50 mm hr-1 as sample sizes for extreme 

rainfall bins were insufficient for data stratification. Beyond this limitation, yield sensitivity to 

extremes likely differs regionally as well, for instance because the southeast experiences the most 

extremes among the regions (on average 47% of total extreme hours per season, Appendix A Fig. 

2b) and may be somewhat more strongly represented in the national scale sensitivity estimates. 

The regional results reveal certain general patterns which likely mask spatial variability at the 

county scale, which we cannot explicitly analyze due to a limited time series (15-16 years) in the 

rainfall data.  

Our stratification based on irrigated crop area (Appendix A Fig. 3) followed an analogous 

method to the regional analysis. We first computed the percent of harvested area that is irrigated 

for each county, averaged across available censuses (2002, 2007, 2012, and 2017), using data from 

USDA-NASS (Butler & Huybers, 2013). We excluded 5,706 counties with no available irrigation 

data from this analysis. We then stratified the sample of 11,242 counties using the irrigated area 

threshold of 5% (which resulted in two samples of similar size) and applied the regression model 

in equation (1) separately for the two groups. 

For the comparison of hourly rainfall within overall growing season weather (Fig. 3), we 

applied 5 indicators of rainfall distribution across timescales based on CLIVAR climate extremes 

indicators(Karl et al., 1999): 1) seasonal total rainfall, 2) duration in days of longest dry spell, 3) 

maximum 5-day total rainfall, 4) maximum 1-day total rainfall, and 5) maximum hourly rainfall 
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(Fig. 3). We regressed county crop yields against the suite of sub-seasonal rainfall distribution 

measures using the equation: 

𝑦
^

𝑖,𝑡
= 𝐶𝑖 + 𝑇𝑡 + 𝛽

1
𝑊𝑖,𝑡      

where𝑦
^

𝑖,𝑡
 is the predicted yield for year t in county i and Wi,t is the vector of rainfall distribution 

measures with corresponding coefficient vector β1, from which yield sensitivities are inferred. As 

in equation 1, we controlled for temperature by including GDD and KDD in Wi,t (these coefficient 

estimates omitted for clarity). To aid the comparison of estimated yield sensitivities across 

measures with differing units, we present dimensionless standardized coefficients of each measure 

(B1), estimated by multiplying the absolute coefficient estimates by the ratio of weather-measure 

to yield standard deviations (national mean of the within-county time standard deviations, denoted 

σW and σy, respectively): 

𝐵1 = 𝛽
1

𝜎𝑊
𝜎𝑦

 

Various combinations of weather metrics were tested in candidate models to examine the 

robustness of coefficient sign and magnitude; individual indicator coefficients from candidate sub-

models are generally consistent with the full model. 

Our estimated yield sensitivities to the duration of the longest dry spell are consistent in 

sign and approximate magnitude with other recent estimates4. However, in contrast to ref’s 2 and 

4, we find significant negative yield response to the maximum 5-day total rainfall, likely because 

we control for seasonal total rainfall. This result thus likely reflects the yield-reducing influence 

of short-duration moisture excess, separate from the contribution of the multi-day rainfall extremes 

to seasonal moisture conditions. Standardized yield sensitivities to drizzle and heavy rainfall are 

comparable in magnitude to 5-day maximum rainfall and longest dry spell, whose impacts are 
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more broadly recognized in recent research. We conclude that daily and hourly maxima correlate 

positively with yields because they capture beneficial heavy rainfall, rather than damaging 

extremes. The mean national maximum hourly rainfall is 29mm hr-1, which corresponds to 

insignificant yield responses between the heavy and extreme rainfall intensities. Further, maximum 

daily rainfall most strongly correlates with incidence of heavy rainfall (r ~ 0.5-0.6) rather than 

extremes (r ~ 0.1-0.4, Appendix A Fig. 1).  

We estimate integrated seasonal sensitivities (Fig. 4a-b) by weighting the βb sensitivities 

by the hourly exposure Hi,t,b averaged nationally over 2002-2017 for each bin (Fig. 2, blue bars). 

For each intensity bin, this procedure converts per-hour yield sensitivities into estimated total yield 

impacts, accounting for the total number of exposure hours across the growing season. Because 

adjacent bins within each intensity zone with significant yield effects cannot be treated as 

independent (Appendix A Fig. 11), we compute net intensity effects by first averaging integrated 

seasonal yield sensitivities for drizzle, heavy rainfall, and extreme bins separately, and finally 

summing the average sensitivities across the three independent intensity zones (Fig. 4c-f).  

We project a range of plausible future hourly rainfall intensification using three scenarios 

of rainfall intensity scaling with mean temperature, representing current empirical and modeling 

uncertainty over the response of convective and mesoscale dynamics to warming. We apply the 

scenarios to intensities ≥5mm hr-1 consistent with reported distinct temperature scaling of high-

percentile rainfall intensities with temperature beginning between the 90th and 99th percentiles 

(Lenderink & Van Meijgaard, 2008; Westra, S., Fowler, H. J., Evans et al., 2014). The uniform 

low-change scenario reflects a simple scaling of high-percentile rainfall intensity with precipitable 

water equal to the 7%/K increase in saturation vapour pressure, governed by the Clausius-

Clapeyron relation. The high-change and amplified scenarios reflect potential additional rainfall 
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intensification mainly due to convective enhancement and associated horizontal moisture 

convergence from latent heating in the ascending air column. Under the high-change scenario, a 

uniform 14%/K intensification (double the Clausius-Clapeyron scaling) is applied (P. Berg et al., 

2013; Lenderink & Van Meijgaard, 2008), while in the amplified scenario, intensification is 

linearly increased from 7%/K at 5mm hr-1 to 40%/K at 90mm hr-1 (Chou et al., 2012; Kendon et 

al., 2014; Prein et al., 2017). Based on our yield analysis, this final scenario represents the most 

disadvantageous plausible scenario for crops, serving as a limiting case for projected net yield 

impacts.  

We project future changes in the incidence of heavy and extreme hourly rainfall (≥5mm 

hr-1) by shifting the observed 2002-2017 frequency distributions by the intensity scaling factors 

following: 

𝐼 , = 𝐼 (1 + 𝑓 )∆  

Future bin-center intensities (𝐼 , ) are projected by increasing the observed 2002-2017 bin-

center intensities (𝐼𝑏𝑖𝑛
2002−2017)by the scaling factors (𝑓

𝑠𝑐𝑒𝑛
) under assumed mean temperature 

increases of 1, 2, and 4K relative to the present day (∆𝑇).  The increased incidence at the original 

2002-2017 bin centers are then estimated by linearly interpolating from the shifted distributions 

(Appendix A Fig. 4). Our method thus preserves the observed relative decay in frequency of 

rainfall with increasing intensity (Fig. 2). The projected intensification results in 4-27 additional 

heavy and extreme rainfall hours per season, depending on the scenario and warming magnitude.  

To isolate the impact of changing rainfall intensity, we conserve the climatological total 

rainfall hours by subtracting the projected increase in heavy and extreme hours from the 2002-

2017 drizzle hours, consistent with projected declines in the frequency of light precipitation under 

mean warming (Chou et al., 2012; Lau et al., 2013). Importantly, while seasonal total rainfall, 
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KDD, and GDD are likely to change in the future, we keep these variables constant in our yield 

projections to isolate the impact of rainfall intensification. Our projected yield changes from 

rainfall intensification should thus be interpreted as only one component of climate-induced yield 

changes, which must be considered in the context of impacts from changing extreme heat and 

drought.  

Projected future yield impacts from the intensification scenarios are finally estimated by 

re-weighting the intensity-specific per-hour sensitivities by the projected intensified hourly rainfall 

distributions, as for Fig. 4a-b. This approach assumes that per-hour yield sensitivities estimated 

over 2002-2017 remain constant into the future. Projected net yield changes are estimated as the 

sum of the intensity-zone mean impacts (Fig. 4c-d). To represent uncertainty in these estimated 

impacts, we include an estimated 90% confidence interval from an ensemble of projections in 

which intensity-specific yield sensitivities are permuted to reflect estimation uncertainty. The 

permutation involves generating 1000 pseudorandom yield sensitivities from a normal distribution 

with mean equal to the coefficient estimate and standard deviation equal to the standard error of 

the estimate.  We recompute the net impact using the 1000 sensitivity permutations for each 

scenario to yield an ensemble of 3000 impacts projections, the 5th to 95th percentiles of which we 

include as a shaded area in Fig. 4c-d. We also present partitioned impacts for each intensity zone 

by averaging impacts across bins in the drizzle, heavy, and extreme zones (Fig. 4e-f for the 14%/K 

scenarios, other scenarios shown in Appendix A Fig. 5). Appendix A Figure 12 provides a 

visualization of the methods, data, and assumptions employed in this study. 

Future changes in hourly rainfall intensity may not be uniformly distributed across the 

growing season, with potential consequences for daily to multi-day rainfall statistics and their yield 

impacts. Such potential future changes in the temporal structure of rainfall across timescales may 
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alter the rainfall intensities that contribute most to extreme daily rainfall totals. For example, 1-

day rainfall totals may become damaging to crops in the future if they are more strongly driven by 

short-duration extremes than at present (Fig. 3). Future research may investigate the influence on 

crop yields of variation in the time structure of rainfall from hourly to seasonal scales, especially 

as observational, theoretical, and model basis for reliably projecting these changes improves. 

Our results provide an example of a climate-sensitive system essential to human health and 

wellbeing that is sensitive to hourly rainfall intensity. While the incorporation of hourly rainfall 

data into climate risk assessment is presently common in hydrological modeling and engineering9, 

our results suggest that rainfall on this timescale merits further attention in crop research and in 

plant science and ecology more generally. Finally, our results highlight the value and applicability 

of increasing climate model resolution, expert elicitation, and improved spatial and temporal 

completeness of observational and reanalysis data for understanding and projecting the shifting 

distribution of hourly rainfall under climate warming and the associated impacts on human and 

natural systems. 
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Appendix A Figure 1: Correlation between the incidence of hourly rainfall intensities and 
seasonal total rainfall, extreme heat, and maximum daily rainfall. Correlation coefficient of 
seasonal occurrence (hours) of rainfall of given intensities with seasonal total rainfall, killing 
degree days, and maximum daily rainfall, with annotated zones of significant positive (green) 
and negative (red) yield response (P < 0.05).  
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Appendix A Figure 2: Regional maize and soy yield sensitivity to drizzle and moderate 
rainfall. a) Schematic map of regional boundaries. Northeast is defined as latitude ≥40°N, east 
of 93°W, southeast as latitude <40°N, east of 93°W, and west as 93 to 104°W. b) Regional 
variation in the incidence of differing rainfall intensities, as percent deviation from the national 
mean incidence (Fig. 2). Regional mean county-level yield sensitivity (±SE) to hourly rainfall 
intensity per hour of exposure for c-e) maize, and f-h) soy. Extreme rainfall bins >40 mm hr-1 are 
omitted due to insufficient data for sample stratification. Sensitivities are plotted on symmetric 
logarithmic axes, with correspondingly transformed relative error bars. Green and red points 
indicate significant positive and negative sensitivities (two-sided P < 0.05).  



 

36 

 
Appendix A Figure 3: Maize and soy yield sensitivity to drizzle and moderate rainfall among 
counties with more and less extensive irrigation. Mean county-level yield sensitivity (±SE) to 
hourly rainfall intensity per hour of exposure for a-b) counties with less than 5% of crop area 
irrigated, and c-d) counties with more than 5% crop area irrigated (see Methods). Extreme 
rainfall bins >40 mm hr-1 are omitted due to insufficient data for sample stratification. 
Sensitivities are plotted on symmetric logarithmic axes, with correspondingly transformed 
relative error bars. Dark green and red points indicate significant positive and negative 
sensitivities (two-sided P < 0.05), while pink and light green points denote weakly significant 
effects (two-sided P < 0.1). The total counties analyzed is less than for the other analyses as 
irrigation data is not available for all counties.  
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Appendix A Figure 4: Projected future incidence of heavy and extreme rainfall under climate 
warming. Intensified distributions of heavy and extreme hourly rainfall under idealized 
warming of 1, 2 and 4K projected by shifting the 2002-2017 baseline distribution (black curve, 
Fig. 2) under a) the uniform low-change scenario, b) the uniform high-change scenario, and c) 
the amplified scenario with greater intensification for higher intensities.  
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Appendix A Figure 5: Crop yield impact of low-change and amplified rainfall intensification 
scenarios under climate warming. Same as Fig. 4e-f, except for the a-b) low-change scenario, 
and c-d) amplified scenario.  
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Appendix A Figure 6: Yield sensitivity to re-binned hourly rainfall intensity zones. a) Maize 
yield sensitivity estimates for a post-hoc model with re-binned drizzle, heavy, and extreme 
significant yield impact zones (in addition to heat and seasonal total rainfall terms), plotted on 
symmetric logarithmic axes. b) Same as a), but for soy. Error bars indicate relative standard 
errors of the coefficients rescaled to the logarithmic axes. 
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Appendix A Figure 7: Yield sensitivity to hour rainfall intensity using alternate growing 
season. Same as Fig. 1, but using a regionally-variable growing season (March-August in the 
southern portion of the study region, April-September in the north).  
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Appendix A Figure 8: A more detailed view of yield sensitivity to low-intensity rainfall. 
Same as Fig. 1a and c from 0 to 5.0 mm hr-1, but with finer binning of rainfall intensities in the 
drizzle zone. The 0, 2.5, and 5.0 mm hr-1 bins are identical to those in Fig. 1.  
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Appendix A Figure 9: Annual regional total incidence of extreme rainfall intensities. Total 
number of extreme rainfall hours (≥50 mm hr-1) per year in the West, Northeast, and Southeast 
over 2002-2017. The extreme intensity threshold represents the envelope of intensities with 
significant negative yield effects on maize and soy.  
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Appendix A Figure 10: Yield sensitivity to hourly rainfall intensity directly controlling for 
solar radiation. Same as Fig. 1, except for a model including a solar radiation term to examine 
potential influence of cloudiness on crop yield response to rainfall intensities (see Methods). 
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Appendix A Figure 11: Correlation in total seasonal occurrence between hourly rainfall 
intensity bins. a) Matrix of coefficient of determination (r2) in exposure hours between rainfall 
intensity bins. b) Matrix of correlation coefficients (r) in exposure hours between rainfall 
intensity bins. 
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Appendix A Figure 12: Flowchart describing sequence of methods employed for a) yield 
sensitivity estimation and b) future yield impact projection, including data inputs and 
assumptions. Elliptical elements depict data and assumptions, while rectangular elements show 
computations. 
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Appendix A Table 2: Temporal statistics of analyzed rainfall intensities and integrated seasonal 
sensitivity estimates. NS denotes sensitivities with P > 0.1.  
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Appendix A Table 4: Dataset references and access information. 

Dataset name Reference Access link 

NCEP/EMC Stage IV Hourly 
4km Precipitation  

32 https://doi.org/10.5065/D6PG1QDD 

USDA NASS Quick Stats 33 https://quickstats.nass.usda.gov/ 

NCEP CPC Global Daily 
Temperature 

 https://www.esrl.noaa.gov/psd/data/gri
dded/data.cpc.globaltemp.html 

Daymet Gridded 1-km Daily 
Surface Weather, v2 

34 http://dx.doi.org/10.3334/ORNLDAAC/1
219 
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Appendix A Table 5. Time effects and number of counties observed per year for maize and soy.  
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Chapter 2: Stronger temperature-moisture couplings exacerbate the 
impact of climate warming on global crop yields 

Published 20 September 2021, Nature Food, https://doi.org/10.1038/s43016-021-00341-6 

 

Rising air temperatures are a leading risk to global crop production. Recent research has 

emphasized the critical role of moisture availability in regulating crop responses to heat and the 

importance of temperature-moisture couplings in driving concurrent heat and drought. Here, we 

demonstrate that the heat sensitivity of key global crops depends on the local strength of couplings 

between temperature and moisture in the climate system. Over 1970-2013, maize and soy yields 

dropped more during hotter growing seasons in places where decreased precipitation and 

evapotranspiration more strongly accompanied higher temperatures, suggestive of compound heat-

drought impacts on crops. Based on this historical pattern and a suite of climate model projections, 

we show that changes in temperature-moisture couplings in response to warming could enhance 

the heat sensitivity of these crops as temperatures rise, worsening the impact of warming by -5% 

(-17 to 11% across climate models) on global average. However, these changes will benefit crops 

where couplings weaken, including much of Asia, and projected impacts are highly uncertain in 

some regions. Our results demonstrate that climate change will impact crops not only through 

warming, but also through changing drivers of compound heat-moisture stresses, which may alter 

the sensitivity of crop yields to heat as warming proceeds. Robust adaptation of cropping systems 

will need to consider this underappreciated risk to food production from climate change. 

 

1) Introduction 

Several studies have dentified negative relationships between air temperature and crop 

yields in observations, signaling the potential for global warming to reduce agricultural output 
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(Lobell et al., 2013; Lobell & Field, 2007b; Zhao et al., 2017). Extreme heat can steeply reduce 

crop yields both directly through heat stress and indirectly by raising atmospheric vapour demand 

and contributing to moisture stress (Lobell et al., 2013; Lobell et al., 2011; Prasad et al., 2008; 

Schlenker & Roberts, 2009; Urban, Sheffield, et al., 2015; E. Vogel et al., 2019). Because of this 

dual effect, the impacts of extreme heat are typically amplified by drought, and can be minimized 

with sufficient soil moisture from either precipitation or irrigation (Carter et al., 2016; Coffel et 

al., 2019; Matiu et al., 2017; Ortiz-Bobea et al., 2019; Rigden et al., 2020; Schauberger et al., 2017; 

Siebert et al., 2017; Troy et al., 2015; Urban, Sheffield, et al., 2015). Jointly hot and dry conditions 

thus pose a particular climate risk to global crops, especially under global warming (Lesk & 

Anderson, 2021).  

In many regions, such jointly hot and dry conditions during cropping seasons tend to occur 

due to physical couplings between temperature and moisture in the climate system (A. Berg et al., 

2015; Seneviratne et al., 2010; Zscheischler & Seneviratne, 2017). These couplings can be 

conceptualized in two ways: first as a connection between temperature (T) and precipitation (P), 

and second as a connection between T and evapotranspiration (ET). We refer to the former 

connection as the atmospheric circulation coupling, and the latter as the land-atmosphere 

interaction coupling. While the separability and relative importance of these two couplings is 

debated (A. Berg et al., 2015; Seneviratne et al., 2006; Trenberth & Shea, 2005) (see Methods), 

they generally reflect two critical sets of processes that both vary in magnitude over global 

croplands and strongly influence the local risk of joint heat and drought. 

Where the atmospheric circulation coupling is strong, clear skies tend to accompany dry 

cropping seasons, boosting temperatures at the surface due to increased penetration of solar 

radiation and delivery of warm compressed air by descending winds (A. Berg et al., 2015; Horton 
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et al., 2016; Trenberth & Shea, 2005; Zscheischler & Seneviratne, 2017). The strength of this 

coupling is reflected by the magnitude of the negative correlation between temperature and 

precipitation across years (rT,P < 0). Where the land-atmosphere coupling is strong, ET tends to 

decline during a warmer cropping season, reflected by a negative correlation between T and ET 

(rT,ET < 0). The resulting enhanced sensible heating can further raise air temperatures and 

atmospheric vapour demand, generating a positive feedback (A. Berg et al., 2014; Miralles et al., 

2014; Seneviratne et al., 2006, 2010). By contrast, enhanced ET from warmth (rT,ET > 0) limits the 

feedback between warming and drying. Thus, the couplings characterized by negative correlations 

of T with ET and P drive concurrent and mutually-reinforcing hot and dry conditions during the 

cropping season in many regions. 

Despite the importance of these couplings in controlling the concurrent heat and moisture 

stresses that so strongly damage crop yields, their effect on global crop responses to current and 

future temperatures remains a gap in understanding present and future climate impacts on crops. 

Here, we demonstrate the global influence of temperature-moisture couplings on crop yield 

sensitivity to temperature over 1970-2013 and project future impacts on crops from changing 

couplings. We combine historical global yield observations (Ray et al., 2015, 2019) with observed 

and modeled meteorological data to show that during warmer growing seasons, maize and soybean 

yields drop more steeply where precipitation and ET tend to also decrease. Using simulations from 

a suite of climate models, we then identify how these couplings are likely to change by the late 

21st century. Combining these projections with the historical results, we demonstrate that the 

modified couplings will likely worsen the impacts of warming on some of the world’s most 

important crops. 
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2) Results and Discussion 

Historical influence of temperature-moisture couplings on crop heat sensitivity 

Over the historical period, we find significant correlations between crop yields and mean seasonal 

temperature over 20-32% of global maize, soybean, rice and wheat croplands (p < 0.1, Fig. 1). 

While maize and soybean yields generally decline with increasing temperature (by 0.3-0.4 

standard deviations (σ) per σ temperature), they benefit from heat over around a quarter of 

croplands with significant temperature impacts, primarily at higher latitudes and elevations as well 

as in pockets of the tropics (Fig. 1a-b). Yield benefits from warmer seasons in some locations 

likely reflect crop limitations by cold and short growing seasons. By contrast, wheat yields are 

almost universally reduced by higher temperatures in North America and Eurasia (Fig. 1c), likely 

reflecting the lower physiological heat tolerance of wheat compared to maize (Liu et al., 2016; 

Sánchez et al., 2014). While seasonal heat benefits rice yields in parts of Europe and damages 

them slightly in India, rice yields show a generally weaker connection to temperature (Fig. 1d), as 

reported elsewhere (David B Lobell & Field, 2007b; Welch et al., 2010). This may relate to the 

prevalence of irrigation in rice cropping, which may partially decouple yields from temperature. 

We also note weak maize yield dependence on temperature where it is mainly irrigated such as 

northern India, central France, and the western United States (Fig. 1a). 
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Figure 1: Crop yield sensitivity to temperature and temperature-moisture couplings across 
global croplands. Standardized yield sensitivity to mean growing season maximum air 
temperature estimated as the linear slope coefficient, with units of standard deviations (σ) of yield 
per σ temperature, for a) maize, b) soybean, c) wheat, and d) rice. Yield and temperature 
observational data are detrended to remove long-term warming and yield trends. Stippling 
denotes significant slope coefficients (two-tailed p < 0.1, t-test). Land area without crops is shown 
in gray. e) Circulation coupling strength, measured as the interannual correlation between 
detrended observed growing season mean temperature and total precipitation (rT,P). f) Land-
atmosphere coupling, measured as the interannual correlation between detrended modeled 
growing season mean temperature and evapotranspiration (rT,ET). Couplings in e-f are shown for 
the maize growing season and over the full global cropland where data is available to ease 
interpretation of global patterns. Couplings for other growing seasons are shown in Appendix B 
Fig. 1. 
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Large portions of the global croplands also experience significant temperature-moisture 

coupling during the local growing season. Seasonal total precipitation is significantly correlated 

with mean temperature over 62-89% of cropland (p < 0.1, Fig. 1e, Appendix B Fig. 1), with 

exceptions mainly concentrated in the tropics. These significant interannual correlations are almost 

entirely negative (>98%), with mean magnitude of -0.5. ET further correlates with temperature 

over 36-65% of global croplands (p < 0.1, Fig. 1f, Appendix B Fig. 1). Correlations are 

predominantly negative over global croplands but are positive at higher latitudes as well as in 

southern China (Fig. 1f), a pattern corresponding broadly to moisture- versus energy-limited soil 

moisture regimes (Seneviratne et al., 2010), respectively. The majority of global cropland area 

thus experiences climate couplings whereby lower moisture conditions coincide with higher heat 

and moisture demand. 

We find a global tendency for increasingly negative impacts of temperature on maize and 

soybean yields with the increasing strength of these temperature-moisture couplings historically. 

Figure 2 situates the grid-cell yield sensitivity to temperature (presented as the colouring of the 

points) with respect to the local strength of the two temperature-moisture couplings (presented as 

the position in the plane of the points). The lower-left quadrant of each panel includes grid cells 

with both circulation and land-atmosphere couplings (rT,P and rT,ET < 0). For maize and soy (Fig. 

2a-b), we note that this quadrant contains the bulk of grid cells where yields decline with 

temperature, with greatest negative yield sensitivities where couplings are strongest. Meanwhile, 

yields tend to benefit from warmer temperatures where the couplings are weakest (rT,P ~ 0 and rT,ET 

> 0). 
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Figure 2: Global dependence of yield sensitivity to temperature on two temperature-moisture 
couplings. Estimated standardized yield sensitivity to mean growing season maximum air 
temperature (colouring of points) plotted in relation to correlations of temperature with ET (land-
atmosphere coupling, vertical axes) and precipitation (circulation coupling, horizontal axes), for 
a) maize (n = 4,771 grid cells), b) soybean (n = 2,663), c) wheat (n = 5,062), and d) rice (n = 2,800). 
Each data point represents one grid cell. Data are shown for areas with significant yield response 
to temperature (two-tailed p < 0.1). Slope coefficients relating yield sensitivity to each coupling 
(αT,P and αT,ET) are annotated on their respective axes. Reported multiple r2 values are for the 
multiple regression model relating yield sensitivity to the two couplings.  
 

To quantify these relationships, we regress crop yield sensitivity to temperature on the two 

couplings and find meaningful global dependence for maize and soy (r2 = 0.26 for maize and 0.43 

for soybean, Fig. 2a-b). The regression also affords slope coefficient estimates, αT,P and αT,ET, that 
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quantify the steepness of the dependence of yield sensitivity to temperature on the two couplings. 

On average, yields decline more steeply per σ temperature (slope αT,ET ± standard error = 

0.45±0.02 for maize and 0.57±0.02 for soybean, p < 0.001) in areas with the most negative rT,ET. 

In other words, crops are around 40% more sensitive to temperature (34% for maize and 43% for 

soybean) in regions with strong land-atmosphere coupling, compared to where temperature and 

ET are uncorrelated. The influence of the land-atmosphere coupling on yield sensitivity to 

temperature is somewhat larger than the influence of circulation coupling on yield sensitivity to 

temperature (slope αT,P  ± standard error = 0.37±0.03 for maize and 0.25±0.04 for soybean, p < 

0.001). We found no spatial correlation between recent 10-year mean yields (2004-2013) and the 

two couplings (r2 < 0.02), suggesting that the observed effects are independent of overall crop 

productivity. Overall, these patterns of higher crop heat sensitivity where couplings are strong is 

consistent with the compounding of heat impacts on crops by moisture effects where these 

couplings are strong, and alleviation where they are weak.  

By contrast, we find little such dependence on temperature-moisture couplings among the 

temperature sensitivities of wheat and rice (Fig. 2c-d, r2 ≤ 0.1). This may be due in part to the low 

thermal tolerance of wheat, whose optimal growth temperature is about 10°C cooler than for the 

other crops (Liu et al., 2016; Sánchez et al., 2014). Due to its exponential dependence on 

temperature, atmospheric vapor demand and its impact on crops increase most strongly at 

relatively high temperatures. However, heat impacts on wheat may be severe at relatively low 

temperatures, for which atmospheric vapor demand remains relatively low, limiting the scope for 

compounding of heat impacts by moisture (T. Zhang et al., 2015). For rice, lower heat sensitivity 

and widespread irrigation may effectively decouple the crop from temperature and moisture (Fig. 

1d), similarly precluding compounding impacts (Welch et al., 2010).  
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These results suggest that local crop responses to temperature depend not only on crop 

physiology and temperature stressors, but also on climatological couplings between temperature 

and moisture. These couplings tend to align heat and moisture stress in time, exposing crops to 

heat and high atmospheric moisture demand while precipitation and soil moisture are low (Fig. 3). 

Where the couplings are strong, yields are likely more sensitive to temperature due to antagonistic 

feedbacks between physiological heat and drought acclimation and stress mechanisms (Mittler, 

2006; Prasad et al., 2008), notably the impact of stomatal closure on canopy temperature and 

photosynthesis (Crafts-Brandner & Salvucci, 2002; Gates, 1968; Grossiord et al., 2020; Prasad et 

al., 2008; Siebert et al., 2017; Skinner et al., 2018; Swann, 2018) (Fig. 3). By contrast, where the 

couplings are weak, heat and high atmospheric moisture demand are more likely to coincide with 

periods of normal or abundant precipitation and soil moisture, mitigating the impact of heat on 

crops. 

Importantly, these results indicate that the ultimate impact of global warming on some 

crops will depend not only on the mounting heat hazard itself, but also on the impact of warming 

on the physical coupling between temperature and moisture. Specifically, they raise the possibility 

that climate change will affect the sensitivity of crop yields to heat by altering temperature-

moisture couplings throughout the world. This potential impact is currently omitted from climate 

risk projections using  statistical models (David B. Lobell et al., 2011; Schlenker & Roberts, 2009; 

Zhao et al., 2017), which assume constant temperature sensitivity into the future, and mechanistic 

crop models, whose climate projection inputs are typically adjusted to match the historical 

correlation structure between temperature and moisture (Rosenzweig et al., 2014; Zhao et al., 

2017), excluding the potential influence of changes in temperature-moisture couplings. 
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Figure 3: Schematic of potential mechanism for compound heat and moisture impacts on 
crops in regions with strong temperature-moisture couplings. Where temperature-moisture 
couplings are strong, hot growing seasons are more likely to be also dry, depicted by the sun at 
upper left. Ensuing effects of consequence to crops that are linked to strong circulation coupling 
(rT,P < 0) are shown in the blue square at left, while effects linked to strong land-atmosphere 
coupling (rT,ET < 0) are shown in the yellow square at right. Red arrows show antagonistic 
feedbacks by which correlations of temperature with P and ET can induce compounding heat 
and moisture stresses on crops. 
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Impact of projected change in couplings on global crop yields 

To examine the implications of these effects for maize and soy under future climate change, we 

combine the historical dependence of yield sensitivity to temperature on the two couplings (Fig. 

2) with simulated future changes in couplings from a suite of 12 CMIP6 global climate models 

(Eyring et al., 2016). By 2051-2100 under moderate greenhouse gas emissions (SSP2-4.5), we 

project substantial changes in rT,ET and to a smaller extent in rT,P (Fig. 4a-b), over much of global 

croplands in the ensemble median. These changes indicate amplified couplings between 

temperature and moisture in response to climate warming over croplands in the US, Europe, and 

southeastern Africa, but reduced couplings across southern to eastern Asia. Based on historical 

relationships in Fig. 2a-b, these changes in couplings will likely exacerbate yield sensitivity to 

temperature over a preponderance of croplands, but alleviate it in much of Asia (Fig. 4c). 

We project that such heightened crop heat sensitivities due to changing temperature-

moisture couplings will worsen the impacts of warming on maize and soy yields across most of 

the globe (Fig. 5a, Appendix B Fig. 2). In the multi-model median, these additional yield impacts 

(∆∆𝑌) amount to regional maize (soy) losses of 7% (9%) in the US, 7% (16%) in western Europe, 

12% (24%) in eastern Europe, 9% (5%) in southeastern Africa, and 3% (6%) in southeastern South 

America, with more modest yield gains of 1% (3%) in eastern Asia (Fig. 5a and d, Appendix B 

Fig. 2). We note important model uncertainty in these regional figures, which we discuss further 

below and in Figure 6d. More severe localized yield impacts at sub-regional scales reach ~20% in 

the United States and ~40% in eastern Europe and southeastern Africa. 
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Figure 4: Projected future changes in temperature moisture couplings and yield sensitivity to 
temperature in response to warming. a) Projected change in circulation coupling (detrended 
interannual rT,P) over 2051-2100 under a moderate emissions scenario (SSP2-4.5), compared to 
historical couplings over 1961-2010. The median of an ensemble of 12 CMIP6 climate model 
projections is shown for each grid cell. b) Same as a), but for land-atmosphere coupling (rT,ET). c) 
Projected change in standardized maize yield sensitivity to temperature in response to changes 
in the two couplings, based on global slope coefficients from in Fig. 2a. For a-b) projections are 
shown over the full global maize croplands to facilitate interpretation of broader patterns, while 
for c) projections are shown only for areas with significant historical maize yield sensitivity to 
temperature (p < 0.1); gray shading shows croplands with insignificant yield dependence on 
temperature. 
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Figure 5: Projected additional impact of future warming on maize yields due to changing 
temperature-moisture couplings. a) Ensemble median additional impact of warming on maize 
yields from projected changes in rT,ET and rT,P over 2051-2100 under a moderate emissions scenario 
(SSP2-4.5), as a percent of local mean of recent yields (2004-2013). b) Maize yield changes (as a 
percent of recent yield) from ensemble median warming only, projected using historical yield 
sensitivity to temperature from Fig. 1a. c) Projected total yield impacts, estimated as the sum of 
impacts from changing couplings and warming only (note that the scale differs from a-b). 
Projections in a-c) are shown only for areas with significant historical maize yield sensitivity to 
temperature (p < 0.1); gray shading shows croplands with insignificant yield dependence on 
temperature. d) Yield impacts averaged across selected key regions and globally. Model 
uncertainties associated with these ensemble median results are shown in Figure 6 
 

 

These projected additional yield impacts due to changing temperature-moisture couplings 

(∆∆𝑌) would add to projected yield losses from warming alone (Fig. 5b), worsening them in some 

regions (e.g. in central US) but slightly ameliorating them in others (e.g. in eastern Asia, Fig. 5c). 

In some cool climates such as in the northern US, Canada, and Ukraine, changing couplings may 

also curtail projected yield gains from warming. Globally, we project that changing couplings will 
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aggravate the impact of warming on maize and soy yields by ~5% relative to recent yields (Fig. 

5d, Appendix B Fig. 2), evincing an important but underappreciated risk to agriculture under 

climate change. 

Considerable inter-model variation underlies these multi-model median projections 

(Zscheischler & Seneviratne, 2017). Over much of global maize croplands, fewer than two-thirds 

of models agree on the sign of additional yield changes due to coupling responses to warming 

(∆∆𝑌, Fig. 6a), especially in the tropics and sub-tropics. Even in areas with high model agreement 

on sign (mainly in Europe, the US, and eastern Asia), the magnitude of change can vary 

substantially across models (Fig. 6d, Appendix B Fig. 3). This inter-model variability induces 

uncertainty in the projected global mean impacts for the moderate emissions scenario, with model-

specific yield impacts ranging from -17 to 11% (Fig. 6b, blue bars).  

Alternate emissions scenarios add a further dimension of uncertainty to the projected yield 

impacts of changing temperature-moisture couplings. Under a high emissions scenario (SSP5-8.5), 

maize yield losses in the Americas and southeastern Africa are reduced and gains in Asia are 

increased compared to the moderate emissions scenario (Fig. 6c-d). Surprisingly, these regional 

responses amount to a global mean additional yield gain (∆∆𝑌) of 1.6% in the ensemble median 

(‘additional ’in that they only slightly offset large yield loss from warming itself). The 

counterintuitive non-monotonicity of the global mean response to emissions is ultimately driven 

by regional coupling changes that alleviate yield sensitivity to temperature, most notably the 

widespread relative decoupling between T and P under higher emissions (Appendix B Fig. 4). 

However, we also note large model disagreement in the high emissions scenario, with global mean 

impacts ranging from -18 to 32% (Fig. 6b, red bars). 
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Figure 6: Uncertainty in projected additional maize yield impact due to changing temperature-
moisture couplings. a) Model agreement on local sign of projected additional yield impact due 
to changing temperature-moisture couplings (∆∆𝑌) under a moderate emissions scenario by 
2051-2100. Colouring denotes areas where at least two-thirds (8 out of 12) of the models in the 
ensemble agree on either positive (blue), negative (brown), or no substantial change (within +/-
10%, beige). Grey denotes areas with less than two-thirds model agreement on direction of 
change. b) Distribution of model-specific global mean additional yield impact due to changing 
couplings (∆∆𝑌) for the moderate emissions (SSP2-4.5, blue) and high emissions (SSP5-8.5, red) 
scenarios. Vertical red and blue lines denote multi-model median global mean impacts. 
Additional yield impacts are expressed as a percentage of 2004-2013 mean yields, averaged over 
areas with significant temperature effects on yield (Fig. 1a). c) Ensemble median additional 
impact of warming on maize yields due to changes in couplings over 2051-2100 under the high 
emissions scenario (SSP5-8.5), as a percent of local mean of recent yields (2004-2013). Projections 
are shown only for areas with significant historical maize yield sensitivity to temperature (P < 
0.1); gray shading shows croplands with insignificant yield dependence on temperature. d) Same 
as b), but with additional yield impacts averaged over selected regions. Boxplot centerline 
denotes multi-model median; whiskers, tail projections within 1.5 interquartile range; and points, 
outliers. 
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The uncertainties in these projections highlight unresolved challenges in simulating 

temperature-moisture couplings using climate models and their importance to predicting the 

impact of climate change on global crop production. Specifically, the response of ET (largely 

mediated by soil and vegetation dynamics and land-atmosphere interaction) and precipitation 

(largely mediated by regional circulation) to interannual variability in temperature in future 

climates are both active areas of research (Lesk et al., 2020; Orlowsky & Seneviratne, 2010; Seth 

et al., 2019; Swann, 2018). While some regions with model consensus may reflect predictions with 

strong physical foundations, such as the enhanced land-atmosphere coupling in Europe with 

warming (Seneviratne et al., 2006; M. M. Vogel et al., 2017), they may also arise from stronger 

observational constraints and model validation effort across the northern midlatitudes (B. Mueller 

et al., 2011; Zscheischler & Seneviratne, 2017). Some regions lacking model consensus include 

important breadbaskets in southeast South America and chronically food-insecure and drought-

vulnerable southeastern Africa, where weather observations are comparatively sparse and 

couplings are not well-constrained by observations (Zscheischler & Seneviratne, 2017) (Fig. 6, 

Appendix B Fig. 3). These regions also tend to have the largest differences in estimated historic 

couplings between CMIP6 and observation-based data (Appendix B Figure 5). Our result show 

how these uncertainties and potential model inaccuracies presently impede a complete 

understanding of the risks of climate change to crop production. 

Several limitations of our study reflect important challenges and open questions. First, 

while we assess seasonal-scale yield responses and temperature-moisture couplings, future studies 

may consider sub-seasonal time scales, particularly the role of the couplings in short-duration heat 

extremes and flash droughts (Pendergrass et al., 2020; M. M. Vogel et al., 2017), and the 

differential vulnerability of crop growth stages. Second, we treat crops as passively affected by 
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these couplings, but in some densely-cropped regions they actively influence climate by modifying 

regional ET (He et al., 2020; N. D. Mueller et al., 2017). While this occurrence is limited to certain 

high-yielding regions at present, it may become increasingly common with continued crop 

intensification and thus merits further attention. Third, while we treat circulation and land-

atmosphere couplings as distinct, the influence of their overlap and interaction on past and future 

crop yield sensitivity to temperature should be investigated (A. Berg et al., 2015; Orlowsky & 

Seneviratne, 2010). Fourth, future work should consider the uncertain impact of increased 

atmospheric CO2 on future crop responses to combined heat and moisture stresses (Ainsworth & 

Long, 2021; Deryng et al., 2016), which may weaken or amplify the relationships in Fig. 2 by 

increasing the water use efficiency of crops (yield per unit water transpired). Finally, further 

attention to the role of natural vegetation, aerosols, and climate modes such as the El Niño-

Southern Oscillation in temperature-moisture couplings is also merited (Skinner et al., 2018; 

Swann, 2018). 

3) Conclusions 

Limitations and uncertainties in the climate models notwithstanding, we draw the following main 

conclusions from our results. Local heat sensitivity of crop yields depends on the strength of 

coupling between temperature and moisture for maize and soy, but not for rice and wheat. We 

propose that this dependence, and its absence for rice and wheat, is consistent with the 

compounding of heat impacts by moisture stress where couplings are strong, and mitigation where 

they are weak. By 2051-2100, enhanced couplings over a majority of global cropland will most 

likely make crops more vulnerable to warming temperatures, with notable exceptions across Asia, 

where couplings weaken. These climate impacts on crops are widely omitted from climate risk 

assessments.  
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Our projections of a mounting threat to crop yields from changing temperature-moisture 

couplings in a warming climate underscore the need to adapt global crop management and genetics 

to concurrent heat and moisture stresses. Cropping adaptations, such as breeding for drought and 

heat tolerance, should thus avoid antagonisms between stress mechanism where couplings 

strengthen in the future (Challinor et al., 2016; Prasad et al., 2008), but may leverage them where 

couplings weaken. For instance, irrigation may disrupt the antagonistic feedbacks that lead to 

compounding heat and moisture stresses, so its effectiveness as a crop adaptation to heat may be 

enhanced where couplings get stronger in the future. However, the reliability of irrigation may 

simultaneously decline with strengthening couplings, as drought increasingly limits the 

availability of water for irrigation during extreme heat (i.e., when it is needed most). As another 

example, breeding crops for drought tolerance based on stomatal regulation (Gates, 1968; 

Grossiord et al., 2020) or sowing density (David B. Lobell et al., 2020) may exacerbate heat 

impacts by reducing canopy evaporative cooling or raising crop water demand respectively, a risk 

that would be less important where couplings weaken (as in much of Asia). Finally, our results 

may help further calibrate joint temperature-moisture impacts in crop models to assure their 

usefulness in developing climate-adaptive cropping strategies (Bassu et al., 2014; Schauberger et 

al., 2017). 

Efforts to adapt cropping to climates with increasingly strong temperature-moisture 

couplings may prioritize subsistence cropping areas that are already prone to drought and heat, and 

where we project enhanced couplings to worsen crop vulnerability in the future. Even with robust 

adaptations, changes in crop sensitivity to heat under climate change will likely necessitate greater 

international cooperation in equitable food trade and emergency relief as climate shocks increase. 
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4) Methods:  

Data and processing 

For the historical climate analyses, we combine monthly 0.5° gridded mean temperature and total 

precipitation observations from the Hadley Center Climate Research Unit (CRU TS4.02) (Harris 

et al., 2014) with 0.25° modeled mean temperature and ET data from Global Land Data 

Assimilation System (GLDAS) Noah land surface model L4, version 2.0 (Rodell et al., 2004). We 

coarsen the ET data from 0.25° to 0.5°, to match the resolution of the temperature and precipitation 

data. To represent growing seasonal mean conditions, we average temperature and ET and sum 

precipitation during the average crop-specific growing periods based on a global crop calendar 

(Sacks et al., 2010). For wheat, we define the growing season as three months prior to harvest to 

exclude the vernalization period for winter wheat. Because ET is the input data with the greatest 

observational limitations, we verified the robustness of key parameters estimated via the regression 

model in Equation 2 to three alternative historical ET datasets: 1) GLDAS V2.0 Catchment Land 

System Model (CLSM) L4 over 1961-2010 (Rodell et al., 2004), 2) GLDAS V2.0 Variable 

Infiltration Capacity (VIC) L4 over 1961-2010 (Rodell et al., 2004), and 3) ERA5 Reanalysis over 

1980-2010 (Hersbach et al., 2020). 

The crop yield data are based on statistics from ~20,000 subnational political units over 

1970-2013, harmonized for consistency with UN Food and Agriculture Organization (FAO) 

national statistics and gridded to 0.5° resolution (Ray et al., 2019). While harmonizing the 

subnational statistics with national FAO data ensures comparability between nations, it may 

introduce discontinuities in the data along certain national boundaries, notably Ukraine. We focus 

on maize, wheat, rice, and soy as crops that are globally dominant in calorie consumption and 

distributed across the world. For both the climate and crop data, we isolate interannual variability 
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from longer-term trends using singular spectrum analysis (SSA), a non-parametric method that 

avoids assumptions about the functional form of the climate and yield trends (Vautard et al., 1992; 

E. Vogel et al., 2019). 

 

Historical temperature-moisture couplings 

To characterize the couplings between temperature and moisture, we compute grid-cell interannual 

Pearson’s correlation coefficients between the detrended temperature and ET from GLDAS for the 

land-atmosphere coupling (rT,ET), and temperature and precipitation from CRU for the circulation 

coupling (rT,P). This approach leverages the strengths of observation-based data for rT,P, but 

employs model-based data for ET, which is comparatively is sparsely observed over global 

croplands (B. Mueller et al., 2011; Zscheischler & Seneviratne, 2017). To improve the robustness 

of interannual correlations with respect to important modes of climate variability like the El Nino-

Southern Oscillation, we use a somewhat longer 50-year time period of 1961-2010 than the study 

period constrained by the yield data. We define statistical significance of the couplings for each 

grid-cell using a two-tailed t-test with a threshold of P < 0.1.  

For clarity, our nomenclature contrasts these two couplings based on the dominant locus 

of their occurrence either in atmosphere dynamics or land-atmosphere interactions (A. Berg et al., 

2015; Seneviratne et al., 2010; Trenberth & Shea, 2005). However, the two couplings interact 

physically in some regions and should not be considered strictly distinct (A. Berg et al., 2015; 

Seneviratne et al., 2006; Trenberth & Shea, 2005).  For instance, global correlations between grid 

cell rT,ET and rT,P (r2 = 0.21 for maize and 0.29 for soybean) may reflect links among P, ET, and T 

in the coupled surface-atmosphere system that are not easily disentangled. Despite this, the 

magnitude of these correlations and the broadly divergent spatial pattern in their historic and 
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projected future magnitude both suggest a prevailing differentiation of the two couplings. For 

brevity, we present the couplings only for maize in Figure 1 and for the other crops in Appendix 

B Figure 1, because their spatial pattern does not differ substantially across the different crops.  

Historical crop yield sensitivity to heat 

We estimate the historical yield sensitivity to temperature as the slope coefficient (𝛽 ) in a simple 

linear regression model relating detrended yields to temperature for each grid cell: 

𝑦 = 𝛽 + 𝛽 𝑇 + 𝜀 (1) 

where y denotes estimated yields, 𝛽  the intercept, 𝑇 the mean seasonal temperature, and ε the 

residual errors. Repeating this analysis for the four crops generates four maps of yield sensitivity 

to temperature for each crop. We standardize yield and temperature data such that 𝛽
𝑇
 has units of 

standard deviations of yield per standard deviation of temperature (i.e., is dimensionless). This 

standardization eases the comparison of yield sensitivity across crop regions with different means 

and variances of yield and temperature.  

The simplicity of this linear model for temperature impacts on yields eases interpretability 

of the spatial pattern of impacts and the results of subsequent analyses, at the cost of reduced 

specificity between the impacts of beneficial and detrimental sub-seasonal temperatures that 

comprise the seasonal mean temperature. Despite this limitation, the spatial pattern and magnitude 

of estimated yield sensitivity largely agrees with past studies using more complex models. For 

instance, we compare our unstandardized yield sensitivities aggregated to the national scale with 

those in the multi-model comparison of Zhao et al. (2018, ref. 4) in Appendix B Figure 8, and find 

broadly consistent signs and magnitudes for top producing countries for the four crops.  

We define statistical significance of the yield sensitivities for each grid cell using a two-

tailed t-test with a threshold of p < 0.1.  Importantly, we do not interpret this yield sensitivity to 
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reflect the response to heat stress alone, but also response of crops to temperature via its impact on 

vapour pressure deficit, a key variable in moisture stress (D. B. Lobell et al., 2013; Rigden et al., 

2020; Urban, Sheffield, et al., 2015). We conduct this analysis for all grid-cells with non-zero crop 

area to leverage the largest possible diversity of climates and crop systems, regardless their areal 

intensiveness. 

 

Historical impact of temperature-moisture couplings on yield 

Next, we assess the dependence of standardized yield sensitivity to temperature on the two 

historical coupling measures using a multiple linear regression model of the form: 

𝛽 = 𝛼 + 𝛼 , 𝑟 , + 𝛼 , 𝑟 , + 𝜀 (2) 

where 𝛼 ,  and 𝛼𝑇,𝑃 coefficients reflect the response of yield sensitivity to each coupling (rT,ET 

and rT,P), 𝛼0 is the intercept, and ε the residual errors. This method aggregates local yield 

sensitivities and coupling strengths into a dataset for each crop, and the regression results in two 

global estimates of the yield sensitivity response to each coupling (𝛼 ,  and 𝛼𝑇,𝑃) for each crop. 

Because they represent change in a standardized coefficient per unit change in correlation, 𝛼 ,  

and 𝛼𝑇,𝑃 are dimensionless. We include all grid cells with non-zero crop area and significant yield 

sensitivities to temperature (p < 0.1) in this analysis, and note that the regression results are highly 

robust to a stricter significance threshold of p < 0.05 (Appendix B Fig. 9). Based on a minimum 

threshold for the coefficient of determination (r2) of 0.2, we judge whether the couplings are 

substantially predictive of yield sensitivities for each crop, and proceed with future projections 

only for crops that met this criterion. Variance inflation factors for the models in Equation 2 were 

1.2-1.3, indicating low susceptibility of the coefficient estimates to the moderate collinearity 

between 𝑟 ,  and 𝑟𝑇,𝑃 (r2 ~0.2-0.3). Estimated model parameters were broadly robust to 
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alternative historical ET datasets, including VIC and CLSM land models from GLDAS and the 

ERA5 reanalysis (Appendix B Figure 6).  

 

Projecting future change in couplings  

To assess future changes in the couplings, we employ projected monthly mean temperature and 

ET and monthly total precipitation from a suite of Coupled Model Intercomparison Project 6 

(CMIP6) general circulation models, run under the SSP2-4.5 moderate emissions scenario(Eyring 

et al., 2016). We use all 12 models for which ET data is complete and available. The projected 

climate data are aggregated to the local growing season. We detrend the seasonal time series using 

SSA to remove the large influence of long-term forced trends in the climate variables, and regrid 

the data to a common 0.5° resolution. Despite the lower native resolution of many climate models, 

we proceed with this higher resolution to conserve the spatial detail of historical mean yields and 

yield sensitivities to temperature, which are based on higher-resolution data. However, we avoid 

introducing non-physical results to our downscaled climate projections by using nearest-neighbour 

approximation rather than interpolating. This method essentially conserves the original model 

resolution in the climate component of our projections, without sacrificing the higher resolution of 

observed variables. 

To project future changes in the temperature-moisture couplings, we compute rT,ET and rT,P 

in the climate model data for both the historical period 1961-2010 and a future period of 2051-

2100. We select the latter period to be distant enough in the future for climate signals to clearly 

emerge, but close enough to be useful for adaptation planning. We then compute a multi-model 

ensemble of correlation change factors by differencing the correlations between the historical and 

future periods. This differencing approach eliminates extraneous influence of historical mean 
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model biases compared to observations (Appendix B Fig. 5), isolating the relative change in 

couplings projected by each model relative to its own historical period. Despite this, we note that 

historical biases likely reflect incomplete model simulation of the processes relevant to change in 

the couplings. To represent the central tendency of the projection ensemble, we use the multi-

model medians of projected change factors in couplings (∆rT,ET and ∆rT,P). 

 

Projecting crop yield impacts of changing couplings 

We use the historical estimated coefficients relating yield sensitivity to temperature with each 

coupling (𝛼 ,  and 𝛼𝑇,𝑃 in equation 2) to project future changes in yield sensitivity to temperature 

(∆𝛽
𝑇

) resulting from changes in the couplings, following: 

∆𝛽
𝑇
= 𝛼𝑇,𝐸𝑇∆𝑟𝑇,𝐸𝑇 + 𝛼𝑇,𝑃∆𝑟𝑇,𝑃  (3) 

This equation employs the regression relation estimated in equation 2, but allows the coupling 

strength at each grid cell to change based on the climate model projections. The central assumption 

in this approach is that the future yield sensitivity of each grid cell responds to future changes in 

the couplings at the global rate dictated by 𝛼 ,  and 𝛼𝑇,𝑃. We note that successful crop adaptation 

may challenge this assumption (see Conclusions). 

To ease the physical interpretation of the projected yield impacts, we convert the projected 

change in yield sensitivity to dimensional terms using:  

∆𝐵 = ∆𝛽  (4) 

where ∆𝐵  coefficients have units of tons ha-1 ℃-1. We then project additional yield impacts of 

warming for each grid cell due to changes in coupling (∆∆𝑌) by multiplying this coefficient by 
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the multi-model median of the mean seasonal warming by 2051-2100 (∆𝑇, computed by 

differencing modeled mean seasonal temperatures between the future and historical periods): 

∆∆𝑌 = ∆𝐵 ∆𝑇 (5) 

We present this additional yield impact as a percent of recent local yields averaged over 2004-

2013, the 10 most recent years in our dataset, to contextualize the changes relative to local baseline 

yields. Finally, we average the percent yield changes across all grid cells with significant historical 

yield sensitivities to estimate net global additional yield impacts due to future changes in 

temperature-moisture couplings. Note that we map ∆rT,ET, and ∆rT,P over the full global cropland, 

regardless of the significance of historical yield sensitivities, to enable interpretation of wider 

global patterns of change. However, we map ∆∆𝑌 and ∆𝛽  only where historical yield sensitivity 

to temperature (𝛽
𝑇
) is significant (P < 0.1). We also show projected yield change from warming 

alone to contextualize ∆∆𝑌, however we do not consider these projections themselves to be a 

methodological improvement on past statistical yield projections using more complex models. 

To assess uncertainty across the ensemble of climate models, we recompute equations 3-5 

using model-specific changes in the couplings, rather than the ensemble median. We use a 

consistent multi-model median warming to compute additional yield impact so that the uncertainty 

analysis isolates differences between model-specific projected changes in couplings, rather than 

model differences in mean warming. This approach assumes that, at the seasonal scale, the 

influence of coupling changes on mean warming in each model is small relative to the radiative 

effect of greenhouse gases and dominant climate feedbacks (e.g. ocean and cloud responses to 

warming) (M. M. Vogel et al., 2017).   

We then assess model agreement on the sign of yield change for each grid cell. To do so, 

we classify whether at least 8 models (2/3 of the ensemble) project either positive change (>10% 
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yield gain), negative change (>10% yield loss), or little change (<10% yield gain or loss). Grid 

cells where fewer than 8 models agree on the direction of change are classified as areas with 

substantial model disagreement. We also present histograms of model-specific projected net mean 

global yield change to reflect the distribution of plausible future global impacts. To account for 

uncertainty over future emissions, we include in this histogram equivalent results for a high-

emissions scenario, SSP5-8.5 (Eyring et al., 2016). We also present ∆∆𝑌 for this scenario to 

understand the spatial pattern of changes. Finally, we present ∆∆𝑌 for the two emissions scenarios 

averaged over several regions with noteworthy vulnerability or global importance. The data and 

methods used in this study are summarized visually in Appendix B Figure 7. Base maps in Figures 

1 and 4-6 are developed by Generic Mapping Tools and used under a creative commons license. 
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Appendix B Figure 1: Temperature-moisture couplings across global croplands during 
different cropping seasons. Circulation coupling strength, measured as the interannual 
correlation between detrended growing season mean temperature and total precipitation, during 
the local growing seasons of a) maize, b) soybean, c) wheat, and d) rice. Land-atmosphere 
coupling, measured as the interannual correlation between detrended growing season mean 
temperature and evapotranspiration, during the local growing seasons of e) maize, f) soybean, g) 
wheat, and h) rice. Hatching denotes significance of the correlation (two-tailed p < 0.1, t-test). 
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Appendix B Figure 2: Projected additional impact of future warming on soybean yields due to 
changing temperature-moisture couplings. a) Ensemble median additional impact of warming 
on soybean yields from projected changes in rT,ET and rT,P over 2051-2100 under a moderate 
emissions scenario (SSP2-4.5), as a percent of local mean of recent yields (2004-2013). b) Soybean 
yield changes (as a percent of recent yield) from ensemble median warming only, projected using 
historical yield sensitivity to temperature from Fig. 1b. c) Projected total yield impacts, estimated 
as the sum of impacts from changing couplings and warming only. Projections in a-c) are shown 
only for areas with significant historical soybean yield sensitivity to temperature (p < 0.1); gray 
shading shows croplands with insignificant yield dependence on temperature. d) Yield impacts 
averaged across selected key regions and globally 
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Appendix B Figure 3: Model specific projected additional yield impact (∆∆𝒀) due to 
changing temperature-moisture couplings. Same as Fig. 5a, but for individual CMIP6 climate 
models run under the moderate emissions (SSP2-4.5) scenario. 
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Appendix B Figure 4: Projected future changes in temperature moisture couplings and yield 
sensitivity in response to warming under a high emissions scenario. a) Projected change in 
circulation coupling (detrended interannual rT,P) over 2051-2100 under a high emissions scenario 
(SSP5-8.5), compared to historical couplings over 1961-2010. The median of an ensemble of 12 
CMIP6 climate model projections is shown for each grid cell. b) Same as a), but for land-
atmosphere coupling (rT,ET). c) Projected change in standardized maize yield sensitivity to 
temperature in response to changes in couplings, based on global slope coefficients from in Fig. 
2a. d) Projected yield impact due to temperature warming only, expressed as a fraction of recent 
yields. For a-b) projections are shown over the full global maize croplands to facilitate 
interpretation of broader patterns, while for c-d) projections are shown only for areas with 
significant historical maize yield sensitivity to temperature (p < 0.1); gray shading shows 
croplands with insignificant yield dependence on temperature. 
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Appendix B Figure 5: Comparison of historical temperature-moisture couplings between 
CMIP6 models and observation-based datasets. a) Difference in circulation coupling strength, 
measured as the interannual correlation between detrended growing season mean temperature 
and total precipitation, between CMIP6 historical run ensemble median and historical 
observation-based data (Hadley Center CRU TS4.02). b) Difference in land-atmosphere coupling 
strength, measured as the interannual correlation between detrended growing season mean 
temperature and evapotranspiration, between CMIP6 historical run ensemble median and 
historical observation-based data (GLDAS Noah land surface model L4, version 2.0). 
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Appendix B Figure 6: Dependence of yield sensitivity to temperature on temperature-
moisture couplings using alternative historical observation-based datasets. Slope coefficients 
(+/- standard error, blue and pink points) and/or coefficients of variation (gold points) for 
regression model in Equation 2 (see Methods) and Figure 2, re-estimated using the primary and 
3 alternative historical observation-based data for a) maize, b) soybean, c) wheat, and d) rice.  
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Appendix B Figure 7: Summary of data and methods used for historical analysis and 
projections. Flowchart describing sequence of methods employed for a) temperature-moisture 
coupling measure and yield sensitivity estimation, and b) projection of additional yield impacts 
from changes in couplings projection. Elliptical elements depict data inputs or outputs, while 
rectangular elements depict computations. 
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Appendix B Figure 8: Comparison of yield sensitivity to temperature between this study and 
multi-model intercomparison. Unstandardized yield sensitivity to temperature (in % per °C) as 
estimated in this study (circles) and in the intercomparison of statistical and mechanistic crop 
models in Zhao et al. (2018, ref. 4) (squares, lines denote 95% confidence interval). Yield 
sensitivities in this study were averaged to the national scale to match the resolution of ref. 4. 
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Appendix B Figure 9: Global dependence of yield sensitivity to temperature on two 
temperature-moisture couplings using a stricter significance criterion. Same as Figure 2, 
except using p < 0.05 as significance threshold on the yield-temperature slope coefficient for 
inclusion in the sample.  
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Appendix B Table 1: Dataset references and access information. 

Dataset name Access link 

Gridded sub-national crop 
statistics for ~20,000 
political units, 0.5° 

Available upon request 

HadCRU TS4.02 Gridded 
Observations, 0.5° 

http://dx.doi.org/10.5285/b2f8191425
7c4188b181a4d8b0a46bff 

GLDAS V2.0 Noah model 
L4 LSM, 0.25° 

https://disc.gsfc.nasa.gov/datasets/G
LDAS_NOAH025_M_2.0/summary?k
eywords=gldas 

GLDAS V2.0 CLSM model 
L4, 1.0° 

https://disc.gsfc.nasa.gov/datasets/G
LDAS_CLSM10_M_2.0/summary?ke
ywords=gldas 

GLDAS V2.0 VIC model L4, 
1.0° 

https://disc.gsfc.nasa.gov/datasets/G
LDAS_VIC10_M_2.0/summary?keyw
ords=gldas 

Sacks et al. Crop Calendar 
Datasets, 0.5° 

https://nelson.wisc.edu/sage/data-
and-models/crop-calendar-
dataset/index.php 

ERA5 Reanalysis Monthly 
Averages, 0.25° 

https://doi.org/10.24381/cds.f17050d
7 

CMIP6 Historical Climate 
and ScenarioMIP 
Projections 

https://console.cloud.google.com/stor
age/browser/cmip6 
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Chapter 3: Mitigation and Adaptation Emissions Embedded in the 

Broader Climate Transition 

1) Introduction 

The diverse dangers of human-induced climate change demand two major international efforts: 

reducing greenhouse gas (GHG) emissions enough to keep warming below a specified limit 

(Knutti et al., 2016; Rogelj et al., 2018; Schleussner et al., 2016; Seneviratne et al., 2016), and 

adapting infrastructure and patterns of human settlement to support societal goals at that level of 

warming (Diaz, 2016; Hauer et al., 2020; Lincke & Hinkel, 2021; Siders et al., 2019; Viguié et al., 

2021). The twin global projects of climate mitigation and adaptation can be characterized as two 

components of a broader climate transition, in which temperatures stabilize and societies are 

adapted to the impacts. Such a transition will involve a significant investment of economic activity 

and energy use, which will generate CO2 emissions as long as they are powered by fossil fuel 

combustion. 

Among a wide array of potential mitigation and adaptation measures, we select three 

illustrative examples that are particularly widely required, energy intensive, and likely to be 

deployed (see Methods). First, mitigating CO2 emissions from the energy sector necessitates the 

mass construction of renewable electricity generating capacity (Gambhir et al., 2019; Jacobson et 

al., 2017; Keyßer & Lenzen, 2021; Luderer et al., 2021; Rogelj et al., 2018; Van Vuuren et al., 

2016). Because renewable capacity is presently insufficient, this process of energy 

decarbonization must be initially powered by an investment of fossil fuel energy, or seed energy 

(Sgouridis et al., 2016). Second, sea-level rise (SLR) caused by historical and future emissions 

will require the construction of coastal flood defenses and relocation of coastal settlements across 
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a potentially vast portion of the global coastline (Diaz, 2016; Hinkel et al., 2014; Lincke & Hinkel, 

2021). Third, climate warming due to historical emissions will make space cooling necessary in 

new regions, and increase the duration and intensity of its use globally (Levesque et al., 2018; 

Viguié et al., 2021).  

Refining estimates of remaining carbon budgets as a measure of the emissions ‘runway ’

for the transition to  a stable climate has been a topic of great importance to climate policy and 

Earth system science (Matthews et al., 2020). Emissions from mitigation and adaptation effectively 

reduce the space available for remaining CO2 emissions in other economic sectors. Much effort 

has been devoted to understanding the economic costs of mitigation (Jacobson et al., 2017; Rogelj 

et al., 2013) and adaptation (Diaz, 2016; Hinkel et al., 2014) needed to achieve the broader climate 

transition. The likely carbon emissions cost of the transition itself, by contrast, has received less 

attention (Myhrvold & Caldeira, 2012; Seto et al., 2016).  

Energy use for the clean energy transition has been suggested as a potentially large source 

of emissions (Luderer et al., 2018; Sers & Victor, 2018; Sgouridis et al., 2016; Tong et al., 2019), 

but a holistic global estimate of the aggregate magnitude of these emissions is presently lacking. 

Further, while energy demand for projected future space cooling has been studied in some regions 

(Viguié et al., 2021), likely emissions from this and other projected adaptations to climate change 

remain poorly understood. Thus, the potential for mitigation and adaptation emissions to 

effectively shorten the emissions runway, or necessitate shifts in economic priorities and 

investments to respect carbon budgets, remains largely unconstrained. 

In this study, we provide an estimate of CO2 emissions likely to result from mitigation and 

adaptation across the transition to a stable climate over 2020-2100 using a suite of climate and 

sectoral models. We first quantify the emissions embedded in a gradual 2°C-consistent transition 
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to determine if their magnitude is substantial from a policy and Earth system perspective. We then 

reassess these transition emissions under rapid and delayed energy decarbonization pathways to 

assess their sensitivity to climate ambition. We finally identify and discuss key uncertainties and 

leverage points for addressing potentially important emissions from mitigation and adaptation. 

 

2)  Results 

We first present the simulated 2°C gradual energy decarbonization pathway, ensuing climate 

changes, projected adaptations, and estimated energy embedded in the transition. We then report 

estimates of embedded emissions for the energy decarbonization pathways and the adaptation 

interventions. Finally, we detail the emissions implications of a more gradual energy 

decarbonization scenario. 

 

Projected rapid energy decarbonization pathway, climate change, and adaptation 

Under the gradual energy decarbonization pathway projected using NETSET, wind and solar 

capacity is rapidly deployed beginning in 2020 with installation rates averaging 4.5TWp/yr over 

2020-2050 (Fig. 1a). Solar and wind capacity plateaus at ~100TWp by 2050, satisfying ~80% of 

global primary energy demand (Fig. 1a). This deployment of solar and wind – along with smaller 

increasing contributions from geothermal and scale-limited renewables – drives the displacement 

of fossil fuels. The required energy seed totals 930PWh (3350EJ) over 2020-2100, of which 

405PWh (1460EJ) or 43% are provided by fossil fuels (Fig. 1e). To put these numbers in 

perspective, the world consumed 155 PWh (560EJ) of primary energy in 2020. 

 Projected future CDDs continue to rise with global climate warming through the 2060s and 

then plateau through 2100, peaking at around 13% above 2020 levels (Fig. 1b, pink line). By 
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contrast, projected SLR proceeds steadily reaching a global mean of 50cm by 2100 compared to 

2000 (Fig. 1b, blue line), reflective of the slower and higher-inertia response of oceans and 

cryosphere to warming. As a result of this SLR, we project based on CIAM that over the 2050-

2100 planning period, protective infrastructure will be cost-optimal over 31,000km of coastline or 

around 3% of the global coastline, protecting 130 million people (Fig. 1c, Appendix C Fig. 1a). 

The median optimal protection height is around 1m, excluding wave run-up and initial under-

protection. Some degree of coastal retreat would be cost optimal across a much larger ~70% of 

coastal segments, representing 67 million people globally (Fig. 1d, Appendix C Fig. 1b). These 

projections are comparable to other recent estimates (Lincke & Hinkel, 2021). Coastline segments 

where neither retreat nor protection are optimal are concentrated in sparsely populated desert and 

high latitude areas (Appendix C Fig. 1). Protected segments tend to be more densely populated (by 

a median factor of 5) and have higher climatological 1-in-1-year storm surges (by ~25%) than 

segments where retreat is optimal (Appendix C Fig. 1c-f). 

 Renewable energy deployment and adaptation result in energy demands throughout the 21st 

Century. Fossil fuel seed energy (i.e., fossil fuel investment into deploying renewables, Fig. 1e 

purple curve) peaks in the 2020s before rapidly being replaced by renewable seed energy (Fig. 1e, 

yellow curve), which reaches steady state by around 2070. As a result of projected higher CDDs, 

energy demand for climate-adaptive space cooling is projected by EDGE to rise gradually 

throughout the century to around 5EJ/year by 2100 (Fig. 1e, pink curve). Finally, using factors 

from Hammond et al. (2008) and Monahan et al. (2011), we estimate that energy embedded in 

coastal adaptations amounts to around 20EJ for retreat and 25EJ for protection in aggregate over 

2020-2100, which we present as occurring at the midpoint of the transition in 2060 (Fig. 1e, 

squares, see Methods). 
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Figure 1: Energy demands from simulated rapid energy decarbonization and adaptation. a) 
Gradual 2°C energy decarbonization pathway projected using the NETSET global energy model 
(respecting a carbon budget of 1150GtCO2 and minimum net energy per capita of 2000W). 
Coloured areas depict time evolution of primary energy demand across energy sources. The 
dotted black line separates energy investment into energy (above) from net energy available to 
society (below). The dotted grey line separates historical from projected data.  b) Projected climate 
change forced by GHG emissions under RCP2.6, which results in an increase in population-
weighted global mean cooling degree days (CDD, pink curve) and global mean SLR (blue curve). 
c) Distribution of cost-optimal coastal protection heights (by coastline segment) over the 2050-
2100 planning period, projected using the CIAM model. The total coastline protected is the sum 
of the lengths of protected coastline segments. d) Same as c, but for cost-optimal retreat 
population. Note that retreat population is presented on a logarithmic axis. e) Time evolution of 
energy demand embedded in adaptation and energy decarbonization over 2020-2100. Coastal 
retreat and protection are presented as totals over 2020-2100, assumed to occur at the midpoint 
of the transition in 2060. 
 

Substantial emissions embedded in the rapid energy decarbonization pathway  

The CO2 emissions resulting from the energy demand for adaptation and the energy 

decarbonization pathway depend on the emissions intensity of energy, which we derive from EIA 

global energy statistics in the 2019 International Energy Outlook. We estimate the average 

emissions intensity of major fossil fuels to be around 90tCO2/TJ for coal, 60tCO2/TJ for oil, and 
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50tCO2/TJ for natural gas (Table S1). Based on these emissions factors, the evolution of the energy 

mix through the transition, and the fuel composition of seed energy for renewables (Fig. 1a), we 

project that the emissions from energy investment into energy peak in 2025 at 3.8GtCO2/yr before 

steeply declining (Fig. 2a), as renewable energy replaces fossil fuels both in the overall energy mix 

and in energy investment into renewables. In total over 2020-2100, coal contributes 35GtCO2, oil 

around 37GtCO2, and gas around 23GtCO2 for a total of 95GtCO2, equivalent to 2.5 years of 

current global emissions and over 8% of the remaining carbon budget for 2°C (Fig. 2b). 

Smaller emissions from adaptation through the transition 

Emissions from adaptive cooling peak around 2030 at ~70MtCO2/yr, about 2% of the peak seed 

energy emissions (3.8GtCO2), before declining steeply beginning in the 2040s (Fig. 2c). This 

decline occurs even as adaptive cooling energy demand rises (Fig. 1e), compensated by reductions 

in the emissions intensity of energy as renewables displace fossil fuels (Fig. 1a). Following our 

partitioning scheme for process versus energy emissions embedded in coastal adaptation materials, 

the emissions intensities of sea dikes and coastal resettlement decline rapidly as fossil fuels are 

phased out, falling below half their present values by the assumed time of adaptation 2060 (dotted 

grey line, Fig. 2d-e). Thus, by the time coastal adaptation occurs in our model, it is reliant on a 

cleaner energy mix. While energy-related emissions dominate process emissions at the start of the 

transition (by a factor of 1.5 for dikes and 4 for resettlement), they contribute <10% of emissions 

by 2060 and thus drive the declining emissions intensity (Fig. 2d-e). In aggregate over 2020-2100, 

coastal protection contributes ~1GtCO2 while coastal retreat and adaptive cooling each contribute 

around 0.3GtCO2 (Fig. 2f). Total adaptation emissions through 2100 are thus much smaller than 

emissions from fossil fuel energy investment into renewable capacity, amounting to 1.5GtCO2 or 
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around 0.1% of the remaining carbon budget, with a dominant share arising from coastal 

protection. 

Figure 2: Estimated mitigation and adaptation CO2 emissions embedded in the transition. a) 
Time evolution of emissions from fossil fuel energy investment into renewable energy as 
projected in NETSET. Dotted vertical line separates historical from projected data. b) Total 
emissions from fossil fuel energy investment into renewable capacity over 2020-2100 in absolute 
units and as a percent of the remaining carbon budget for 2°C. c) Time-evolution of adaptive 
cooling emissions based on energy demand from EDGE and energy mix from NETSET. d) 
Estimated emissions factors over time by source for materials in modeled sea dike. e) Estimated 
emissions factors over time by source for resettlement housing. Data in d-e) are based on LCA 
literature and decarbonization of energy mix as projected in NETSET, and vertical dotted line 
denotes the midpoint of the transition, at which coastal adaptations are assumed to take place. 
f) Total emissions from coastal retreat, coastal protection, and adaptive cooling over 2020-2100, 
in absolute units and as a percent of the remaining carbon budget for 2°C. 
 
 
Strong sensitivity of transition emissions to the pace of decarbonization 

Under rapid energy decarbonization limiting warming to 1.5°C, the renewable capacity installation 

rate averages 5.9TWp/yr over 2020-2050, 30% greater than the rate of the gradual pathway, and 

peaks strongly in the 2020s at over 10TWp/yr (Fig. 3a). As a result, fossil fuels are virtually 

eliminated from the energy mix by 2030, and renewable deployment is powered by reinvestment 
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of renewable energy thereafter (Appendix C Fig. 2b). This minimizes seed energy emissions to 

20GtCO2, an 80% reduction compared to gradual decarbonization (Fig. 3c). 

By contrast, a cumulative 180GtCO2 emissions result from renewable energy deployment 

under delayed decarbonization (Fig. 3b), nearly double those from the gradual pathway and 9 times 

greater than the rapid case (Fig. 3c). The mean installation rate of renewable capacity (2.6TWp/yr 

over 2020-2050) is roughly halved compared to the rapid transition (Appendix C Fig. 2a). This 

leads to a higher share of fossil fuels in the energy mix throughout the 21st Century (e.g., 47% in 

2050, compared to 15% under gradual and <1% under rapid, Fig. 3c). Consequently, a majority of 

energy investment into renewables is derived from fossil fuels (73% in total over 2020-2100, 

compared to 43% under gradual and 11% under rapid decarbonization, Appendix C Fig. 2b).  

Avoided emissions under rapid decarbonization limit climate change and projected 

adaptation. Sea levels rise by 14% less than under gradual decarbonization (43cm by 2100, 

Appendix C Fig. 2c), resulting in a 10% decrease in coastal protection (although retreat population 

rises by 4%). Under the delayed transition, greater total emissions accelerate global mean SLR 

(60cm by 2100, or 20% more than the gradual transition, Appendix C Fig. 2c), resulting in 13% 

more coastal protection and an 11% larger retreat population than under rapid decarbonization. 

Projected CDDs are boosted by 8% under delayed decarbonization and reduced by 4% under rapid 

decarbonization, compared to the gradual transition by 2100 (Appendix C Fig. 2c).  

Adaptation emissions increase non-linearly with cumulative emissions across the 

pathways. Total adaptation emissions are reduced by 20% to 1.2GtCO2 under rapid 

decarbonization compared to the gradual case, but triple under the delayed pathway for a total of 

4.5GtCO2 over 2020-2100 (Fig. 3c). Reductions in emissions with rapid decarbonization are 

dominated by an 80% reduction in cooling emissions. Conversely, emissions from all adaptations 



 

96 

expand substantially in the delayed pathway, increasing by ~80% for coastal protection (from 1 to 

1.8GtCO2), by a factor of 2.7 for coastal retreat (0.3 to 0.8 GtCO2), and by a factor of 6.7 for 

adaptive cooling (0.3 to 2.0GtCO2).  

These increases in adaptation emissions are driven primarily (~90%) by an increased global 

emissions intensity of energy as the decarbonization pace slows (light grey bars in Fig. 3c), with a 

secondary contribution of ~10% from a higher amount of adaptation (i.e., higher energy demand, 

dark grey bars in Fig. 3c). Increased emissions from cooling are additionally raised by lower 

primary-to-final conversion efficiency of fossil fuels compared to renewables, boosting primary 

energy demand by 30% under delayed compared to rapid decarbonization (Appendix C Fig. 2c). 

Thus, fractional changes in adaptation emissions resulting from slower transitions far exceed the 

fractional change in adaptation amounts driven by geophysical climate impacts, because the 

resulting adaptation energy demand is met by far ‘dirtier ’energy.  

Despite large absolute increases in embedded emissions embedded across the transition 

scenarios, their percentage of respective carbon budgets is relatively static (5.5% for rapid, 8.3% 

for gradual, and 8.6% for rapid decarbonization, Fig. 3c-d). However, as a point of comparison, 

the total emissions embedded in the delayed transition, the pathway most consistent with current 

global climate policy, amount to 16% if applied to of the 2°C carbon budget, and 46% if applied 

to the 1.5°C carbon budget. This comparison demonstrates that under current policies, the 

emissions embedded in the broader climate transition alone jeopardize the 1.5°C target, 

highlighting a novel contradiction between global climate commitments and actual policies. 
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Figure 3: Comparative mitigation and adaptation CO2 emissions from a rapid versus gradual 
transition. a) Rapid energy decarbonization pathway limiting warming to 1.5°C (same as Fig. 
1a, except respecting a smaller carbon budget of 400GtCO2). Coloured areas depict time 
evolution of primary energy demand across energy sources. The dotted black line separates 
energy investment into energy (above) from net energy available to society (below). The dotted 
grey line separates historical from projected data. b) Same as a) but for the delayed energy 
decarbonization pathway with warming ~2.7°C in 2100 (respecting a larger carbon budget of 
2150GtCO2).  b) Total emissions from fossil fuel energy investment into renewable capacity over 
2020-2100 for the three decarbonization pathways. Annotations show emissions as percentages 
of respective carbon budgets. c) Total emissions from coastal retreat, coastal protection, and 
adaptive cooling over 2020-2100 for the three decarbonization pathways. Grey floating bars 
show drivers of change in total adaptation emissions between the three cases, partitioned (as an 
average across the three adaptations) into a component due to change in amount of adaptation 
versus change in emissions intensity of primary energy. 
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3) Discussion and Conclusions 

We estimate that over 2020-2100, a cumulative ~97GtCO2 of emissions are embedded in 

energy decarbonization and major adaptations comprising the broader climate transition. These 

emissions are dominated by seed energy emissions (i.e., fossil fuel combustion to power renewable 

energy deployment, 95GtCO2), with a smaller contribution from adaptive cooling and coastal 

protection and retreat (1.5GtCO2, Fig. 2). Our estimates are by definition conservative since they 

exclude non-CO2 GHGs, other adaptations such as inland flood protection (Dottori et al., 2018) 

and water transfer infrastructure (Qin et al., 2020), and other energy system changes like building 

retrofits, carbon capture and storage, and renewable energy transmission and storage (MacDonald 

et al., 2016; Zeyringer et al., 2018). Despite this, our estimated magnitude of mitigation and 

adaptation emissions embedded in the transition is sizeable and relevant to climate policy from 

several angles.  

First, the emissions embedded in the transition are equivalent to a substantial mitigation 

effort. For instance, emissions under gradual decarbonization are 2.5 times (or 5 times for delayed 

decarbonization) larger than the total global emissions reductions attributable to national CO2 

abatement legislation over 1999-2016 (Eskander & Fankhauser, 2020).  Further, they are on the 

order of (or for delayed decarbonization, about double) the emissions abatement from the United 

States hypothetically achieving net zero CO2 emissions by 2050 (i.e., reducing emissions from ~5 

to 0GtCO2/yr over 30 years would avoid 75GtCO2/yr, compared to constant emissions) (US 

Environmental Protection Agency, 2021). Relative to these measures, the emissions embedded in 

the transition are equivalent to a considerable climate legislative and mitigation effort. The 

emergence of these emissions in coming decades, which we argue is not currently widely 
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researched or included in policy debates, has the potential to further complicate the challenge of 

meeting both adaptation and mitigation targets.  

Second, total transition emissions represent a non-negligible 5-8% of the remaining carbon 

budget under the respective scenarios. Furthermore, under delayed decarbonization, total transition 

emissions amount to 16% of the carbon budget for 2°C, and 46% of the carbon budget for 1.5°C. 

We argue that these mixed comparisons are not contradictory, but rather accurately reflect the 

current global gap between climate commitments and actions. While international agreements 

affirm well below 2°C and ideally 1.5°C as a maximum warming target, national policies are in 

aggregate more consistent with the ~2.7°C gradual transition scenario (Canadell et al., 2021; 

UNEP, 2020).  

Thus, under current policies, emissions embedded in the transition alone jeopardize the 

1.5°C target, but can minimized under decarbonization policies consistent with 1.5°C. 

Nevertheless, since carbons budgets are commonly interpreted as the emissions runway prior to 

which global emissions much reach net zero (Matthews et al., 2020), our results may imply that a 

non-negligible portion of this budget may need to be set aside for renewable seed energy and 

adaptation, effectively shortening the runway for other economic sectors. However, this 

implication of our results depend on whether these emissions should be regarded as outside (i.e., 

additional to) existing accounting of present and likely future emissions. We note a few 

considerations on this topic.  

First, to our knowledge, projected emissions from adaptation are not included in mitigation 

scenarios generated by integrated assessment and other models, except insofar as climate damages 

affect economic drivers (De Cian et al., 2016; Fisher-Vanden et al., 2013). They thus are not widely 

considered in current policy assessments informed by these models. Second, some energy 
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investment into renewable capacity will replace fossil fuel infrastructure at its planned retirement, 

representing capacity maintenance without net new energy demand. However, some degree of 

early retirement will be necessary for to achieve more ambitious pathways (Pfeiffer et al., 2018; 

Tong et al., 2019). From this perspective, the additionality of seed energy emissions would be 

larger for faster-paced transitions necessitating more abandonment of fossil fueled capacity, a 

factor worthy of future examination. Third, as with historical infrastructure investments, the 

interventions that we examine may stimulate household consumption and economic growth in 

other sectors. Prior to radical decarbonization of energy or decoupling of economic growth from 

energy, this would augment emissions (Fankhauser & Tol, 2005; Grubler et al., 2018; Horen 

Greenford et al., 2020; Keyßer & Lenzen, 2021). However, the economic activity comprising the 

transition could also divert economic growth from sectors that shrink during the transition. In short, 

questions surrounding the additionality of transition emissions are complex, consequential, and 

worthy of further research. 

We find that emissions embedded in the transition are highly sensitive to transition pace. 

For instance, under delayed decarbonization, seed energy emissions increase nearly tenfold, while 

adaptation emissions quadruple compared to the rapid 1.5°C pathway (Fig. 3). This sensitivity 

arises mainly because the rate of renewable energy reinvestment into more renewables is limited 

importantly by slower deployment pace under a delayed transition (Fig. 1a, e, Appendix C Fig. 

2b), which strongly boosts the fossil-fuel seed energy emissions (Fig. 3b), akin to an ‘emissions 

trap ’(Sers & Victor, 2018). Adaptation emissions contribute secondarily to the sensitivity, partly 

because slower transitions result in more climate change and thus more adaptation, but mainly 

because they draw on a more emissions-intensive energy mix (Fig. 3c, Appendix C Fig. 2). 
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Emissions embedded in the transition are thus strongly sensitive to the pace of decarbonization 

and, consequently, low climate ambition comes at a high transition emissions cost.  

We show that seed energy for renewable capacity is likely to comprise the bulk of transition 

emissions under the three pathways. Crucially, this implies that the majority of transition emissions 

are likely unavoidable, as a certain amount of fossil-fuel energy must be used to power initial 

renewable deployment. Until energy decarbonization has matured sufficiently, the fraction of seed 

energy that can be satisfied by renewables will be limited by low initial renewable capacity 

(Appendix C Fig. 2a). Thus, while seed energy emissions can be greatly reduced through ambitious 

decarbonization (Fig. 3c), they remain non-negligible under all scenarios. By contrast, 

technologies exist to minimize the energy- and emissions-intensity of adaptation, including nature-

based coastal protection (Chu et al., 2012), alternatives to concrete and steel in construction such 

as engineered wood (Ramage et al., 2017), and passive solar cooling. However, the effectiveness 

and scalability of these alternatives remains uncertain. 

 Our results raise some important equity concerns that must be remedied for a just transition. 

Cost-optimal coastal protection projected using CIAM is more widespread in wealthier countries 

due to their higher GDP and coastal capital density. By contrast, the sub-Saharan Africa coastline 

is only protected in a few dense population centers (Appendix C Fig. 1a), forcing the majority of 

the population to either face rising seas or retreat. Further, wealthier people and countries typically 

have greater economic energy intensities and thus contribute disproportionately to the carbon cost 

of deploying renewables. Thus, transition emissions are disproportionately caused by wealthier 

people, while their impacts are faced disproportionately by those with less wealth, furthering 

historical inequity surrounding climate change (Hubacek et al., 2017; Matthews, 2016). A greater 
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commitment of wealthy nations and individuals to equitable financial transfers, priorities, and 

policies is needed to relegate these unjust outcomes to the past. 

As a broad global estimate spanning many complex sectors, our study has five important 

limitations that may be improved upon in future research. First, although our research provides 

new insight and groundwork, it should be expanded to account for non-CO2 emissions (notably 

N2O, CH4, and hydrofluorocarbons) and other positive emissions sources from mitigation and 

adaptation. Further, in focusing on adaptations with potentially large emissions, we do not target 

others with potential avoided or negative emissions (for instance, a reduction in heating energy 

use) which may be included in future studies. Second, future model improvements may integrate 

dynamic interactions between interventions, such as energy system changes due to SLR impacts 

on coastal energy infrastructure, which may help elucidate other synergies or trade-offs between 

mitigation and adaptation. Third, while we omit economic considerations for the sake of 

tractability, they merit future attention, notably around the function of capital markets, assumptions 

of energy decoupling from GDP growth, and their influences on evolution of decarbonization and 

adaptation. Fourth, in the absence of a solid observational basis, we make assumptions about the 

timing of coastal adaptations, whose influence on transition emissions should be further explored. 

Finally, although we examine the sensitivity of our results to decarbonization pace, we otherwise 

rely on median socioeconomic, energy, and geophysical projections, which in reality contain large 

uncertainties. Specifically, the sensitivity of transition emissions to high- or low-end projections 

of climate warming, SLR, renewable energy learning rates, and population and GDP growth 

should be explored further.  

 Despite these limitations, we conclude that the magnitude of CO2 emissions embedded in 

the broader climate transition are of geophysical and policy relevance, equaling an important 
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fraction of the remaining carbon budget. In addition, transition emissions can be greatly reduced 

under faster-paced decarbonization, lending new urgency to policy progress on rapid renewable 

energy deployment. We also conclude that regionally disparate contributions to transition 

emissions threaten to perpetuate present and historical climate inequities into the transition era, 

unless wealthy actors commit to equitable policies. Most fundamentally, our results point to 

underappreciated synergies and trade-offs between mitigation goals and embedded transition 

emissions, which must be better understood and integrated into climate policy for a just and 

effective transition. 

 

4) Methods: 

Overall framework and scope 

To estimate the probable emissions from mitigation and adaptation through the transition to a 

stable climate, we must first establish a limited scope of sectoral interventions. It is impossible to 

exhaustively account for the diverse changes required to mitigate and adapt to climate change 

globally, which involve a vast array of changes at household, institutional, national, and 

international scales. We instead focus on interventions that satisfy three criteria which we treat as 

proxies for the global gross energetic and material magnitude of the interventions, as well as the 

likelihood of them being implemented. 

First, we constrain our scope to interventions responding to global-scale changes (e.g., 

adaptation to SLR, deployment of solar and wind power) rather than ones that are limited to 

specific environments (e.g., adaptation to or reducing emissions from melting permafrost). Second, 

we focus on plausibly energy- and material-intensive options for adaptation (for instance, 

constructing new coastal protections as opposed to breeding heat-tolerant crop varieties) and 
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mitigation (for instance, building wind turbines as opposed to reducing deforestation). Finally, we 

focus on adaptation to aspects of climate change projected with high confidence (e.g., sea levels 

and mean temperatures are very likely to rise and not fall), rather than aspects with greater 

directional uncertainty and higher regional and temporal variability (e.g., hydrological drought 

may increase or decrease in many places). We assert that high confidence in the direction of such 

changes translates to high confidence in the eventuality of the interventions.  

Following these criteria, four sectoral interventions are likely to be among the largest 

sources of emissions, enabling a simple but conservative estimate of the rough magnitude. These 

are 1) energy decarbonization, or the construction of renewable electricity generating capacity and 

associated infrastructure, 2) coastal protection, 3) coastal retreat, and 4) adaptive enhancement of 

space cooling. This list is a small sample of the likely total mitigation and adaptation effort, and in 

this sense our estimated emissions from mitigation and adaptation are by definition a lower bound. 

Furthermore, many of the key economic, energy, and policy interactions among mitigation and 

adaptation interventions remain frontiers of research with dramatic uncertainties (Hauer et al., 

2020; Horton et al., 2021; Lesnikowski et al., 2017; Viguié et al., 2021). We therefore conceptually 

simplify our analysis by neglecting some potential interactions among these interventions, instead 

treating them as dynamically independent (e.g., we neglect future coastal retreat as a potential 

barrier or boon to deployment of offshore wind). We further limit our focus to CO2 as the main 

anthropogenic GHG. 

For each of the four interventions (subscripts i), we conceptualize emissions (Ei,t) as the 

amount of each activity (Ni,t) times its emissions intensity (Ii,t), both of which evolve over the years 

of the transition (subscript t). The cumulative total emissions from mitigation and adaptation 

(EM+A) interventions through the transition is the sum over i and t: 
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𝐸 = ∑ 𝐸 ,, = ∑ 𝑁 ,, 𝐼 ,     (1) 

This simple governing equation decomposes the task of emissions estimation into two 

components: modeling adaptation and mitigation activities over time, and estimating their 

emissions intensities. Data limitations constrain the spatial scale of the equation to the global 

aggregate, precluding the examination of differences between countries ’mitigation and adaptation 

pathways and emissions intensities. The time dependence of the terms in equation 1 relates to the 

pace of energy decarbonization, as well as population and economic trends. We use a broadly 

consistent set of input GDP and population projections from the UN median scenario (United 

Nations 2019), Shared Socioeconomic Pathways (SSPs) (KC & Lutz, 2017), and other sources 

(Diaz, 2016; Levesque et al., 2018; Sgouridis et al., 2016). We examine the transition over the 

period 2020-2100. 

The amount of each intervention over time is estimated using a suite of sectoral models, 

namely the Sustainable Energy Transition model (NETSET V2.0) (Sgouridis et al., 2016), the 

Coastal Impacts and Adaptation Model (CIAM V1) (Diaz, 2016), and the Energy Demand 

Generator (EDGE) (Levesque et al., 2018). To estimate emissions intensities of the interventions 

over time, we generally first estimate the energy intensity of the intervention based on literature, 

and then convert the energy to emissions depending on the energy mix evolution from the NETSET 

runs and the emissions intensities of fossil fuels from literature. For the case of coastal retreat and 

protection, we separately assess process emissions arising from chemical reactions in material 

production (i.e., CO2 released by chemical reactions in concrete and steel production). The 

methods for the sectoral modeling and emissions accounting are discussed in the following 

sections. The complete methods are summarized in Figure S3. 

Energy decarbonization pathways 
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We use the NETSET energy transition model to simulate the replacement of fossil fuels 

with renewables and the investment of energy into bringing the renewable capacity online (i.e. the 

‘seed ’energy for renewables) through 2100. As a net energy model, NETSET is suited to this task, 

explicitly simulating energy investments into energy via variation in energy return on energy 

invested (EROEI) across primary energy sources. Meanwhile, the main limitation of NETSET is 

incomplete representation of economic dynamics (e.g. capital markets, technological diffusion, 

and economy-energy feedbacks beyond EROEI dynamics). The model functions as a globally-

aggregated back-casting model that simulates plausible transition pathways satisfying the 

preconditions that 1) geophysical carbon budgets for assumed warming targets are not exceeded 

(see section Emissions accounting), and 2) a minimum net primary power per person of 2000W is 

met by the global energy system (net meaning excluding seed energy). Other important model 

dynamics included assumed scale-limitations for hydroelectricity, nuclear, geothermal, and 

biomass, as well as assumptions about future learning rates in deployment of solar and wind. The 

energetic contribution of fossil fuels through the transition is determined based on Hubbert curves 

with assumed peak extraction in 2020. We use a uniform peak extraction year across scenarios to 

isolate the influence of transition pace, rather than time of onset. Finally, the deployment of 

scalable renewables (i.e., solar photovoltaic, compact solar power, geothermal, and wind) 

dynamically responds to the time evolution of fossil fuels and scale-limited renewable capacity, 

subject to the per-capita energetic and carbon budget preconditions. Energy investment into 

renewables is allocated across energy sources based on the gross energy mix and EROEI of 

different energy sources, and we track the fraction of renewable energy reinvestment as a key 

determinant of seed-energy emissions. NETSET is open-source (https://set.csaladen.es/) and 

further model details can be found in Sgouridis et al. (2016). 
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We focus first on a gradual decarbonization pathway assuming a carbon budget of 

1,150GtCO2 from 2020 onwards, corresponding to a warming cap of 2°C assuming a 67th 

percentile transient climate response to cumulative emissions (TCRE) (Canadell et al., 2021). This 

scenario is broadly consistent with the RCP2.6 emissions scenario in terms of cumulative total 

emissions and ensuing climate-model projected warming (Meinshausen et al., 2011). We then 

examine the sensitivity of embedded transition emissions to delayed and rapid decarbonization 

pathways. For the delayed case, we stipulate a carbon budget of 2,150GtCO2, linked to a warming 

of 2.7°C in 2100 (67th percentile TCRE) and broadly consistent with RCP4.5 emissions scenario 

in terms of cumulative total emissions and warming. This scenario is in line with the current global 

aggregate of actual climate policies, and thus reflects a likely pathway in the absence of strong 

climate policy ambition. For the rapid case, we stipulate a carbon budget of 400GtCO2 linked to a 

warming cap of 1.5°C, consistent the 2015 Paris agreement. Together, these scenarios reflect the 

plausible range of decarbonization pace, including highly ambitious (rapid), moderately ambitious 

(gradual), and business-as-usual (delayed) pathways. 

We simulate these three energy decarbonization pathways using NETSET (Sgouridis et al., 

2016), and use these simulations as the energy system backbone for the remaining modeling in 

this study. First, the simulations enable the estimation of emissions embedded in the transition by 

providing time series of coal, oil, and natural gas energy investment into renewables (NSET). 

Second, they enable the estimation of the emissions intensity of global energy use for the three 

adaptation interventions via time series of energy mix.  

Coastal retreat and protection 

CIAM is a global cost-optimization model that assesses coastal impacts and least-cost optimal 

adaptation decisions for ~12,000 individual coastal segments (Diaz 2016). The model code is 
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open-source and publicly available from https://github.com/delavane/CIAM. The decision set 

includes construction of coastal protection (conceived of here as a sea dike), coastal retreat 

(conceived of reconstruction of coastal settlements further inland), or no adaptation (with 

associated flood damage and loss of coastal land). The model assimilates diverse socioeconomic 

and geophysical data, notably from the DIVA coastline dataset (Vafeidis et al., 2008), to estimate 

protection, retreat, and flood damage costs as well as the value of inundated coastal land (land 

value) and wetlands (value of wetland ecosystem services). For each segment, the optimal decision 

is that which minimizes the sum of these costs under projected SLR for an assumed planning 

period. Beyond the optimal decision category, the model also provides optimal quantities for 

retreat (the retreat perimeter defined as an elevation above sea level, from which retreat population 

can be derived) and protection (the optimal dike height). 

 CIAM’s main strength is its integration of top-down geophysical drivers of risk with 

bottom-up socioeconomic variables (e.g., GDP, land value, and population, broadly consistent 

with SSP2) that are essential to understanding probabilities of coastal protection and retreat. Its 

main limitation is that a relatively circumscribed set of socioeconomic variables are considered, 

excluding hard-to-quantify ones reflecting local political or cultural barriers to or enablers of 

retreat and protection (Hauer et al., 2020; Horton et al., 2021; Mach & Siders, 2021). These factors 

could lead to outcomes that deviate from cost-optimality. Further, cost “optimal” decisions under 

this framework are not necessarily equitable or socially preferred due to a dominant influence of 

GDP as a proxy of capital density on model adaptation decisions. As a result, CIAM projects large 

parts of the Global South with high population but low capital density to remain unprotected 

through 2100. 
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 Our CIAM implementation stipulates an adaptation planning horizon of 2050-2100 in 

which decision-making accounts for sea level in 2050 and projected SLR to 2100 (i.e., we assume 

planners use a unified set of sea level projections). This planning horizon allows the three 

decarbonization pathways to have differential influences on adaptation decisions, as SLR 

projections do strongly depend on emissions scenarios prior to 2050. The optimization is run for 

10-year time steps over this 50-year planning time horizons over. In each time step, the historical 

flood statistics for each coastal segment are incremented by locally-downscaled SLR projections, 

modifying the cost function and thus the optimal decision over time. We then aggregate the 

incremental adaptations over the planning horizon into a single projected adaptation decision 

responding to projected SLR for the period. Because CIAM does not simulated when within the 

50-year planning horizon adaptations will be built, we assume that all coastal adaptations occur in 

2060. This provides a reasonable 10 years after the start of the planning period for adaptations to 

roll out, and the time midpoint of the transition as defined by our analysis period.  

Projected mean SLR is based on (Kopp et al., 2014), which downscales global SLR 

projections to the local scale. This dataset increments circa-2000 historical sea level distributions, 

estimated from global tide gauge data, by projected thermal expansion, land-based ice melt, land 

water storage, and other terms, driven by RCP2.6 for gradual decarbonization and RCP4.5 for the 

delayed case. High-resolution downscaled SLR projections are still under development for the 

1.5°C rapid pathway, so in the interim, we estimate them by decrementing those for RCP2.6 by 

the global mean difference in sea level rise between 2.0°C and 1.5°C (Fox-Kemper et al., 2021).  

 A central method in CIAM for the present study involves accounting for extreme sea levels, 

which determine retreat perimeter and protection height via their influence on flood damage costs 

and subsequent optimization. The DIVA dataset reports estimated 1-in-1, -10, -100, and -1000 
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year storm surge heights, which are used in CIAM along with SLR projections to estimate expected 

values of the flood damage in the cost optimization. Thus, cost-optimal retreat perimeters and 

protection heights are ultimately based on these underlying surge height levels. To account for 

initial adaptation in the absence of comprehensive global data on coastal protective infrastructure, 

CIAM’s default assumption is that global coastlines are initially protected to the 1-in-1 year (i.e. 

mean annual maximum) storm surge height (S1) at the beginning of the planning period. Here, we 

modify this assumption to better reflect widespread under-protection of global coastlines 

(McMichael et al., 2020), asserting instead that all coastal segments are initially protected to one-

half of the 1-in-1 year storm surge.  

In the absence of life-cycle analysis (LCA) literature for coastal protection infrastructure, 

we developed a simple geometric model of a generic dike based on technical literature (Jonkman 

et al., 2013; Vietnam Ministry of Agriculture and Rural Development, 2011) to estimate the 

volume of sea dike materials as a function of optimal protection height (Hopt) and coastal segment 

length (Appendix C Fig. 4). To convert the optimal protection height to sea dike build height, we 

increment the optimal protection height by the climatological maximum wave height from DIVA 

to incorporate a realistic wave run-up height (WC) into the dike design. Thus, the full protection 

height including initial adaptation is given by: 

𝐻 = 𝐻 + 𝑆 +𝑊      

 (2) 

We then model the dike as a trapezoid in cross section with berm width b of 5m, slopes m1 and m2 

of 1:4 on the seaward side and 1:3 on the landward side, and a reinforced concrete foundation with 

thickness of F = ¼H. We assume the dike to be filled with local soil and rock (and thus neglect 

transport emissions) and encased in a revetement of medium-strength steel reinforced concrete 
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with thickness T equal to 1m. We treat the sum over coastal segments s of the volume of reinforced 

concrete in the dikes (NCP), which is quadratic in build height, as the main driver of coastal 

protection emissions. This volume is the product of the cross-sectional area of the concrete 

revetement and the coastline segment length (Ls): 

𝑁𝐶𝑃 = ∑ 𝐿𝑠
1

4
(𝑚1 +𝑚2 + 𝑏)𝐻2 + (𝑚1 +𝑚2)𝐻𝑇 −

1

2
(𝑚1 + 𝑚2)𝑇

2 + (𝑚1 +𝑚2)𝑇𝑠  (3) 

 For the case of coastal retreat, we treat the number of households retreated (NCR) as the 

driver of emissions, assuming an equivalent number of new dwellings will be constructed to 

accommodate them. Retreat population is estimated by first converting the retreat perimeter height 

to retreat area using elevation-area functions in DIVA and then multiplying the retreat area by 

population density (also from DIVA). Due to a lack of supporting literature, we neglect emissions 

likely to result from energy embedded in the removal of abandoned housing and infrastructure. 

Space cooling 

To estimate future adaptive energy demand for space cooling, we use the EDGE building energy 

modeling framework (Levesque et al., 2018). EDGE expands the SSPs  (Dellink et al., 2017; KC 

& Lutz, 2017; O’Neill et al., 2017) to project consistent changes in building floor space demand 

(positively related to GDP and total population, negatively to population density) and building 

efficiency (assumed to increase with technological improvement). In EDGE, per capita cooling 

energy demand responds to climate warming in two ways. As hot days increase with climate 

warming, a larger proportion of the global population acquires cooling equipment, and each 

cooling appliance is used more intensively. Simulated cooling demand is also influenced by 

population growth, efficiency improvements in cooling appliances and building envelopes, and 

income per capita which augments floor space per capita and the relative affordability of air 

conditioning. Additional detail on the EDGE framework can be found in (Levesque et al., 2018). 
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Future cooling degree day (CDDs) are projected based on CMIP5 climate model runs under 

the RCPs emissions scenarios. In this setup, CDD’s are computed as the sum of daily degrees 

above an assumed daily mean temperature cooling threshold of 21°C. Gridded temperature 

projections from the climate models are weighted by population density in their aggregation to the 

national scale. In this study, we use final energy demand projections from EDGE run under the 

‘middle-of-the-road ’SSP2 and with CDD projections from RCP2.6 for gradual decarbonization 

and RCP4.5 for the delayed scenario. For the rapid pathway, we rescale the RCP2.6 CDD 

projections based on the global difference in mean warming between the 2.0°C and 1.5°C 

pathways, as explicit CDD projections for this scenario are still under development.  

Population, income, and insulation dynamics are assumed to be the same for all 

decarbonization pathways to isolate the impact of climate change from socioeconomic trends. We 

further isolate the climate-adaptive component of projected energy demand for each pathway by 

subtracting energy demand projections under a constant historical climatology from the runs with 

warming. This assumes that expanding cooling due to socioeconomic trends (e.g., first-time 

acquisition of air conditioners newly enabled by rising incomes) is not itself climate-adaptive. We 

convert final to primary cooling energy demand by first estimating the global primary-to-final 

energy conversion efficiency based on global mean power station conversion efficiencies from the 

IEA, averaged over the 5 most recent years with available data (2014-2018) (IEA 2021). We 

update this primary-to-final ratio through the energy decarbonization pathway based on the energy 

mix evolution in NETSET, assuming a primary-to-final energy ratio of 1 for renewables. We 

finally report climate-adaptive space cooling as primary energy demand, which we treat as the 

relevant input to the emissions accounting.  

Emissions accounting 
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The sectoral modeling approaches enable an estimation of the adaptation amount (Ni,t) terms in 

equation 1. The remaining ingredient is to estimate the emissions intensities of the interventions 

(Ii,t), which we accomplish by combining with LCA literature and databases with NETSET energy 

mix projections (Table S1). We limit the scope of the study to CO2. First, we estimate the global 

mean emissions intensity of primary energy (𝐼F) for the three fossil fuel classes in NETSET (coal, 

oil, and gas) which are then used to compute emissions from space cooling and coastal adaptation 

energy demand. The emissions intensity of energy use from coal, oil, and natural gas is estimated 

as the 2018-2050 average of projected global energy-related emissions by fuel class divided by the 

total energy use by fuel class based on data from the US Energy Information Administration 

International (EIA) Energy Outlook 2019 (Table S1). Note that this approach does not assimilate 

EIA energy mix projections, but only emissions intensity projections. We neglect emissions from 

the extraction and processing of nuclear fuels, and assume zero emissions from other non-fossil 

fuel energy carriers such as fugitive emissions from geothermal and hydroelectric and non-energy 

related build emissions for solar and wind (e.g., process emissions from steel).  

 To estimate the cumulative emissions embedded in the decarbonization pathways, we first 

estimate the global emissions intensity of overall primary energy use over time (IE,t in units of 

mass of CO2 per unit primary energy use) by weighting the emissions intensities per fuel f by their 

share in the energy mix as projected in NETSET (𝑥 , ). We then simply multiply projected energy 

investment into energy (NSET) by IE,t, the global emissions intensity of energy, and sum across the 

transition period: 

𝐸 = ∑ 𝑁 , 𝐼 , = ∑ 𝑁 , ∑ 𝑥 , 𝐼   (3) 

We follow a similar equation to convert adaptive cooling energy demand to emissions. While space 

cooling is linked to certain potent non-energy GHG emissions such as hydrofluorocarbons, we 
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limit the scope of our assessment to CO2. We also do not consider avoided emissions from reduced 

space heating, as we limit our scope to adaptations with positive emissions. 

  For construction of sea dikes, we use emissions factors and embedded energy estimates for 

construction materials from (Hammond & Jones, 2008). Assuming a density of concrete of 

2,400kg/m3 and 150kg of reinforcing steel per m3 (Kellenberger et al., 2007), we calculate a 

volumetric emissions factor to convert global total volume of sea dike revetement (NCP, equation 

3) to emissions. We neglect emissions from rock and soil transport for the dike interior as well as 

from site preparation. For coastal retreat, we assume resettlement will be directed towards medium 

density urban developments and base our emissions factor on recent LCA estimates of CO2 

emissions and embedded energy (E) arising from these constructions per unit floor area (Kayaçetin 

& Tanyer, 2020; Monahan & Powell, 2011). These estimates include some necessary infrastructure 

beyond dwellings themselves, such as roads, but are not comprehensive (e.g., they do not include 

water systems). To convert between retreat population and retreat dwellings, we assume a mean 

household size of five people (Pew Research Center, 2019), and a dwelling ground area of 225m2 

as in EDGE (Levesque et al., 2018). 

For dikes and resettlement, the emissions intensity incorporates both fossil fuel energy use 

and non-energy process emissions from materials such as cement and steel production. To account 

for decarbonization of energy in the future, we update the emissions factors for dikes and 

resettlement at time t by rescaling emissions due to embedded energy (E) by the difference in 

emissions intensity of energy (𝐼 ) between time t and prior to the transition (t0):  

𝐼 , = 𝐼 , + 𝐸(𝐼 , − 𝐼 , )  (4) 

This approach assumes that the remaining non-rescaled portion of the emissions (i.e., process 

emissions) remains constant into the future. The precision of the timing of adaptation decisions 
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from CIAM is limited to 50-year planning horizons, so we simply assume that all coastal retreat 

and protection occurs at the midpoint of the transition in 2060. We neglect emissions from the 

operation and maintenance of relocated housing and coastal protection. 

 The final aspect of emissions accounting is to contextualize the emissions embedded in the 

transition relative to relevant benchmarks. To understand the magnitude of emissions on an Earth 

system scale, we express transition emissions as a fraction of the remaining carbon budget for the 

respective pathways (1,150GtCO2 for gradual, 2,150GtCO2 for delayed, and 400GtCO2 for rapid) 

(Canadell et al., 2021).  

 

 

  



 

116 

 

 

 

 

 

Appendix C 

  



 

117 

 
Appendix C Figure 1: Geographic distribution of coastal adaptation. a) Optimal coastal protection 
height for individual coastline segments for the 2050-2100 planning period under RCP 2.6 (rapid 
decarbonization) as projected using CIAM. b) Same as a) but showing optimal retreat population. c-
f) Boxplots of geographic determinants of coastal adaptation across adaptation decisions, c) 
population density (logarithmic), d) length of coastline segments, e) projected SLR in 2100, and f) 
historical once-per-year maximum storm surge height. Boxplot depict distributions of determinant 
variable values across coastline segments within each adaptation decisions. Boxplot centers depict 
medians, boxes the 25th and 75th percentiles, and whiskers maxima and minima excluding outliers. 
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Appendix C Figure 2: Drivers of increased emissions under gradual decarbonization 
compared to the rapid scenario. a) Simulated renewable energy deployment rate (TWp 
capacity per year, pink) and reinvestment rates (percent of total energy invested into 
renewables, green) under gradual (solid lines) and rapid (dotted lines) decarbonization. b) 
Projected cumulative global mean SLR (m, blue) and warming (kCDD per year, red) under 
RCP4.5 (for gradual decarbonization) and RCP2.6 (for rapid). c) Adaptive cooling emissions 
(MtCO2 per year) under gradual (solid lines) and rapid (dotted lines) decarbonization, as well as 
under RCP4.5 warming but using the energy mix of rapid decarbonization (dot-dash line). d) 
Emissions intensities of coastal protection (kgCO2 per m3 dike) and retreat (kgCO2 per m2 
replacement housing) under rapid and gradual decarbonization. Emissions intensities are 
separated into process emissions (due to chemical reactions in material production, purple-blue 
bars), assumed constant through the transition, and energy-related emissions (simulated to 
decline with energy decarbonization, dark pink bars). 
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Appendix C Figure 3: Flowchart of methods used to estimate mitigation and adaptation 
emissions embedded in the transition to a stable climate. Global data inputs appear in light 
green at top, with model-specific data inputs, assumptions, and key dependencies shown in dark 
green below. Sectoral models with references appear in yellow. Direct sectoral model outputs 
appear in dark blue, while offline conversions of model outputs to energy or material terms 
appear in light blue. Finally, energy and materials demands are converted to emissions (shown 
in grey) based on energy and material process emissions factors (EFs), shown in pink.  
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Appendix C Figure 4: Idealized dike model geometry. Cross-section schematic of idealized dike 
with annotated key parameters of the geometry (which appear in equation 3). Dimensions are not 
to scale. The dike height H includes optimal protection height (Hopt) incremented by initial under-
adaptation (S1) and wave run-up heights (Wc) as per equation 2. The concrete revetement and 
foundation are taken as drivers of emissions related to coastal protection, while the interior of the 
dike is assumed to be filled with local rock and soil with negligible associated emissions. The 
coastline segment length (Ls) runs perpendicular to the plane of the cross section (i.e., into the 
page). 
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Appendix C Table 1: Factor values used for emissions accounting and their sources. 

 

  



 

122 

Conclusion 

 In Chapter 1, I show that while hourly rainfall intensification under warming may benefit 

some important crop yields somewhat, it will not compensate for the larger impacts of warming 

itself. Chapter 2 demonstrates a signature of temperature-moisture couplings in the global pattern 

of maize and soy sensitivity to heat, and shows how future strengthening of the couplings will 

exacerbate the impact of warming on average. In light of this research (and a wide body of other 

research and overwhelming obviousness), effective mitigation is essential. In Chapter 3, I show 

that the emissions embedded in the broader climate transition are substantial enough to merit 

deeper consideration in global climate policy and, under current policies, seriously imperil the 

1.5°C maximum warming goal. 

The results of Chapter 3 should provide additional rationale for prioritizing rapid 

decarbonization. However, rationale has been abundant over my entire lifespan, and has done little 

to actually displace fossil fuels. Moreover, even if the publication of Chapter 3 succeeds in 

conveying this political significance, the deployment of renewable energy will most likely take 

longer than ideal, given myriad technical and geopolitical complications (F. C. Moore et al., 2022). 

Crops and food systems will therefore need to be adapted if they are to continue underpinning 

human wellbeing and survival in the 21st Century. And towards this necessity, I focus my 

conclusions on the implications of Chapters 1 and 2 for crop adaptation. 

 

Implications of Chapters 1 and 2 for crop adaptation 

In the introduction, I situated these chapters within the concept of compound extremes, a popular 

topic in contemporary climate science, impacts, and adaptation literature. And while the questions 

addressed in these chapters are highly specific instances of this general concept, I think the general 
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concept neatly capture the core challenge defining this period in agricultural history. By this, I 

mean that crop production faces a long-term concurrent rise in multiple climate (and other 

stressors), which may weaken some historically-effective yield-boosting tactics. 

Future climate impacts on crops will likely be largely determined by increases in three 

extremes: heat, drought, and heavy short-duration precipitation. For reasons outlined above, these 

changes will occur simultaneously, and interactively influence future yields. Chapter 1 uncovers a 

modest potential yield gain from stronger hourly rainfall under climate change, which only slightly 

offsets a larger yield loss from warming. Chapter 2 shows that the larger yield loss from warming 

may be exacerbated by 21st-Century intensification of the couplings that cause heat and drought to 

co-occur. Although many questions persist, these considerations of compound extremes taken 

together result in a more pessimistic updated expectation for future yields, mainly as a result of 

increasing compound heat-drought risk. 

 Facing extreme heat or drought, yields have traditionally been ensured through two 

approaches: crop breeding and management. For extreme heat, crop breeding typically involves 

selecting for favorable metabolic and stomatal temperature sensitivities. For drought, crop 

breeding largely targets water-use efficiency and drought tolerance. Irrigation and stress avoidance 

have for millennia been used as important management strategies for both. These dominant 

traditional targets to breed crops for drought or heat may become limited or even conflict under 

concurrent heat and drought.  

A key breeding target for drought or heat is stomatal density (the number of leaf pores per 

unit area) and stomatal regulation (the physiology of how these stomata are opened and closed to 

control the trade off between carbon gain and water loss) (Buckley, 2019; C. E. Moore et al., 2021). 

Together, these parameters control crop transpiration, which lowers plant water status and depletes 



 

124 

soil moisture, but cools leaf temperatures through latent heating. One way of breeding for drought 

targets the former effects of transpiration: increase stomatal regulation during drought to maintain 

plant water status and soil moisture. One way of breeding for heat targets the latter: decrease 

stomatal regulation so crops continue to transpire at high temperatures to locally buffer the heat 

extreme. The goals of these two approaches are at odds for combined heat and drought, in which 

tightened stomatal regulation limits the crops ’thermoregulation capacity, but lax stomatal 

regulation further depletes soil moisture raises crops ’risks of critical wilting (cavitation).  

These dynamics, combined with the results of this thesis, suggest that the stomatal avenue 

for crop breeding is of limited promise for adaptation to future climates. The relevance of this 

antagonism could be curtailed with expanding irrigation, which is widely cited as a promising crop 

adaptation (Carter et al., 2016; J. Jägermeyr et al., 2016). In the context of compound extremes, 

irrigation has a double benefit to crops in a warming climate: it provides crops with sufficient soil 

moisture while cooling the local land surface (Thiery et al., 2020). However, the results of this 

thesis point to new limitations of irrigation in the context of compound extremes. With a future 

rise in concurrent drought and heat, surface water sources may be especially limited at precisely 

the moments they are most needed. Further, irrigation on hot and dry days may boost humidity 

and heat stress to agricultural workers, complicating adaptive management. Finally, extractions 

for irrigation from deep groundwater sources, which are less sensitive to climate variability, are 

highly unsustainable in many regions dependent on them (Rosa, Chiarelli, Rulli, et al., 2020).  

The results of Chapter 1 point to another promising avenue for crop adaptation to climate 

change. The proposed (and yet to be tested) mechanism for maximum yield benefits from heavy 

hourly-intensity rainfall relates to its relative plant availability (i.e., higher correlation with soil 

moisture) compared to light (high evaporative loss) and extreme (high runoff loss) intensities. Crop 
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morphology and canopy structure – a traditional breeding target with regard to light penetration 

(C. E. Moore et al., 2021) – may be explored as a variable than can help optimize interception 

dynamics given these results. Further, improvements to soil organic carbon content and texture 

may increase the range of rainfall intensities that can be absorbed by soils (along with myriad other 

crop, mitigation, and environmental co-benefits).  

 Other traditional breeding goals, like increasing enzymatic optimal temperatures and 

resistance to cavitation, will likely remain promising regardless of concurrent extremes. Further, 

despite the limitations across much of global croplands discussed above, irrigation is promising 

and should be equitably financed in the Tropics, where yield gaps are presently high, but future 

water availability and temperature-moisture couplings are more favorable to agriculture (Rosa, 

Chiarelli, Sangiorgio, et al., 2020). Regardless, the broadest conclusion of Chapters 1 and 2 is that 

crop adaptation will increasingly need to consider multivariate targets and complex biophysical 

interactions in the context of compound extremes, seeking co-benefits and avoiding antagonisms 

from the cell to field scale (Ramirez-Villegas et al., 2020).  

 

A final thought on whether this is useful 

To conclude, it is worth considering a point raised early in the introduction, which is that crop 

production only partly determines food security, and to consider the usefulness of this research to 

the real-world problems at hand. Two considerations are well beyond the results of this thesis, but 

certainly worth noting.  

First, the global food crisis is increasingly one of too-many-calories, not-enough-nutrients. 

Some of the main results of this thesis concern maize and soy, which largely provide cheap 

carbohydrates and oil, and otherwise are mostly destined for feed rather than food (Cassidy et al., 



 

126 

2013). What is more deficient in global diets is fiber and micronutrients from fruits and vegetables, 

which are typically produced in intensive horticulture systems that differ importantly from field 

crops. Future yields and adaptation avenues for these systems, as well as ‘alternative ’cereals like 

millet and sorghum (which are more nutritious and drought and heat tolerant than maize and soy), 

require more attention. In other words, if maize is globally the most vulnerable crop to climate 

change (Jägermeyr et al., 2021), perhaps it is worth considering the attendant possible health and 

nutrition opportunities, and whether food security would be better supported by replacing the 

caloric shortfall from maize with more nutritious alternatives (Challinor et al., 2016). 

Second, it remains unclear to me whether such biogeoscientific research is useful to future 

food security goals. For instance, some leaders in climate science have called for increasing 

attention to how disciplinary skills can be best applied to support adaptation (Sobel, 2020). One 

hope for this thesis is to signal (and, to a small extent, contribute to) a greater integration among 

biogeosientists, plant physiologists, crop breeders, agronomists, and food system researchers to 

provide the research insights needed. Whether anyone with resources and authority listens to us is 

perhaps a separate question. But one place to start is to ask, and provide the soundest possible 

answers to, the right questions. 
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