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ABSTRACT

Approximate multistep methods to calculate reliabil-
ities for estimated breeding values in large genetic eval-
uations were developed for single-trait (ST-R2A) and 
multitrait (MT-R2A) single-step genomic BLUP (ssG-
BLUP) models. First, a traditional animal model was 
used to estimate the amount of nongenomic information 
for the genotyped animals. Second, this information 
was used with genomic data in a genomic BLUP model 
(genomic BLUP/SNP-BLUP) to approximate the total 
amount of information and ssGBLUP reliabilities for 
the genotyped animals. Finally, reliabilities for the non-
genotyped animals were calculated using a traditional 
animal model where the increased information due to 
genomic data for the genotyped animals is accounted 
for by including pseudo-record counts for the genotyped 
animals. The approaches were tested using a multiple-
trait ssGBLUP model on 2 data sets. The first data set 
(data 1) was small enough such that exact ssGBLUP 
model reliabilities could be computed by inversion and 
compared with the approximation method reliabilities. 
Data 1 had 46,535 first-, 35,290 second-, and 23,780 
third-lactation 305-d milk yield records from 47,124 
Finnish Red dairy cows. The pedigree comprised 64,808 
animals, of which 19,757 were genotyped. We examined 
the efficiency of the MT-R2A approximation on a large 
data set (data 2) derived from the joint Nordic (Dan-
ish, Finnish, and Swedish) Holstein dairy cattle data. 
Data 2 had 17.8 million 305-d milk records from 8.3 
million cows and first 3 lactations. The pedigree had 
11 million animals of which 274,145 were genotyped on 
46,342 SNP markers. For data 1, correlations between 
the exact ssGBLUP model and the ST-R2A for the 
genotyped (nongenotyped) animals were 0.995 (0.987), 

0.965 (0.984), and 0.950 (0.983) for first, second, and 
third lactation, respectively. Correspondingly, correla-
tions between exact ssGBLUP reliabilities and MT-
R2A for the genotyped (nongenotyped) animals were 
0.995 (0.993), 0.992 (0.991), and 0.990 (0.990) for first, 
second, and third lactation, respectively. The regression 
coefficients (b1) of ssGBLUP reliability on ST-R2A for 
the genotyped (nongenotyped) animals ranged from 
0.87 (0.94) for first lactation to 0.68 (0.93) for third 
lactation, whereas for MT-R2A they were between 0.91 
(0.99) for first lactation to 0.89 (0.99) for third lacta-
tion. Correspondingly, the intercepts varied from 0.11 
(0.05) to 0.3 (0.06) for ST-R2A and from 0.06 (0.01) to 
0.07 (0.02) for MT-R2A. The computing time for the 
approximation method was approximately 12% of that 
required by the direct exact approach. In conclusion, 
the developed approximate approach allows calculating 
estimated breeding value reliabilities in the ssGBLUP 
model even for large data sets.
Key words: dairy cattle, genomic evaluation, breeding 
value, effective record contributions, reliability

INTRODUCTION

Single-step genomic BLUP (ssGBLUP) allows in-
cluding genomic information into a model simultane-
ously with phenotypic and pedigree information from 
both genotyped and nongenotyped individuals for cal-
culating genomic enhanced breeding values (GEBV) 
(Legarra et al., 2009; Aguilar et al., 2010; Christensen 
and Lund, 2010). One of the main advantages of ssG-
BLUP is its prediction accuracy, which is as high as, 
if not greater than, any other method (Legarra et al., 
2014). The simple framework to account for genomic 
information even for complicated models is computa-
tionally challenging but many approaches have been 
presented to solve GEBV efficiently (Mäntysaari et 
al., 2020; Misztal et al., 2020; Koivula et al., 2021). 
However, calculation of individual GEBV accuracies 
is computationally more challenging and only few ap-
proaches have been proposed.
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Reliability (or accuracy) of GEBV measures the pre-
cision of GEBV and, thus, the potential response to 
selection (Gorjanc et al., 2015). Computationally the 
most challenging component in the calculation of GEBV 
reliability is due to prediction error variance (PEV), 
which is a function of elements of the inverse of the 
coefficient matrix of mixed model equations (MME). 
Even though the reliability calculated from the inverse 
of the MME can deviate from the squared correlation 
between true and EBV (Bijma, 2012), it is widely used 
in genetic evaluations. Because the inverse cannot be 
computed for large MME, approximation methods need 
to be used. Several approaches have been proposed to 
approximate reliabilities for the animal model without 
genomic information (Misztal and Wiggans, 1988; Har-
ris and Johnson, 1998; Jamrozik et al., 2000; Tier and 
Meyer, 2004). For simple genomic models like GBLUP/
SNP-BLUP, direct and Monte Carlo approaches have 
been proposed (Ben Zaabza et al., 2020, 2021). None of 
these methods are directly suitable for ssGBLUP.

Genomic information in ssGBLUP is propagated to 
all animals (genotyped and nongenotyped) using a com-
bined relationship matrix that has both pedigree-based 
(A) and genomic (G) relationship matrices (Legarra et 
al., 2009; Christensen and Lund, 2010). The inverse re-
lationship matrix is used in MME. Misztal et al. (2013) 
presented 2 approximate approaches to calculate the 
reliability of GEBV for the genotyped animals in ssG-
BLUP. Both approaches first calculate reliability in an 
animal model without genomic information. In the sec-
ond step the calculated reliabilities are combined with 
genomic information. The authors reported that their 
methods are computationally feasible for populations of 
up to 100,000 genotyped animals. Liu et al. (2017) de-
veloped a multistep genomic reliability method, namely 
Interbull genomic reliability. The method was applied 
in a single-trait model. Using a single-step SNP-based 
model, known as single-step Bayesian regression de-
veloped by Fernando et al. (2014), Gao et al. (2018) 
used Markov chain Monte Carlo in the calculations 
to estimate PEV of EBV to 305-d production traits 
accurately for a Finnish Red dairy cattle population. 
Based on the single-step Bayesian regression model, 
Edel et al. (2019) presented a multistep approach which 
approximates GEBV reliabilities in ssGBLUP for all 
animals. First, the GEBV reliability of the genotyped 
animals is approximated using deregression weights 
and genomic information. The increased reliability due 
to genomics is used to increase record weights for the 
genotyped animals in the final step to approximate 
GEBV reliability for the nongenotyped animals. Both 
approaches allow the use of multitrait reliability ap-
proximation methods for the nongenomic information. 
However, inclusion of correlated information increases 

the computational challenges considerably unless the 
correlations are ignored in some steps.

We present and test a ssGBLUP reliability approxi-
mation method for a multiple-trait model. The objec-
tives of this research were (1) to present an approxi-
mation approach for the GEBV reliabilities, and (2) 
to compare the approximate GEBV reliabilities with 
corresponding GEBV reliabilities obtained from the 
inverse of the MME coefficient matrix in animal and 
ssGBLUP models. We use a 3-trait milk yield model 
and data from dairy cattle where both bulls and cows 
can have genotypes.

MATERIALS AND METHODS

No animals were used in this study, and ethical ap-
proval for the use of animals was thus deemed unneces-
sary.

Multiple-Trait Model

A simple multiple-trait (MT) ssGBLUP model can 
be defined as
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where vector yj has phenotypes for trait j; vector bj has 
fixed effects affecting trait j; vector uj has individual 
additive genetic values trait j, and vector ej has the 
residuals for trait j. Matrices X and W, with subscripts 
1, 2, and t, are known incidence matrices relating fixed 
and additive genetic effects to each trait, respectively, 
where t is the number of traits.

The model can also be written as

	 y Xb Wu e= + + ,	 [2]

where
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It is assumed that u G H~ , ,N 0 0 ⊗( )  where
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is the matrix of genetic covariance across traits and H 
is the joint relationship matrix of genotyped and non-
genotyped animals. For simplicity of presentation here, 
we assume that each animal has either no observations 
or observations on all traits. Thus, we assume 
e R I~ , ,N 0 0 ⊗( )  where
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is the matrix of residual covariance across traits and I 
is the identity matrix.

The MME for ssGBLUP for a MT model [2] can be 
written as
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and the inverse of the relationship matrix H as
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where A (A22) is the pedigree-based numerator rela-
tionship matrix for all (genotyped) animals and Gw is 
the genomic relationship matrix. We assume that 

G G Aw w w= −( ) +1 22, where w is the polygenic propor-
tion of genetic variance.

Denote the coefficient matrix of the MME by CMT 
and its inverse matrix elements as
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is the prediction error covariance (PEC) matrix of 
GEBV. The GEBV reliability of animal i and trait j 
can be calculated as

	 rij
jj ii

ii j

2
2

1= −
{ }V

H σ
,	 [4]

where {Vjj}ii and Hii are the diagonal elements of the 
PEC and H matrices pertaining to animal i and trait j, 
and σj

2 is genetic variance of trait j.

Reliability Approximation

Reliabilities were approximated separately for geno-
typed and nongenotyped animals (Figure 1). We first 
describe the general approach and present technical 
details in the following section. The calculation of 
GEBV reliability for the genotyped animals included 3 
main steps. First, we approximated the amount of non-
genomic information in the genotyped animals using 
approximate reliability ra

2( ) in a pedigree-based animal 
model. Full pedigree and phenotypic data were included 
into this animal model where all the nongenetic effects 
were absorbed into the additive genetic effect. Second, 
to approximate GEBV reliability for the genotyped ani-
mals, the already calculated reliabilities ra

2 for the geno-
typed animals were used to calculate effective record 
contributions (ERC) for the genotyped animals based 
on an approach called reverse reliability estimation 
(ERCrev), which allows accounting for information from 
the nongenotyped animals using the pedigree relation-
ship structure and the multitrait covariance structure. 
Third, we approximated the GEBV reliability rg

2 for the 
genotyped animals, using MT GBLUP model with the 
calculated ERCrev as weights. This step can be done by 

Ben Zaabza et al.: APPROXIMATE SINGLE-STEP GENOMIC EVALUATION RELIABILITY
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an equivalent MT SNP-BLUP model more efficiently 
than GBLUP when the number of genotyped animals is 
larger than the number of SNP markers.

Reliabilities for the nongenotyped animals needed 4 
additional steps. First, the already obtained reliabilities 
ra

2 for the genotyped animals were transformed into ef-
fective record contributions (ERCa), which are used to 
measure the amount of nongenomic information. Sec-
ond, the approximate ssGBLUP reliabilities rg

2 were 
converted into ERCg, which are the measure of the total 
information. Third, we calculated the contribution due 
to the genomic information: ERCadd = ERCg − ERCa. 
Finally, the estimated genomic information of the geno-
typed animals ERCadd were included into the evaluation 
model as pseudo-record weights corresponding to the 
additional information for the pedigree-based animal 
model. Thus, we computed the approximate ssGBLUP 
reliabilities for the nongenotyped animals by adding 
the contribution of genomic information to the geno-
typed animals through pseudo-observations in a stan-
dard pedigree-based animal model GEBV.

Reliabilities for the Nongenomic Model

Reliabilities for EBV by a pedigree-based animal 
model can be approximated by many approaches. Tier 

and Meyer (2004) is a MT approach, which is why we 
used it as a basis in the ERC calculation to estimate 
the amount of nongenomic information for genotyped 
animals. (see Effective Record Contributions section). 
The method of Tier and Meyer (2004) has 3 main steps: 
(1) determining the amount of information from the 
animal’s own records, (2) processing the pedigree from 
youngest to oldest (upwards) and accumulating the 
number of the records on each animal’s progeny, and 
(3) processing the pedigree from oldest to youngest to 
combine the values of parents, ancestors, and collateral 
relatives for each animal. The last step, in turn, involves 
2 steps: removing the animal’s own contribution from 
the parent reliability and then combining the contribu-
tions for each animal from all sources of information 
(parents, progeny, and its own records). See Tier and 
Meyer (2004) for more details.

Effective Record Contributions

The ERC were used to indicate the amount of in-
formation that a genotyped animal had at 3 different 
steps of the approach (Figure 1). The ERC can be 
computed in several ways, and we used 2 types of ERC 
approaches. A simple ERC for an animal was based on 
the formula

Ben Zaabza et al.: APPROXIMATE SINGLE-STEP GENOMIC EVALUATION RELIABILITY

Figure 1. Steps in approximating genomic estimated breeding value reliabilities for the genotyped rg
2( ) and nongenotyped rngt

2( ) animals. 
GBLUP = genomic BLUP. ERC = effective record contributions; ERCa = ERC, counting for nongenomic information in animal model; ERCrev 
= ERC-based on reverse reliability estimation in animal model; ERCg = ERC counting for genomic information in genomic model; and ERCadd 
= added genomic information.
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where h2 is heritability and r2 is reliability. This simple 
ERC was used in 2 of the steps: for the amount of 
nongenomic information in the nongenomic animal 
model (ERCa) and for the amount of total information 
with genomic information (ERCg) of the genotyped 
animals. For ERCa, the reliability was calculated by 
the method of Tier and Meyer (2004) method, but for 
ERCg, the approximate GEBV reliability of genotyped 
animals was used.

An alternative to the simple ERC calculation is based 
on the so-called reverse reliability estimation, which 
was applied to obtain ERCrev. We used it to quantify 
the nongenomic information and as a weight in the 
calculation to approximate genomic reliability for the 
genotyped animals. The reverse reliability estimation 
approach attempts to account for the double counting 
of information that is present in the simple ERC-based 
weights. For example, when a genotyped bull has a 
genotyped daughter with an observation, the simple 
ERC formula will include the daughter observation in 
the daughter ERC as well as in the sire ERC through 
the increased sire reliability. The reverse reliability esti-
mation approach approximates ERC from a given value 
of reliability by reversing the method of Tier and 
Meyer (2004). When the original Tier and Meyer (2004) 
algorithm estimates animal model reliability using 
ERC, the reverse estimation approach estimates ERC�, 
which gives the same PEV as the original PEV*, where 
the asterisk stands for the initial value of prediction 
error variance. When the PEV* is from the full data 
with records on all animals, but ERCrev is solved for 
only a subset of (genotyped) animals, the approach 
automatically adds the information from the nongeno-
typed relatives to the genotyped animals. The calcula-
tion of the ERC� involves the accumulation of informa-
tion from progeny and parents using pedigree informa-
tion as in the original Tier and Meyer (2004) approach. 
In the Tier and Meyer (2004) reliability estimation, 
each animal will receive a t by t PEC matrix having the 
diagonals (PEV) used in the estimation of the reliabili-
ties. However, in our reverse reliability estimation, with 
a given ERC[k] for all animals, we estimate PEV[k], and 
if it does not correspond to PEV*, we search for a new 
ERC[k+1] that will give PEV[k+1] closer to PEV*, where 
k represents the iteration number. Because the ERC of 
each animal affects others, this approach needs to be 
repeated iteratively, unlike the method of Tier and 
Meyer (2004), which can be done by only 2 passes 
through the pedigree, from youngest to oldest (up-

wards) and from oldest to youngest (downwards). Ap-
pendix 1 has a pseudo-code for the reverse reliability 
approach.

The new ERC[k+1] was solved animal-wise from a 
nonlinear equation:
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where {y}j = {Vjj}ii are the original PEV* of animal i 
and trait j, Gi

−1 contains G0
1−  and contributions from 

animal’s offspring and ancestors, and R0 is the between-
trait residual variance-covariance matrix recorded for 
animal i. When an animal has missing observations for 
some of the traits, these traits have no ERC, and there 
is a missing ERC pattern. For these missing ERC pat-
terns, submatrices of R0 were used by deleting rows 
and columns corresponding to the missing ERC. The 
ERC values are in the diagonal E(c) matrix, 
E c c( ){ } =jj j , where cj is the ERC for trait j to be 

solved. We implemented a Newton-Raphson-based al-
gorithm for solving the ERCrev for each individual (see 
Appendix 2).

The calculation of GBLUP/SNP-BLUP reliability is 
illustrated in the following example. Consider a 3-trait 
(t = 3) GBLUP model:
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where yj is the vector of observations for trait j; µj is 
the general means for trait j, and 1 is vector of ones; 
and ej has the residuals for trait j. It is assumed that 
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where G0 is the t × t between-trait genetic covariance 
matrix and G is the genomic relationship matrix (Van-
Raden, 2008). Residuals between individuals are as-
sumed uncorrelated. Observations for an individual are 
correlated with a residual covariance structure 
E c R E c( )



 ( )





− −1
0

1
, where E(c) is a diagonal matrix 

having the square roots of ERCrev values for the indi-
vidual. The GEBV reliability of animal i and trait j can 
be calculated as
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	 rij
ij

ii j

2
2

1= −
PEV

G σ
,	 [7]

where PEVij is the diagonal element of the MME coef-
ficient matrix pertaining to animal i and trait j and Gii 
is a diagonal genomic relationship matrix element for 
animal i. Because we are interested in computing reli-
ability or PEV, the vector of observations is not used 
in the computations.

Reliabilities for the Nongenotyped Animals

We approximated reliabilities for the nongenotyped 
animals by “blending” the increased genomic informa-
tion of the genotyped animals into a traditional animal 
model. In this approach, each genotyped animal will 
have additional record counts or pseudo-observations 
to each of the original traits. Unlike the original re-
cords, pseudo-observations have only a fixed general 
mean in addition to the additive genetic effect with a 
weight ERCadd. The pseudo-observations have the same 
additive genetic and residual variances as the original 
model traits.

Data

The performance of the approximation was tested on 
real data from the Finnish Red dairy cattle provided by 
Nordic Cattle Genetic Evaluations (NAV). The data 
set, called data 1, was constructed to be small enough 
so that the exact ssGBLUP model reliabilities could be 
computed by inversion and compared with the approxi-
mation method reliabilities. The data set comprised 
46,535 first-, 35,290 second-, and 23,780 third-lactation 
305-d milk yield records from 47,124 Finnish Red dairy 
cows, with 64,808 animals in the pedigree. The geno-
types included 46,914 SNP markers for 19,757 animals. 
A description of the data is given in Table 1. Herita-
bilities for 305-d milk yield by parity and correlations 
between parities are shown in Table 2. To demonstrate 
the efficiency of the proposed approximation, we ap-
plied the method to a larger data set (data 2), which 
had 8.10 million first-, 5.97 million second-, and 3.72 
million third-lactation 305-d milk yield records from 
8.28 million Nordic (Danish, Finnish, and Swedish) 
Holstein dairy cows. The pedigree comprised up to 11 
million animals, of which 274,145 were genotyped on 
46,342 SNP markers.

The MT model was 

	 y Xb Wu e= + + ,	

where y is the vector of phenotypic values, b is the vec-
tor of fixed effects including herd-year of calving, year-
season of calving, and age at calving. X is the incidence 
matrix associating b with y, W is the incidence matrix 
relating breeding values to the phenotypes, u is a vec-
tor of random additive genetic values, and e represents 
the residual effects. An extra polygenic effect with 10% 
of total genetic variance was included.

Study Design

We calculated the exact reliabilities in the ssGBLUP 
model, to which the single-trait multistep genomic reli-
ability approximation (ST-R2A) and multitrait mul-
tistep genomic reliability approximation (MT-R2A) 
were compared. Even though a comparison of reli-
abilities from exact ssGBLUP and from exact animal 
model (AM) is outside the scope of this article, it can 
be interesting to investigate the usefulness of the ap-
proximation methods by comparing their performance 
to that achieved by AM reliabilities. Thus, we report 
the correlation, the maximum absolute difference, and 
the mean squared error (MSE) between model reli-
abilities from exact ssGBLUP and ST-R2A, and from 
exact ssGBLUP and MT-R2A. In addition, the linear 
regression of the exact ssGBLUP model reliability on 
the ST-R2A and MT-R2A was fitted.

Computations

For the computations we used a multicore computer 
with 2 Intel Xeon E5–2680 v.2 processors (2.8 GHz; 
Intel Corp.) and limited them to 10 CPU cores. Com-
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Table 1. Description of data 1 for 305-d milk lactations 1, 2, and 3

305-d milk 
lactation Genotyped Nongenotyped All1

All 
missing2

1 15,698 30,837 46,535 589
2 10,387 24,888 35,275 11,834
3 6,077 17,701 23,778 23,344
1Number of animals with observations for the whole population.
2Number of animals with missing observations for the whole popula-
tion.

Table 2. Additive genetic correlations (above diagonal), heritabilities 
(diagonal), and phenotypic correlations (below diagonal) for 305-d 
milk production in lactations 1, 2, and 3

305-d milk 
lactation 1 2 3

1 0.443 0.796 0.710
2 0.540 0.323 0.978
3 0.443 0.619 0.336
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putation of the exact ssGBLUP and GBLUP reliabili-
ties by inverting the left-hand side of the MME were 
done using exa99 from the software package MiX99 
(Strandén and Lidauer, 1999). Computation of A22 
matrix was done using RelaX2 (Strandén and Vuori, 
2006). Matrix G Aw

− −−1
22

1�  was computed by the Hginv 
program (Strandén and Mäntysaari, 2018). Base popu-
lation allele frequencies were calculated using the Bpop 
program (Strandén and Mäntysaari, 2020). We com-
puted the Tier and Meyer (2004) reliability approxima-
tion using apax99 from MiX99. For the reverse reli-
ability approximations, a program was written in For-
tran 95.

RESULTS

Reliability for Genotyped Animals

Correlations between the reliabilities from exact ssG-
BLUP and ST-R2A, and from exact ssGBLUP and MT-
R2A, for 3 groups of genotyped animals are summarized 
in Table 3. The first group includes all the genotyped 
animals (19,757); the second group, a subgroup called 
young candidates, has young genotyped bulls with no 
daughter information and cows without records (born 
in or after 2015); and the third group has genotyped 
bulls with daughter information. Correlations between 
the reliabilities from the exact ssGBLUP and ST-R2A 
for the first group, which includes all of the genotyped 
animals, ranged from 0.995 for the first lactation to 
0.950 for the third lactation (Table 3). An improve-
ment of 0.02 for the second lactation and of 0.04 for 
the third lactation was observed in the correlations 
between reliabilities from exact ssGBLUP and MT-R2A 
as compared with ST-R2A. However, no improvement 
in the correlations was observed for first lactation by 
using MT-R2A. This could be expected because fewer 
records were missing for first lactation and the cor-
relation was already very high: 0.995. With ST-R2A, 
the MSE ranged from 0.0004 for the first lactation to 
0.0186 for the third lactation.

The use of MT-R2A resulted in a lower MSE for 
second and third lactations than the ST-R2A (Table 
3). However, the MSE for the first lactation remained 
almost identical, 0.0001, with MT-R2A compared with 
ST-R2A. The regression coefficients (b1) of ssGBLUP 
reliability on ST-R2A ranged from 0.87 (first lactation) 
to 0.68 (third lactation), whereas for MT-R2A they 
were between 0.91 (first lactation) to 0.89 (third lacta-
tion). The general mean varied from 0.11 to 0.30 for 
ST-R2A and from 0.06 to 0.07 for MT-R2A, indicating 
that MT-R2A resulted in less difference between the 
true and approximated reliabilities (i.e., bias) for all 
considered traits.
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For the young candidates subgroup, correlations be-
tween reliabilities from exact ssGBLUP and ST-R2A 
ranged from 0.981 for the first lactation to 0.866 for 
the second lactation. These estimates are generally 
lower than those achieved in the group of all genotyped 
animals and the subgroup of the genotyped bulls with 
daughters (Table 3). Interestingly, using MT-R2A in-
stead of the ST-R2A in the young candidates group 
gave a substantial increase in correlation for the second 
and third lactations, (0.12), which is higher than for 
the other 2 groups. For example, use of MT-R2A led to 
only slightly increased correlations within the subgroup 
of bulls with daughter records. This could be expected, 
in part because the correlation achieved by the ST-R2A 
was already high, between 0.997 for the first lactation 
and 0.974 for the third lactation.

A perfect approximation of exact ssGBLUP reliabili-
ties can be illustrated by a reference line intercepting 
the y-axis at 0 with a regression coefficient (slope) of 1. 
The points below this line are overestimates (upwards) 
of exact ssGBLUP reliabilities, and those falling above 
the line represent underestimates (downwards) of ex-
act ssGBLUP reliabilities. Figure 2 shows the plots of 
exact ssGBLUP versus MT-R2A reliabilities for 305-d 
milk yield for first, second, and third lactations. The fit 
of the MT-R2A approximation for first lactation was 
better than for second and third lactations, although 
the approximated reliabilities deviated from the truth 
to both sides. For all traits, the underestimation oc-
curred for animals with lower exact reliability (<0.5). 
However, the MT approximation slightly overestimated 
the reliabilities for animals with high exact reliabilities.

Table 4 shows the correlations of reliabilities from ex-
act ssGBLUP and AM for the first 3 lactations for the 
genotyped animals, as well as the regression coefficients 
and intercepts of ssGBLUP on AM reliabilities. The 
correlation estimates between reliabilities from exact 
ssGBLUP and AM were nearly identical for all traits 
(0.95). The use of ST-R2A instead of AM increased the 
correlation estimates by up to 4%.

The ST-R2A showed lower bias than AM for all traits 
as indicated by the MSE values (Table 4). In fact, the 
MSE estimates from exact AM were higher for all traits 
than those associated with ST-R2A. Additionally, the 
regression coefficients and intercepts obtained by AM 
agreed reasonably well with the high MSE estimates, 
and deviated from 1 and 0, respectively, more than the 
comparable estimates obtained by using ST-R2A. For 
example, the estimated regression coefficients from AM 
were 0.50, 0.52, and 0.54 for first, second, and third 
lactation, respectively, and were smaller than those ob-
tained from ST-R2A: 0.87, 0.72, and 0.68, respectively. 
Furthermore, the use of MT-R2A gave the highest 
correlations with the true ssGBLUP reliabilities and 
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Figure 2. Reliabilities for all genotyped animals by exact single-
step genomic BLUP (ssGBLUP) versus multitrait multistep genomic 
reliability approximation (MT-R2A) for 305-d milk in lactations 1, 2, 
and 3.
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delivered the least bias, especially for second and third 
lactations when compared with AM reliabilities.

Reliability for Nongenotyped Animals

The correlations and differences between reliabili-
ties calculated from exact ssGBLUP and ST-R2A and 
MT-R2A for the nongenotyped animals are in Table 5. 
Agreement between EBV reliability calculated by exact 
ssGBLUP and by both ST-R2A and MT-R2A was gen-
erally excellent in terms of correlations for the different 
traits. For example, correlations between exact ssGB-
LUP and ST-R2A reliabilities ranged from 0.987 for 
first lactation to 0.983 for third lactation. Correlation 
between exact ssGBLUP and MT-R2A was higher than 
that between exact ssGBLUP and ST-R2A for the first 
lactation. An improvement of 0.06 in the correlations 
between reliabilities from exact ssGBLUP and MT-R2A 
was observed for second and third lactations. The use 
of the MT-R2A method led to a significant reduction 
in the MSE in comparison to ST-R2A. For example, 
the MSE associated with MT-R2A were almost 4 times 
smaller than those obtained from ST-R2A, (0.0005 vs. 
0.0020) for third lactation and (0.0005 vs. 0.0018) for 
second lactation. This could be expected because there 
were more missing observations in second and third 
lactations (Table1).

Figure 3 illustrates the reliabilities from exact ssG-
BLUP versus those from MT-R2A for nongenotyped 
animals. The points depicting the relationship between 
the true ssGBLUP and approximated reliabilities for 
nongenotyped animals were generally close to the refer-
ence line. No clear upward or downward biases can be 
seen. However, reliabilities were approximated with less 
error for animals with high exact ssGBLUP reliabili-
ties, although significant deviations from the reference 
line could be observed for some animals with high exact 
reliabilities (Figure 3).

Table 6 gives the correlations between reliabilities 
from exact ssGBLUP and AM reliabilities, as well as 
the regression coefficients and intercepts of ssGBLUP 
on AM reliabilities for 305-d milk yield in the first 3 lac-
tations for the nongenotyped animals. A good improve-
ment was achieved using ST-R2A compared with exact 
AM. However, the reliabilities from MT-R2A were as 
good as or better than those from ST-R2A and gave an 
additional improvement in correlations and accuracy. 
For example, the correlation estimates between exact 
ssGBLUP and MT-R2A were 0.993, 0.991, and 0.990, 
for 305-d milk yield in first, second, and third lactation, 
respectively, and were higher than those between exact 
ssGBLUP and exact AM reliabilities: 0.981, 0.979, and 
0.978.

The MSE values associated with MT-R2A for non-
genotyped animals were 0.0004, 0.0005, and 0.0005 for 
305-d milk yield for first, second, and third lactation 
(Table 5), respectively, and were almost 5 times smaller 
than the MSE of 0.0018, 0.0017, and 0.0016 from AM 
reliabilities (Table 6). In contrast, the MSE of ST-R2A 
was close to AM. The regression coefficients were closer 
to 1 and the intercepts to 0 with MT-R2A than with AM 
for all studied traits. In fact, slopes as high as 0.99 (in-
tercept 0.01), 0.99 (intercept 0.02), and 0.99 (intercept 
0.02) were obtained with MT-R2A for first, second, and 
third lactation, respectively. The corresponding slopes 
for AM reliabilities were 0.88 (intercepts 0.07) for lacta-
tions 1 through 3, respectively, showing that MT-R2A 
significantly outperformed the AM reliabilities over all 
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Table 4. Correlation (r), maximum difference (max), and mean 
squared error (MSE) between reliabilities from exact single-step 
genomic BLUP (ssGBLUP) and exact animal models (AM), and 
regression coefficients (b1) and intercepts (b0) of the linear regression 
of exact ssGBLUP reliabilities on exact AM reliabilities for genotyped 
animals1

305-d milk 
lactation r Max MSE b1 b0

1 0.953 0.55 0.0376 0.50 0.45
2 0.950 0.53 0.0392 0.52 0.42
3 0.951 0.51 0.0386 0.54 0.40
1Intercept (b0) and slope (b1) of regression were calculated from a lin-
ear model of the ssGBLUP on AM reliabilities.

Table 5. Correlation (r), maximum absolute difference (max), and mean squared error (MSE) between reliabilities from exact single-step 
genomic BLUP (ssGBLUP) and single-trait multistep genomic reliability approximation (ST-R2A), and from exact ssGBLUP and multitrait 
multistep genomic reliability approximation (MT-R2A), and regression coefficients (b1) and intercepts (b0) of the linear regression of exact 
ssGBLUP reliabilities on approximations by ST-R2A and MT-R2A for nongenotyped animals1

305-d milk 
lactation

Single-trait model approximation

 

Multiple-trait model approximation

r Max MSE b1 b0 r Max MSE b1 b0

1 0.987 0.24 0.0014 0.94 0.05 0.993 0.23 0.0004 0.99 0.01
2 0.984 0.23 0.0018 0.93 0.06 0.991 0.22 0.0005 0.99 0.02
3 0.983 0.24 0.0020 0.93 0.06 0.990 0.21 0.0005 0.99 0.02
1Intercept (b0) and slope (b1) of regression of correct reliability from ssGBLUP on approximation by the multiple-trait weighted genomic BLUP 
model.
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traits considered in this analysis. The regression coeffi-
cients for ST-R2A were close to those by MT-R2A. The 
exact AM reliabilities were closer to those by ssGBLUP 
for animals with high reliabilities (results not shown) 
than by MT-R2A, possibly because genomic informa-
tion had less impact for animals already having high 
reliabilities.

Computing Times

Table 7 gives the wall clock times and memory re-
quirements to perform the calculation of reliabilities 
for ssGBLUP and MT-R2A. The time requirement 
with MT-R2A was up to 0.1 h. However, the comput-
ing times for the exact ssGBLUP model reliabilities 
including the computing time for the calculation of the 
diagonal of H matrix were considerably higher (>3 h). 
Inversion of the MME was the most expensive task in 
calculating the exact GEBV reliabilities. In ssGBLUP 
model reliabilities, the MME had 212,169 equations, 
which required 335 GB of RAM. In MT-R2A, calculat-
ing the genomic reliabilities in the multiple-trait GB-
LUP model involved inversion of a system with 59,274 
equations, i.e., t(1 + ng) equations with t the number of 
traits and ng the number of genotyped animals. When 
the coefficient matrix was stored in double precision, 
it took 26 GB of RAM. The inversion was the most 
time-consuming step. However, all of the other steps in 
MT-R2A were performed in seconds and did not require 
as much memory.

DISCUSSION

We developed and tested a method of approximating 
GEBV reliabilities in ssGBLUP using a single-trait and 
a multitrait multistep genomic reliability approximation 
(ST-R2A and MT-R2A). The approximation method 
was based on a separate calculation of reliabilities for 
genotyped and nongenotyped animals. This involved 
calculating the amount of nongenomic information for 
the genotyped animals in a conventional pedigree-based 
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Figure 3. Reliabilities for nongenotyped animals by exact single-
step genomic BLUP (ssGBLUP) versus multitrait multistep genomic 
reliability approximation (MT-R2A) for 305-d milk production in lac-
tations 1, 2, and 3.

Table 6. Correlation (r), maximum difference (max), and mean squared 
error (MSE) between reliabilities from exact single-step genomic BLUP 
(ssGBLUP) and exact animal model (AM), and regression coefficients 
(b1) and intercepts (b0) of the linear regression of exact ssGBLUP 
reliabilities on exact AM reliabilities for nongenotyped animals1

305-d milk 
lactation r Max MSE b1 b0

1 0.981 0.41 0.0018 0.88 0.07
2 0.979 0.36 0.0017 0.88 0.07
3 0.978 0.35 0.0016 0.88 0.07
1Intercept (b0) and slope (b1) of regression were calculated from a lin-
ear model of ssGBLUP on AM reliabilities.
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AM, and then including the genomic information to 
estimate the total information in ssGBLUP model reli-
ability. Reliabilities for the nongenotyped animals were 
obtained by adding the increased genomic contribution 
to the genotyped animals in a pedigree-based reliability 
approximation.

The results suggest that the approximations corre-
sponded well to the exact ssGBLUP reliabilities calcu-
lated by the direct inverse of the left-hand side of the 
MME. However, there was a slight upward bias in the 
reliabilities of genotyped animals with high reliability 
(>0.6). This may be due to the cumulative assumptions 
and approximations inherent in our multistep proce-
dure. In the first step we calculated reliability in an AM 
using the approximation method of Tier and Meyer 
(2004), who also reported an upward bias at the higher 
reliabilities (>0.5) with their approximation method. 
In the second step, we used the reliabilities from the 
first step to quantify the nongenomic pedigree-based 
information ERCrev for the genotyped animals by re-
verse approximation. The reliabilities for the genotyped 
animals were calculated by the GBLUP/SNP-BLUP 
model using ERCrev as weights. Thus, the approximated 
reliability for the genotyped animals had at least 2 
sources for error: the first step reliabilities and ERCrev. 
The presented reverse reliability approximation is a 
MT approach, whereas the GEBV reliability rg

2 for the 
genotyped animals was calculated by MT and ST mod-
els using the ERCrev as weights. Thus, this could gener-
ate more bias in the ST approach.

The results from the approximation method for non-
genotyped animals were as good as or better than those 
obtained for genotyped animals. Indeed, the correla-
tions between the exact reliabilities from ssGBLUP and 
the corresponding approximations were above 0.990 
and the regression coefficients were close to unity for 
nongenotyped animals across all traits. However, for a 
few outliers with high exact reliabilities, the approxi-
mation deviated from the exact ssGBLUP reliability.

Various other multistep procedures have been pro-
posed based on the idea of transferring genomic in-
formation from genotyped to nongenotyped animals 
(Taskinen et al., 2013, 2014; Liu et al., 2017; Edel 

et al., 2019). Our method is similar to the multistep 
procedure developed by Liu et al. (2017), the so-called 
Interbull genomic reliability method in a single-trait 
model. This method consists of 6 steps: (1) calculat-
ing the reliabilities of SNP genotypes; (2) calculating 
the reliability of direct genomic value (DGV); (3) 
adjusting the theoretical reliabilities to the realized 
reliabilities; (4) calculating the genomic gain from ef-
fective daughter contribution (EDC); (5) propagating 
the genomic information to nongenotyped individuals; 
and (6) calculating the final reliabilities enhanced with 
genomic information. The main difference between the 
aforementioned method and ours is that the Interbull 
genomic reliability method is a single-trait approach, 
whereas our method is a MT approach. In addition, 
a difference lies in step 2, where we determined the 
ERCrev by reverse approximation of pedigree-based AM 
reliabilities by the method of Tier and Meyer (2004). 
Liu et al. (2017) calculated the ERC based on absorb-
ing the block of fixed effects and nongenetic effects in 
such a way that all cows with phenotypic data get an 
ERC value. Moreover, our multistep procedure does not 
include adjustment of theoretical genomic reliabilities.

Our results are in line with the reliabilities approxi-
mated using the Interbull standardized genomic reli-
ability procedure in Erbe et al. (2018), who reported 
correlations of 0.99 between the approximated and 
true ssGBLUP reliabilities for genotyped animals, and 
slightly less accurate results for nongenotyped animals. 
The authors also noted that the bias for the genotyped 
animals depended on how the reference population 
is defined and on the weights given to the reference 
animals. However, they did not explicitly specify the 
reasons for the bias observed in the reliability of GEBV 
for nongenotyped animals.

Edel et al. (2019) developed 2 approximation meth-
ods for calculating reliabilities in ssGBLUP. They used 
the single-step marker effect model developed by Fer-
nando et al. (2014), which has an extra model effect 
called imputation residual for nongenotyped animals. 
The approach calculates PEV for SNP marker effects, 
and then approximates the imputation residuals either 
by diagonal approximation of the imputation residual 
subblock or by reducing the nongenotyped animals to 
those with relevant contributions. Edel et al. (2019) 
combined the 2 approximations to calculate genomic 
reliabilities for genotyped animals and proposed to 
propagate the increased reliability due to genomic in-
formation to nongenotyped animals. The approach is 
similar to ours in the steps to approximate reliabilities 
for the nongenotyped animals, but it differs in details. 
For example, Edel et al. (2019) calculated the increase 
due to genomics in the reliability scale, whereas we used 
the ERC scale. We transformed the reliability increase 
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Table 7. Computing time (wall clock time in h) and peak memory 
use (in GB) for single-step genomic BLUP (ssGBLUP), multiple-trait 
multistep genomic reliability approximation (MT-R2A), and single-
trait multistep genomic reliability approximation (ST-R2A) on data 1

Method
Peak memory 

(GB)
Wall clock 
time (h)

ssGBLUP 335 3.15
MT-R2A 26 0.10
ST-R2A 3 0.06
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into ERC weights similarly as they did. However, they 
added the ERC increase directly to the “conventional” 
weight used in the pedigree-based AM to estimate 
reliability. In our approach, the increased weight was 
considered for a new pseudo-observation and did not 
increase information to estimate fixed effects.

We assessed the bias of the approximation methods 
using regression of the ssGBLUP reliabilities computed 
by inverting the left-hand side MME on those from ST-
R2A and MT-R2A. The regression coefficient estimates 
for the approximate reliabilities for the nongenotyped 
animals were generally in line with those reported by 
Edel et al. (2019). For the genotyped animals, in con-
trast, our results were less in agreement with the same 
study. In this context, statistics on exact ssGBLUP ver-
sus exact AM reliabilities obtained in Edel et al. (2019) 
were slightly higher than those in the present study. It 
is possible that the difference between the results of our 
study from those of Edel et al. (2019) may be due to 
the different data structure. For example, we had many 
more genotyped animals and a large proportion of them 
were females with phenotypes (Table 1).

The correlations between the exact ssGBLUP and 
approximated reliabilities in our study were high 
(>0.98) for genotyped animals over all traits using MT-
R2A, even for the subgroup of young candidates. These 
values are comparable to the value of 0.99 obtained 
using the first approximation of Misztal et al. (2013). 
The correlations in our study were higher than those 
achieved by the second approximation in their study. 
Note that the first approximation of Misztal et al. 
(2013) requires computing the inverse of a matrix which 
includes the matrices G−1 and A22

1− , making it computa-
tionally demanding for a large number of genotyped 
animals. Our approach allows using either SNP-BLUP 
or GBLUP such that the memory and computational 
requirements can be chosen to be equal or less than in 
their approach. The second approach in Misztal et al. 
(2013) uses only diagonals of G−1 and A22

1− . In practice, 
our method should be at least as good as the first ap-
proximation of Misztal et al. (2013) for single-trait 
models but better for MT models because our approach 
uses MT reverse reliability and allows the use of a MT 
model for the approximation of reliability for genotyped 
animals.

The results of our study imply that the highest cor-
relation and lowest bias can be achieved by applying 
MT approximation rather than by analyzing the traits 
separately in a single-trait approximation. The MT ap-
proximation is associated with fewer biases compared 
with ST approximation, especially for traits with high 
missing phenotype records. In fact, for the group com-
prising all the genotyped animals, gains of 0.01 to 0.06 

on correlation estimates were achieved by MT-R2A 
compared with ST-R2A over the 3 traits, particularly 
for traits with a large number of missing phenotype 
records (Table 1). We examined the gain from using 
the MT-R2A over ST-R2A for the subgroup of young 
candidates and observed a relatively large improvement 
by MT-R2A compared with the group of all genotyped 
animals. However, the effect of missing traits on the 
observed gain due to MT-R2A was not clear, especially 
for the second and third lactations.

The MSE associated with MT approximation were 
up to 5 times smaller than in ST approximation, par-
ticularly for nongenotyped animals. This improvement 
derives from the fact that traits with a high amount of 
missing phenotype records acquire extra information 
from correlations. Numerous studies have identified the 
benefit of multitrait model reliabilities over single-trait 
reliabilities when traits are correlated. Strabel et al. 
(2001) found that MT approximation lessened the bias 
of the approximation compared with a ST-based meth-
od in the approximation of reliabilities for a MT model 
with maternal effects on Senepol cattle data. In the MT 
model, the correlated information can be accounted for, 
but it is not in the ST model reliabilities. This can lead 
to a downward trend in ST model reliabilities from the 
correct level. Further, the use of a MT model is more 
beneficial than a ST model for a trait with low heri-
tability when a correlated trait with high heritability 
is available. In our study, all 3 traits had practically 
the same heritability values (Table 2). However, the 
second and third lactations included a large amount 
of missing phenotypic data, and the MT model proved 
highly beneficial for these lactations, whereas the first 
lactation gained only negligibly. Quite the contrary, for 
the 305-d milk yield in the first lactation for genotyped 
animals, we found that the correlation between reliabil-
ity from MT approximation and the exact ssGBLUP 
reliability was of the same magnitude as that between 
ST approximation and exact ssGBLUP reliability.

The computing time for calculating model reliabil-
ity for MT-R2A was less than that for ssGBLUP. In 
MT-R2A, the most time was spent in the calculation 
of genomic reliabilities using the multiple-trait GBLUP 
model. Note that the MME in MT GBLUP was de-
termined by the number of traits t and the number of 
genotyped animals ng.

The use of a MT GBLUP can be infeasible in prac-
tice when the number of genotyped animals is very 
high. The computational cost of inverting the MME is 
a cubic function O[(tng)

3], where O is a theoretical mea-
sure of the execution of an algorithm, and the memory 
requirement is a quadratic function O[ng(m + t2ng)], 
where m is the number of SNP markers. Thus, the cost 
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is upper bounded by a cubic or quadratic function times 
a constant (Knuth, 1976). The memory requirement 
for MME for the 3-trait GBLUP model reliability with 
around 20,000 genotyped animals was 26 GB. Extrapo-
lating, such memory requirements would be around 670 
GB for 100,000 genotyped animals and 3 traits, which 
can present a considerable computational burden. Us-
ing an equivalent MT SNP-BLUP model would lead to 
a system of equations of size t(1 + m), where m is the 
number SNP markers. Computation of MT SNP-BLUP 
has a cost of O[(tm)3] for computing time and O[m(ng 
+ t2m)] for memory requirement, which is lower than 
for GBLUP when the number of genotyped animals ng 
is more than the number of SNP markers m.

Including the residual polygenic (RPG) effect in 
SNP-BLUP model would increase the computational 
cost of inverting the MME in SNP-BLUP from O[(tm)3] 
to O[t(m + ng)]

3, which is computationally challenging 
with an increasing number of genotyped animals. To 
overcome the potential computational problem, Ben 
Zaabza et al. (2020) proposed a Monte Carlo (MC)-
based sampling method to estimate the SNP-BLUP 
model reliability with an RPG effect (MC-SNP-BLUP), 
where the MME size depends on the number of markers 
(m) and MC samples (nmc) instead of (m + ng). Fur-
ther, Ben Zaabza et al. (2021) extended the MC-SNP-
BLUP to another (MC)-based sampling method called 
full-MC-SNP-BLUP, where the size of the MME is 
determined by nmc. This method has a cost of O[(tnmc)

3] 
for computing times and O[nmc(ng + t2nmc)] for memory. 
When m is less than ng and ng is large, the full MC 
approach is computationally less demanding than the 
exact GBLUP, which involves the time-consuming task 
of making and inverting the G matrix (see Ben Zaabza 
et al., 2021). The full-MC approach was reported to 
be computationally efficient for large data sets and to 
provide good approximation to the exact values with 
only a small upward bias. A drawback of the full-MC 
approach is its tendency to overestimate reliability for 
animals with low reliability. Moreover, a small MC and 
high RPG effects are associated with overestimation. 
The authors recommended that the RPG proportion, 
the number of genotyped animals, and the popula-
tion structure should be considered when determining 
the number of MC samples. In practice, a reasonable 
compromise should be made between accuracy of the 
reliability and the length of the computing time when 
using any MC approach.

We examined the efficiency of our multistep pro-
cedure using the full-MC approach (Ben Zaabza et 
al., 2021) in the intermediate step for approximating 
reliabilities of the genotyped animals on the largest 
data (data 2). We used MC sample sizes of 120,000 
and 160,000 for data 2. The required computing times 

in the full-MC-SNP-BLUP were 347 min and 527 min 
for 120,000 and 160,000 MC samples (Table 8), respec-
tively. These computing times are less than required by 
GBLUP (3,090 min) using a data of a comparable size, 
containing 240,000 genotyped animals and 50,000 SNP 
markers (see Ben Zaabza et al., 2021). Memory require-
ments for making MME were 115 GB with 120,000 and 
204 GB with 160,000 MC samples. If exact SNP-BLUP 
had been used, 822 GB would have been needed, which 
exceeded the RAM available on our computer. The 
computing times for inverting MME coefficient matrix 
were 32 min with 120,000 MC samples and 73 min 
with 160,000 MC samples. Assuming computing time 
increases cubically by MME size, inverting the exact 
SNP-BLUP reliability with RPG would require more 
than 10 h. For more details on the different steps in 
the full-MC-SNP-BLUP reliability calculation, see Ben 
Zaabza et al. (2021).

CONCLUSIONS

This paper outlines a method for the estimation 
of GEBV reliabilities in a single-step genomic model. 
Our results indicate that ssGBLUP reliabilities can be 
approximated satisfactorily both for genotyped and 
nongenotyped animals. We conclude that the proposed 
method is efficient in terms of computing time and 
memory requirements and can be applied even for large 
data sets. This method is particularly efficient when 
using an equivalent MT SNP-BLUP model when the 
number of genotyped animals is more than the number 
of SNP markers.
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Table 8. Computing time (wall clock, in min) for calculating model 
reliability in the full Monte Carlo (MC)-SNP-BLUP model

Method1

Sample size

120,000 160,000

MC-marker-effects 20 25
MC-RPG 188 252
Making MME 47 82
Inversion 32 73
PEV computation 60 95
Total 347 527
1RPG = residual polygenic; MME = mixed model equations; PEV = 
prediction error variance.
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APPENDIX 1

We give a pseudo code for 2 functions needed in the ERC calculation by the reverse reliability estimation ap-
proach. The main function (ERC_rev) has an iterative loop for calculating ERC. This function calls function 
TierMeyer, which calculates new ERC values. Iteration in the main function ends when the ERC values no longer 
change or when the number of iterations has reached maximum (kmax). For the change in ERC values, we used a 
tolerance of 10−6 for ɛ. When the vector of trait-wise ERC value changes nd

k k[ ]( ) at iteration  was less than or equal 

to ɛ for every trait, the iteration was terminated.
In the code, we use the following notations: || ||⋅ 2 is the column-wise vector 2-norm over animals, Diag(v) gives 

the diagonal matrix from the argument vector v, and Diag(M) returns the diagonal vector of the argument matrix 
M. Augmented assignment operations “+=” and “−=” were used to shorten the notation. For example, M += 
C is the same as M = M + C. The ERC_rev function is called with the following arguments: the genetic covari-
ance matrix G0, the residual covariance matrix R0, the prediction error variances (PEV) of genotyped animals 
for all traits, the reliabilities r2 of genotyped animals for all traits, the heritabilities h2 of all traits, and the 
maximum number of iterations kmax. PEV and r2 for the nongenotyped animals are set to zero, and the full pedi-
gree is used. The ERC_rev function returns ERC for the genotyped animals.

function ERC_rev(G0, R0, PEV, r
2, h2, kmax)

   d d
0 12 2[ ] [ ]= =n n ;  ε ε 

   ij j ij ij j
j

j

i
h

h
j0 2 2

2

2
1

1[ ] = −( ) =
−

=ERC r rλ λ, , all animals ,  1, .... , traits.

  k = 0

  while  AND  > k k n
k<( )



 ( )






{ }[ ]

max any d ε  

    restrict = restrict OR  OR any mad d
k k
n n k k+[ ] [ ]>( )








>1
xx 2( )

    k = k + 1 
    ERC[k] = TierMeyer(G0, R0, ERC

[k-1], PEV, restrict) 
    d[k] = ERC[k] − ERC[k-1]

     d d ERCkn k k= [ ] −[ ]
2 2

1|| || || ||
  end while 
  return (ERC[k]) 
end ERC_reverse 
 
function TierMeyer(G0, R0, ERC

[k-1], PEV, restrict) 
  if (restrict) then ω = 0.35 else ω = 0.70 
  F = 0; C = 0 
  do i from youngest to oldest animal

     i i
kDiagE ERC = −[ ]








1  

     i i iF E  R E0
1  + = −  

     i iC G G F G G  = − +

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
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
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− − −
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−1
3

4
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4
30

1
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1
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0
1 

    if (sire of i exists) sire of   i iF C+ =  
    if (dam of i exists) dam of  i iF C+ =
  end do 
  do i from oldest to youngest

    if (sire of i exists) i sire of i iF G G F C G G +=      1
3

4
9

4
30

1
0

1
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0
1

0
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−
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    if (dam of i exists) i i iF G G F C G G += dam of
1
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4
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4
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1
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1
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1
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0
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    if (any i
k−[ ]( )1

ERC  >0 ) then 

i i iF E R E   − −= 0
1  

i i
− −= +1

0
1G F G  

use Newton-Raphson to solve vector c in Diag i i i0
1

0
1 1− − −

+( )





 =G E R E PEV    

where i DiagE c = ( ) with starting value c ERC = i
k−[ ]1. 

i
k

i
k

i
k[ ] −[ ] −[ ]= + −( )ERC ERC c ERC

1 1 ω  

E ERCi i
kDiag = [ ]






 

i i iF E R E +=  0
1−

    endif 
  end do 
  return(ERC[k]) 
end TierMeyer

APPENDIX 2

We implemented a Newton-Raphson–based algorithm for solving from a nonlinear equation:

ƒ(c) = y,

where c is a t × 1 vector of effective record contributions (ERC) and t is the number of traits. The left-hand side, 
ƒ(c), are the diagonals of inverse matrix M−1, {f (c)}j ={M−1}jj, j = 1, …, t, where M is a t × t matrix:

M G ER E= +− −
i

1
0

1 ,

where E is a diagonal matrix containing the square roots of vector c on the diagonal, E c c( )  { } =jj j , i
−1G  contains 

the inverse of the genetic covariance matrix 0
1−G  and contributions from offspring and ancestors of animal i, and 

R0 is the residual covariance matrix. The right-hand side has the prediction error variances (PEV) of individual: 
{y}j = {Vjj}ii that are the diagonal elements of the prediction error co-variance (PEC) matrix pertaining to animal 
i and trait j.

The solving method attempts to find the root of the multivariate function F(c) = 0, where F(c) = f(c) – y. As 
the root may not exist in all cases, a location c that minimizes ||F|| is the actual target. First, an initial value for 
the c vector is chosen denoted c[0]. In every iteration k, the method calculates new location for c by

c c J F c[ ] [ ] [ ] [ ]k k k kc+ −
= − ( ) ( )1 1

α ,

where F c[ ]k( ) and Jacobian J c k[ ]( ) are evaluated at the current values of ERC. As negative ERC are not allowed, 
c has constraints that are handled by projection onto the positive side. A simple line search is performed starting 
from α = 1 and halving it until F c k+[ ]( )1  is smaller than (or equal to) previous F c k[ ]( ) . Convergence is achieved 

when the improvement in ||F|| is small enough compared to a given tolerance.
The t by t Jacobian matrix J has the first-order derivatives of the vector valued multi-variate function F:

J c

F
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F
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F
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Because the y vector in F(c) is constant, the components of the Jacobian matrix are 	

J
M

jl
j

l
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l
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c c
=
∂( )
∂

=
∂ { }
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∂

−
( )

.

1

For example, let c contain 3 traits (t = 3) such that M is a 3 × 3 matrix. Then, the first-order derivative of 
diagonal j of the M−1 matrix with respect to trait l of c is equal to 
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We illustrate the computation of the Jacobian matrix by differentiating the M matrix with respect to the first 
trait c1:
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