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The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the

parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such

an effect is still elusive in optical systems due to the very demanding requirements of its experimental

implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic

field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the

production of photons from the vacuum. This paves the way to an effective simulation of the DCE through

a mechanism that has recently found experimental demonstration. The spectral properties of the emitted

radiation reflect the critical nature of the system and allow us to link the detection of the DCE to the

Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.

DOI: 10.1103/PhysRevLett.108.093603 PACS numbers: 42.50.Pq

When N two-level atoms interact collectively with a
single mode of the electromagnetic field inside a cavity,
thus realizing the so-called Dicke model [1], a critical
value of the atom-photon coupling gc exists at which the
system undergoes a quantum phase transition, generally
referred to as the superradiant transition. Below such
coupling, the atoms are in their ground state and the
cavity field is unpopulated. Conversely, above gc there is
a spontaneous symmetry breaking and the photon field
gets populated through a mechanism producing a dis-
placed coherent state [2]. The experimental demonstra-
tion of the superradiant transition in the Dicke model has
remained outstanding until recently, when a key result
has been achieved in a setup involving intracavity Bose-
Einstein condensates [3]. A superradiant transition has
been enforced by exploiting the spatial self-organization
of the atoms in an intracavity condensate coupled to the
cavity field and subjected to an optical-lattice potential.

Here we investigate the relation between equilibrium
and dynamical properties of a Dicke system brought close
to a quantum phase transition. We prove that, at the super-
radiant transition, a DCE-like mechanism [4,5] arises from
the use of a time-dependent driving and results in a flux of
photons generated from the vacuum fluctuations. DCE has
been predicted to occur in QED settings involving a cavity
with oscillating end mirror [6]. This scheme, however,
appears to be technologically demanding given the
prohibitively large frequency at which the mirrors should
vibrate to produce a measurable flux of photons.
Notwithstanding some interesting proposals [7–9] having
the potential to ease the requirements for its observability,

an experimental demonstration of DCE is still elusive in
the optical domain. Recently, a DCE-like mechanism has
been observed in an experiment performed using micro-
waves [10].
Our proposal pursues a different direction: we observe

that, on approaching the Dicke superradiant phase transi-
tion, the frequencies at which the DCE-like effect becomes
observable are lowered, thus narrowing the gap separating
the experimental state-of-the-art from the observation of
the effect. Moreover, we unveil an intriguing connection
between the occurrence of DCE through the mechanism
we propose and the Kibble-Zurek mechanism (KZM)
[11,12]. The latter predicts the formation of defects in a
quantum many-body system dragged through a critical
point [13–15] and is due to the inability of the system to
remain in its ground state. The production of defects occurs
regardless of how slowly the dragging is performed and the
mechanism has been shown to be related to adiabatic
quantum computation [16] and quantum annealing [17].
We are thus able to bridge two fundamental phenomena in
out-of-equilibrium quantum systems with the goal of sim-
plifying their observation. The recent demonstration of the
Dicke superradiant transition [3], which is the building
block of our proposal, marks a promising starting point
towards an experimental investigation along the lines of
our work.
We consider a cold system of N two-level atoms, col-

lectively interacting with the field of a single-mode cavity
whose annihilation (creation) operator is â (ây). Each two-
level atom is modeled as a pseudospin whose Pauli spin
matrices are f!̂i

!; !̂
i
zg (i ¼ 1; . . . ; N). We realistically
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assume a small-sized atomic sample, neglect the variations
of the cavity field at its location and take the coupling
strength as uniform. Then, we introduce the total angular
momentum Ĵ of the atomic sample with components Ĵ! ¼P

i!̂
i
! and Ĵz ¼

P
i!̂

i
z and consider time-dependent single-

spin energy splittings !bðtÞ. The Hamiltonian of the sys-
tem in the dipole approximation thus reads (we set @ ¼ 1
throughout the paper)

Ĥ0 ¼ !aâ
yâþ!bðtÞĴz þ

gffiffiffiffiffi
2j

p ðây þ âÞðĴþ þ Ĵ&Þ; (1)

where !a is the frequency of the cavity and g is the atom-
field coupling constant. Analogously to Refs. [8,9], we take
!bðtÞ ¼ !0 þ " sinð#tÞ. The parameter j is the coopera-
tion number in the Dicke theory, that is an eigenvalue of Ĵ2

which, together with the eigenstates of Ĵz, is used to build
the Dicke states. The ensemble of N two-level atoms is
then described as a pseudospin of size j ¼ N=2. In this
case, photons are generated at #res ¼ 2!a. In Ref. [18] a
model similar to ours but based on a semiclassical ap-
proach has been addressed to relate DCE-like effects to
Dicke superradiance. Here we perform a full quantum
treatment of both the atom-light interaction and the effects
on the photon statistics induced by the driving of the
atomic subsystem. Moreover, as discussed in the second
part of the Letter, we will unveil the connection between
the DCE-like effects and the KZ mechanism.

Equation (1) strongly resembles the many-body
Landau-Zener problem studied in Refs. [19,20]. A crucial
difference between the two cases is the presence of the
counter-rotating terms in Eq. (1). These lead both to the
superradiant transition and the production of photons. For
N ' 1, the Holstein-Primakoff representation of the an-
gular momentum [21] can be used to approximate the
atomic cloud to a nonlinear harmonic oscillator.
However, for a large atomic sample (as in the case here),
we can take Ĵþ ( ffiffiffiffiffi

2j
p

b̂y with ½b̂; b̂y* ¼ 1 and retain the
harmonic approximation. Equation (1) thus reduces to

Ĥ ¼ !aâ
yâþ!bðtÞb̂yb̂þ gðây þ âÞðb̂y þ b̂Þ; (2)

which is easily diagonalised: the normal frequencies $!ðtÞ
and modes q!ðtÞ are discussed in the Supplementary
Material accompanying the manuscript [22] (their form is
not relevant for our purposes). The normal-mode descrip-
tion of Eq. (2) simplifies the analysis of the critical
properties of the time-modulated Dicke model [23], which

shows the existence of a critical value gcðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!a!bðtÞ

p
=2

at which a phase transition occurs. In the phase correspond-
ing to g < gc, which we dub normal phase, the number of
photons in the cavity mode is very small and hâi¼ hb̂i¼0.
Upon approaching gcðtÞ, the number of photons increases
and the system reaches the so-called superradiant phase at
g > gcðtÞ, where the cavity mode is macroscopically popu-
lated even in the ground state of the system and hk̂i !
0ðk ¼ a; bÞ due to spontaneous symmetry-breaking: while

at small couplings the total number of excitations hâyâþ
b̂yb̂i is conserved, at the phase transition such a symmetry
is broken, resulting in the population of the cavity field.
Here, we will only refer to the normal phase.
Let us first address the case of a lossless evolution. For

parameters of the system such that $þðtÞ ' f$&ðtÞ;#g, the
noncritical mode q̂þ will not contribute to the photon
production and we can consider only q̂&. To simplify the
notation, we drop the index and set $&ðtÞ + $ðtÞ from now
on. Moreover, taking " small, the system can be treated as
a harmonic oscillator with frequency $0 perturbed by a
weak driving at the modulation frequency #. In this frame-
work, excitations can be created only at the resonance
condition # ¼ k$0 (k 2 Z). If the system is initially in
its ground state, which corresponds to the vacuum of the
effective harmonic oscillator, such dynamics lead to the
generation of photons from the vacuum inside the cavity,
along the lines of DCE, already at # ¼ 2$0. The number of
photons generated increases as g ! gc. This is very im-
portant: as $0 ! 0 when the system approaches its critical
point, the # needed to observe the DCE-like effect is
lowered, thus bringing its verification closer to experimen-
tal feasibility.
The assumption of unitarity is not realistic and we

now include the leakage of photons from the cavity, a
mechanism that is conveniently tackled by means of the
input-output formalism for optical cavities [24] and by
modelling the bath to which the cavity field is coupled as
a distribution of harmonic oscillators with associated op-
erators (%̂&, %̂

y
&), having frequency & and interacting with

the cavity field with strength k& according to the
Hamiltonian V ¼ i

R1
0 k&ð%̂&â

y & â%̂y
&Þd&. The method

used to tackle such open dynamics is fully described in
the Supplementary Material [22]. Here we only state that,
by assuming a flat density of states in the bath 'ð&Þ
vanishing for &< 0 and k& ¼ k (8 &> 0), manageable
expressions for the effective dissipation rates affecting the
evolution of the system at hand are found. Moreover, we
can determine the stationary mean number of photons in-
side the cavity hayai ¼ limt!1hayðtÞaðtÞi and, from this,

the out-coming photons flux h%̂y%̂i ¼ R1
0 d&h%outy

& %out
& i.

Here, %̂out
& (%̂outy

& ) is the field annihilation (creation) opera-
tor of the output mode at frequency & [25].
We can now discuss the qualitative features of the

mechanism here achieved. First, we find no out-coming
photon for an unmodulated driving field. On the contrary,
any time-dependent modulation generates a constant flux
of photons. This is clearly understood by taking the case of
a small-amplitude modulation and stopping at the first
order in " [26]. In Fig. 1, we show the out-coming photon
flux for a damping rate ( (positive and constant for!> 0)
against # and g. In Fig. 1(a) a resonance peak is clearly
visible at # ( 0:63 when g ¼ 0:45, corresponding to
g ¼ 0:9gc and $0 ( 0:315, which confirms that a reso-
nance peak is achieved at # ( 2$0. Such a prediction is
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strengthened by Fig. 1(b), where the flux of out-coming
photons is plotted against g and # and shows resonances at
# ( 2$0, regardless of the value of $0.

We complete our study by considering the spectral
density Sð!Þ ¼ h%̂outyð!Þ%̂outð!Þi of the output field,
which is plotted in Fig. 2 for a weak modulation driving
at variable #. When # ¼ #res ¼ 2$0, the spectrum reveals
a single sharp peak at ! ( $0 [cf. Fig. 2, main panel]. In
the nonresonant regime, the emission at ! ( $0 is drasti-
cally reduced and sidebands of enhanced emission at
! ( #! $0 and! ( #þ 2$0 appear (cf. insets of Fig. 2).

A series of remarks are due. First, we reassure on the
validity of the Holstein-Primakoff approximation. In all
our calculations of the out-coming photon flux, the number
of excitations in the atomic system is much smaller than
the actual number of atoms in the sample, thus ensuring
that our framework holds. Second, due to the small fre-
quency of the photons generated when g approaches the
critical value (the emission frequency is ! ( $0), thermal
noise in the output signal, which has not been included in
our study, may be significant. However, the generated
photons can be detected also in the presence of strong
background noise simply by using a cavity with semitrans-
parent mirrors. In this scheme, the cavity mode is coupled
with two thermal baths and photons are allowed to enter or
abandon the cavity from both sides. As the two baths are
uncorrelated, the noise can be virtually eliminated by
measuring the correlations between the output modes.

Finally, we address the crucial connection between our
DCE-like mechanism and the Kibble-Zurek one [11,12].
On approaching the critical point of the model in Eq. (1),
regardless of the value of #, there will always be a regime
where the perturbation is nonadiabatic and photons are
produced. A first estimate of the unavoidable departure
from adiabaticity, with a consequent photon flux, is ob-
tained by calculating the probability of the system to go
into an excited state. For simplicity, we consider one period
in the absence of damping. The probability of leaving the

ground state at the final time tf (ti being the initial time) is

P ¼ 1& jh!ðtfÞj’0ðtfÞij2 with j’nðtÞi the instantaneous

eigenstates of the harmonic oscillator and j!ðtfÞi the final
state of the system. The KZM relies on the assumption that
the state of a system brought close enough to the critical
point freezes when the system is not able to adiabatically
follow the changes in the control parameter. For the driving
here at hand, the freeze-out times is found by solving the

equation T ðtÞ= _T ðtÞ ¼ )ðtÞ; where T ðtÞ ¼ gcðtÞ=g& 1
plays the role of the relative temperature of the system
and ) ¼ )0=$ðtÞ is its relaxation time ()0 ¼ 1=!) [27]. For
a sinusoidal modulation ofT ðtÞ and if the oscillating terms
brings the system sufficiently close to the critical point, one
finds four solutions, each embodying a freeze-out time.
Figure 3(a) shows their representations in the unit circle.

FIG. 1 (color online). Radiation flux outside the cavity. (a) Flux of photons outside the cavity against # for g=!a ¼ 0:9, gc=!a ¼
0:45, (=!a ¼ 0:005, and "=!a ¼ 0:005. For these parameters, $0=!a ( 0:315. (b) Flux of photons outside the cavity against # and g
for !b=!a ¼ 1, (=!a ¼ 0:005 and "=!a ¼ 0:005.

FIG. 2 (color online). Spectral density of the output photons.
Taking !a ¼ !b ¼ 1, " ¼ 0:005, ( ¼ 0:005, g ¼ 0:9 and gc ¼
0:45, we find $0 ¼ 0:315. We have taken #=2$0 ¼ 1 (corre-
sponding to resonance conditions, main panel), #=2$0 ¼ 0:7
(upper inset), #=2$0 ¼ 1:3 (lower inset).
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As the system is initialized in its ground state, i.e.,

j!ðtiÞi ¼ j’0ðtiÞi, the adiabatic condition T ðtÞ= _T ðtÞ> )
is satisfied until t ¼ t̂1, where t̂1 is the freeze-out time at
which the system enters the so-called impulsive regime.
During this period, the state of the system is frozen until
t ¼ t̂2, when the adiabatic condition is fulfilled again
and the state of the system becomes j!ðt̂2Þi ¼ j’0ðt̂1Þi ¼P

ncn;0ðt̂2; t̂1Þj’nðt̂2Þi with cn;mðt; t0Þ ¼ h’nðtÞj’mðt0Þi. The
same argument applies to the second part of the cycle,
where the system evolves adiabatically for t 2 ½t̂2; t̂3* and
is frozen for t 2 ½t̂3; t̂4*. The state at t̂4 is then j!ðt̂4Þi¼P

k;nck;nðt̂4; t̂3Þcn;0ðt̂2; t̂1Þe&i*n j’kðt̂4Þi with *n¼
Rt̂3
t̂2
dtEnðtÞ.

Finally, the last part of the evolution (t 2 ½t̂4; tf*) will
not affect the probability P; which is thus P ¼
1& jh!ðt̂4Þj’0ðt̂4Þij2 and whose behavior against # is
shown in Fig. 3(b) for different values of ". Clearly, the
closer the system to the quantum phase transition, the more
it is susceptible to a low-frequency driving. A more de-
tailed analysis requires the study of the transient dynamics.
The scheme of Fig. 3(a) is still valid, the probability of
excitations being calculated by composing four different
dissipative maps in the same spirit of Ref. [28]. We only
expect quantitative changes.

To corroborate the connection between DCE and KZM,
we have further analyzed the photon production in
the adiabatic and nonadiabatic regimes [cf. Fig. 4]. For
#> $min (being $min the minimum value of $ðtÞ over a
cycle), the dynamics is nonadiabatic and photons can be
created. Close to criticality, the minimum of the gap van-
ishes, the system is always in the nonadiabatic regime and
the photon flux increases linearly with # until the maxi-
mum value at resonance is reached. Far from the transition,
the photon production decreases from the resonance with a
Lorentzian behavior: when #< $min, the photon flux is
sharply reduced and a linear behavior is recovered but with
a much smaller value. This abrupt transition between the

adiabatic and nonadiabatic regimes demonstrates that the
breakdown of adiabaticity due to critical slowing down is
at the origin of photon creation in the DCE, a situation
totally analogous to what is described by the KZM.
We have proposed a scheme to achieve DCE-like effects

by dragging a driven quantum Dicke model across its
critical point. By linearizing the model, we have related
the mechanism of photon generation from the vacuum to
the properties of the eigenmodes of the system, thus
providing a clear picture of the DCE-like effect arising
from a Dicke quantum phase transition guided by a
time-modulated driving. As the frequency of the driving
is quenched at the Dicke critical point, the observation of a
sizable flux of generated photons becomes less demanding
for an optical-domain verification. We have also connected
the photon-generation process to the KZ predictions for

FIG. 4 (color online). Output photon flux as a function of # for
different values of g. The transition between adiabatic and non-
adiabatic regime (sharp step) is located at the minimum of the
gap and is shifted to lower frequency when the coupling gets
closer to the critical coupling. At the critical point the dynamics
is purely nonadiabatic.

FIG. 3 (color online). (a) Schematic representation of the four freeze-out points in the trigonometric circle. (b) Probability of leaving
the ground state against #=$0 for g ¼ 0:49=!a and various values of ":.
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defect nucleation at a quantum critical point, thus pointing
out the intimate connection among three fundamental
mechanisms in quantum many-body physics.
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