§))
american ’/
physiological
society’

JOURNAL OF
NEUROPHYSIOLOGY.

J Neurophysiol 127:1622-1628, 2022.
First published May 18, 2022; doi:10.1152/jn.00515.2021

| JN

RAPID REPORT

Sensory Processing

Resolving the time course of visual and auditory object categorization

Polina lamshchinina,»? © Agnessa Karapetian,! © Daniel Kaiser,3%* and © Radoslaw M. Cichy"2*
'Department of Education and Psychology, Freie Universitat Berlin, Berlin, Germany; *Berlin School of Mind and Brain,
Humboldt-Universitat zu Berlin, Berlin, Germany; *Department of Mathematics and Computer Science, Physics, Geography,
Mathematical Institute, Justus-Liebig-Universitat GieRen, GieRen, Germany; and *Center for Mind, Brain and Behavior (CMBB),
Philipps-Universitat Marburg and Justus-Liebig-Universitat GieRen, Marburg, Germany

Abstract

Humans can effortlessly categorize objects, both when they are conveyed through visual images and spoken words. To resolve
the neural correlates of object categorization, studies have so far primarily focused on the visual modality. It is therefore still
unclear how the brain extracts categorical information from auditory signals. In the current study, we used EEG (n = 48) and
time-resolved multivariate pattern analysis to investigate 1) the time course with which object category information emerges in
the auditory modality and 2) how the representational transition from individual object identification to category representation
compares between the auditory modality and the visual modality. Our results show that 7) auditory object category representa-
tions can be reliably extracted from EEG signals and 2) a similar representational transition occurs in the visual and auditory
modalities, where an initial representation at the individual-object level is followed by a subsequent representation of the
objects’ category membership. Altogether, our results suggest an analogous hierarchy of information processing across sensory
channels. However, there was no convergence toward conceptual modality-independent representations, thus providing no evi-
dence for a shared supramodal code.

NEW & NOTEWORTHY Object categorization operates on inputs from different sensory modalities, such as vision and audition.
This process was mainly studied in vision. Here, we explore auditory object categorization. We show that auditory object cate-
gory representations can be reliably extracted from EEG signals and, similar to vision, auditory representations initially carry in-
formation about individual objects, which is followed by a subsequent representation of the objects’ category membership.

auditory modality; EEG; MVPA; object categorization; visual modality

INTRODUCTION

Whether we see a pineapple or hear somebody say “pine-
apple,” we can rapidly and effortlessly infer key properties of
the object; for instance, we can confidently say that a pineap-
ple is a natural, inanimate object. Such categorization proc-
esses are essential for using object knowledge in an efficient
way. So far, the studies in the field of object recognition have
been investigating the neural correlates of object categoriza-
tion primarily in the visual modality (1). Using fMRI and M/
EEG, researchers have identified a gradual progression from
visual representations of individual objects to more abstract
representations of an object’s category, both along the ven-
tral visual hierarchy and across processing time (2-8).
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By contrast, studies in the field of object recognition sel-
dom focus on object categorization from auditory inputs
such as linguistic utterances. Few fMRI studies have pin-
pointed categorical coding for auditory stimuli to superior
temporal and medial frontal cortex (9, 10). Only one EEG
study so far has tried to systematically compare the time
course of visual and auditory abstract information but did
not succeed in reliably establishing category information for
auditory stimuli (11). A different line of research investigates
the time course of semantic word analysis using event-related
potentials. When participants read or listen to full sentences,
an N400 ERP component is observed in response to a categor-
ical misattribution of words (12, 13). Yet, the N400 was found
to coincide with a wide spectrum of semantic incongruencies
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Q) VISUAL AND AUDITORY

(14) and it is currently unclear to what extent the waveform is
specific to categorization processes (15).

Here, we pose two critical questions about object recog-
nition from auditory inputs. First, how does object
category information dynamically emerge from auditory
inputs? Second, is there a representational transition from
individual object identification to category membership
attribution in the auditory modality and how does it quali-
tatively compare to the dynamics of object categorization
in the visual modality (16)?

To answer these questions, we tracked the emergence of
visual and auditory category information in EEG signals. We
used a paradigm commonly used in studies of visual object
recognition. To evoke automatic category processing and to
avoid any context- or task-driven modulations, we presented
participants (n = 48) with images of objects and spoken
words corresponding to the same objects while they were
doing an orthogonal one-back task. Objects belonged to three
category dimensions, based on object animacy, size, and
movement, which were previously shown to explain sub-
stantial variance in object representations (17, 18). We used
time-resolved multivariate pattern analysis (MVPA) on the
resulting EEG data to identify the temporal transition from
object-specific to category-defining representations. First,
we found that EEG responses after 300 ms of processing
form a neural correlate of object categorization in the audi-
tory modality. Second, by tracking representations of indi-
vidual objects and categories across time, we demonstrate
that sensory signals similarly traverse the stages of object
identification and categorization in both modalities, suggest-
ing that the perceptual hierarchy established in vision is
qualitatively similar to other sensory channels.

MATERIALS AND METHODS
Participants

Fifty-one healthy adult participants took part in the study.
Three participants had to be excluded due to excessive noise
in the data so the final sample consisted of 48 participants

OBJECT CATEGORIZATION

(mean age + SD = 25.02 + 5.04; 33 female). The study was con-
ducted at the Center for Cognitive Neuroscience Berlin.
Participants were compensated with credits or a monetary
reward. All participants were native German speakers with
normal or corrected-to-normal vision. All participants pro-
vided informed written consent. The study was approved by
the ethics committee of the Department of Education and
Psychology at Freie Universitat Berlin.

Stimuli

The stimulus set was composed of 48 objects each pre-
sented as images (2, 11) or as spoken words (9) in German
(Fig. 2A). The objects were organized according to three or-
thogonal dimensions, each divided into two categorical divi-
sions: size (big or small), movement (moving or nonmoving),
and naturalness [natural or man-made (artificial)]. Each item
was assigned to one unique combination of categories along
these dimensions (e.g., a baby is small, moving, and natural).
The stimulus set was balanced such that each categorical di-
vision included one half of the stimulus set (24 objects). The
choice of categorical divisions was based on previous studies
on visual perception demonstrating that the semantic
dimensions spanning these categories yield reliable neural
representations independent of experimental design or neu-
roimaging method (17, 19). The images were selected from
Google images using a copyright-free search filter. The size
of the images was 400 x 400 pixels. Recordings of the words
being spoken were made by the investigators. The words
were recorded digitally (at 16 bits with a sampling rate of 44
Hz). They were matched for speaker (same male voice), word
length (mean length = SD = 6.93 +2.09 letters: mean number
of syllables * SD = 2.5+ 0.51, mean duration * SD = 690 * 176
ms) but not frequency.

Experimental Procedure

The experiment was divided into auditory and visual
runs. It always started with eight auditory runs, followed
by a short break and six visual runs. The auditory runs
were always first to prevent participants from imagining
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Figure 1. Experimental design. A: the stimulus set consisted of 48 objects belonging to 3 categorical divisions. In the visual runs, participants viewed
images of these objects, whereas in the auditory runs, they heard the names of the objects. B: both in visual (left) and auditory (right) runs, participants
were presented with a random sequence of stimuli. Their task was to press a button when two subsequent stimuli were identical (one-back task).
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the exact same object they had seen during the visual
runs and therefore to avoid possible contamination of the
results of crossmodal decoding with visual mental im-
agery during auditory word presentation. We included

two more auditory runs than visual runs, as based on
pilot data we expected a lower signal-to-noise ratio for au-
ditory signals. Each run consisted of 300 trials and lasted
6 min. Each stimulus was repeated 5 times per run; thus,
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each stimulus was presented 40 times over the auditory
runs and 30 times over the visual runs.

In visual trials, a pseudorandomly selected stimulus was pre-
sented on a gray screen at a visual angle of 4.24°, overlaid with
a black fixation cross. In auditory trials, only the fixation cross
was present while participants heard the words. For both
modalities, stimulus presentation was preceded by a frame
with a red fixation cross to aid attention preparation. In 20% of
trials, the stimulus was repeated and participants were tasked
to press a button (Fig. 1B). These one-back repetition trials were
excluded from the analysis. To match stimulus durations
across modalities, we created a distribution of durations for the
visual stimuli based on the duration of the auditory stimuli
and randomly assigned these durations to visual stimuli. The
intertrial interval (ITI) was jittered (500 =50 ms). The ITI after
one-back repetition trials was 200 ms longer to allow enough
time for a button press. Overall, participants showed good task
performance [in auditory runs 93+16% (mean = SD) correct
responses with 390 +80 ms reaction time and in visual runs
91+11% correct responses with 450 + 50 ms reaction time].

EEG Recording

EEG data were collected using the Easycap 64-electrode
system and BrainVision Recorder. The participants wore
actiCAP elastic caps, connected to 64 active scalp electrodes:
63 EEG electrodes and 1 reference electrode (Fz). The activity
was amplified using the actiCHamp amplifier, sampled at
1,000 Hz, and filtered online between 0.5 and 70 Hz.

Data Preprocessing

The data were preprocessed offline using the FieldTrip tool-
box (20) for MATLAB (release 2018b). The data were first seg-
mented into epochs from 200 ms before stimulus onset to 800
ms poststimulus. Afterward, the data were downsampled to 200
Hz and trials with artifacts were removed (i.e., a trial is excluded
if standardized deviations from the mean of all channels in it
are larger than 20, for details see jump artifact in fieldtrip tool-
box). We performed visual inspection of the data to remove trials
that included high-frequency muscle artifacts, spikes across sev-
eral channels, and eye blink- and head movement-related arti-
facts (the number of excluded trials never exceeded 10%).

Classification Analysis

Multivariate pattern analysis (MVPA) was carried out
using linear support vector machines (SVMs; libsvm: http://
www.csie.ntu.edu.tw/~cjlin/libsvm/) with a fixed cost pa-
rameter (c = 1). We performed separate classification analy-
ses on electrode patterns from every millisecond of the
epoch across all electrodes. We performed classification on
the object and category level, as explained in the following.

For object-level classification, we averaged trials belong-
ing to the same object condition (e.g., ballerina or banana) to
increase signal-to-noise ratio (22). In detail, all the trials were

first sorted by object condition, i.e., according to the object
presented in each particular trial. Within every object condi-
tion, the trials were randomly assigned to three distinct trial
groups and then averaged within each group, thus forming
three “super-trials.” The super-trials were then normalized
using multivariate noise normalization (23) to downscale
channels with high-noise covariance and thereby improve
signal reliability.

The resulting data were used to perform pairwise classifica-
tion between all possible pairs of objects. Specifically, we
trained a classifier with a threefold cross-validation approach
using two out of the three super-trials from each of the two
object conditions (ballerina vs. banana). We tested the classi-
fier on the left-out super-trial. This classification procedure
was repeated 100 times, with different random assignments
of trials into the three super-trials. Classification accuracies
were averaged across these 100 repetitions. Finally, by averag-
ing all pairwise classification accuracies, we obtained a mea-
sure of object-level classification.

For category-level classification, all the trials were
sorted according to the object presented in each particular
trial and then averaged for each object. Then the object-
level averages were sorted by category; this was done three
separate times, for each of the three category dimensions
(e.g., moving vs. nonmoving, Fig. 1A). Within each cate-
gory division (e.g., moving objects), we randomly assigned
the object averages into three groups, and then averaged
within each of these groups to form three “super-trials.”
Classification was performed in a leave-one-out scheme
across the three super-trials as outlined earlier. Critically,
the initial averaging of trials at the object level prevented
classifiers from training and testing on trials with the
same object, thereby probing category-level representa-
tions independent of the low-level properties of individual
objects in our stimulus set. We again repeated the classifi-
cation procedure 100 times, with different assignments of
the object-level averages into super-trials and averaged
the decoding accuracies across these repetitions. Finally,
by averaging across all three category distinctions, we
obtained a measure of category-level classification.

The comparability between the information time series
obtained here and other studies is constrained by the choice
of particular stimulus parameters such as the long stimulus
duration, nonhomogeneous word frequencies, and the many
repetitions per stimulus. For instance, the extensive repeti-
tion of individual words may have sped up their disambigua-
tion by anticipating the word meaning before the full word
was processed (24).

Here, we repeatedly presented the same exemplar of each
object to obtain a higher signal-to-noise ratio per object con-
dition. However, a classifier trained on repeated object
exemplars could differentiate low-level features rather than
objects limiting the possibility to generalize to category-level

Figure 2. Classification results. A: object information time course in the visual modality B: category information time course in the visual modality averaged
across decoding results obtained for each pair of categorical divisions. C: object information time course in the auditory modality D: category information
time course in the auditory modality averaged across decoding results obtained for each pair of categorical divisions. E: category information time course,
where classifiers were trained on one modality and tested on the other modality. Results are averaged for both train/test directions. F: time generalization
results for category information, where classifiers were trained on one modality and tested on the other modality. Results are averaged for both train/test
directions. The onset of the stimulus presentation is at O ms. Note the different scaling across modalities. Error bars in A—E denote between-participant SE.
Rows of asterisks in A—D indicate significant time points (one-sided permutation test, P < 0.05, corrected for multiple comparisons).
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information. To address this limitation, we trained a classi-
fier to obtain category-level information on all the objects
(trials averaged per object condition) but one (the object con-
dition which was used for testing). In this way, the classifier
was designed to generalize across different objects and their
features. Future studies could test if similar findings are
obtained when multiple exemplars are presented per object
condition while the number of repetitions per exemplar is
reduced.

Statistical Analysis

We used nonparametric statistical inference (25), which
does not make assumptions about the distribution of the
data. Permutation tests were used for cluster-size inference,
in which we randomly multiplied the participant-specific
data (e.g., EEG decoding accuracies) by +1 or —1 for 10,000
times to create a null distribution. All tests were one-sided
against a 50% chance level and thresholded at P value <
0.05.

We used a nonparametric test to calculate differences in
decoding peak latency between two conditions (object and
category information), that is, a difference between the time
points at which classification time series reached their maxi-
mum accuracy. To estimate if the decoding reaches its peak
value in one condition reliably earlier/later than in the other
condition, we created 1,000 bootstrapped samples by sam-
pling the participant-specific data with replacement and
estimated the peak classification accuracy per each sample.
Then, combining the obtained values from all the iterations
yielded an empirical distribution of peak latencies in two
conditions of interest. Then, we subtracted the peaks esti-
mated in one condition from the peaks estimated in the
other condition (object information - category information).
We calculated P values (one-tail) by dividing the number of
bootstrapped samples with differences greater than O (e.g.,
those samples in which the peak latency of object informa-
tion is later than the peak latency of category information)
by the overall number of samples (1,000).

RESULTS
The Time Course of Visual Object Representations

Based on previous studies (2-4, 7, 8) revealing a processing
hierarchy starting from visual object representations to more
abstract category representations, we expected that we could
uncover both types of representations from the EEG signals
evoked by the object images. Furthermore, we expected that
object-level representations would emerge earlier than cate-
gory representations.

We found that EEG signals conveyed significant visual
object information from 75 ms to 800 ms after image onset
(Fig. 2A) and significant category information from 135 ms to
800 ms (Fig. 2B). Notably, category information only reached
its maximum value significantly after object information
(test for peak-to-peak latency difference: P = 0.01, see
MATERIALS AND METHODS), revealing a temporal progression
from visual to more abstract representations. Note that given
the differences in the two decoding approaches (see
MATERIALS AND METHODS), absolute decoding accuracies are
not directly comparable for the two analyses.
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The Time Course of Auditory Object Representations

Next, we tested whether we could also retrieve object cate-
gory information when the objects were conveyed through
the auditory modality and whether in this case a similar pro-
gression from object-level representations to category repre-
sentations can be observed.

As for the visual modality, we found temporally sustained
object information from 55 ms to 800 ms after word onset
(Fig. 2C). We also found significant category information
from 305 ms to 800 ms (Fig. 2D), showcasing that object
category can be reliably retrieved from auditory brain sig-
nals. Furthermore, this category information reached its
peak significantly after object-level information (P = 0.02),
suggesting a similar representational transition toward
more abstract, categorical stages of processing in the vis-
ual and auditory modalities.

Commonalities between Visual and Auditory
Representations

Finally, we asked whether categorical object representa-
tions present in both modalities reflect a convergence
toward cconceptual representations that are modality-inde-
pendent. In case of such a convergence, we should be able to
cross classify object category across visual and auditory
brain signals. For cross-classification, we trained a classifier
on response patterns to each pair of conditions in one mo-
dality and tested the classifier on response patterns to the
same pairs of conditions from the other modality. In this
analysis, no significant cross-decoding was found at any
time point across the epoch (Fig. 2E).

However, the temporal processing cascades do not neces-
sarily need to match between the visual and auditory modal-
ities. We therefore also performed a time generalization
analysis, in which we trained classifiers on each time point
in one modality and tested them on all time points in the
other modality. Also here, we found no significant cross-
decoding. These results indicate that despite the robust cate-
gory information in both modalities, there is no shared con-
ceptual code for object representation detectable on the level
of scalp electrode patterns in our data (Fig. 2F).

DISCUSSION

In this study, we investigated the temporal dynamics of
object category processing in the visual and auditory modal-
ities. Specifically, we were interested to know when object cat-
egory information emerges in the auditory modality and
whether the representational transition from object to cate-
gory level in auditory modality is qualitatively similar to
that in vision. Our results show that auditory object category
representations can be reliably extracted from EEG signals.
Furthermore, they show that there is an analogous representa-
tional transition in the visual and auditory modalities, with an
initial representation at the individual-object level, and a sub-
sequent representation of the objects’ category membership.

This representational transition has been firmly estab-
lished in the visual domain before (e.g., 26). Crucially, our
study also demonstrates the temporal dynamics of auditory
object representations at these different levels of abstraction.
Compared with the previous unsuccessful attempt to reveal
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category information in auditory signals (11), here we used
an increased sample size, a greater number of trials per con-
dition, and multivariate noise normalization to improve sig-
nal reliability (23). Our results extend previous fMRI research
(9, 10) that showed categorical information arising from au-
ditory inputs in superior temporal and medial frontal
gyri. These findings suggest that these categorical repre-
sentations emerge only well after object-level representa-
tions, from around 300 ms after the word onset. Notably,
in our study, object-level information was temporally sus-
tained together with category information (also Ref. 4).
Further research is needed to investigate if this sustained
object information is necessary to uphold more abstract
representations. The time course of category representa-
tion obtained in our study corresponds to the one previ-
ously obtained for written words (8), pointing at simi-
larities in processing visual and auditory language
information.

The auditory categorical signals in our study temporally
align with the occurrence of the N400 component elicited in
response to semantically incongruent spoken words (300-
900 ms, 27). Several studies specifically demonstrated that
the N400 can be evoked by a categorical misattribution of a
word (12, 13, 28), thereby hinting at the component as a spe-
cific timestamp for word categorization. Building on this
research, our findings suggest that extracting the categorical
membership during spoken word perception may partially
underlie the emergence of N400 in response to categorical
misattribution. Further investigation is needed to establish
the role of category discrimination in the process of word
meaning extraction (27, 29, 30).

Although we found robust category information in both
the visual and auditory modalities, we did not find evidence
for a transformation of representations from modality-spe-
cific codes to modality-independent conceptual representa-
tions, as evidenced by the absence of significant crossmodal
decoding. In contrast, two fMRI studies identified represen-
tations that generalize across the auditory and visual modal-
ities in inferior temporal, inferior frontal, and middle frontal
cortices (9, 10). Why did we not find evidence for such
representations here? First, crossmodal convergence of rep-
resentations may be particular to visual and linguistic infor-
mation being conveyed through the same modality, for
instance, for images and written words (9). Second, the cur-
rent study used an orthogonal task to measure the process of
automatic category extraction, which might not sufficiently
engage late, modality-independent processes (31, 32). Future
studies could employ tasks, such as category verification or
story listening/reading (33) that encourage deep processing
of words and their context in modality-independent rather
than modality-focused fashion. Third, we cannot exclude
the possibility that M/EEG scalp sensor patterns lack the sen-
sitivity to uncover the subtle signal differences essential for
the readout of modality-unspecific contents (34), while such
differences can be revealed with spatially precise fMRI re-
cording (10).

Together, our results elucidate the time course of categori-
cal object coding in the visual and auditory modalities.
Furthermore, they establish commonalities in the represen-
tational transition from object-level information to categori-
cal representations across the two modalities, suggesting a
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similarity in the hierarchy of information processing across
sensory channels.
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