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The inspection of soot agglomerates from microscopy images usually relies on manual human measurements,
whereas image processing tools for faster analysis are highly demanded. In this study, an automated algorithm
for the extraction of morphological soot descriptors from transmission electron micrographs is presented. The
proposed algorithm involves the detection of the image scale (the conversion from pixels to nanometres)
using a Hough transform and an optical character recognition process. Primary particles are identified through
a two-step circle Hough transform combining phase-coding and edge-based approaches, whereas size descrip-
tors are obtained through spatial and frequency filtering. Finally, the fractal dimension is obtained for each ag-
glomerate as a projected-area derived measurement due to an iterative process. Results were validated by
comparison of a set of micrographs taken at three different magnifications with manual image processing,
obtaining p-values greater than 0.05 and around 91.5% time saving.
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1. Introduction

It is well known that soot, as a pollutant produced by the transport
industry, has a negative impact on public health and nature [1]. Several
studies have attempted to quantify the influence of this type of particles
on soil andwater pollution [2]. Other studies have tried to link the pres-
ence of soot with the impoverishment of air quality [3]. In any case, the
enormous risk to health posed by the exposure to this type of emissions
is also a fait accompli. Significant relationships with cancer, asthma or
bronchitis among other diseases have been found [4].

The United States and the European Union are aware of this prob-
lematic situation. Transport and industry legislation is increasingly re-
strictive in terms of emissions allowed [5], in such a way that a deeper
understanding of soot properties and formation would facilitate the de-
velopment of less environmentally harmful and more efficient thermal
systems.

In this sense, the soot formation process can be regarded as an ex-
tremely complex phenomenon where a conversion from hydrocarbon
fuel molecules containing a few carbon atoms to carbonaceous particles
containing a fewmillions of carbon atoms takes place [6]. In fact, in their
review of soot formation from gases, Palmer and Cullis [7] point out that
.V. This is an open access article und
there are at least eight different theories of soot formation. Nowadays,
the most accepted one believes that soot formation begins when fuel
molecules are pyrolyzed into molecular precursors [8], which are the
molecular building blocks of soot [9]. Those precursors chemically
bond into singular cyclical aromatic ringswhich grow to form polycyclic
aromatic hydrocarbons (PAHs) [10]. The evolution of PAHs chains is not
well understood nowadays but eventually, PAH molecules grow large
enough to become soot nuclei during a nucleation step [6]. High tem-
peratures typically involved in flames promote those soot nuclei to
growth through coagulation until they form nanometric structures
known as primary particles. Furthermore, in-situ and ex-situ observa-
tions of those primary particles have shown a solid and spherical
shape for these structures [11,12]. The last step of soot formation in-
volves the physical adherence of primary particles into agglomerates.
Those agglomerates have complex, irregular and curved structures
where primary particles are connected through overlapping and/or car-
bon surface growth.

Fresh soot particulate generated through this process exhibits differ-
ent characteristics depending on combustion conditions and sources.
Therefore, a wide variety of methods for soot characterisation and clas-
sification have been developed over time [13]. Most of these proposed
techniques are focused on particulate morphology as this knowledge
provides significant information about their properties and potential
health impacts. As a result of those works, numerous studies have
been published on the effect of operating conditions of combustion
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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systems such as diesel engines [14,15] or flame-based burners on soot
emissions [16].

Among those types of studies, transmission electron microscopy
(TEM) inspection has become one of the most common techniques
used to obtain morphological information about soot [17]. Those
ex-situ observations allow direct measurements of geometrical de-
scriptors from 2D projections. Otherwise, indirect methods have
the disadvantage of relying on related properties such as aerody-
namic mobility or light scattering [18]. In addition, the use of TEM
images for soot characterisation also has its own drawbacks. Most
micrograph inspection methodologies involve manual methods for
both agglomerates and primary particles recognition and measure-
ments [19–21]. Furthermore, the analysis of a large volume of micro-
graphs is needed in order to obtain significant results. Therefore,
most methodologies reported by literature require an excessive
time for image analysis and results obtaining [22]. Traditional man-
ual sizing methods can also yield on poor statistics size distributions:
due to the subjective nature of manual readings, those procedures
are also susceptible to human subjective errors that involve addi-
tional uncertainties to be considered on result discussion [23].

The application of computer vision tools for the inspection of TEM
images has become a promisingfield of study for processing time saving
and increasing results reliability.With the advent of both pattern recog-
nition techniques and modern image processing methods, a significant
evolution on the analysis of soot TEM images is taking place [24]. In
this sense, first approaches to this new research line were mainly fo-
cused on low-level vision tools for features enhancing. E.g., a histogram
equalization techniquehas been used to expand pixel intensity distribu-
tions and, thus, increase the image contrast between fringes and back-
ground [25]. Spatial and frequency filters were used for residual noise
reductions [13,26]. Top-Hat transformationswere used for TEM acquisi-
tion illumination issues correction [27], aswell as threshold binarization
techniques were used for micrograph segmentation among other
existing image processing procedures [28].

However, themost significant leap on the integration of computer
vision tools for soot micrograph inspection took place over the last
decade. Recent studies were carried out in order to present new
methodologies about automatic TEM images processing. Dastanpour
et al. [29] proposed an automatic method for the calculation of mean
diameters of primary particles based on 2D correlations from the ag-
gregate skeleton. Grishin et al. [30] used amodified Hough transform
(HT) for the automated identification and measurement of the size
distribution of primary particles in individual aggregates, where
their model has the limitation of only being able to detect primary
particles that touch the edges of the aggregates. Mirzaei et al. [31]
proposed a non-linear filtering also combined with a modified circu-
lar Hough transform for primary particle measurement. Recently,
Frei et al. [32] proposed the use of a convolutional neural network
for a fully automated primary particle size analysis, and Sipkens
and Rogak [33] proposed the use of a k-means classifier for
segmenting TEM images of soot.

In this work, an automated algorithm is proposed to perform the ex-
traction of morphological soot descriptors from TEM micrographs. Pri-
mary particles are detected using a Hough transform where, instead of
edge-based and phase-coding formulations [34,35], a two-step circular
Hough transform combining both approaches has been used. Agglomer-
ate size descriptors are obtained through a combined use of a Fourier
domain filtering and an Otsu's segmentation process. From those re-
sults, instead of box counting methods or the use of double-
logarithmic plots for the calculation of fractal descriptors [36], the fractal
dimension of each agglomerate is calculated as a projected-area derived
measurement on an iterative process. Furthermore, as a complement to
previous tools for robust processing of microscopy images [36,37], the
proposed algorithm also identifies the scale of the image by the com-
bined use of an optical character recognition process and a Hough line
transform.
2

2. Computer vision methods

The image-processing method presented here involves the analysis
of TEM micrographs such as the one outlined in Fig. 1(a) where, in ad-
dition to the primary particles and agglomerates, there is a scale indica-
tor at the bottom left of the TEM image. Different magnifications can be
used inmicroscopy inspection (see Fig. 1(b) for some examples). There-
fore, the first step will involve the recognition of the scale, which quan-
tifies the conversion from pixels to nanometres and will allow
expressing results in metric units instead of in number of pixel values.
Once this conversion factor is obtained, both primary particles and ag-
glomerates are identified, and their geometrical descriptors are ex-
tracted. Finally, the fractal dimension is calculated through the
method proposed by Lapuerta et al. [38] and refined by Martos et al.
[39] from the geometrical descriptors previously obtained. The mathe-
matical and computer vision procedures required by each of those
main steps schematized in Fig. 1(c), are described in detail below.

2.1. Scale recognition

The recognition of the scale implies the combination of two different
labours as depicted in Fig. 2: alphanumeric characters, which indicate
the unit ofmeasure,must be interpreted; and the straight line indicative
of the number of pixels, whichwas observed to have amaximum size of
around 1200 pixels, must be measured. These elements — the straight
line and the characters — are located in the lower left corner of the
image, at approximately 150 pixels from both the left and the bottom
margin, with a vertical distance of 30 pixels between the characters
and the straight line. Therefore, those regions of the image are clipped
for computational efficiency reasons.

Regarding the cropped image which contains the alphanumeric
characters, an optical character recognition (OCR) method has been
used to convert those typescripts to code-readable values [40]. Steps re-
quired to fulfil this aim are also shown in Fig. 2. To perform the OCRpro-
cess, the greyscale input image is firstly converted to a black and white
one, where a two-class segmentation is performed to separate all char-
acters from background. The Otsu's algorithm — described in detail in
Appendix A — was used for this binarization process [41].

Once the optimal threshold, T, has been found using the Otsu's
method, the binarization process involves simple comparisons accord-
ing to Eq. (1). Each pixel of the grey-level image f(x,y) is compared to
the optimal threshold obtained through the Otsu's algorithm. Based
on this comparison, a new image g(x,y) is created where background
pixels are set to null values, whereas pixels that define the alphanu-
meric characters are set to unitary values.

g x, yð Þ ¼ 1, f x, yð Þ> T
0, f x, yð Þ< T

�
ð1Þ

Then, the algorithmsearches for all connected components of the re-
sulting image, where each of those elements will correspond to one of
the characters present in the image. Each connected component,
which is labelled and extracted by cropping its square contour, is then
normalized to a size of 42 × 42 since this is the dimension of the avail-
able patterns. Finally, a matrix matching comparison procedure has
been used to produce the list of characters. This pixel-by-pixel pattern
comparison relies on statistical correlations between the input charac-
ters, which are correctly isolated from the rest of the image, and a set
of pattern characters stored as a template. Then, the typescript charac-
ters are assumed equal to the patterns for which correlation is
maximum. Code-readable values are stored on two different variables:
one for the sequence of numerical digits and another one for letters,
settling the nanometre (string “nm” detected by the OCR) as the unit
of reference.

Once those characters have been identified, the next step involves
the measure of the straight line that is part of the scale indicator. To



Fig. 1. (a) Schematic of a TEM image of a soot agglomerate. (b) Examples of real TEM images at different magnifications. (c) Flow chart of the proposed algorithm for the extraction of
morphological descriptors of soot agglomerates from TEM micrographs.
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accomplish this aim, a Sobel filter is firstly used for edge detection [42].
This method uses intensity values in the 3 × 3 region around each pixel
to approximate the image gradient. Thus, regions of high spatial fre-
quency can be identified and therefore edges can be found. To perform
a successful recognition, a threshold is needed to distinguish which gra-
dient values can be assigned as edges. A Sobel threshold equal to 0.09,
which has also been successfully reported for other recognition applica-
tions [43], was applied as it was observed to provide a good balance be-
tween the preservation of the edges on the straight line and a significant
filtering of edges at the noisy background.

Once the edge detection process has been performed, a traditional
Hough transform algorithm has been used to recognize straight lines
[44]. The implementation of this transformation is presented in detail
Fig. 2. Schematic of the proposed methodology for TEM scale reco
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in Appendix B and, once the scale distance in pixels has been obtained,
the conversion factor from pixels to nanometres is finally obtained as
the ratio between this scale distance and the typescripts previously con-
verted to code-readable values.

2.2. Recognition of primary particles

Fig. 3 summarizes the step sequence required for the recognition of
the circular projections corresponding to the primary particles. As it can
be seen, a smoothing filter is firstly used for impulse noise suppression.
In this sense, amedianfilter based on a 3 × 3window operationwas ap-
plied to the image. According to this non-linear method, each pixel is
substituted by the median intensity of its neighbour. Thus, salt-and-
gnition by the combined use of Hough transform and an OCR.



Fig. 3. Schematic of steps required for primary particle recognition from TEM images.
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pepper noise can be suppressed from the greyscale image whereas soot
shapes are smoothed.

After that filtering step, morphological operations are performed to
simplify the agglomerates structure whereas main shapes are pre-
served. Those morphological processing transformations involve a set
of non-linear operations related to the shape of the features present in
an image, in such a way that selected morphologies can be enhanced
by reordering pixel values [45].

In this sense, a closing operation was performed to the full micro-
graph. This transformation, which allows a selectively fill of small
holes inside the foreground objects, is presented in detail in Appendix
C. A disk-shaped structuring kernel was used to perform this transfor-
mation, as circular curves are the shapes to be detected by this algo-
rithm. This kernel sets the neighbourhood on which the operations
are performed and 5 nm were specifically considered for this work as
it corresponds with the minimum size reported by Dastanpour et al.
[46] for primary particles. It should also be pointed out that the closed
operation fulfils area-preserving properties; it will enhance shapes like
those defined by the structural element without introducing significant
deviations in results.

Once the morphological transformation step has been done, a Sobel
edge detection process as the one described in Section 2.1 is performed.
Then, the Hough transform can be also used for finding circular objects.
It should be noted that, unlike other alternatives such as the pair-
correlation method, which directly provides a mean result, the circular
HT allows finding specific circles in the agglomerate [29]. In this sense,
a circle with radius R and centre (h,k) can be described parametrically
according to Eq. (2).

x−hð Þ2 þ y−kð Þ2 ¼ R2 ð2Þ

Therefore, as the circle has three parameters, the Hough space for
circular shapes will belong to R3. However, a two-step algorithm for
finding circles has been used instead of the conventional formulation
for computational load reduction reasons [30]. The proposed method
involves a combined use of a coherent Hough transform and an edge-
based approach where, in the first step, a phase coding formulation
has been used to compute an accumulator array of complex numbers
and, thus, estimate the centres of the particles [35]. In the second step,
a histogram of distances of all feature points from those centres is
used to extract their radii [47].
4

To perform the first process, the accumulator array is obtained using
a normalized annulus filter OPCA(m, n), given by Eq. (3), which encodes
scale information in its complex phase for a discrete range of radii, r,
between Rmin and Rmax [35].

OPCA m,nð Þ ¼
e2π log

ffiffiffiffiffiffiffiffiffiffiffiffi
m2þn2

p
− log Rmin

� �
= log Rmax− logRminð Þi

2πr
if R2

min<m2 þ n2<R2
max

0, otherwise

8><>:
ð3Þ

According to this formulation, edge points are projected along a line
in the direction of the edge orientation. Those projections have a phase
proportional to the distance travelled and, therefore, edges lying on a
same circle will be in phase and will also have projections that intersect
at a common point [48]. This approach is significantly different from the
edge-based method followed by Kook et al. [22], where a 2D real accu-
mulator array is directly calculated from gradient directions of edge
points, without any consideration about phase information. However,
in the phase-coding approach, the contribution from each edge pixel
of a circle will interfere constructively for the phase corresponding to
that specific circle and destructively for other phases.

wIt should be noted that phase information was also used by An-
derson et al. [49], but unlike in that previous implementation, radii
in this work are estimated using a histogram of distances instead of
phase decoding procedures [50]. In this sense, pixels of higher abso-
lute values in the accumulator array provide significant indications
about the presence of circles, where a sharp local maximum on a his-
togram bin defines the radius of the circle. Furthermore, for a better
approach towards the extraction of this information, the filtering
technique proposed by Ioannou et al. [47] has been used to provide
an unbiased estimator of the normalized, unclouded part of the cir-
cumference of the circle, selecting the resulting maximum bin as the
most likely radius.

2.3. Recognition of projected areas

In order to recognize the projected areas of the agglomerates, the
original unmodified micrographs are submitted to the low-level trans-
formation sequence shown in Fig. 4. The original image is firstly filtered
on spatial domain, and subsequently, on the Fourier domain. Thus, the
projected area of the agglomerate is enhanced which simplifies the



Fig. 4. Low-level vision steps required for projected area extraction.
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binarization process performed by the Otsu's method. Connected com-
ponents are then identified and diameters of gyration and projected
areas are extracted.

In this sense, amedianfilter is used for afirstly image smoothing and
denoising step. Fundamentals of this filtering step are identical to those
explained in Section 2.2 for primary particles recognition. However, the
features of the primary particles are not of interest at this point. This
sub-algorithm focuses on the extraction of the position and size of the
agglomerates. Therefore, a filter of greater effect is used by means of a
higher pixel neighbourhood. For the purpose of this section, a 30 × 30
Fig. 5. Transformation from spatial dom
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neighbourhood is considered, whichwill tend to smooth both the back-
ground and the interior of the agglomerate.

Then, the image is converted to its frequency domain through the
Fast Fourier Transform (FFT). Due to this function transformation,
which has been commonly applied for lattice fringe analysis [51], an
image can be represented according to its frequency spectrum in such
a way that homogeneous images have low frequency components
whereas abrupt changes involve high frequency ones [52]. The
frequency domain filtering process involves the step sequence shown
in Fig. 5, where H(u,v) represents the mask employed for the
ain to Fourier domain and filtering.
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convolution operation. Hence, a high-pass filter is used for low fre-
quency suppression. Thus, high frequency features of the agglomerate
will be enhanced and, finally, the filtered image can be reconstructed
from its Fourier coefficients, also enhancing the final contrast.

It should be noted that this combination of spatial and frequency fil-
ters is designed to exploit differences between the agglomerates and
thebackground. This step is similar to previous imagepre-processing al-
gorithms, where bilateral and Gaussian filters were reported for
denoising and smoothing purposes, whereas morphological operations
were applied to remove background effects [29,33]. However, in this
case, pixels in regions of large gradients are brightened due to the
high-pass filtering in the frequency domain instead of the use of other
alternatives such as bottom-hat and entropy filters.

Finally, once the spatial image has been reconstructed, the resulting
image is binarized and connected components are labelled. Compo-
nents composed of fewer pixels than the corresponding value for
three primary particles are ignored. This limit depends on the magnifi-
cation identified and it is based on the methodology followed by
Zhang et al. [53], which suggest that agglomerates of lesser than 3 pri-
mary particles should be excluded from fractal analysis. Agglomerates
in contact with some imagemargins are also ignored and, for remaining
components, two direct descriptors of the size of the particulate are ex-
tracted [54]. Firstly, projected area, Ap, is obtained as a sum of pixels and
secondly, the diameter of gyration, Dg, which can be interpreted as the
diameter of a circle with the same moment of inertia with respect to
their centre of gravity as the agglomerate, can be calculated according
to Eq. (4).

Dg ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Npx

∑Npx

k¼1 rk
!−rc

!�� ��2s
ð4Þ

Where rk
! and rc

! are position vectors representing the centroid of
the agglomerate and the centre of the kth pixel respectively, and Npx

is the number of the pixels of the agglomerate. Finally, as all those
results are obtained in pixel units, a conversion from pixels to
nanometres is applied according to the factor scale found through the
OCR procedure.

2.4. Fractal dimension calculation

Fractal dimension can be calculated according to the method pro-
posed by Lapuerta et al. [38,55] for soot particulate. This parameter,
which ranges between 1 < Df < 3, allows to quantify the irregularity
of soot structures: The extreme value of Df = 1 involves an
agglomerate composed of perfectly aligned primary particles, whereas
the value of Df = 3 is reached when primary particles form a compact
sphere. Furthermore, the method proposed by Lapuerta et al. [38,55],
which has already been used for experimental studies [54], assumes
that the number of primary particles, Npp scales with the diameter of
gyration according to Eq. (5) and it is also related to the projected
area with a correction for screening or overlap as the aggregate size
increases, according to Eq. (6).

Npp ¼ kf
D∗

g

dpp

� �Df

ð5Þ

Npp ¼ Ap

app

� �z

ð6Þ

Where app denotes a cross-sectional area representative of primary
particles, which has been assumed for each agglomerate as equal to
the mean area of its composing primary particles, and z denotes an
overlapping exponent, which accounts for the number of particles hid-
den behind the observed ones.
6

It should be noted the use of a corrected diameter of gyration, Dg
∗, in

Eq. (5) and, thus, consider that diameters of gyration of 2D projections
tend to underestimate the values of 3D structures involving an
overestimation of fractal dimensions. This correction, proposed by
Martos et al. [39], is given by Eq. (7)

D∗
g ¼ 2

Dg

2
þ 3:7336∙10−5∙

Dg

2

� �2:7935
" #

ð7Þ

Furthermore, Martos et al. [39] also provide a function, given by
Eq. (8), to quantify the dependency between the overlapping exponent,
z, and the irregularity of the agglomerate expressed in terms of Df.

z ¼ ln Npp

ln 0:8488Npp þ 0:1512
� �−1

þ 2:5−
ln Npp

ln 0:8488Npp þ 0:1512
� � ! Df−1ð Þ=2ð Þ1:86

ð8Þ

Finally, using Eq. (5), Eq. (6), Eq. (8) and Eq. (9), an initial guess of a
fractal prefactor, kf, can be used to refine the fractal dimension, Df, until
a convergence result which fulfils the boundary conditions described by
Lapuerta et al. [38,55] is reached. Those conditions, based on theoretical
arrangements of primary particles leading to extreme values of 1 <Df <
3, are given by Eqs. (10) and (11).

kf ¼ kf Df ¼ 1ð Þ−1þ 1þ kf Df ¼ 3ð Þ−kf Df ¼ 1ð Þð Þ Df−1ð Þ=2ð Þ1:86 ð9Þ

kf Df ¼ 1ð Þ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
−

1
Npp

þ 8

5N2
pp

s !
ð10Þ

kf Df ¼ 3ð Þ ¼ πffiffiffiffiffiffiffi
18

p 5
3

� �3=2

¼ 1:5933 ð11Þ

3. Experimental set-up

An experimental test bench has been used to obtain the soot
samples to be observed by the TEM microscope, and thus obtain the
micrographs needed for image processing validation. Main specifica-
tions of the experimental layout have been described in detail in previ-
ous research [56,57]. However, Fig. 6 shows a schematic about the test
facilities.

A combustion aerosol standard (Mini-Cast 5203 Type C) burner was
used to produce the particulate matter [58], and soot agglomerates ex-
amined in this study have been generated by the combustion of 0.2 nor-
mal litres per minute (Nl/min) of 99% purity propane and 4.0 Nl/min of
oxidation air. Those Mini-CAST input conditions were helding constant
among the full test and were selected to produce emissions with high
elemental carbon and thus obtain a graphitic refractory structure for
primary particles. Furthermore, in order to obtain a suitable gradient
temperature to carry out a thermophoretic sampling process, the gas
stream temperature at the outlet of the heating zone was fixed at 200
°C during all test duration.

A thermophoretic sampling system, which consists of a pneumatic
actuator with a TEM holder at its end where mesh grids can be housed,
has been used to collect the particulate emitted by the burner [59]. The
device used has been designed ad-hoc and it can be attached to the ex-
perimental setup through a hole drilled in the exhaust pipe. The cou-
pling mechanism consists of a notch and a guide that guarantees a
specific and correct positioning of the device since its orientation is es-
sential to ensure a successful sampling [60]. Main surface of the TEM
grid must always be parallel to the gas flow to avoid the risk of impact
deposition instead of by a thermophoresis mechanism.



Fig. 6. Schematic of the experimental test bench used for soot particulate generation.
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In order to collect the particulate matter from the exhaust gas flow,
the TEMholder of the thermophoretic sampling system remained in the
gas stream for 600 ms, as recommended by Lapuerta et al. [61] for sim-
ilar temperature gradients. This sampling time is necessary to ensure a
low grid coverage (<10%) and, therefore, to avoid the presence of over-
lapping agglomerates on the grid. High-magnification pictures of those
TEM-grids were taken using a JEOL JEM 1010 transmission electron mi-
croscope in bright field mode, equipped with a charge-coupled device
(CCD) camera. Using this TEM mode, images are formed due to the
weakening of a direct beam of electrons (the illuminant source) by its
interaction with the sample. Furthermore, the beam of electrons was
energized at an acceleration voltage of 100 kV, with current densities
between 150 and 180 pA/cm2, allowing a maximum resolution of 0.35
nm. Spot size and tilt angle were kept constant during the microscopy
stage, with values of 4 nm and 0° respectively.
4. Results and validation

Employing the TEM microscope, a set of 40 agglomerates collected
from the experimental setup due to the thermophoretic sampling pro-
cess was selected. High-resolution images were taken for each of
those 40 agglomerates at three different magnifications — 25,000,
20,000, 15,000 x —. The diameter of the primary particles, the size of
the particulate matter and its fractal dimension were evaluated follow-
ing the presented procedure, which was implemented by Matlab
Fig. 7. Distributions of scale values recognized by the proposed algorithm. Due to the small d
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software. The code, which involves the use of the Image Processing
Toolbox and a modified version of Matlab's imfindcircles function, was
executed on an AMD Ryzen 53550H (2.10 GHz) computer processor
and 8GB of RAM. In order to validate the accuracy of the proposed algo-
rithm, the same micrographs were also analysed through a manual
image processing methodology, where a researcher used imageJ soft-
ware (Version 1.8.0.172) for scale recognition and soot measurements.
In this sense, primary particles identified by the researcher were
circumscribed manually to extract their diameter, whereas a first ap-
proximation to the contour of the agglomerates was cropped by hand
and then manually selecting the appropriate filter and threshold for
each case to refine the result.
4.1. Recognition of the scale

In the first place, Fig. 7 shows the conversion between pixels and
nanometres obtained by the combined use of the OCR and the Hough
transform on the images treated with the proposed algorithm. Theoret-
ical values should be equal to 0.261, 0.322, 0.427 nm/pixel for magnifi-
cations of 25,000×, 20,000× and 15,000× respectively. Results found
showed a high accuracy in the conversion factor to be applied by the al-
gorithm for the rest of values,wheremean relative errors obtainedwere
equal to 2% (25,000×), 1.70% (20,000×) and 2.46% (15,000×). Therefore,
this first step of the proposed algorithm does not involve significant de-
viations in the subsequent conversion of the results. The maximum
eviations, the boxplot found for the scale recognized at 25000× is also shown in detail.
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single error detected among the 120 micrographs analysed has been
equal to 9.64%. This error was obtained for an image taken at a magnifi-
cation of 25,000×, and it corresponds with the outline of the boxplot
shown in detail in Fig. 7. Both this maximum error as well as those
other errors due to the rest of outliers detected, are associatedwith het-
erogeneous illuminations in the process of image taking. Uneven back-
grounds involve the detection (or even the absence) of pixels at the
edges, which causes those errors in the Hough transform calculation.
Note that the high accuracy in the scale recognition depends on both
the identification of the correct line using the Hough transform, and a
successful comparison of the image characters with the patterns avail-
able. Regarding those comparisons performed by the OCR, characters
assigned show statistical correlations between 71% and 87% with pat-
terns selected, while correlations between 46% and 62% are found for
first discarded patterns. Those results are in the range of other OCR
methods such as the Tesseract engine [40], which involves a maximum
confidence around 92% regarding the proposed dataset, at the cost of a
higher computational load as it performs operations such as a baseline
fitting which are not required in this application.

4.2. Recognition of the primary particles

Regarding the analysis of the primary particles that was conducted
for the 120 micrographs, Fig. 8 (a) summarizes the distribution of the
complete set of diameters found for each of the three magnifications
considered for this work. Results obtained through the proposed
Fig. 8. (a) Comparison of diameters of primary particles detected using the proposed algorithm
centres. (b) Number of particles found as a function of the thresholding, Tacc. (c) Influence of
0.19. (d) Examples of the combined effect of the thresholding, Tacc and the lower-bound diam
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algorithm are colored as blue bars whereas results obtained by manual
measurements are shown as the red ones. It was found that the pro-
posedHough transform tends to underestimate the diameter of the par-
ticles in comparison to manual measurements. This observation was
also detected by previous approaches of the circular Hough transform
[23,49], and for this dataset, the absolute error regarding the mean di-
ameter of primary particles composing each agglomerate tends to in-
crease to as high as a maximum around 10 nm, as the size of the
agglomerates increases. In any case, the interquartile ranges of boxplots
shown in Fig. 8 (a) are consistent with previous experimental results
obtained in CAST-based facilities (13–33 nm), whereas outliers are
also in the range of maximum sizes found for other soot sources such
as nonpremixed flames (10–50 nm), or those generated by diesel en-
gines (10–45 nm) [14,62,63].

It should be noted that several factors determine the performance of
the HT, most prominently, the lower-bound diameter and the sensitiv-
ity to possible centres [49]. On the onehand, thenumber of primary par-
ticles detected mainly depends on the threshold applied to the
accumulator matrix. As it can be seen from Fig. 8 (b), the HT exhibits a
greater affinity for lower diameters (in pixels). Therefore, the algorithm
tends to detect a greater number of particles at lower magnifications.
Furthermore, as the threshold increases, the number of primary parti-
cles found decreases. For the range of values considered in this work,
the differences between mean diameters obtained in each micrograph
varies between 0.9 nm and−3 nm according to the threshold selected.
On the other hand, size distributions also depend on the minimum
versus manual measurements, selecting a thresholding Tacc = 0.19 to compute possible
the minimum diameter to be detected for size distribution at 25000×, considering Tacc =
eter dmin on the same micrograph.
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diameter to be detected. Fig. 8 (c) shows this effect for the 25,000×
magnification dataset and, as it can be seen, the mean diameter tends
to decrease around 5 nm as the minimum allowable diameter also de-
creases. Kook et al. [22] also reported the same dependency in a previ-
ous implementation of a HT approach. Furthermore, in order to
illustrate these effects, micrographs shown in Fig. 8 (d) were selected
to represent the effect of different thresholds and minimum diameters
regarding possible centres and radii respectively. In Fig. 9 (a), a compar-
ison of primary particles detected at the three magnifications consid-
ered is also shown.

The dependency on the filtering process carried out in the second
stage of the Hough transform should also be analysed. Fig. 9
(b) relates diameters obtained considering the filter proposed by
Ioannou et al. [47] with those obtained directly from the radii histogram
at 25000×: For several possible radii, the filter tends to promote smaller
diameters since larger valuesmay correspond to circles that come out of
the projected area of the agglomerate as exemplified in Fig. 9 (c). Fur-
thermore, other Hough transform approaches usually involve similar
steps (e.g., normalizations based on the inverse of the circumference),
which could also be relatedwith the reported tendency to reduce diam-
eters in soot imaging of previous works [22].

Despite the differences observed, a statistical analysis of those re-
sults was conducted to quantify the similarity between distributions
shown in Fig. 8 (a). Mann-Whitney tests were performed for each pair
of those groups, according to the formulation described in Appendix D
[64]. Table 1 summarizes the p-values statistically obtained through
those tests. As all p-values obtained are greater than a significance
Fig. 9. (a) Examples of micrographs taken at three differentmagnifications. (b) Influence of the
the histogram filtering on primary particle size.
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level equal to 0.05 [65], it can be firstly confirmed with a high level of
confidence (>95%), that the use of different magnifications on the
image capturing process of the selected agglomerates does not alter
the size distribution of the primary particles recognized by the proposed
algorithm. Secondly, it is also confirmed that distributions obtained by
manual measurements are equivalent to those distributions obtained
using the algorithm presented here for this TEM dataset (p-values
greater than 0.05).

4.3. Size and fractal descriptors

Fig. 10 (a) and (b) summarizes both projected areas and diameters
of gyration found for the agglomerates captured. Analogously to the
analysis of primary particles, a similar trend was observed between
size distributions obtained at the three magnifications considered for
the validation of the algorithm. However, it was found that the algo-
rithm tends to reduce the size of the agglomerates regarding results
from manual measurements. This difference is attributed to the sup-
pression during the Otsu's binarization of those less intense regions re-
sulting from the frequency filtering. This observation is consistent with
previous uses of the Otsu's method, where Sipkens and Rogak [33] re-
ported a mean reduction of area equivalent diameters between −17%
and −23% for different datasets. Furthermore, this effect can even in-
volve the split of an agglomerate in several regions as it can be clearly
seen for points out of the trend in Fig. 10 (a). Sipkens et al. [37] have
also reported the same constraint in an in-depth comparison of image
processing tools of soot. For this specific implementation, this effect
histogram filtering process on the size of the primary particles. (c) Examples of the effect of



Table 1
P-values obtained from Mann-Whitney tests for distributions of primary particles.

Magnification of 25,000× Magnification of 20,000× Magnification of 15,000×

Proposed algorithm Manual inspection Proposed algorithm Manual inspection Proposed algorithm Manual inspection

Proposed algorithm 25,000× 1 0.568 0.139 0.666 0.104 0.714
20,000× 0.139 0.381 1 0.288 0.728 0.284
15,000× 0.104 0.288 0.728 0.223 1 0.282
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depends on a proper cut-off frequency selection and it could be aggra-
vated for sets of images taken at a wider range of current densities or
under uneven illuminations. In this sense, for this specific dataset, a
cut-off frequency equal to fr = 0.25 tends to reduce the mean relative
error according to Fig. 10 (c), whereas higher values involve greater
errors due to a greater number of artefacts and a greater risk of area
splitting.

In any case, a statistical analysis was performed to confirm that all
diameter of gyration distributions obtained from the dataset are equiv-
alent between them, as well as projected area distributions are also
equivalent amongmagnifications. Table 2 summarizes the p-values sta-
tistically obtained according to the Mann-Whitney tests performed for
projected areas distributions. As all p-values found are greater than a
significance level equal to 0.05, the difference between distributions ob-
tained by the proposed algorithm at different magnifications are statis-
tically negligible in this dataset. Furthermore, projected area
distributions obtained by a manual inspection and by the methodology
proposed here are also equivalent.
Fig. 10. (a) Comparison of diameters of gyration obtained using the proposed method versus
method versus manual measurements. (c) Effect of the cut-off frequency on the mean absolut
tained using the proposed method versus manual measurements.
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Table 3 summarizes the p-values statistically obtained according to
the Mann-Whitney tests performed for diameter of gyration distribu-
tions. All p-values obtained are greater again than the significant level
of 0.05. Therefore, all distributions of diameters of gyration are also
equivalent.

Making use of the results obtained for both primary particles and
agglomerates, fractal dimensions have been calculated according to
Section 2.4. Fig. 10 (d) summarizes those results obtained. A great
similarity between distributions is found. A mean value of Df =
1.82, which is in the range of fractal dimensions reported in
experimental studies about Cast burners (1.75) or those generated
by diesel engines (1.67–2.05), was obtained [63,66]. Maximum
absolute errors detected for a single agglomerate between data
obtained by the proposed algorithm and results of manual
inspection have been quantified in 19.81%, 19.05%, 18.66% for
magnifications of 25,000, 20,000 and 15,000× respectively.
Furthermore, mean absolute errors found at each magnification
were equal to 5.13%, 5.06% and 5.77%.
manual measurements. (b) Comparison of projected areas obtained using the proposed
e error of diameters of gyration for this dataset. (d) Comparison of fractal dimensions ob-



Table 2
P-values obtained fromMann-Whitney tests for distributions of projected areas.

Magnification of 25,000× Magnification of 20,000× Magnification of 15,000×

Proposed algorithm Manual inspection Proposed algorithm Manual inspection Proposed algorithm Manual inspection

Proposed algorithm 25,000× 1 0.067 0.973 0.110 0.935 0.061
20,000× 0.973 0.118 1 0.179 0.996 0.338
15,000× 0.935 0.116 0.996 0.173 1 0.097

Table 3
P-values obtained fromMann-Whitney tests for distributions of diameters of gyrations.

Magnification of 25,000× Magnification of 20,000× Magnification of 15,000×

Proposed algorithm Manual inspection Proposed algorithm Manual inspection Proposed algorithm Manual inspection

Proposed algorithm 25,000× 1 0.288 0.992 0.315 0.829 0.301
20,000× 0.992 0.334 1 0.353 0.851 0.338
15,000× 0.829 0.279 0.851 0.271 1 0.254
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4.4. Execution time evaluation

Finally, once the accuracy of the results has been confirmed by com-
parisonwith amanual inspection process, it is necessary to estimate the
saving in time that the algorithmproposed in this work involves. Execu-
tion times of main functions and elements of the code— recognition of
the scale, inspection of primary particles, extraction of size descriptors
of the agglomerates and fractal dimension calculation — have been
monitored. Fig. 11 (a) summarizes those results, where the execution
times required for the scale recognition (OCR and the Hough line trans-
form), as well as the projected area extraction remain practically con-
stant among micrographs (around 3 s and 9 s respectively). The timed
need for the iterative process of the fractal dimension calculation is
practically insignificant (around 2 ms), and a greater variability was
found for primary particle measurement as a greater number of parti-
cles detected require a greater number of mathematical calculations,
at an approximately rate of 0.25–1.25 s per primary particle detected ac-
cording to Fig. 11 (b). The time required by the observer to inspect the
micrographs has also been monitored (excluding time needed for file
and results management) and a much wider range is detected. This
fact is conditioned by the size of the agglomerate: the larger the size
and particles, the longer the time required by the operator to perform
the measurements at a rate around 8–40 s per primary particle
(Fig. 11 (b)). Furthermore, the use of the proposed algorithm turns
out to be clearly superior to a manual inspection process in terms of
time required for each analysis. By comparing time distributions
shown in Fig. 11 (a) and (b), an average saving time of 91.5% is observed
due the use of the presented algorithm instead of a traditional analysis.
Fig. 11. (a) Time needed for both the manual inspection and the algorithm propos

11
5. Conclusions

In this study, an automatic algorithm formorphological soot descrip-
tors extraction from TEM micrographs was presented. The proposed
methodology involves the combined use of a Hough transform and an
OCR algorithm for the TEM scale recognition. Thus, the algorithm is di-
rectly usable to any TEM image regardless of the magnification used to
capture the agglomerate. Using a two-step circular Hough transform,
spherical projections of primary particles are identified and measured.
Furthermore, the use of low-level vision tools — spatial filters, Fourier
domain filters, segmentation and labelling — allow the measurement
of projected areas aswell as diameter of gyrations. Finally, the fractal di-
mension is calculated as a projected-area derived measurement due to
an iterative process.

A set of micrographs taken at three different magnifications during
the microscope stage were used to evaluate the accuracy of the pro-
posed method. Those images were taken in bright field mode with cur-
rent densities between 150 and 180 pA/cm2. The error regarding the
recognition of the scale is around 2%, whereas statistical comparisons
between results obtained through the image processing method pre-
sented here and visual inspections were performed, finding significant
equivalences in terms of p-values greater than 0.05. Results regarding
primary particles were mainly dependent on the minimum diameter
to be detected, the threshold applied to the accumulator array (involv-
ing differences between mean diameters between 0.9 nm and − 3 nm
for the range considered), and the radii histogram filtering applied.
Area extraction mainly depends on the cut-off frequency, decreasing
the mean absolute error for this dataset from around 20% to 8% as the
ed in this work. (b) Time distribution required per primary particle detected.
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cut-off values decrease from as high as fr = 4 to as low as fr = 0.25.
Mean absolute error regarding fractal dimensions is around 5% for the
dataset considered.

Based on the findings of this work, the merits of the proposed
method are the ability to accurately extract a complete set of morpho-
logical descriptors of soot — diameter of primary particles, projected
area, diameter of gyration and fractal dimension — with a significant
saving in calculation time compared to manual inspections, where the
average saving time is quantified in approximately 91.5%. As the main
disadvantage, images taken in different conditions than those presented
here probably need an adjustment of the parameters and computer vi-
sion processes in order to obtain satisfactory results.
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Appendix A

Otsu's method automatically finds an optimal threshold based on
the observed distribution of pixel values. Assuming two classes (back-
ground and characters), the algorithm iterates until a minimum intra-
class variance and therefore a maximum inter-class variance, σb

2, is
achieved [52]. This inter-class variance is calculated according to
Eq. (A.1)

σ2
b Tð Þ ¼ ω0 Tð Þω1 Tð Þ μ0 Tð Þ−μ1 Tð Þ½ �2 ðA:1Þ

Where μ0 and μ1 are the mean grey levels of each class, and weights
ω0 and ω1are the probabilities of the two classes (background and
characters), which are separated by the threshold T. Those class
probabilities are computed from the 256-element histogram of the
greyscale image as given by Eq. (A.2) and Eq. (A.3).

ω0 Tð Þ ¼ ∑
T−1

i¼0
p ið Þ ðA:2Þ
Fig. B1. Fundamentals of Hough Tran
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ω1 tð Þ ¼ ∑
256−1

i¼T
p ið Þ ðA:3Þ

Where p(i) denotes the histogram probabilities of the observed grey
values. The Otsu's method involves an iterative process through all the
possible threshold values as summarized below [41]:

1. Compute the intensity image histogram and probabilities of each in-
tensity level.

2. Set up initial values for ωi(0) and μi(0).
2.1. Step through all possible thresholds from T=1 to a T equal to the

maximum intensity level.
2.2. Update ωi(T) and μi(T).
2.3. Compute the inter-class variance, σb

2(T), according to Eq. (A.1).

3. The desired threshold corresponds to the maximum inter-class vari-
ance, σb

2(T).

Appendix B

The Hough line transform is a popular technique used to detect
straight lines. For a given edge point (x, y) a set of pairs (ρ, θ),which cor-
respond to candidate lines passing through the pixel, can be obtained.
All those multiple pairs (ρ, θ) must verify the parametric equation
shown in Eq. (B.1) and they will describe a sinusoidal curve on the
Hough space. Note the use of polar coordinate representation of lines in-
stead of the Cartesian ones to avoid infinite slope problems [52]

ρ ¼ x cos θþ y sin θ ðB:1Þ

Therefore, each pixel will be characterised by a sinusoidal curve. The
set of (ρ, θ) parameters for which intersection between those curves oc-
curs will be the best candidate for straight lines. Fig. B1 outlines all this
procedure in a simplifiedway for three points (colored in red, black and
green in the figure). Each of these points defines a curve in the Hough
parameter space (also colored in red, black and green). The intersection
of those curves defines the polar coordinates of the line to be found in
the image space. Note that, as the line sought for this specific application
is the horizontal one that defines the image scale, only thehorizontal so-
lution of largest size is considered for this work.

Therefore, the Hough transform algorithm can be implemented as
follows:

1. Initialize an accumulator matrix H(ρ,θ).
2. For each edge pixel detected through the Sobel filter in the image:

a) For θ = ± π/2 rad.
i) Compute the distance, ρ, from Eq. (B.1).
ii) Increase the accumulator matrix H (ρ, θ) in that position by

one.
sform applied to line recognition.
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3. Find the value of (ρ, θ) where the accumulator H (ρ, θ) reaches its
maximum value.

4. Finally, Eq. (B.1) gives the selected line. The ending points of this seg-
ment are found through edge points belonging to the straight line
obtained, for which Euclidean distance (in pixels) is maximum.

Appendix C

The closing operation is a mathematical morphology transformation
defined as a dilation followed by an erosion [52]. The morphological di-
lation sets a pixel at (x,y) position to themaximumover all pixels in the
neighbourhood centred at (x,y). Thus, bright regions are enlarged and
dark ones are shinked. The resulting image is then eroded, which sets
a pixel at (x,y) position to the minimum over all pixels in the
neighbourhood. In mathematical set theory terms, the erosion of an
image A by a structuring element B is given by Eq. (C.1), which states
that the erosion of A by B is the set of points z such that the translation
of B by z is contained in A

A⊖Bð Þ ¼ zf ∣ Bð Þz⊆Ag ðC:1Þ

Otherwise, the dilation, as given by Eq. (C.2), is the set composed by

all elements of A which overlap with bB by at least one element.

A⊕Bð Þ ¼ zf ∣ bB	 

z
⋂A

h i
⊆Ag ðC:2Þ

The use of this sequence of basic morphological transformations in-
volves a closing operation, given by Eq. (C.3).

A∙B ¼ A⊕Bð Þ⊖B ðC:3Þ

Appendix D

The Mann-Whitney test involves a non-parametric comparison of
two groups of paired data. It allows testing the null hypothesis of
equal populations using a U statistic, which can be calculated for each
group according to Eq. (D.1)

Ui ¼ n1n2 þ ni ni þ 1ð Þ
2

−∑Ri ðD:1Þ

Where Ui is the statistic of each population, n1 and n2 denotes the
number of values from the first and the second groups, and ∑Ri
denotes the sum of the ranks from the group i of interest. The smaller
of the two groups is the obtained result of U, and the z ∗ score of the
test can be calculated according to Eq. (D.2) [64].

z∗ ¼ U− n1n2
2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2 n1þn2þ1ð Þ
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q ðD:2Þ

Finally, Eq. (D.3) specifies the general equation to calculate the p
value according to a two-tailed test:

p−value ¼ 2 1−cdf z∗j jð Þð Þ ðD:3Þ

Where cdf denotes the cumulative distribution function of a given
statistic z ∗.
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