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0. Introduction

Crossed products of a Hopf algebra by an algebra have been widely studied in rela-
tion to extensions of algebras, generalizing classical results of semidirect products and 
extensions of groups, together with a generalization of group cohomology to the Hopf 
algebra setting. In [17] Sweedler defines the so-called Sweedler’s cohomology for a cocom-
mutative Hopf algebra H and a commutative H-module algebra B. In this paper he also 
shows that any cleft H-extension of algebras B ↪→ A (that is, roughly speaking, a split 
extension) can be realized as a crossed product given in terms of the action of H on B
and a 2-cocycle σ : H2 → B. Moreover, cleft extensions of B are classified by the second 
cohomology group H2(H, B). Several generalizations of these results were carried out 
by Doi and Takeuchi [7], Blattner, Cohen and Montgomery [4] and Blattner and Mont-
gomery [5] by dropping out the conditions of cocommutativity and commutativity, and 
the associativity of the action ϕB : H ⊗ B → B and thus, the use of Sweedler’s cohomol-
ogy. However some of its formalism is preserved: for an arbitrary Hopf algebra H and an 
arbitrary algebra B, a crossed product is given in terms of a measuring ϕB : H ⊗B → B

and a formal 2-cocycle σ : H2 → B that must also satisfy the twisted condition needed 
to substitute the associativity of ϕB . Moreover, two such crossed products are equivalent 
if the cocycles satisfy a cohomological-like equivalence. This last result was interpreted 
in an actual cohomological setting by Doi in [8], where he shows that cleft extensions of 
an algebra B by a cocommutative Hopf algebra H with the same action are classified by 
H2(H, Z(B)), where Z(B) denotes the center of B. All these results can be interpreted 
in a symmetric monoidal category with base object K (see for example [1] and [11] for 
cleft extensions in a monoidal setting).

The next objective became to decide when an algebra B admits a cleft extension by H. 
Following some classical results of obstructions to extensions of groups (see, for example, 
[13]), Schauenburg finds in [16] a relation between the third Sweedler’s cohomology group 
H3(H, Z(B)) and cleft extensions. For a measuring ϕB and a twisted morphism σ, he 
generalizes the notion of obstruction as Sweedler three cocycle θσ on H with values on 
the center of B and shows that the class [θσ] ∈ H3(H, Z(B)) vanish if, and only if, ϕB

and σ give rise to a crossed product on H ⊗ B and, at last, to a cleft extension.
With the apparition of weak Hopf algebras as generalizations of groupoid algebras (see 

[6]) all the theory of cleft extensions, Sweedler’s cohomology and crossed products needed 
a deep review. Recall that the main point of a algebra-coalgebra H to be weak is that 
its unit does not need to be comultiplicative, nor its counit multiplicative. These appar-
ently innocent generalizations conceptually imply the existence of two objects, different 
from the base object K in the ground monoidal category when H is actually weak, that 
somehow will play the role of K. From a practical point of view, this lack of (co)mul-
tiplicativity of the (co)unit forces to a change in the definition of regular morphisms, 
and thus to a change in the tackling of cleft extensions, cohomological interpretations of 
crossed products and a rethinking of cohomology and crossed products themselves. For 
the cocommutative case these problems were successfully solved in [2] and [3], where the 
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authors explore the meaning of cleft extension and weak crossed product for a cocom-
mutative weak Hopf algebra H weakly acting on an algebra B, and define Sweedler’s 
cohomology in weak contexts. In order to achieve these objectives, they consider the 
unit in Reg(H, B) as ϕB ◦ (H ⊗ ηB) (and thus, regular morphisms depend on ϕB and 
we denote the set by RegϕB

(H, B)), where ϕB is the weak action of H on B, and ηB is 
the unit of B. Moreover, to study weak crossed products they consider a preunit instead 
of a unit, so they obtain an algebra as a subobject of H ⊗ B, whose product is given 
in terms of ϕB and a twisted formal 2-cocycle σ : H2 → B. In such terms, they are 
able to define a cohomology theory for a cocommutative weak Hopf algebra H and a 
commutative H-module algebra B. Moreover, they identify cleft H-extensions of a weak 
H-module algebra B with products with convolution invertible 2-cocycle and classify 
them by H2

ϕZ(B)(H, Z(B)), this is, the second cohomology group. The relation of weak 
crossed products and cleft extensions for the non-cocommutative case was also studied 
in [12] by Guccione, Guccione and Valqui.

So once we have the proper concepts of cleft extensions, weak crossed products and 
Sweedler’s cohomology for the weak setting, we just need to find out the role of obstruc-
tions in relation to cleft extensions and their cohomological meaning, and these are the 
main objectives of the present paper. In order to attain such objectives, we first make 
a wide review of weak crossed products, and we find that we just need a measuring 
ϕB : H ⊗ B → B together with a twisted morphism σ : H2 → B that does not need 
to be convolution invertible but a formal 2-cocycle to define a weak crossed product on 
H ⊗B. Moreover we obtain necessary and sufficient conditions for weak crossed products 
to be equivalent that, in particular, are given in terms of morphisms in RegϕB

(H, B). 
We finally use these results in the particular case of a cocommutative weak Hopf algebra 
H and a weak H-module algebra (B, ϕB). We consider a twisted convolution invertible 
morphism σ : H2 → B and define its cohomological obstruction θσ through the cen-
ter of B. We obtain that this obstruction vanishes in H3

ϕZ(B)
(H, Z(B)) if, and only if, 

there exists a twisted convolution invertible 2-cocycle α : H2 → B such that H ⊗ B

can be endowed with a weak crossed product structure with α keeping a cohomological-
like relation with σ. This result means, in terms of cleft extensions, that if (B, ϕB) is 
a weak H-module algebra with σ : H2 → B twisted and convolution invertible then its 
obstruction vanishes if, and only if, there exists a cleft extension of B by H.

Throughout this paper C denotes a strict symmetric monoidal category with tensor 
product ⊗, unit object K and symmetry isomorphism c. There is no loss of generality in 
assuming that C is strict because every monoidal category is monoidally equivalent to a 
strict one. Then, we may work as if the constrains were all identities. We also assume 
that in C every idempotent morphism splits, i.e., for any morphism q : M → M such 
that q ◦q = q there exists an object N , called the image of q, and morphisms i : N → M , 
p : M → N such that q = i ◦ p and p ◦ i = idN (idN denotes the identity morphism 
for N). The morphisms p and i will be called a factorization of q. Note that N , p and i
are unique up to isomorphism. Given objects M , N , P and a morphism f : N → P , we 
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write M ⊗ f for idM ⊗ f and f ⊗ M for f ⊗ idM . Finally, we write c instead cM,N if M
and N are clear from the context.

We assume well known the notions of (unitary associative) algebra A = (A, η, μ) with 
unit η and product μ in C, (counitary coassociative) coalgebra D = (D, ε, δ) with counit 
ε and coproduct δ in C, commutative algebra, cocommutative coalgebra, morphism of 
algebras, morphism of coalgebras, tensor product of algebras and tensor product of coal-
gebras. If necessary we will write ηA (μA) instead of η (μ). Given an algebra A = (A, η, μ)
we set μop := μ ◦ c. Similarly, given a coalgebra D = (D, ε, δ), we set δcop := c ◦ δ.

Let M be an object in C. For n ≥ 1, we denote by Mn the n-fold tensor power 
M ⊗ · · · ⊗ M . By M0 we denote the unit object of C, i.e., M0 = K. If A is an algebra 
and n ≥ 2, mn

A denotes the morphism mn
A : An → A defined by m2

A = μ and by 
mk

A = mk−1
A ◦ (Ak−2 ⊗ μ) for k > 2. On the other hand, if C is a coalgebra, with δCn we 

denote the coproduct defined in the coalgebra Cn. Then by the coassociativity of δ and 
the naturality of c, for k = 1, · · · , n − 1, the identity δCn = δCn−k⊗Ck holds.

Finally, if A is an algebra, C is a coalgebra and f : C → A, g : C → A are morphisms 
in C, we define the convolution product by f ∗ g = μ ◦ (f ⊗ g) ◦ δ.

1. Generalities on measurings and crossed products in a weak setting

In this section we resume some basic facts about the general theory of weak crossed 
products in C, introduced in [9], particularized for measurings over a weak Hopf algebra 
H. Firstly, we recall the notion of weak Hopf algebra, introduced in [6], and summarize
some basic properties of these algebraic objects in a monoidal setting.

Definition 1.1. A weak bialgebra H is an object in C with an algebra structure (H, η, μ)
and a coalgebra structure (H, ε, δ) such that the following axioms hold:

(a1) δ ◦ μ = (μ ⊗ μ) ◦ δH2 ,
(a2) ε ◦μ ◦ (μ ⊗H) = (ε ⊗ε) ◦ (μ ⊗μ) ◦ (H ⊗ δ ⊗H) = (ε ⊗ε) ◦ (μ ⊗μ) ◦ (H ⊗ (c ◦ δ) ⊗H),
(a3) (δ ⊗ H) ◦ δ ◦ η = (H ⊗ μ ⊗ H) ◦ (δ ⊗ δ) ◦ (η ⊗ η) = (H ⊗ (μ ◦ c) ⊗ H) ◦ (δ ⊗ δ) ◦ (η ⊗ η).

Moreover, if there exists a morphism λ : H → H in C (called the antipode of H) 
satisfying

(a4) id ∗ λ = ((ε ◦ μ) ⊗ H) ◦ (H ⊗ c) ◦ ((δ ◦ η) ⊗ H),
(a5) λ ∗ id = (H ⊗ (ε ◦ μ)) ◦ (c ⊗ H) ◦ (H ⊗ (δ ◦ η)),
(a6) λ ∗ id ∗ λ = λ,

we will say H is a weak Hopf algebra.
We say that H is commutative, if it is commutative as algebra and we say that H is 

cocommutative if it is cocommutative as coalgebra.
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1.2. For any weak bialgebra, if we define the morphisms ΠL
H (target), ΠR

H (source), ΠL

H , 
ΠR

H ∈ EndC(H), by ΠL
H = ((ε ◦μ) ⊗H) ◦ (H ⊗ c) ◦ ((δ ◦η) ⊗H), ΠR

H = (H ⊗ (ε ◦μ)) ◦ (c ⊗
H) ◦ (H ⊗ (δ ◦ η)), ΠL

H = (H ⊗ (ε ◦ μ)) ◦ ((δ ◦ η) ⊗ H), ΠR

H = ((ε ◦ μ) ⊗ H) ◦ (H ⊗ (δ ◦ η)).
It is straightforward to show that they are idempotent and the following equalities 

hold:

ΠL
H ◦ ΠL

H = ΠL
H , ΠL

H ◦ ΠR

H = ΠR

H , ΠR
H ◦ ΠL

H = ΠL

H , ΠR
H ◦ ΠR

H = ΠR
H , (1)

ΠL

H ◦ ΠL
H = ΠL

H , ΠL

H ◦ ΠR
H = ΠR

H , ΠR

H ◦ ΠL
H = ΠL

H , ΠR

H ◦ ΠR
H = ΠR

H . (2)

On the other hand, let HL be the image of the target morphism ΠL
H and let pL

H :
H → HL, iL

H : HL → H be the morphisms such that iL
H ◦ pL

H = ΠL
H and pL

H ◦ iL
H = idHL

. 
Then HL is an algebra and a coalgebra via ηHL

= pL
H ◦ η, μHL

= pL
H ◦ μ ◦ (iL

H ⊗ iL
H)), 

εHL
= ε ◦ iL

H , δHL
= (pL

H ⊗ pL
H) ◦ δ ◦ iL

H .
For the morphisms target and source we have the following identities:

(H ⊗ ΠR

H) ◦ δ ◦ ΠR

H = δ ◦ ΠR

H , (ΠL

H ⊗ H) ◦ δ ◦ ΠL

H = δ ◦ ΠL

H , (3)

μ ◦ (H ⊗ ΠL
H) = ((ε ◦ μ) ⊗ H) ◦ (H ⊗ c) ◦ (δ ⊗ H), (4)

(ΠR
H ⊗ H) ◦ δ = (H ⊗ μ) ◦ (c ⊗ H) ◦ (H ⊗ (δ ◦ η)) (5)

μ ◦ (H ⊗ ΠL

H) = (H ⊗ (ε ◦ μ)) ◦ (δ ⊗ H), (6)

(ΠL

H ⊗ H) ◦ δ = (H ⊗ μ) ◦ ((δ ◦ η) ⊗ H), (7)

δ ◦ η = (ΠR
H ⊗ H) ◦ δ ◦ η = (H ⊗ ΠL

H) ◦ δ ◦ η = (H ⊗ ΠR

H) ◦ δ ◦ η = (ΠL

H ⊗ H) ◦ δ ◦ η, (8)

ε ◦ μ = ε ◦ μ ◦ (ΠR
H ⊗ H) = ε ◦ μ ◦ (H ⊗ ΠL

H) = ε ◦ μ ◦ (ΠR

H ⊗ H) = ε ◦ μ ◦ (H ⊗ ΠL

H). (9)

If H is a weak Hopf algebra in C, the antipode λ is unique, antimultiplicative, anti-
comultiplicative

λ ◦ μ = μ ◦ (λ ⊗ λ) ◦ c, δ ◦ λ = c ◦ (λ ⊗ λ) ◦ δ, (10)

and leaves the unit and the counit invariant, i.e., λ ◦ η = η and ε ◦ λ = ε hold.
Also, it is straightforward to show that ΠL

H , ΠR
H satisfy the equalities

ΠL
H = id ∗ λ, ΠR

H = λ ∗ id, ΠL
H ∗ idH = idH = id ∗ ΠR

H , (11)

ΠR
H ∗ λ = λ = λ ∗ ΠL

H , ΠL
H ∗ ΠL

H = ΠL
H , ΠR

H ∗ ΠR
H = ΠR

H .

Finally we also have

μop ◦ (H ⊗ Π̄L
H) ◦ δ = idH = μop ◦ (Π̄R

H ⊗ H) ◦ δ. (12)

Now we recall the notions of measuring, left weak H-module algebra, and left H-
module algebra.
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Definition 1.3. Let H be a weak Hopf algebra and let B be an algebra. We say that the 
morphism ϕB : H ⊗ B → B is a measuring if the following equality holds:

(b1) ϕB ◦ (H ⊗ μ) = μ ◦ (ϕB ⊗ ϕB) ◦ (H ⊗ c ⊗ B) ◦ (δ ⊗ B ⊗ B).

Set uϕB

1 = ϕB ◦ (H ⊗ ηB). If ϕB is a measuring satisfying

(b2) ϕB ◦ (η ⊗ B) = idB , (b3) uϕB

1 ◦ μ = ϕB ◦ (H ⊗ uϕB

1 ),

we will say that (B, ϕB) is a left weak H-module algebra. If we replace (b3) by ϕB ◦
(μ ⊗ B) = ϕB ◦ (H ⊗ ϕB) we will say that (B, ϕB) is a left H-module algebra.

If (B, ϕB) is a left weak H-module algebra the following conditions are satisfied:

ϕB ◦ (ΠL
H ⊗ B) = μ ◦ (uϕB

1 ⊗ B), (13)

ϕB ◦ (ΠL

H ⊗ B) = μop ◦ (uϕB

1 ⊗ B), (14)

uϕB

1 ◦ ΠL
H = uϕB

1 , (15)

uϕB

1 ◦ μ = uϕB

1 ◦ μ ◦ (H ⊗ ΠL
H), uϕB

1 ◦ μ = uϕB

1 ◦ μ ◦ (H ⊗ ΠL

H). (16)

For each n ≥ 1 we define ϕn
B : Hn ⊗ B → B, recursively by ϕ1

B = ϕB and ϕn
B =

ϕB ◦ (H ⊗ ϕn−1
B ). An inductive argument using Definition 1.3(b1) shows that

ϕn
B ◦ (Hn ⊗ μ) = μ ◦ (ϕn

B ⊗ ϕn
B) ◦ (Hn ⊗ c ⊗ B) ◦ (δHn ⊗ B ⊗ B). (17)

For n ≥ 2 we define uϕB
n := ϕB ◦ (mn

H ⊗ η) and, by Definition 1.3(b3), uϕB
n =

ϕn−1
B ◦ (Hn−1 ⊗ uϕB

1 ) holds. On the other hand, by a direct computation and [2, Propo-
sition 2.11], we have that

uϕB
n = uϕB

1 ◦ mn
H , uϕB

n ∗ uϕB
n = uϕB

n . (18)

In the rest of this section H is a weak Hopf algebra and ϕB is a measuring.

Definition 1.4. For each morphism σ : H2 → B we define the morphisms

PϕB
: H ⊗ B → B ⊗ H, Fσ : H2 → B ⊗ H, Gσ : H2 → H ⊗ B,

by PϕB
= (ϕB ⊗ H) ◦ (H ⊗ c) ◦ (δ ⊗ B), Fσ = (σ ⊗ μ) ◦ δH2 , and Gσ = (μ ⊗ σ) ◦ δH2

respectively.

By [2, Proposition 3.3] and some easy computations we have the following result.
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Proposition 1.5. The morphism PϕB
introduced in the previous definition satisfies

(μ ⊗ H) ◦ (B ⊗ PϕB
) ◦ (PϕB

⊗ B) = PϕB
◦ (H ⊗ μ). (19)

The morphisms ∇ϕB

BH : B ⊗ H → B ⊗ H and ∇ϕB

HB : H ⊗ B → H ⊗ B, defined by

∇ϕB

BH = (μ ⊗ H) ◦ (B ⊗ PϕB
) ◦ (B ⊗ H ⊗ η), ∇ϕB

HB = (H ⊗ μ) ◦ (((H ⊗ ϕB) ◦ (δ ⊗ η)) ⊗ B)

are idempotent. We also have the following identities, in which T l = (uϕB

1 ⊗ H) ◦ δ and 
T r = (H ⊗ uϕB

1 ) ◦ δ:

PϕB
◦ (H ⊗ η) = T l, (B ⊗ ε) ◦ PϕB

= ϕB , ∇ϕB

BH ◦ PϕB
= PϕB

, (20)

∇ϕB

BH = (μ ⊗ H) ◦ (B ⊗ T l), ∇ϕB

HB = (H ⊗ μ) ◦ (T r ⊗ B), (21)

∇ϕB

BH ◦ (η ⊗ H) = T l, ∇ϕB

HB ◦ (H ⊗ η) = T r, (22)

(μ⊗H)◦(B⊗∇ϕB

BH) = (B⊗∇ϕB

BH)◦(μ⊗H), (H ⊗μ)◦(∇ϕB

HB ⊗B) = (∇ϕB

HB ⊗B)◦(H ⊗μ),
(23)

(B ⊗ ε) ◦ ∇ϕB

BH = μ ◦ (B ⊗ uϕB

1 ), (ε ⊗ B) ◦ ∇ϕB

HB = μ ◦ (uϕB

1 ⊗ B), (24)

(B ⊗ δ) ◦ ∇ϕB

BH = (∇ϕB

BH ⊗ H) ◦ (B ⊗ δ), (δ ⊗ B) ◦ ∇ϕB

HB = (H ⊗ ∇ϕB

HB) ◦ (δ ⊗ B), (25)

μ ◦ (B ⊗ ϕB) ◦ (T l ⊗ B) = ϕB , (μ ⊗ H) ◦ (uϕB

1 ⊗ PϕB
) ◦ (δ ⊗ B) = PϕB

. (26)

On the other hand, by a similar proof to the one used in [2, Proposition 3.4], it is 
possible to obtain the following identities:

(B ⊗ δ) ◦ Fσ = (Fσ ⊗ μ) ◦ δH2 , (δ ⊗ B) ◦ Gσ = (μ ⊗ Gσ) ◦ δH2 . (27)

Proposition 1.6. The equality

μ ◦ (B ⊗ uϕB

1 ) ◦ PϕB
= ϕB , (28)

holds. Let σ : H2 → B be a morphism. If σ ∗ uϕB

2 = σ, the equality

μ ◦ (B ⊗ uϕB

1 ) ◦ Fσ = σ, (29)

holds and, as a consequence, we have the following identities:

∇ϕB

BH ◦ Fσ = Fσ, (30)

(B ⊗ ε) ◦ Fσ = σ. (31)

Moreover, if σ : H2 → B is a morphism satisfying (30) and (31), we have that 
σ ∗ uϕB

2 = σ.
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Proof. Note that, (28) holds because μ ◦ (B ⊗ uϕB

1 ) ◦ PϕB

(24)= (B ⊗ ε) ◦ ∇ϕB

BH ◦ PϕB

(20)=
(B ⊗ ε) ◦ PϕB

(20)= ϕB .
Trivially, μ ◦ (B ⊗ uϕB

1 ) ◦ Fσ = σ ∗ uϕB

2 holds and then we obtain (29). On the other 
hand, ∇ϕB

BH ◦ Fσ
(27)= ((μ ◦ (B ⊗ uϕB

1 ) ◦ Fσ) ⊗ μ) ◦ δH2
(29)= Fσ. Then, (B ⊗ ε) ◦ Fσ

(30)=
(B ⊗ ε) ◦ ∇ϕB

BH ◦ Fσ
(24)= μ ◦ (B ⊗ uϕB

1 ) ◦ Fσ
(29)= σ. Finally, if σ satisfy (30) and (31), we 

have σ
(31)= (B ⊗ ε) ◦ Fσ

(30)= (B ⊗ ε) ◦ ∇ϕB

BH ◦ Fσ
(24)= μ ◦ (B ⊗ uϕB

1 ) ◦ Fσ = σ ∗ uϕB

2 . �
1.7. In a similar way to what was proven in the previous proposition, we have that 
μ ◦ (uϕB

1 ⊗ B) ◦ Gσ = uϕB

2 ∗ σ. Then, we can obtain the following result:

Proposition 1.8. Let σ : H2 → B be a morphism. If uϕB

2 ∗ σ = σ, the equality μ ◦ (uϕB

1 ⊗
B) ◦ Gσ = σ, holds and, as a consequence, we have the following identities:

∇ϕB

HB ◦ Gσ = Gσ, (ε ⊗ B) ◦ Gσ = σ. (32)

Moreover, if σ satisfies (32), uϕB

2 ∗ σ = σ holds.

Remark 1.9. By the previous propositions, [12, Propositions 2.7 and 2.8], (1) and (2), if 
σ satisfies σ ∗ uϕB

2 = σ, we have

σ ◦ (μ ⊗ H) ◦ (H ⊗ ΠR
H ⊗ H) = σ ◦ (H ⊗ μ) ◦ (H ⊗ ΠR

H ⊗ H), (33)

σ ◦ (μ ⊗ H) ◦ (H ⊗ Π̄L
H ⊗ H) = σ ◦ (H ⊗ μ) ◦ (H ⊗ Π̄L

H ⊗ H). (34)

1.10. Let σ : H2 → B be a morphism such that σ ∗ uϕB

2 = σ. Under these conditions, 
we have a quadruple BH = (B, H, ψB

H = PϕB
, σB

H = Fσ) as the ones introduced in 
[9] to define the notion of weak crossed product. For the quadruple BH there exists a 
product in B ⊗ H defined by μB⊗σ

ϕB
H = (μ ⊗ H) ◦ (μ ⊗ Fσ) ◦ (B ⊗ PϕB

⊗ H). Let 
μA×σ

ϕB
H be the product μB×σ

ϕB
H = pϕB

B⊗H ◦ μB⊗σ
ϕB

H ◦ (iϕB

B⊗H ⊗ iϕB

B⊗H), where B ×σ
ϕB

H, 
iϕB

B⊗H : B ×σ
ϕB

H → B ⊗ H and pϕB

B⊗H : B ⊗ H → B ×σ
ϕB

H denote the image, the 
injection, and the projection associated to the factorization of ∇ϕB

BH . Following [9], we 
say that BH satisfies the twisted condition if

(μ ⊗ H) ◦ (B ⊗ PϕB
) ◦ (Fσ ⊗ B) = (μ ⊗ H) ◦ (B ⊗ Fσ) ◦ (PϕB

⊗ H) ◦ (H ⊗ PϕB
) (35)

and the cocycle condition holds if

(μ ⊗ H) ◦ (B ⊗ Fσ) ◦ (Fσ ⊗ H) = (μ ⊗ H) ◦ (B ⊗ Fσ) ◦ (PϕB
⊗ H) ◦ (H ⊗ Fσ). (36)

Note that, if BH satisfies the twisted condition, by [9, Proposition 3.4], and (30) we 
obtain the equality:

(μ ⊗ H) ◦ (A ⊗ Fσ) ◦ (∇ϕB

BH ⊗ H) = (μ ⊗ H) ◦ (B ⊗ Fσ). (37)
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Taking into account that the cocommutativity condition for H is not necessary, we 
can repeat the proofs of [2, Theorems 3.12 and 3.13] getting the following theorem.

Theorem 1.11. Let σ : H2 → B be a morphism such that σ∗uϕB

2 = σ. Then, the following 
assertions hold.

(i) The quadruple BH satisfies the twisted condition (35) iff σ satisfies the twisted con-
dition

μ ◦ (B ⊗ σ) ◦ (PϕB
⊗ H) ◦ (H ⊗ PϕB

) = μ ◦ (B ⊗ ϕB) ◦ (Fσ ⊗ B). (38)

(ii) The quadruple BH satisfies the cocycle condition (36) iff σ satisfies the cocycle con-
dition

μ ◦ (B ⊗ σ) ◦ (PϕB
⊗ H) ◦ (H ⊗ Fσ) = μ ◦ (B ⊗ σ) ◦ (Fσ ⊗ B). (39)

If the twisted and the cocycle conditions hold, the product μB⊗σ
ϕB

H is associative and 
normalized with respect to ∇ϕB

BH , i.e., the following identities hold:

∇ϕB

BH ◦ μB⊗σ
ϕB

H = μB⊗σ
ϕB

H = μB⊗σ
ϕB

H ◦ (∇ϕB

BH ⊗ ∇ϕB

BH)) (40)
μB⊗σ

ϕB
H ◦ (∇ϕB

BH ⊗ B ⊗ H) = μB⊗σ
ϕB

H = μB⊗σ
ϕB

H ◦ (B ⊗ H ⊗ ∇ϕB

BH).

Then, under these conditions μB×σ
ϕB

H is associative as well (see [9, Proposition 3.7]). 
Hence we define:

Definition 1.12. If BH satisfies (35) and (36) we say that (B ⊗ H, μB⊗σ
ϕB

H) is a weak 
crossed product.

The next natural question that arises is if it is possible to endow μB×σ
ϕB

H with a 
unit, and hence with an algebra structure. As we recall in [9], we need to use the notion 
of preunit to obtain this unit. In our setting, ν : K → B ⊗ H is a preunit for the 
associative product μB⊗σ

ϕB
H if μB⊗σ

ϕB
H ◦ (B ⊗ H ⊗ ν) = μB⊗σ

ϕB
H ◦ (ν ⊗ B ⊗ H) and 

ν = μB⊗σ
ϕB

H ◦ (ν ⊗ ν) hold (see [9, Definition 2.3, Remark 2.4]). Following [9, Theorem 
3.11] (see also [10, Definition 1.4]) we will say that (B ⊗ H, μB⊗σ

ϕB
H) is a weak crossed 

product with preunit υ : K → B ⊗ H if

(μ ⊗ H) ◦ (B ⊗ Fσ) ◦ (PϕB
⊗ H) ◦ (H ⊗ υ) = ∇ϕB

BH ◦ (η ⊗ H), (41)
(μ ⊗ H) ◦ (B ⊗ Fσ) ◦ (υ ⊗ H) = ∇ϕB

BH ◦ (η ⊗ H) (42)

and

(μ ⊗ H) ◦ (B ⊗ PϕB
) ◦ (υ ⊗ B) = (μ ⊗ H) ◦ (B ⊗ υ) (43)

hold.
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Note that, by [9, Theorem 3.11], if (B ⊗ H, μB⊗σ
ϕB

H) is a weak crossed product 
with preunit υ, the morphism υ is a preunit for the associative product μB⊗σ

ϕB
H and 

∇ϕB

BH = μB⊗σ
ϕB

H ◦(υ⊗B⊗H). Also, by [9, Corollary 3.12], we know that, if υ is a preunit 
for (B ⊗ H, μB⊗σ

ϕB
H), the object B ×σ

ϕB
H is an algebra with product μB×σ

ϕB
H and unit 

ηB×σ
ϕB

H = pϕB

B⊗H ◦υ. Finally, μB⊗σ
ϕB

H is normalized with respect to μB⊗σ
ϕB

H ◦(υ⊗B⊗H)
because ∇ϕB

BH = μB⊗σ
ϕB

H ◦ (υ ⊗ B ⊗ H) (see [9, Theorem 3.11]).

Remark 1.13. Note that, if υ is a preunit for the weak crossed product (B ⊗H, μB⊗σ
ϕB

H), 
by (43) the following equality holds:

∇ϕB

BH ◦ υ = υ (44)

Therefore the preunit of a weak crossed product, if it exists, is unique because if 
(B ⊗H, μB⊗σ

ϕB
H) admits two preunits υ1, υ2, we have ηB×σ

ϕB
H = pϕB

B⊗H ◦υ1 = pϕB

B⊗H ◦υ2
and then υ1 = ∇ϕB

BH ◦ υ1 = ∇ϕB

BH ◦ υ2 = υ2.

The following proposition is a tool to establish the conditions under which the mor-
phism υ = ∇ϕB

BH ◦ (η ⊗ η) is a preunit for a weak crossed product (B ⊗ H, μB⊗σ
ϕB

H).

Proposition 1.14. Let σ be a morphism as in Theorem 1.11. Then, the following equalities 
hold.

σ ◦ (η ⊗ H) = σ ◦ c ◦ (H ⊗ ΠL

H) ◦ δ, (45)
σ ◦ (H ⊗ η) = σ ◦ (H ⊗ ΠR

H) ◦ δ. (46)

Proof. The equality (45) follows from (34) and (12), and (46) is a consequence of (33)
and (11). �
Definition 1.15. Let σ : H2 → B be a morphism. We say that σ satisfies the normal 
condition if

σ ◦ (η ⊗ H) = σ ◦ (H ⊗ η) = uϕB

1 . (47)

Therefore, if σ ∗ uϕB

2 = σ, by Proposition 1.14, σ is normal iff σ ◦ c ◦ (H ⊗ ΠL

H) ◦ δ =
σ ◦ (H ⊗ ΠR

H) ◦ δ = uϕB

1 .

Theorem 1.16. Let σ be a morphism as in Theorem 1.11 and assume that

∇ϕB

BH ◦ (B ⊗ η) = PϕB
◦ (η ⊗ B), (48)

holds. If BH satisfies the twisted and the cocycle conditions (35) and (36), the morphism 
υ = ∇ϕB

BH ◦ (η ⊗ η) is a preunit for the weak crossed product associated to BH iff

Fσ ◦ (η ⊗ H) = Fσ ◦ (H ⊗ η) = ∇ϕB

BH ◦ (η ⊗ H). (49)
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Proof. It suffices to check that the left side of (41) equals Fσ ◦(H ⊗η), the left side of (42)
equals Fσ◦(η⊗H) and the left side of (43) equals PϕB

◦(η⊗B). But the first equality holds 
by (35) and (30); the second one, using that (μ ⊗H) ◦(B⊗Fσ) ◦(PϕB

⊗H) ◦(H ⊗η⊗H) =
Fσ; and the third one by (19). �

As a consequence of Theorem 1.16, and by Proposition 1.14 we have:

Corollary 1.17. Let σ : H2 → B be a morphism and let BH be the associated quadruple 
such that the assumptions of Theorem 1.16 hold. Then, υ = ∇ϕB

BH ◦ (η ⊗ η) is a preunit 
for the weak crossed product associated to BH iff σ satisfies the normal condition (47).

Proof. Considering (22), the proof follows from the equalities Fσ ◦ (η ⊗ H) = ((σ ◦ c ◦
(H ⊗ ΠL

H) ◦ δ) ⊗ H) ◦ δ and Fσ ◦ (H ⊗ η) = ((σ ◦ (H ⊗ ΠR
H) ◦ δ) ⊗ H) ◦ δ, which hold by 

(7), (5) and the naturality of c. �
Therefore, by the previous results, we obtain the complete characterization of weak 

crossed products associated to a measuring with preunit υ = ∇ϕB

BH ◦ (η ⊗ η).

Corollary 1.18. Let σ : H2 → B be a morphism and let BH be the associated quadruple 
such that the assumptions of Theorem 1.16 hold. Then the following statements are 
equivalent:

(i) The pair (B ⊗H, μB⊗σ
ϕB

H) is a weak crossed product with preunit υ = ∇ϕB

BH ◦(η⊗η).
(ii) The morphism σ satisfies the twisted condition (38), the cocycle condition (39) and 

the normal condition (47).

Remark 1.19. If (B, ϕB) is a left weak H-module algebra the equality (48) follows from 
(21), (14), (8) and by the naturality of c.

2. Equivalent weak crossed products

The general theory of equivalent weak crossed products was presented in [10]. In this 
section we remember the criterion obtained in [10] that characterises the equivalence 
between two weak crossed products and we give the translation of this criterion to the 
particular setting of weak crossed products induced by measurings. We shall start by 
introducing the notion of equivalence of weak crossed products induced by measurings. 
As in the previous one, in this section H denotes a weak Hopf algebra.

Definition 2.1. Let ϕB , φB : H ⊗ B → B be measurings and let σ, τ : H2 → B be 
morphisms such that σ ∗ uϕB

2 = σ, τ ∗ uφB

2 = τ . Assume that σ, τ satisfy (38), (39)
and suppose that υ is a preunit for the weak crossed product (B ⊗σ

ϕB
H, μB⊗σ

ϕB
H), 

and u is a preunit for the weak crossed product (B ⊗τ
φ H, μB⊗τ H). We say that 
B φB
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(B ⊗ H, μB⊗σ
ϕB

H) and (B ⊗ H, μB⊗τ
φB

H) are equivalent weak crossed products if there 
is an isomorphism Υ : B ×σ

ϕB
H → B ×τ

φB
H of algebras, left B-modules and right H-

comodules, where the left actions are defined by ϕB×σ
ϕB

H = pϕB

B⊗H ◦(μ ⊗H) ◦(B⊗iϕB

B⊗H), 
ϕB×τ

φB
H = pφB

B⊗H ◦ (μ ⊗ H) ◦ (B ⊗ iφB

B⊗H), and the right coactions are ρB×σ
ϕB

H =
(pϕB

B⊗H ⊗ H) ◦ (B ⊗ δ) ◦ iϕB

B⊗H , ρB×τ
φB

H = (pφB

B⊗H ⊗ H) ◦ (B ⊗ δ) ◦ iφB

B⊗H .

In our setting the general criterion [10, Theorem 1.7] that characterizes equivalent 
weak crossed products admits the following formulation.

Theorem 2.2. Let ϕB , φB : H ⊗ B → B be measurings. Let σ, τ : H2 → B and 
υ, u : K → B ⊗ H be morphisms satisfying the conditions of the previous definition. 
Let (B, H, PϕB

, Fσ) and (B, H, PφB
, Fτ ) be the corresponding quadruples. The following 

assertions are equivalent:

(i) The weak crossed products (B ⊗ H, μB⊗σ
ϕB

H) and (B ⊗ H, μB⊗τ
φB

H) are equivalent.
(ii) There exist two morphisms T, S : B ⊗ H → B ⊗ H, of left B-modules for the trivial 

action ϕB⊗H = μ ⊗ H, and right H-modules for the trivial coaction ρB⊗H = B ⊗ δ, 
satisfying the conditions

T ◦ υ = u, (50)

T ◦ μB⊗σ
ϕB

H = μB⊗τ
φB

H ◦ (T ⊗ T ), (51)

S ◦ T = ∇ϕB

BH , T ◦ S = ∇φB

BH . (52)

(iii) There exist two morphisms θ, γ : H → B ⊗ H of right H-comodules for the trivial 
coaction satisfying the conditions

θ = ∇ϕB

BH ◦ θ, (53)

(μ ⊗ H) ◦ (B ⊗ θ) ◦ γ = ∇ϕB

BH ◦ (η ⊗ H), (54)

PφB
= (μ ⊗ H) ◦ (μ ⊗ γ) ◦ (B ⊗ PϕB

) ◦ (θ ⊗ B), (55)

Fτ = (μ ⊗ H) ◦ (B ⊗ γ) ◦ μB⊗σ
ϕB

H ◦ (θ ⊗ θ), (56)

u = (μ ⊗ H) ◦ (B ⊗ γ) ◦ υ. (57)

Recall that, by the proof of the part (i) ⇒ (ii) of [10, Theorem 1.7], the morphisms T
and S also satisfy the identity

T ◦ S ◦ T = T, S ◦ T ◦ S = S. (58)

On the other hand, if υ and u are the preunits for (B ⊗ H, μB⊗σ
ϕB

H) and (B ⊗
H, μB⊗τ

φB
H) respectively, by (50), we have that S ◦ T ◦ υ = S ◦ u. Then, by (52) we have 

that ∇ϕB

BH ◦ υ = S ◦ u and applying (44) we obtain that
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S ◦ u = υ (59)

holds.

Proposition 2.3. Let ϕB, φB, σ and τ be morphisms satisfying the conditions of Defini-
tion 2.1 and suppose that ∇ϕB

BH ◦(η⊗η) is a preunit for (B⊗H, μB⊗σ
ϕB

H) and ∇φB

BH ◦(η⊗η)
is a preunit for (B ⊗H, μB⊗τ

φB
H). If (B ⊗H, μB⊗σ

ϕB
H) and (B ⊗H, μB⊗τ

φB
H) are equiva-

lent weak crossed products, there exist morphisms T, S : B⊗H → B⊗H of left B-modules 
for the trivial action and right H-comodules for the trivial coaction such that

∇φB

BH ◦ (η ⊗ η) = T ◦ (η ⊗ η), ∇ϕB

BH ◦ (η ⊗ η) = S ◦ (η ⊗ η). (60)

Proof. We have that following:

∇φB

BH ◦ (η ⊗ η) (50)= T ◦ ∇ϕB

BH ◦ (η ⊗ η) (52)= T ◦ S ◦ T ◦ (η ⊗ η) (58)= T ◦ (η ⊗ η),

and ∇ϕB

BH ◦ (η ⊗ η) (59)= S ◦ ∇φB

BH ◦ (η ⊗ η) (52)= S ◦ T ◦ S ◦ (η ⊗ η) (58)= S ◦ (η ⊗ η). �
Theorem 2.4. Let ϕB, φB, σ, τ , υ and u be morphisms satisfying the conditions of 
Definition 2.1. The following assertions are equivalent:

(i) The weak crossed products (B ⊗ H, μB⊗σ
ϕB

H) and (B ⊗ H, μB⊗τ
φB

H) are equivalent.
(ii) There exists two morphisms h, h−1 : H → B such that

h−1 ∗ h = uϕB

1 , (61)
h ∗ h−1 ∗ h = h, h−1 ∗ h ∗ h−1 = h−1, (62)

φB = μ ◦ (μ ⊗ h−1) ◦ (h ⊗ PϕB
) ◦ (δ ⊗ B), (63)

τ = μ ◦ (B ⊗ h−1) ◦ μB⊗σ
ϕB

H ◦ (((h ⊗ H) ◦ δ) ⊗ ((h ⊗ H) ◦ δ)), (64)
u = ((μ ◦ (B ⊗ h−1)) ⊗ H) ◦ (B ⊗ δ) ◦ υ. (65)

Proof. First we will prove that (i) ⇒ (ii). By the proof of the part (i) ⇒ (ii) of [10, 
Theorem 1.7], there exists two morphisms T, S : B ⊗ H → B ⊗ H of left B-modules for 
the trivial action and right H-comodules for trivial coaction and satisfying the conditions 
(50), (51), (52) and (58) ([10, (32)]). Also, S preserves the preunit, i.e., (59) holds, and 
it is multiplicative ([10, (37)]). In the proof of the part (ii) ⇒ (iii) of [10, Theorem 1.7], 
the morphisms θ, γ : H → B ⊗ H where defined by θ = S ◦ (η ⊗ H) and γ = T ◦ (η ⊗ H). 
Since S and T are left B-bilinear for the trivial action it is clear that

S = (μ ⊗ H) ◦ (B ⊗ θ), T = (μ ⊗ H) ◦ (B ⊗ γ). (66)

Furthermore, by (ii) ⇒ (iii) of [10, Theorem 1.7], for θ and γ the equalities (53), (54), 
(55), (56), and (57) hold. Moreover, (μ ⊗H) ◦ (B ⊗θ) ◦γ = ∇ϕB

BH ◦ (η ⊗H), γ = ∇φB

BH ◦γ, 
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PϕB
= (μ ⊗ H) ◦ (μ ⊗ θ) ◦ (B ⊗ PφB

) ◦ (γ ⊗ B), Fσ = (μ ⊗ H) ◦ (B ⊗ θ) ◦ μB⊗τ
φB

H ◦ (γ ⊗ γ)
and ν = (μ ⊗ H) ◦ (B ⊗ θ) ◦ u also hold. Define

h = (B ⊗ ε) ◦ θ, h−1 = (B ⊗ ε) ◦ γ. (67)

Then, by the condition of right H-comodule morphism for θ and γ, we have

θ = (h ⊗ H) ◦ δ, γ = (h−1 ⊗ H) ◦ δ. (68)

The equality (61) follows from the comodule morphism condition for γ, (54) and the 
counit properties. Mimiking the proof of (61) one can check that

h ∗ h−1 = uφB

1 . (69)

By (67) and the definition of θ, we have

h = (B ⊗ε)◦S ◦(η ⊗H) = (B ⊗ε)◦S ◦∇ϕB

BH ◦(η ⊗H) = (μ⊗ε)◦(B ⊗θ)◦∇ϕB

BH ◦(η ⊗H),

where the second equality holds by (52) and (58), and the last one by (66). Since ∇ϕB

BH ◦
(η ⊗ H) = (uφB

1 ⊗ H) ◦ δ and (μ ⊗ ε) ◦ (B ⊗ θ) = μ ◦ (B ⊗ h), by (69), we obtain

h = uφB

1 ∗ h = h ∗ h−1 ∗ h.

In a similar way, we can prove that h−1 ∗ h ∗ h−1 = h−1.
The equality (65) follows directly from (57) and (68). Moreover, composing in (55)

with B ⊗ ε, we prove (63) using (67) and (68). Finally, (64) holds because

τ
(31)= (B ⊗ ε) ◦ Fτ

(56)= (μ ⊗ ε) ◦ (B ⊗ γ) ◦ μB⊗σ
ϕB

H ◦ (θ ⊗ θ)

(68)= (μ ⊗ h−1) ◦ μB⊗σ
ϕB

H ◦ (((h ⊗ H) ◦ δ) ⊗ ((h ⊗ H) ◦ δ)).

Conversely, to prove (ii) ⇒ (i), define θ = (h ⊗ H) ◦ δ and γ = (h−1 ⊗ H) ◦ δ. Then 
θ and γ are morphisms of right H-comodules, h = (B ⊗ ε) ◦ θ and h−1 = (B ⊗ ε) ◦ γ. 
To prove the equivalence between (B ⊗ H, μB⊗σ

ϕB
H) and (B ⊗ H, μB⊗τ

φB
H), we must 

show that (53), (54), (55), (56) and (57) hold. First note that, (57) follows from (65). 
Also, (53) follows from the coassociativity of δ, (21), (61) and (62). On the other hand, 
(54) follows by the coassociativity of δ, (61) and (22). Similarly, (55) follows by (63), the 
coassociativity of δ and the naturality of c. Finally, (56) holds by (64), the coassociativity 
of δ, the naturality of c and (27). �
Remark 2.5. Note that, in the conditions of (ii) of Theorem 2.4 composing with H ⊗ η

in (63) we obtain the identity (69).
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Definition 2.6. We will say that the pair of morphisms h, h−1 : H → B is a gauge 
transformation for a measuring ϕB if they satisfy (61) and (62).

By the previous Theorem 2.4 we know that, under suitable conditions, equivalent 
weak crossed products are related by gauge transformations. After the next discussion, 
we should be able to secure that the converse is also true.

2.7. Let (h, h−1) be a gauge transformation for a measuring ϕB and let σ be a morphism 
satisfying the conditions of Definition 2.1. Suppose that υ is a preunit for the associated 
weak crossed product (B ⊗ H, μB⊗σ

ϕB
H). Define θ and γ as in (68). Then θ and γ are 

morphisms of right H-comodules and (53) and (54) hold. Define ϕh
B : H ⊗ B → B and 

σh : H2 → B by

ϕh
B = μ ◦ (μ ⊗ h−1) ◦ (B ⊗ PϕB

)) ◦ (θ ⊗ B), (70)

σh = μ ◦ (B ⊗ h−1) ◦ μB⊗σ
ϕB

H ◦ (θ ⊗ θ). (71)

The morphism ϕh
B is a measuring and Pϕh

B
= (μ ⊗ H) ◦ (μ ⊗ γ) ◦ (B ⊗ PϕB

) ◦ (θ ⊗ B). 
Therefore, (55) and

u
ϕh

B
1 = h ∗ h−1 (72)

hold. On the other hand, for Fσh we have the identity (56), i.e., Fσh = (μ ⊗H) ◦(B ⊗γ) ◦
μB⊗σ

ϕB
H ◦(θ⊗θ), and the equality σh∗u

ϕh
B

2 = σh. Finally, the quadruple (B, H, Pϕh
B

, Fσh)
satisfies the twisted and the cocycle conditions. Moreover, if υh := (μ ⊗ H) ◦ (B ⊗ γ) ◦ υ, 
(57) holds trivially and we have that υh is a preunit for the weak crossed product 
(B ⊗ H, μ

B⊗σh

ϕh
B

H
).

Therefore, as a consequence of the previous facts, we have a theorem that generalizes 
to the monoidal setting [15, Theorem 5.4].

Theorem 2.8. Let ϕB, φB, σ, τ , υ and u be morphisms satisfying the conditions of 
Definition 2.1. The weak crossed products (B ⊗ H, μB⊗σ

ϕB
H) and (B ⊗ H, μB⊗τ

φB
H) are 

equivalent iff there exists a gauge transformation (h, h−1) for ϕB such that φB = ϕh
B, 

τ = σh and u = υh.

3. Regular morphisms

Definition 3.1. Let H be a weak Hopf algebra and ϕB be a measuring. We say that a 
morphism h : H → B is a regular morphism if there exists h−1 : H → B, called the 
convolution inverse of h, such that the pair (h, h−1) is a gauge transformation for ϕB

and

h ∗ h−1 = uϕB

1 , (73)
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holds. We will denote by RegϕB
(H, B) the set of regular morphisms, that it is a group 

with product the convolution product and unit uϕB

1 .

3.2. Let PϕB
be the set of all pairs (φB , τ), where:

(i) The morphism φB is a measuring satisfying uφB

1 = uϕB

1 .
(ii) The morphism τ : H2 → B is such that τ = τ ∗ uφB

2 and the associated quadruple 
(B, H, PφB

, Fτ ) satisfies the twisted condition and the cocycle condition.
(iii) The associated weak crossed product (B ⊗ H, μB⊗τ

φB
H) admits a preunit υ.

By the results proved in the previous section we know that RegϕB
(H, B) acts on PϕB

. 
The action R : RegϕB

(H, B) × PϕB
→ PϕB

, is defined by R(h, (φB , τ)) = (φh
B , τh).

Proposition 3.3. Let (B, ϕB), (B, φB) be left weak H-module algebras.

(1) Let h : H → B be a morphism such that h ∗ uϕB

1 = h = uφB

1 ∗ h. Then, the following 
assertions are equivalent:

(i) h ◦ η = η, (ii) h ◦ ΠL
H = uφB

1 , (iii) h ◦ ΠL

H = uϕB

1 .

If one (hence any) of the previous condition is satisfied we have:

(μ ⊗ H) ◦ (B ⊗ ((h ⊗ H) ◦ δ ◦ η)) = ∇ϕB

BH ◦ (B ⊗ η). (74)

(2) If g : H → B is a morphism such that g ∗uφB

1 = g = uϕB

1 ∗g, the following assertions 
are equivalent:

(iv) g ◦ η = η, (v) g ◦ ΠL
H = uϕB

1 , (vi) g ◦ ΠL

H = uφB

1 .

If one (hence any) of the previous conditions is satisfied the identity

(μ ⊗ H) ◦ (B ⊗ ((g ⊗ H) ◦ δ ◦ η)) = ∇φB

BH ◦ (B ⊗ η) (75)

holds.
(3) If there exists h−1 : H → B such that (h, h−1) is a gauge transformation for ϕB and 

h ∗ h−1 = uφB

1 holds, we have h ◦ η = η iff h−1 ◦ η = η.

Proof. By the properties of η and Definition 1.3(b2), we obtain that (ii) ⇒ (i), and 
(iii) ⇒ (i). Also, (i) ⇒ (ii) holds because,

h ◦ ΠL
H = (uφB

1 ∗ h) ◦ ΠL
H (by h = uφB

1 ∗ h)
= μ ◦ ((uφB

1 ◦ μ ◦ (H ⊗ ΠL
H)) ⊗ h) ◦ (H ⊗ c) ◦ ((δ ◦ η) ⊗ H) (by naturality of c, 

coassociativity of δ and (4))
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= μ ◦ ((φB ◦ (H ⊗ uφB

1 )) ⊗ h) ◦ (H ⊗ c) ◦ ((δ ◦ η) ⊗ H) (by Definition 1.3(b3) and (16))
= μ ◦ ((φB ◦ (ΠL

H ⊗ B)) ⊗ h) ◦ (H ⊗ c) ◦ ((δ ◦ η) ⊗ uφB

1 ) (by naturality of c and (8))
= μ ◦ ((μ ◦ cB,B ◦ (uφB

1 ⊗ B)) ⊗ h) ◦ (H ⊗ c) ◦ ((δ ◦ η) ⊗ uφB

1 ) (by (14))
= μ ◦ cB,B ◦ ((h ◦ η) ⊗ uφB

1 ) (by naturality of c, associativity of μ and h = uφB

1 ∗ h)
= uφB

1 (by (i), naturality of c, and properties of η).

On the other hand, the proof of (i) ⇒ (iii) is similar to (i) ⇒ (ii) using (6) and (13)
instead (4) and (14) respectively. Therefore, we have (i) ⇔ (ii) ⇔ (iii). As a consequence 
of these equivalences, by (8), (iii) and (21), we obtain (74). The proof for 2 is similar 
and we leave the details to the reader.

Finally, assume that there exists h−1 : H → B such that (h, h−1) is a gauge transfor-
mation for ϕB and h ∗ h−1 = uφB

1 holds. If h ◦ η = η, we have

h−1 ◦ η = (uϕB

1 ∗ h−1) ◦ η (by uϕB

1 ∗ h−1 = h−1)
= ((h ◦ ΠL

H) ∗ h−1) ◦ η (by (iii))
= uφB

1 ◦ η (by (8) and uφB

1 = h ∗ h−1)
= η (by Definition 1.3(b2)).

Conversely, if h−1 ◦ η = η, by similar arguments, h ◦ η = (h ∗ uϕB

1 ) ◦ η = (h ∗ (h−1 ◦
ΠL

H)) ◦ η = uφB

1 ◦ η = η. �
As a particular instance of the previous proposition we have the following corollary.

Corollary 3.4. Let (B, ϕB) be a left weak H-module algebra and let h : H → B be a 
morphism such that h ∗uϕB

1 = h = uϕB

1 ∗h. Then, the following assertions are equivalent:

(i) h ◦ η = η, (ii) h ◦ ΠL
H = uϕB

1 , (iii) h ◦ ΠL

H = uϕB

1 .

Moreover, if h ∈ RegϕB
(H, B) with convolution inverse h−1 : H → B, we have 

h ◦ η = η iff h−1 ◦ η = η. Then, under these conditions, if h ◦ η = η, the following 
assertions hold:

(iv) h−1 ◦ η = η, (v) h−1 ◦ ΠL
H = uϕB

1 , (vi) h−1 ◦ ΠL

H = uϕB

1 .

Definition 3.5. Let ϕB be a measuring. With Regt
ϕB

(H, B) we will denote the set of 
morphisms h : H → B in RegϕB

(H, B) such that h ◦ η = η.

Remark 3.6. Assume that (B, ϕB) is a left weak H-module algebra, and let h, l ∈
Regt

ϕB
(H, B). Since, by (8) and Corollary 3.4, (h ∗ l−1) ◦ η = ((h ◦ ΠL

H) ∗ (l−1 ◦ ΠL
H)) =

(uϕB

1 ∗ uϕB

1 ) ◦ η = uϕB

1 ◦ η = η, Regt
ϕ (H, B) is a subgroup of RegϕB

(H, B).

B
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Remark 3.7. The set Regt
ϕB

(H, B) also acts on PϕB
, i.e., we have a map R′ :

Regt
ϕB

(H, B) × PϕB
→ PϕB

, defined by R′(h, (φB , τ)) = R(h, (φB , τ)), where R is the 
action defined in 3.2.

Note that, if (B, ϕB) is a left weak H-module algebra, the measuring ϕh
B defined in 

(70) satisfies Definition 1.3(b2) because we have

ϕh
B ◦ (η ⊗ B) = μ ◦ ((μ ◦ ((h ◦ ΠL

H) ⊗ B)) ⊗ h−1) ◦ (H ⊗ PϕB
) ◦ ((δ ◦ η) ⊗ B) (by (8))

= μ ◦((μ ◦(uϕB

1 ⊗B)) ⊗h−1) ◦(H ⊗PϕB
) ◦((δ◦η) ⊗B) (by (i) ⇒ (iii) of Corollary 3.4)

= μ ◦ (μ ⊗ h−1) ◦ (B ⊗ PϕB
) ◦ ((PϕB

◦ (η ⊗ η)) ⊗ B) (by (20))
= μ ◦ (B ⊗ h−1) ◦ PϕB

◦ (η ⊗ B) (by (19) and properties of η)
= μ ◦ (ϕB ⊗ B) ◦ (H ⊗ c) ◦ (((H ⊗ (h−1 ◦ ΠL

H)) ◦ δ ◦ η) ⊗ B) (by (8) and naturality of 
c)
= μ ◦ (B ⊗ uϕB

1 ) ◦ PϕB
◦ (η ⊗ B) (by Corollary 3.4(v) and naturality of c)

= idB (by (28) for φB and Definition 1.3(b2)).

Theorem 3.8. Let (B, ϕB), (B, φB) be left weak H-module algebras and let σ, τ be mor-
phisms satisfying the conditions of Definition 2.1 and the normal condition (47). The 
following assertions are equivalent:

(i) The weak crossed products (B ⊗ H, μB⊗σ
ϕB

H) and (B ⊗ H, μB⊗τ
φB

H) are equivalent.
(ii) There exists a gauge transformation (h, h−1) for ϕB such that (69),

h ◦ η = η, (76)

μ ◦ (B ⊗ h) ◦ PφB
= μ ◦ (h ⊗ ϕB) ◦ (δ ⊗ B), (77)

μ ◦ (B ⊗ h) ◦ Fτ = μ ◦ (μ ⊗ σ) ◦ (B ⊗ PϕB
⊗ H) ◦ (((h ⊗ H) ◦ δ) ⊗ ((h ⊗ H) ◦ δ)), (78)

hold.

Proof. We first prove (i) ⇒ (ii). By Corollary 1.18, we know that (B ⊗ H, μB⊗σ
ϕB

H)
and (B ⊗ H, μB⊗τ

φB
H) are weak crossed products with preunits ν = ∇ϕB

BH ◦ (η ⊗ η), 
u = ∇φB

BH ◦ (η ⊗ η), respectively. Define θ, γ as in the proof of Theorem 2.4 and h, h−1

by (67). Then, using that T, S are morphisms of left B-modules and (68) we have the 
following identities:

(B ⊗ ε) ◦ T = μ ◦ (B ⊗ h−1), (B ⊗ ε) ◦ S = μ ◦ (B ⊗ h). (79)

By (i) ⇒ (ii) of Theorem 2.4, the pair (h, h−1) is a gauge transformation for ϕB and 
the identities (63), (64) and (65) hold. Therefore, by Remark (2.5) we obtain that (69)
holds. Moreover, (76) follows by (79), (60), the naturality of c, the counit properties and 
Definition 1.3(b2).
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Now, by the proof of (i) ⇒ (ii) of Theorem 2.4 we know that S is multiplicative, i.e.,

S ◦ μB⊗τ
φB

H = μB⊗σ
ϕB

H ◦ (S ⊗ S). (80)

In fact this is the version of identity (51) for S (see ([10, (37)])).
Then composing with η ⊗ H ⊗ B ⊗ η in the previous identity we have

S ◦ μB⊗τ
φB

H ◦ (η ⊗ H ⊗ B ⊗ η)
= (μ ⊗ H) ◦ (μ ⊗ θ) ◦ (B ⊗ (Fτ ◦ (H ⊗ η))) ◦ PφB

(by (66) and properties of η)
= (μ ⊗ H) ◦ (μ ⊗ θ) ◦ (B ⊗ (∇φB

BH ◦ (η ⊗ H))) ◦ PφB
(by (49))

= (μ ⊗ H) ◦ (B ⊗ θ) ◦ PφB
(by left B-linearity of ∇φB

BH , properties of η and (20))

and

μB⊗σ
ϕB

H ◦ (S ⊗ S) ◦ (η ⊗ H ⊗ B ⊗ η)
= μB⊗σ

ϕB
H ◦ (((h ⊗ H) ◦ δ) ⊗ (((μ ⊗ H) ◦ (B ⊗ ((h ⊗ H) ◦ δ ◦ η))) (by (66), (68), and 

properties of η)
= μB⊗σ

ϕB
H ◦ (((h ⊗ H) ◦ δ) ⊗ (∇ϕB

BH ◦ (B ⊗ η))) (by (74))
= μB⊗σ

ϕB
H ◦ (((h ⊗ H) ◦ δ) ⊗ B ⊗ η))) (by (40))

= (μ ⊗ H) ◦ (μ ⊗ (∇ϕB

BH ◦ (η ⊗ H))) ◦ (B ⊗ PϕB
) ◦ (((h ⊗ H) ◦ δ) ⊗ B) (by (49))

= (μ ⊗ H) ◦ (B ⊗ PϕB
) ◦ (((h ⊗ H) ◦ δ) ⊗ B) (by left B-linearity of ∇ϕB

BH , properties 
of η and (20)).

Therefore,

(μ ⊗ H) ◦ (B ⊗ θ) ◦ PφB
= (μ ⊗ H) ◦ (B ⊗ PϕB

) ◦ (((h ⊗ H) ◦ δ) ⊗ B) (81)

holds and, composing with B ⊗ ε in (81), we obtain (77) by the naturality of c, (67) and 
(20).

Finally, composing with η ⊗ H ⊗ η ⊗ H in (80), by (20), (21), (37), (66), (68) and the 
properties of η, we have S ◦μB⊗τ

φB
H ◦ (η ⊗H ⊗η ⊗H) = (μ ⊗H) ◦ (B ⊗ ((h ⊗H) ◦δ)) ◦Fτ

and, by (66), properties of η, and (68), we obtain μB⊗σ
ϕB

H ◦ (S ⊗ S) ◦ (η ⊗ H ⊗ η ⊗ H) =
μB⊗σ

ϕB
H ◦(((h ⊗H) ◦δ) ⊗((h ⊗H) ◦δ)). As a consequence, (μ ⊗H) ◦(B⊗((h ⊗H) ◦δ)) ◦Fτ =

μB⊗σ
ϕB

H ◦ (((h ⊗ H) ◦ δ) ⊗ ((h ⊗ H) ◦ δ)) holds and, composing with B ⊗ ε, we obtain 
(78) by the counit properties and (31).

Conversely, suppose that (ii) holds. In light of (ii) ⇒ (i) of Theorem 2.4 we only need 
to prove equalities (63), (64) and (65). Indeed, note that by Proposition 3.3, h−1 ◦ η = η

because (76) holds. Then, (63) is satisfied because

μ ◦ (μ ⊗ h−1) ◦ (h ⊗ PϕB
) ◦ (δ ⊗ B)

= μ ◦ (B ⊗ (μ ◦ (h ⊗ h−1))) ◦ (PφB
⊗ H) ◦ (H ⊗ c) ◦ (δ ⊗ B) (by (77), coassociativity 

of δ and associativity of μ)
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= μ ◦ (B ⊗ uφB

1 ) ◦ PφB
(by naturality of c, coassociativity of δ and (69))

= φB (by (28) for φB).

On the other hand,

μ ◦ (B ⊗ h−1) ◦ μB⊗σ
ϕB

H ◦ (((h ⊗ H) ◦ δ) ⊗ ((h ⊗ H) ◦ δ))
= μ ◦ (B ⊗ (μ ◦ (h ⊗ h−1))) ◦ (Fτ ⊗ μ) ◦ δH⊗2 (by naturality of c, coassociativity of 
δ, (78) and associativity of μ)
= μ ◦ (B ⊗ (h ∗ h−1)) ◦ Fτ (by (27))
= μ ◦ (B ⊗ uφB

1 ) ◦ Fτ (by (69))
= τ (by (29))

and then (64) holds. Finally, we obtain (65) because

((μ ◦ (B ⊗ h−1)) ⊗ H) ◦ (B ⊗ δ) ◦ ∇ϕB

BH ◦ (η ⊗ η)
= ((uϕB

1 ∗ h−1) ⊗ H) ◦ δ ◦ η (by (22) and by the coassociativity of δ)
= ((h−1 ◦ ΠL

H) ⊗ H) ◦ δ ◦ η (by the gauge transformation condition and (8))
= (uφB

1 ⊗ H) ◦ δ ◦ η (by Proposition 3.3(vi))
= ∇φB

BH ◦ (η ⊗ η) (by (22)). �
3.9. As a consequence of the previous theorem, it is possible to define a groupoid, denoted 
by GB

H whose objects are pairs (ϕB, σ), where (B, ϕB) is a left weak H-module algebra, 
σ : H2 → B is a morphism such that uϕB

2 ∗σ = σ = σ∗uϕB

2 and the associated quadruple 
BH satisfies the twisted, cocycle and normal conditions. A morphism between two objects 
(ϕB , σ), (φB , τ) of GB

H is defined by a morphism h : H → B for which there exists a 
morphism h−1 : H → B such that (h, h−1) is a gauge transformation for ϕB satisfying 
the conditions (ii) of Theorem 3.8. The identity of (ϕB , σ) is id(ϕB ,σ) = uϕB

1 and, if 
h : (ϕB , σ) → (φB , τ), g : (φB , τ) → (χB , ω) are morphisms in GB

H , the composition, 
denoted by g � h, is defined by g � h = g ∗ h with (g � h)−1 = h−1 ∗ g−1. We left the 
details to the reader (use (66), (68), that (μ ⊗ H) ◦ (B ⊗ l ⊗ H) ◦ (B ⊗ δ) ◦ (B ⊗ μ ⊗ H) ◦
(B ⊗ h ⊗ H) ◦ (B ⊗ δ) = (μ ⊗ H) ◦ (B ⊗ (h ∗ l) ⊗ H) ◦ (B ⊗ δ)).

3.10. Let (B, ϕB) be a left weak H-module algebra and let σ be a morphism satisfying 
the conditions of Definition 2.1 and the normal condition (47). Let h be a morphism in 
Regt

ϕB
(H, B). Then (h, h−1) is a gauge transformation for ϕB such that (73) and (76)

hold. Define ϕh
B and σh as in (70) and (71) respectively. Then, by 2.7, ϕh

B is a measuring 

such that (72) holds. Therefore uϕB

1 = u
ϕh

B
1 and then

∇ϕh
B

BH = ∇ϕB

BH . (82)

Moreover, by Remark 3.7, we know that ϕh
B satisfies (b2) of Definition 1.3. On the 

other hand, σh is such that σh ∗ u
ϕh

B
2 = σh and satisfies the twisted condition (38), the 
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cocycle condition (39) and νh = (μ ⊗ H) ◦ (B ⊗ ((h−1 ⊗ H) ◦ δ)) ◦ ∇ϕB

BH ◦ (η ⊗ η) is a 
preunit for the associated weak crossed product (B ⊗ H, μ

B⊗σh

ϕh
B

H
). Note that

νh = (h−1 ⊗ H) ◦ δ ◦ η (by coassociativity of δ and the condition of gauge transfor-
mation)
= ((h−1 ◦ ΠL

H) ⊗ H) ◦ δ ◦ η (by (8))
= (uϕB

1 ⊗ H) ◦ δ ◦ η (by Corollary 3.4(vi))
= ∇ϕh

B

BH ◦ (η ⊗ η) (by (22) and (82)).

Therefore, νh = ∇ϕh
B

BH ◦ (η ⊗ η) = ∇ϕB

BH ◦ (η ⊗ η) = ν. Also, ϕh
B satisfies (14) because:

ϕh
B ◦ (ΠL

H ⊗ B)
= μ ⊗ (μ ⊗ h−1) ◦ (B ⊗ PϕB

)) ◦ (((h ◦ ΠL

H) ⊗ H) ◦ δ ◦ ΠL

H) ⊗ B) (by (3) and (77) for 
h−1)
= μ ⊗ (μ ⊗ h−1) ◦ (uϕB

1 ⊗ PϕB
)) ◦ ((δ ◦ ΠL

H) ⊗ B) (by (ii) of Corollary 3.4)
= μ ⊗ (B ⊗ h−1) ◦ PϕB

◦ (ΠL

H ⊗ B) (by (26))
= μ ◦ ((ϕB ◦ (ΠL

H ⊗ B)) ⊗ h−1) ◦ (H ⊗ c) ◦ ((δ ◦ ΠL

H) ⊗ B) (by (3))
= μ ◦ ((μ ◦ c ◦ (uϕB

1 ⊗ B)) ⊗ h−1) ◦ (H ⊗ c) ◦ ((δ ◦ ΠL

H) ⊗ B) (by (14) for ϕB)
= μop ◦ ((h−1 ◦ ΠL

H) ⊗ B) (by associativity of μ, naturality of c and the condition of 
gauge transformation)
= μop ◦ (uϕh

B
1 ⊗ B) (by Corollary 3.4(vi) and uϕB

1 = u
ϕh

B
1 )

As a consequence, we obtain that (48) holds for ϕh
B. Therefore, by Corollary 1.17, we 

have that σh satisfies the normal condition (47). Finally, if B is commutative and H is 
cocommutative, the equality

μ ◦ (B ⊗ h) ◦ PϕB
= μ ◦ (h ⊗ ϕB) ◦ (δ ⊗ B) (83)

holds and then by the usual arguments, (83), (73) and (28) we have that ϕh
B = ϕB .

4. Hom-products, invertible morphisms and centers

In this section, for a weak Hopf algebra H and an algebra B, we will explore a new 
product in HomC(H⊗n ⊗ B, B) that will permit us to extend some results about the 
factorization through the center of B, given in [14] for Hopf algebras, to the weak Hopf 
algebra setting.

Definition 4.1. Let ϕ and ψ ∈ HomC(Hn ⊗ B, B). We define the product

∧ : HomC(Hn ⊗ B, B) × HomC(Hn ⊗ B, B) → HomC(Hn ⊗ B, B)

between ϕ and ψ as ϕ ∧ ψ := ϕ ◦ (Hn ⊗ ψ) ◦ (δHn ⊗ B).
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Obviously, ∧ is an associative product because δHn is coassociative. We say that a 
morphism ϕ ∈ HomC(Hn ⊗ B, B) is ϕB-invertible if there exists a morphism ϕ† ∈
HomC(Hn ⊗ B, B) such that ϕ ∧ ϕ† = μ ◦ (uϕB

n ⊗ B).

Proposition 4.2. Let ϕB be a measuring. For a morphism ω : Hn → B define ω := μ ◦(ω⊗
B) and ωop := μop ◦ (ω ⊗ B). Then, if ω, θ ∈ HomC(Hn, B) and γ ∈ HomC(Hn ⊗ B, B)
the following equalities hold:

(i) ω ∧ θ = ω ∗ θ.
(ii) If H is cocommutative, ωop ∧ γ = μ ◦ (γ ⊗ ω) ◦ (Hn ⊗ c) ◦ (δHn ⊗ B).
(iii) If H is cocommutative, ωop ∧ θ

op = θ ∗ ω
op.

(iv) If H is cocommutative, ωop ∧ θ = θ ∧ ωop.
(v) If (B, ϕB) is a left weak H-module algebra, uϕB

n ∧ ϕn
B = ϕn

B.
(vi) If H is cocommutative and (B, ϕB) is a left weak H-module algebra, uϕB

n
op

∧ϕn
B =

ϕn
B.

(vii) ϕB ◦ (H ⊗ ω) ∧ (ϕB ◦ (H ⊗ γ)) = ϕB ◦ (H ⊗ (ω ∧ γ)).
(viii) If H is cocommutative, ϕB ◦ (H ⊗ ω)

op ∧ (ϕB ◦ (H ⊗ γ)) = ϕB ◦ (H ⊗ (ωop ∧ γ)).

Proof. The proof of (i) follows directly from the associativity of μ. If H is cocommutative, 
so is Hn and, by the naturality of c, we obtain (ii). By similar reasoning and using the 
associativity of μ we obtain (iii) and (iv). On the other hand,

uϕB
n ∧ϕn

B = μ◦(ϕn
B ⊗ϕn

B)◦(Hn ⊗c⊗B)◦(δHn ⊗η⊗B) (17)= ϕn
B ◦(Hn ⊗(μ◦(η⊗B))) = ϕn

B ,

and then (v) holds. Similarly, using that Hn is cocommutative, the naturality of c and 
(17) we prove (vi). The identity, (vii) follows from the naturality of c and (17). Similarly, 
using that H is cocommutative, we obtain (viii). �
Remark 4.3. The equivalence of measurings (or, in particular, of weak actions) in terms 
of gauge transformations acquires a new meaning in terms of this product. Actually, 
if H is cocommutative, the action described in 3.2 on a measuring φB can be seen as 
a conjugation by gauge transformations in the following way: φh

B = h ∧ h−1op ∧ φB . 
Moreover observe that for a cocommutative weak Hopf algebra H and measurings ϕB

and φB satisfying conditions of Theorem 2.4, we can re-write equality (63) using the 
Hom-product as φB = h∧h−1op ∧ϕB . Also in this way, equality (77) of Theorem 3.8 can 
be interpreted as hop∧φB = h∧ϕB , in coherence with the action of gauge transformations 
as a conjugation given above.

Definition 4.4. Let (B, ϕB) be a left weak H-module algebra. For n ≥ 1, with 
RegϕB

(Hn, B) we will denote the set of morphisms σ : Hn → B such that there ex-
ists a morphism σ−1 : Hn → B (the convolution inverse of σ) satisfying the equalities 
σ ∗ σ−1 = σ−1 ∗ σ = uϕB

n , σ ∗ σ−1 ∗ σ = σ and σ−1 ∗ σ ∗ σ−1 = σ−1.
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Note that, for n = 1, we recover the group RegϕB
(H, B) introduced in Definition 3.1. 

For any n, RegϕB
(Hn, B) is a group with unit element uϕB

n because by (18) we know 
that uϕB

n ∗ uϕB
n = uϕB

n . Also, if B is commutative and H is cocommutative, we have that 
RegϕB

(H⊗n, B) is an abelian group.
We denote by RegϕB

(HL, B) the set of morphisms g : HL → B such that there exists a 
morphism g−1 : HL → B (the convolution inverse of g) satisfying g∗g−1 = g−1∗g = uϕB

0 , 
g ∗ g−1 ∗ g = g and g−1 ∗ g ∗ g−1 = g−1, where uϕB

0 = uϕB

1 ◦ iL
H . Then by (15) we have 

uϕB

1 = uϕB

0 ◦ pL
H .

Definition 4.5. For an algebra B we define the center of B as a subobject Z(B) of B
with a monomorphism zB : Z(B) → B satisfying the identity

μ ◦ (B ⊗ zB) = μop ◦ (B ⊗ zB) (84)

and such that, if f : A → B is a morphism such that μ ◦(B⊗f) = μop◦(B⊗f), there exists 
an unique morphism f ′ : A → Z(B) satisfying zB ◦ f ′ = f . As a consequence, we obtain 
that Z(B) is a commutative algebra, where ηZ(B) is the unique morphism satisfying 
zB ◦ ηZ(B) = η and μZ(B) is the unique morphism satisfying zB ◦ μZ(B) = μ ◦ (zB ⊗ zB).

For example, if C is a closed category with equalizers and αB and βB are the unit 
and the counit, respectively, of the C-adjunction B ⊗ − � [B, −] : C → C, the center of 
B can be obtained by the equalizer of ϑB = [B, μ] ◦ αB(B) and θB = [B, μop] ◦ αB(B). 
Then in the category of modules over a commutative ring the center is an equalizer 
object. Finally, note that by (84), composing with the symmetry isomorphism we obtain 
μ ◦ (zB ⊗ B) = μop ◦ (zB ⊗ B).

Example 4.6. Assume that H is cocommutative and let (B, ϕB) be a left weak H-module 

algebra. Then, ΠL
H = ΠL

H and by (13) and (14) we have that μop ◦ (uϕB

1 ⊗ B) = μ ◦
(uϕB

1 ⊗B). Then, uϕB

1 factors through Z(B). Therefore, there exists an unique morphism 
vϕB

1 : H → Z(B) such that zB ◦ vϕB

1 = uϕB

1 . Then, taking into account the equality 
(18), we obtain μop ◦ (uϕB

n ⊗ B) = μ ◦ (uϕB
n ⊗ B) and, as a consequence, uϕB

n factors 
through Z(B). Therefore, there exists an unique morphism vϕB

n : H2 → Z(B) such that 
zB ◦ vϕB

n = uϕB
n .

Remark 4.7. Let ω : Hn → B be a morphism. Then, ω factors through the center of 
B iff ω = ωop. Therefore, if H is cocommutative and (B, ϕB) is a left weak H-module 
algebra, uϕB

n = uϕB
n

op
for all n ≥ 1. Also, if ω factors through the center of B, then by 

items (i) and (iv) of Proposition 4.2, we have ω ∗ τ = τ ∗ ω for all τ : Hn → B.

In the rest of this section we will assume that H is a cocommutative weak Hopf algebra 
and (B, ϕB) is a left weak H-module algebra.
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Proposition 4.8. A morphism σ : H2 → B satisfies the twisted condition (38) iff

σop ∧ ϕ2
B = σ ∧ (ϕB ◦ (μ ⊗ B)) (85)

holds.

Proof. The proof follows from the following facts: By definition of Fσ, we have that 
μ ◦ (B ⊗ ϕB) ◦ (Fσ ⊗ B) = σ ∧ (ϕB ◦ (μ ⊗ B)). On the other hand, by cocommutativity 
of δ and naturality of c, we have μ ◦ (B ⊗ σ) ◦ (PϕB

⊗ H) ◦ (H ⊗ PϕB
) = σop ∧ ϕ2

B . �
Proposition 4.9. Assume that there exists σ ∈ RegϕB

(H2, B) satisfying the twisted con-
dition (38). Then, ϕB is ϕB-invertible.

Proof. Let hσ and hσ−1 be the morphisms defined by hσ = σ ◦ (H ⊗ λ) ◦ δ, hσ−1 =
σ−1 ◦ (H ⊗ λ) ◦ δ. Then, hσ ∈ RegϕB

(H, B) and h−1
σ = hσ−1 . Indeed, first note that

hσ ∗ hσ−1 = (σ ∗ σ−1) ◦ (H ⊗ λ) ◦ δ (by coassociativity and cocommutativity of δ, 
naturality of c and (10))
= uϕB

1 ◦ ΠL
H (by (11) and the fact that σ ∈ RegϕB

(H2, B))
= uϕB

1 (by (15))

and similarly, hσ−1 ∗ hσ = uϕB

1 . Also, by the coassociativity and the cocommutativity 
of δ, the naturality of c, (10) and σ ∈ RegϕB

(H2, B) we have that hσ ∗ hσ−1 ∗ hσ =
(σ ∗ σ−1 ∗ σ) ◦ (H ⊗ λ) ◦ δ = hσ. Similarly we obtain that hσ−1 ∗ hσ ∗ hσ−1 = hσ−1 holds.

Now, let ϕσ be the morphism defined by ϕσ := μ ◦ (μ ⊗ B) ◦ (hσ ⊗ B ⊗ hσ−1) ◦ (H ⊗
c) ◦ (δ ⊗H). Then, ϕσ is ϕB-invertible with inverse defined by ϕ†

σ = μ ◦ (μ ⊗B) ◦ (hσ−1 ⊗
B ⊗ hσ) ◦ (H ⊗ c) ◦ (δ ⊗ H). Indeed:

ϕσ ∧ ϕ†
σ

= μ ◦ (uϕB

1 ⊗ (μop ◦ (uϕB

1 ⊗ B))) ◦ (δ ⊗ B) (by coassociativity and cocommutativity 
of δ, naturality of c, associativity of μ and hσ ∈ RegϕB

(H, B))
= μ ◦ ((uϕB

1 ∗ uϕB

1 ) ⊗ B) (by the factorization of uϕB

1 through the center of B)
= μ ◦ (uϕB

1 ⊗ B) (by (18)).

On the other hand, let be the morphism ϕB ∧ (ϕB ◦ (λ ⊗ B)). For this morphism we 
have the following:

hσ
op ∧ (ϕB ∧ (ϕB ◦ (λ ⊗ B)))

= μ ◦ (ϕB ⊗ σ) ◦ (H ⊗ c ⊗ H) ◦ (δ ⊗ (c ◦ (H ⊗ ϕB) ◦ ((δ ◦ λ) ⊗ B))) ◦ (δ ⊗ B) (by 
coassociativity and cocommutativity of δ, naturality of c and (10))
= μ ◦ (B ⊗ ϕB) ◦ (Fσ ⊗ B) ◦ (((H ⊗ λ) ◦ δ) ⊗ B) (by cocommutativity of δ, naturality 
of c and (38))
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= μ ◦ (B ⊗ ϕB) ◦ (((hσ ⊗ ΠL
H) ◦ δ) ⊗ B) (by cocommutativity of δ, the naturality of 

c, (10) and (11))
= μ ◦ (B ⊗ μ) ◦ (((hσ ⊗ uϕB

1 ) ◦ δ) ⊗ B) (by (13))
= hσ (by associativity of μ and hσ ∈ RegϕB

(H, B))

and, as a consequence,

ϕσ = ϕB ∧ (ϕB ◦ (λ ⊗ B)) (86)

holds. Indeed, on the one hand:

hσ−1
op ∧ (hσ

op ∧ (ϕB ∧ (ϕB ◦ (λ ⊗ B))))
= hσ ∗ hσ−1

op ∧ (ϕB ∧ (ϕB ◦ (λ ⊗ B))) (by associativity of ∧ and Proposition 4.2(iii))
= uϕB

1
op

∧ (ϕB ∧ (ϕB ◦ (λ ⊗ B))) (by hσ ∈ RegϕB
(H, B))

= ϕB ∧ (ϕB ◦ (λ ⊗ B)) (by associativity of ∧ and Proposition 4.2(vi))

and, on the other hand, by the cocommutativity of δ, the naturality of c and the 
associativity of μ, hσ−1

op ∧ hσ = ϕσ holds. Finally, define the morphism ϕ†
B by 

ϕ†
B := (ϕB ◦ (λ ⊗ B)) ∧ ϕ†

σ. By (86) we have ϕB ∧ ϕ†
B = ϕσ ∧ ϕ†

σ = μ ◦ (uϕB

1 ⊗ B)
and then ϕB is ϕB-invertible with inverse ϕ†

B . �
Proposition 4.10. If ϕB is ϕB-invertible, ϕn

B is ϕn
B-invertible.

Proof. By assumption the assertion is true for n = 1. Then we will proceed by induction. 
Define ϕn†

B by ϕn†
B := ϕ

(n−1)†
B ◦ (H(n−1) ⊗ ϕ†

B) ◦ (cH,H⊗(n−1) ⊗ B). Then,

ϕ⊗n
B ∧ ϕ⊗n†

B

= ϕB ◦ (H ⊗ (μ ◦ (uϕB

n−1 ⊗ B))) ◦ (H ⊗ Hn−1 ⊗ ϕ†
B) ◦ (H ⊗ c ⊗ B) ◦ (δ ⊗ Hn−1 ⊗ B)

(by naturality of c and the induction hypothesis)
= ϕB ◦ (H ⊗ μ) ◦ (H ⊗ ϕ†

B ⊗ B) ◦ (δ ⊗ (c ◦ (uϕB

n−1 ⊗ B))) (by the factorization of uϕB

n−1
through the center of B and the naturality of c)
= μ ◦(ϕB ⊗ϕB) ◦(H⊗c ⊗B) ◦(δ⊗ϕ†

B ⊗B) ◦(δ⊗(c ◦(uϕB

n−1⊗B))) (by Definition 1.3(b1))
= μ ◦ ((μ ◦ (uϕB

1 ⊗ B)) ⊗ ϕB) ◦ (H ⊗ c ⊗ B) ◦ (δ ⊗ (c ◦ (uϕB

n−1 ⊗ B))) (by naturality of 
c, coassociativity and cocommutativity of δ and the ϕB-invertivility of ϕB)
= μ ◦ (B ⊗ (μ ◦ (uϕB

1 ⊗ϕB) ◦ (δ ⊗B))) ◦ (c ⊗B) ◦ (H ⊗ (c ◦ (uϕB

n−1 ⊗B))) (by naturality 
of c, associativity of μ and the factorization of uϕB

1 through the center of B)
= μ ◦ (B ⊗ ϕB) ◦ (c ⊗ B) ◦ (H ⊗ (c ◦ (uϕB

n−1 ⊗ B))) (by (26))
= μ ◦ (uϕB

n ⊗ B) (by naturality of c and the factorization of uϕB
n through the center 

of B)

and, therefore, ϕn
B is ϕn

B-invertible. �
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Proposition 4.11. Assume that ϕB is ϕB-invertible. Then, a morphism ω ∈ RegϕB
(Hn, B)

satisfies

ω ∧ ϕn
B = ωop ∧ ϕn

B (87)

iff it factors through the center of B.

Proof. Assume that (87) holds. Then, by the associativity of μ and ω ∈ RegϕB
(Hn, B), 

we have ω ∧ ϕn
B ∧ ϕn†

B = ω ∧ (μ ◦ (uϕB
n ⊗ B)) = μ ◦ ((ω ∗ uϕB

n ) ⊗ B) = ω.
On the other hand,

ωop ∧ ϕn
B ∧ ϕn†

B = ωop ∧ (μ ◦ (uϕB
n ⊗ B)) (by the ϕn

B-invertivility)
= μop ◦ (ω ⊗ (μ ◦ c ◦ (uϕB

n ⊗ B))) ◦ (δHn ⊗ B) (by the factorization of uϕB
n through 

the center of B)
= ωop (by naturality of c, associativity of μ, cocommutativity of δ and ω ∈
RegϕB

(H⊗n, B)).

Therefore, ω = ωop and, as a consequence, ω factors through the center of B.
Conversely, if ω factors through the center of B, by Remark 4.7, we have that ω = ωop

and then (87) holds trivially. �
Proposition 4.12. Assume that ϕB is ϕB-invertible. Then, if ω ∈ RegϕB

(Hn, B) satisfies 
(87), ω−1 also satisfies (87). As a consequence, ω−1 factors through the center of B.

Proof. By the equalities of Proposition 4.2, Remark 4.7 and Proposition 4.11, the fol-
lowing equalities:

ω ∧ ω−1 = ω ∗ ω−1 = uϕB
n = uϕB

n
op

= ω−1 ∗ ω
op

= ωop ∧ ω−1op
= ω ∧ ω−1op

hold. Then, we have that

ω−1 ∧ ϕ⊗n
B = ω−1 ∧ ω ∧ ω−1op ∧ ϕ⊗n

B = uϕB
n ∧ ω−1op ∧ ϕ⊗n

B

= ω−1op ∧ uϕB
n ∧ ϕ⊗n

B = ω−1op ∧ ϕ⊗n
B .

Therefore, ω−1 satisfies (87) and, by the previous proposition, ω−1 factors through 
the center of B. �
Proposition 4.13. If there exists σ ∈ RegϕB

(H2, B) satisfying the twisted condition (38), 
the action ϕB induces a left H-module algebra structure on the center of B, where the 
action ϕZ(B) is the factorization of ϕB ◦ (H ⊗ zB) : H ⊗ Z(B) → B through the center 
of B.
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Proof. First note that, by (84), Definition 1.3(b1), the cocommutativity of δ and the 
naturality of c, the identity

μ◦(ϕB⊗ϕB)◦(H⊗c⊗B)◦(δB⊗zB⊗B) = μop◦(ϕB⊗ϕB)◦(H⊗c⊗B)◦(δB⊗zB⊗B) (88)

holds. Then, on the one hand, by the associativity of μ and (26)

μ ◦ (ϕB ⊗ (μ ◦ (uϕB

1 ⊗ B))) ◦ (H ⊗ c ⊗ B) ◦ (δ ⊗ zB ⊗ B) = μ ◦ ((ϕB ◦ (H ⊗ zB)) ⊗ B)

holds and, on the other hand,

μ ◦ (ϕB ⊗ (μ ◦ (uϕB

1 ⊗ B))) ◦ (H ⊗ c ⊗ B) ◦ (δ ⊗ zB ⊗ B)
= μ ◦ (ϕB ⊗ (ϕB ∧ ϕ†

B)) ◦ (H ⊗ c ⊗ B) ◦ (δ ⊗ zB ⊗ B) (by ϕB-invertivility of ϕB)
= μ ◦ c ◦ (ϕB ⊗ ϕB) ◦ (H ⊗ c ⊗ ϕ†

B) ◦ (δ ⊗ c ⊗ B) ◦ (δ ⊗ zB ⊗ B) (by coassociativity 
of δ, naturality of c and (88))
= μ ◦(μ ⊗B) ◦(B⊗c) ◦((c ◦(ϕB ⊗uϕB

1 ) ◦(H ⊗c) ◦(δ⊗zB)) ⊗B) (by the ϕB-invertivility 
of ϕB and naturality of c)
= μ ◦ (B ⊗ μ) ◦ (c ⊗ B) ◦ (B ⊗ c) ◦ (((uϕB

1 ⊗ ϕB) ◦ (δ ⊗ zB)) ⊗ B) (by naturality of c, 
cocommutativity of δ, (84) and associativity of μ)
= μop ◦ ((ϕB ◦ (H ⊗ zB)) ⊗ B) (by naturality of c, (26) and the factorization of uϕB

1
through the center of B).

Therefore, as a consequence of the previous equalities, we have that there exists a 
unique morphism ϕZ(B) : H ⊗ Z(B) → Z(B) such that zB ◦ ϕZ(B) = ϕB ◦ (H ⊗ zB). 
Using this last equality, it is an easy exercise to prove that (Z(B), ϕZ(B)) is a left H-
module algebra and the details are left to the reader. �
Remark 4.14. Note that, under the conditions of the previous proposition, the equality

zB ◦ u
ϕZ(B)
1 = uϕB

1 (89)

holds.

4.15. By [3, Theorem 3.1] we know that, if σ ∈ RegϕA
(H2, B) satisfies the twisted 

condition (38), (B, ϕB) is a left H-module algebra iff the morphism σ factorizes through 
the center of B. Moreover, by [3, Corollary 3.1], (B, ϕB) is a left H-module algebra iff 
the morphism uϕB

2 satisfies the twisted condition (38).

Proposition 4.16. Let σ ∈ RegϕB
(H2, B) satisfying the twisted condition (38). Then, α ∈

RegϕB
(H2, B) satisfies the twisted condition (38) iff there exists τ ∈ RegϕZ(B)(H2, Z(B))

such that

α = (zB ◦ τ) ∗ σ. (90)
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Proof. Suppose that α satisfies the twisted condition (38). Then σ ∗ α−1 factors through 
the center of B. Indeed, following Proposition 4.11, to prove it we will see that σ ∗ α−1 ∧
ϕ2

B = σ ∗ α−1op ∧ ϕ2
B . First, note that ϕB ◦ (μ ⊗ B) = σ−1 ∧ σop ∧ ϕ2

B because

ϕB ◦ (μ ⊗ B) = uϕB

2 ∧ (ϕB ◦ (μ ⊗ B)) (by Definition 1.1(a1) and (26))
= σ−1 ∧ σ ∧ (ϕB ◦ (μ ⊗ B)) (by σ ∈ RegϕB

(H2, B) and Proposition 4.2(i))
= σ−1 ∧ σop ∧ ϕ2

B (by (85)).

Thus, for α we have the same identity and then

σ−1 ∧ σop ∧ ϕ2
B = α−1 ∧ αop ∧ ϕ2

B (91)

holds. As a consequence,

σop ∧ ϕ2
B = αop ∧ σ ∗ α−1 ∧ ϕ2

B (92)

also holds since

σop ∧ ϕ2
B = uϕB

2 ∧ σop ∧ ϕ2
B (by Proposition 4.2(v)–(iv))

= σ ∧ σ−1 ∧ σop ∧ ϕ2
B (by σ ∈ RegϕB

(H2, B) and Proposition 4.2(i))
= σ ∧ α−1 ∧ αop ∧ ϕ2

B (by (91))
= αop ∧ σ ∗ α−1 ∧ ϕ2

B (by items (i) and (iv) of Proposition 4.2).

Therefore,

σ ∗ α−1op ∧ ϕ2
B = α−1op ∧ σop ∧ ϕ2

B (by Proposition 4.2(iii))
= α−1op ∧ αop ∧ σ ∗ α−1 ∧ ϕ2

B (by (92))
= uϕB

2
op

∧ σ ∗ α−1 ∧ ϕ2
B (by α ∈ RegϕB

(H2, B) and Proposition 4.2(iii))
= uϕB

2 ∧ σ ∗ α−1 ∧ ϕ2
B (by Remark 4.7)

= σ ∗ α−1 ∧ uϕB

2 ∧ ϕ2
B (by Remark 4.7 and Proposition 4.2(iv))

= σ ∗ α−1 ∧ ϕ2
B (by Proposition 4.2(v))

and this implies that σ ∗α−1 factors through the center of B. Then, by Proposition 4.12, 
the morphism (σ ∗ α−1)−1 = α ∗ σ−1 also factors through the center of B. If τ is the 
factorization, we have that zB ◦ τ = α ∗ σ−1. Then, (90) holds.

Conversely, if (90) holds for τ ∈ RegϕZ(B)(H2, Z(B)), we have that

αop ∧ ϕ2
B = (zB ◦ τ) ∗ σ

op ∧ ϕ2
B (by (90))

= σop ∧ zB ◦ τop ∧ ϕ2
B (by Proposition 4.2(iii))

= σop ∧ zB ◦ τ ∧ ϕ2
B (by the factorization through the center of B)

= zB ◦ τ ∧ σop ∧ ϕ2
B (by Proposition 4.2(iv))

= zB ◦ τ ∧ σ ∧ (ϕB ◦ (μ ⊗ B)) (by (85))
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= (zB ◦ τ) ◦ σ ∧ (ϕB ◦ (μ ⊗ B)) (by Proposition 4.2(i))

and, therefore, α satisfies the twisted condition. �
5. Cohomological obstructions in a weak setting

In the beginning of this section we review the basic facts about the Sweedler coho-
mology in a weak setting. This cohomology was introduced in [2] as a generalization of 
the classical Sweedler cohomology for Hopf algebras [17].

Let H be a cocommutative weak Hopf algebra and let (B, ϕB) be a left weak H-module 
algebra. The groups RegϕB

(HL, B) and RegϕB
(Hn, B), introduced in the previous sec-

tion, are the objects of the corresponding cosimplicial complex. Following [2] we define 
the coface operators as ∂0,i : RegϕB

(HL, B) → RegϕB
(H, B), i ∈ {0, 1}, where ∂0,0(g) =

ϕB ◦(H ⊗(g◦pL ◦ΠR
H)) ◦δ, ∂0,1(g) = g◦pL, and ∂k,i : RegϕB

(Hk, B) → RegϕB
(Hk+1, B), 

k ≥ 1, i ∈ {0, 1, · · · , k + 1}

∂k,i(σ) =

⎧⎪⎨
⎪⎩

ϕB ◦ (H ⊗ σ), i = 0
σ ◦ (Hi−1 ⊗ μ ⊗ Hk−i), i ∈ {1, · · · , k}
σ ◦ (H⊗(k−1) ⊗ (μ ◦ (H ⊗ ΠL

H))), i = k + 1.

On the other hand, we define the codegeneracy operators by s1,0 : RegϕB
(H, B) →

RegϕB
(HL, B), by s1,0(h) = h ◦ iL, and sk+1,i : RegϕB

(Hk+1, B) → RegϕB
(Hk, B), 

k ≥ 1, i ∈ {0, 1, · · · , k}, sk+1,i(σ) = σ ◦ (Hi ⊗ η ⊗ Hk−i). Taking into account the 
codegeneracy operators, we define the groups

Reg+
ϕB

(Hk+1, B) =
k⋂

i=0
Ker(sk+1,i),

Reg+
ϕB

(HL, B) = {g ∈ RegϕB
(HL, B) ; g ◦ ηHL

= η}.

Note that Reg+
ϕB

(H2, B) is the subgroup of RegϕB
(H2, B) formed by the elements 

satisfying the normal condition and Reg+
ϕB

(H3, B) = {σ ∈ RegϕB
(H3, B) ; σ◦(η⊗H2) =

σ ◦ (H ⊗ η ⊗ H) = σ ◦ (H2 ⊗ η) = uϕB

2 }.
If (A, ϕA) is a left H-module algebra, by [2], the groups RegϕA

(HL, A) and 
RegϕA

(Hn, A), n ≥, 1 are the objects of a cosimplicial complex of groups with the pre-
vious coface and codegeneracy operators. In this case, Dk

ϕA
= ∂k,0 ∗ ∂−1

k,1 ∗ · · · ∗ ∂
(−1)k+1

k,k+1 :
RegϕA

(Hk, A) → RegϕA
(Hk+1, A) denote the coboundary morphisms of the cochain 

complex associated to the cosimplicial complex RegϕA
(H•, A).

5.1. If σ ∈ RegϕB
(H2, B), by [12, Proposition 5.5], the morphism E(σ) : H3 → B defined 

by E(σ) = σ ⊗ ε satisfies the following identities:

E(σ) ∗ uϕB

3 = uϕB

3 ∗ E(σ) = ∂2,3(σ). (93)
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Then, using that ∂2,3 is a group morphism, we have uϕB

3 = ∂2,3(σ)−1 ∗ uϕB

3 ∗ E(σ) =
∂2,3(σ)−1 ∗ E(σ). Therefore,

∂2,3(σ) = E(σ). (94)

Similarly, ∂2,3(σ−1) = E(σ−1) ∗uϕB

3 = uϕB

3 ∗E(σ) = E(σ−1), where E(σ−1) = σ−1⊗ε.
If (A, ϕA) is a left H-module algebra, by (93), the second coboundary morphism of the 

cosimplicial complex RegϕB
(H•, A) is D2

ϕA
(σ) = ∂2,0(σ) ∗ ∂2,1(σ−1) ∗ ∂2,2(σ) ∗ E(σ−1). 

Moreover, if A is commutative, (RegϕA
(H•, A), D•

ϕA
) gives the Sweedler cohomology of 

H in (A, ϕA), where the kth group is defined by Hk
ϕA

(H, A) =
Ker(Dk

ϕA
)

Im(Dk−1
ϕA )

for k ≥ 1. The 

normalized cochain subcomplex of A, denoted by (Reg+
ϕA

(H•, A), D•+
ϕA

), is defined by the 
groups Reg+

ϕA
(Hk+1, A), Reg+

ϕA
(HL, A) with Dk+

ϕA
the restriction of Dk

ϕA
. We have that 

(Reg+
ϕA

(H•, A), D•+
ϕA

), is a subcomplex of (RegϕA
(H•, A), D•

ϕA
) and the injection map 

induces an isomorphism of cohomology.

5.2. Let σ, τ ∈ Reg+
ϕB

(H2, B) satisfying the twisted condition (38) and the 2-cocycle 
condition (39). Then by Theorem 3.8, (B ⊗ H, μB⊗σ

ϕB
H) and (B ⊗ H, μB⊗τ

ϕB
H) are 

equivalent if, and only if, there exists h ∈ Reg+
ϕB

(H, B) satisfying (83) and (78). Then, 
by [2, Corollary 4.8, Theorem 4.9], (B⊗H, μB⊗σ

ϕB
H) and (B⊗H, μB⊗τ

ϕB
H) are equivalent 

iff there exists h ∈ Reg+
ϕB

(H, B) such that the equalities (83) and

σ ∗ ∂1,1(h) = ∂1,0(h) ∗ ∂1,2(h) ∗ τ, (95)

hold. Note that the equality (83) is always true if B is commutative. Then, under these 
conditions, if (B, ϕB) is a left H-module algebra, the equivalence between two weak 
crossed products (B ⊗H, μB⊗σ

ϕB
H) and (B ⊗H, μB⊗τ

ϕB
H) is determined by the existence 

of h in Reg+
ϕB

(H, B) satisfying the equality (95). In this case (95) is equivalent to say 
that σ ∗ τ−1 ∈ Im(D1+

ϕB
), i.e., [σ] = [τ ] in H2+

ϕB
(H, B).

5.3. Let σ ∈ RegϕB
(H2, B). Then, using the coface operators, it is an easy exercise to 

prove that σ satisfy the cocycle condition (39) iff

∂2,0(σ) ∗ ∂2,2(σ) = ∂2,3(σ) ∗ ∂2,1(σ) (96)

holds. Then, by (93), we have that σ satisfy the cocycle condition (39) iff σ satisfies the 
equality ∂2,0(σ) ∗ ∂2,2(σ) = E(σ) ∗ ∂2,1(σ).

Definition 5.4. Let σ ∈ RegϕB
(H2, B). We define the pre-obstruction of σ as the mor-

phism wσ : H3 → B, where wσ = ∂2,0(σ) ∗ ∂2,2(σ) ∗ ∂2,1(σ)−1 ∗ ∂2,3(σ)−1.
Then using that ∂2,1(σ)−1 = ∂2,1(σ−1) and ∂2,3(σ)−1 = ∂2,3(σ−1), by the previous 

considerations, we have that σ satisfies the cocycle condition (39) iff wσ = uϕB

3 . Also, 
note that by (94) for σ−1, we have wσ = ∂2,0(σ) ∗∂2,2(σ) ∗∂2,1(σ−1) ∗E(σ−1). On the other 
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hand, it is easy to show that ωσ = Sσ ∗ Rσ, where Sσ = ∂2,0(σ) ∗ ∂2,2(σ) = μ ◦ (B ⊗ σ) ◦
(PϕB

⊗H) ◦(H ⊗Fσ) and Rσ = ∂2,1(σ−1) ∗E(σ−1) = μ ◦(σ−1 ⊗B) ◦(H ⊗c) ◦(Gσ−1 ⊗H), 
are morphisms in RegϕB

(H3, B), where S−1
σ = μ ◦ (σ−1 ⊗ ϕB) ◦ (H ⊗ c ⊗ B) ◦ (δ ⊗ Gσ−1)

and R−1
σ = μ ◦ (B ⊗ σ) ◦ (Fσ ⊗ H).

Proposition 5.5. Let σ ∈ RegϕB
(H2, B). Then ∂3,4(ωσ) = ωσ ⊗ ε.

Proof. Using that ωσ = Sσ ∗ Rσ, if we prove that ∂3,4(Sσ) = Sσ ⊗ ε, ∂3,4(Rσ) = Rσ ⊗ ε

hold, we obtain the desired identity because ∂3,4(ωσ) = ∂3,4(Sσ ∗ Rσ) = ∂3,4(Sσ) ∗
∂3,4(Rσ) = (Sσ ⊗ ε) ∗ (Rσ ⊗ ε) = (Sσ ∗ Rσ) ⊗ ε = ωσ ⊗ ε. The identity ∂3,4(Sσ) =
Sσ ⊗ ε, follows from [2, Proposition 2.6](i), Definition 1.1(a1), the naturality of c, the 
associativity of μ and (94). Finally, ∂3,4(Rσ) = Rσ ⊗ ε follows from the naturality of c
and (94) for σ−1. �
Proposition 5.6. Let σ ∈ RegϕB

(H2, B) satisfying (38). Then, ωσ factors through the 
center of B.

Proof. We will use Proposition 4.11 to obtain that ωσ factors through the center of B. 
To prove that ωσ ∧ ϕ3

B = ωσ
op ∧ ϕ3

B we first see

∂2,0(σ) ∗ ∂2,2(σ)
op ∧ ϕ3

B = ∂2,0(σ) ∗ ∂2,2(σ) ∧ (ϕB ◦ (m3
H ⊗ B)) (97)

and

∂2,3(σ) ∗ ∂2,1(σ)
op ∧ ϕ3

B = ∂2,3(σ) ∗ ∂2,1(σ) ∧ (ϕB ◦ (m3
H ⊗ B)). (98)

Indeed:

∂2,0(σ) ∗ ∂2,2(σ)
op ∧ ϕ3

B = ∂2,2(σ)
op ∧ ∂2,0(σ)

op ∧ ϕ3
B (by Proposition 4.2(iii))

= ∂2,2(σ)
op ∧ (ϕB ◦ (H ⊗ (σop ∧ ϕ2

B))) (by naturality of c, Definition 1.3(b1) and 
cocommutativity of δ)
= ∂2,2(σ)

op ∧ (ϕB ◦ (H ⊗ (σ ∧ (ϕB ◦ (μ ⊗ B))))) (by (85))
= ∂2,2(σ)

op ∧ ∂2,0(σ) ∧ (ϕB ◦ (H ⊗ (ϕB ◦ (μ ⊗ B)))) (by Proposition 4.2(vii))
= ∂2,0(σ) ∧ ∂2,2(σ)

op ∧ (ϕ2
B ◦ (H ⊗ μ ⊗ B)) (by Proposition 4.2(iv))

= ∂2,0(σ) ∗ ∂2,2(σ) ∧ (ϕB ◦ (m3
H ⊗ B)) (by Definition 1.1(a1), naturality of c, (85)

and Proposition 4.2(i))

and

∂2,3(σ) ∗ ∂2,1(σ)
op ∧ ϕ3

B = ∂2,1(σ)
op ∧ ∂2,3(σ)

op ∧ ϕ3
B (by Proposition 4.2(iii))

= ∂2,1(σ)
op ∧ ((σop ∧ ϕ2

B) ◦ (H2 ⊗ ϕB)) (by naturality of c, counit properties and 
(94))
= ∂2,1(σ)

op ∧ ((σ ∧ (ϕB ◦ (μ ⊗ B))) ◦ (H2 ⊗ ϕB)) (by (85))
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= ∂2,3(σ) ∧ ∂2,1(σ)
op ∧ (ϕB ◦ (μ ⊗ ϕB)) (by naturality of c, counit properties and 

Proposition 4.2(iv))
= ∂2,3(σ)∧∂2,1(σ)∧(ϕB ◦(m3

H ⊗B)) (by naturality of c, Definition 1.1(a1) and (85))
= ∂2,3(σ) ∗ ∂2,1(σ) ∧ (ϕB ◦ (m3

H ⊗ B)) (by Proposition 4.2(i)).

Also,

∂2,3(σ) ∗ ∂2,1(σ) ∧ ∂2,1(σ−1) ∗ ∂2,3(σ−1)
op ∧ (ϕB ◦ (m3

H ⊗ B))
= ∂2,1(σ−1) ∗ ∂2,3(σ−1)

op∧∂2,3(σ) ∗ ∂2,1(σ)∧(ϕB◦(m3
H ⊗B)) (by Proposition 4.2(iv))

= ∂2,1(σ−1) ∗ ∂2,3(σ−1)
op ∧ ∂2,3(σ) ∗ ∂2,1(σ)

op ∧ ϕ3
B (by (98))

= ∂2,3(σ) ∗ ∂2,1(σ) ∗ ∂2,1(σ−1) ∗ ∂2,3(σ−1)
op ∧ ϕ3

B (by Proposition 4.2(iii))
= ϕ3

B (by the property of group morphism for ∂2,1 and ∂2,3 and Proposition 4.2(v))

and, as a consequence, the following identity holds:

∂2,1(σ−1) ∗ ∂2,3(σ−1)
op ∧ (ϕB ◦ (m3

H ⊗ B)) = ∂2,1(σ−1) ∗ ∂2,3(σ−1) ∧ ϕ3
B . (99)

Therefore,

ωσ
op∧ϕ3

B = ∂2,1(σ−1) ∗ ∂2,3(σ−1)
op∧∂2,0(σ) ∗ ∂2,2(σ)

op∧ϕ3
B (by Proposition 4.2(iii))

= ∂2,1(σ−1) ∗ ∂2,3(σ−1)
op ∧ ∂2,0(σ) ∗ ∂2,2(σ) ∧ (ϕB ◦ (m3

H ⊗ B)) (by (97))
= ∂2,0(σ) ∗ ∂2,2(σ)∧∂2,1(σ−1) ∗ ∂2,3(σ−1)

op∧(ϕB◦(m3
H ⊗B)) (by Proposition 4.2(iv))

= ∂2,0(σ) ∗ ∂2,2(σ) ∧ ∂2,1(σ−1) ∗ ∂2,3(σ−1) ∧ ϕ3
B (by (99))

= ωσ ∧ ϕ3
B (by Proposition 4.2(i)) �

Definition 5.7. Let σ ∈ RegϕB
(H2, B) satisfying (38). The obstruction of σ is defined 

as the unique morphism θσ : H3 → Z(B) such that zB ◦ θσ = ωσ, where ωσ is the 
pre-obstruction of σ.

Note that, by the previous proposition, we can assure that θσ exists. Also, θσ ∈
RegϕZ(B)(H3, Z(B)).

Theorem 5.8. Let σ be as in Definition 5.7. Then, ωσ is a 3-cocycle, i.e., the equality 
∂3,0(ωσ) ∗ ∂3,2(ωσ) ∗ ∂3,4(ωσ) = ∂3,1(ωσ) ∗ ∂3,3(ωσ) holds.

Proof. In order to prove the theorem we will see some equalities. First of all observe 
that by the definition of the pre-obstruction ωσ we have:

∂2,0(σ) ∗ ∂2,2(σ) = ωσ ∗ ∂2,3(σ) ∗ ∂2,1(σ). (100)

Now using that ∂3,2 is group morphism we have that

∂3,2(∂2,0(σ)) ∗ ∂3,2(∂2,2(σ)) = ∂3,2(ωσ) ∗ ∂3,2(∂2,3(σ)) ∗ ∂3,2(∂2,1(σ)). (101)
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But observe that, by the associativity of μ and (94), we have

∂3,2(∂2,3(σ)) = ∂3,4(∂2,2(σ)), (102)

∂3,3(∂2,2(σ)) = ∂3,2(∂2,2(σ)). (103)

Then, as a consequence of (101), (102) and ∂3,2(∂2,0(σ)) = ∂3,0(∂2,1(σ)) we obtain

∂3,0(∂2,1(σ)) ∗ ∂3,2(∂2,2(σ)) = ∂3,2(ωσ) ∗ ∂3,4(∂2,2(σ)) ∗ ∂3,2(∂2,1(σ)). (104)

On the other hand, by (94), we have

∂3,0(∂2,3(σ)) = ∂3,4(∂2,0(σ)). (105)

Also,

∂3,3(∂2,1(σ−1)) ∗ ∂3,3(∂2,3(σ−1)) = ∂3,1(∂2,2(σ−1)) ∗ ∂3,4(∂2,3(σ−1)) (106)

holds, because

∂3,3(∂2,1(σ−1)) ∗∂3,3(∂2,3(σ−1)) = ∂3,3(∂2,1(σ−1) ∗∂2,3(σ−1)) (because ∂3,3 is a group 
morphism)
= μ ◦ (σ−1 ⊗ B) ◦ (H ⊗ c) ◦ (Gσ−1 ⊗ μ) (by (94) for σ−1, counit properties and 
naturality of c)
= ∂3,1(∂2,2(σ−1)) ∗ ∂3,4(∂2,3(σ−1)) (by Definition 1.1 (a1), naturality of c and (9)).

Then, as a consequence of (106), we have the identity ∂3,3(∂2,3(σ)) ∗ ∂3,3(∂2,1(σ)) =
∂3,4(∂2,3(σ)) ∗ ∂3,1(∂2,2(σ)) and, using that ∂3,3 is a group morphism, ∂3,3(∂2,0(σ)) =
∂3,0(∂2,2(σ)) and (103) we can assure that

∂3,0(∂2,2(σ)) ∗ ∂3,2(∂2,2(σ)) = ∂3,3(ωσ) ∗ ∂3,4(∂2,3(σ)) ∗ ∂3,1(∂2,2(σ)) (107)

holds. Moreover,

∂3,0(∂2,0(σ)) ∗ ∂3,4(∂2,3(σ)) = ∂3,4(∂2,3(σ)) ∗ ∂3,1(∂2,0(σ)) (108)

holds because

∂3,0(∂2,0(σ)) ∗ ∂3,4(∂2,3(σ))
= μ ◦ (B ⊗ σ) ⊗ (PϕB

⊗ H) ◦ (H ⊗ (PϕB
◦ (H ⊗ σ))) (by (9), naturality of c and (31))

= μ ◦ (B ⊗ ϕB) ◦ (Fσ ⊗ ((ε ⊗ B) ◦ Gσ)) (by (38) and (32))
= ∂3,4(∂2,3(σ)) ∗ ∂3,1(∂2,0(σ)) (by (94), naturality of c and (9))
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and by, (94) and the associativity of μ, we obtain the equalities

∂3,1(∂2,3(σ)) = ∂3,4(∂2,1(σ)), ∂3,1(∂2,1(σ)) = ∂3,2(∂2,1(σ)). (109)

Finally, observe that, as ωσ factors through the center of B, for all i ∈ {1, 2, 3, 4} and 
τ ∈ RegϕB

(H4, B), we have

τ ∗ ∂3,i(ωσ) = ∂3,i(ωσ) ∗ τ. (110)

Therefore, we conclude the proof by cancellation because in one hand

∂3,0(∂2,0(σ) ∗ ∂2,2(σ)) ∗ ∂3,2(∂2,2(σ))
= ∂3,0(ωσ) ∗ ∂3,0(∂2,3(σ)) ∗ ∂3,0(∂2,1(σ)) ∗ ∂3,2(∂2,2(σ)) (∂3,0 is a group morphism and 
(100))
= ∂3,0(ωσ) ∗ ∂3,0(∂2,3(σ)) ∗ ∂3,2(ωσ) ∗ ∂3,4(∂2,2(σ)) ∗ ∂3,2(∂2,1(σ)) (by (104))
= ∂3,0(ωσ) ∗ ∂3,2(ωσ) ∗ ∂3,0(∂2,3(σ)) ∗ ∂3,4(∂2,2(σ)) ∗ ∂3,2(∂2,1(σ)) (by (110))
= ∂3,0(ωσ) ∗ ∂3,2(ωσ) ∗ ∂3,4(∂2,0(σ)) ∗ ∂3,4(∂2,2(σ)) ∗ ∂3,2(∂2,1(σ)) (by (105))
= ∂3,0(ωσ) ∗ ∂3,2(ωσ) ∗ ∂3,4(ωσ) ∗ ∂3,4(∂2,3(σ)) ∗ ∂3,4(∂2,1(σ)) ∗ ∂3,2(∂2,1(σ)) (by the 
condition of group morphism for ∂3,4 and (100)),

and on the other hand

∂3,0(∂2,0(σ) ∗ ∂2,2(σ)) ∗ ∂3,2(∂2,2(σ))
= ∂3,0(∂2,0(σ)) ∗ ∂3,3(ωσ) ∗ ∂3,4(∂2,3(σ)) ∗ ∂3,1(∂2,2(σ)) (by (107) and because ∂3,0 is 
a group morphism)
= ∂3,3(ωσ) ∗ ∂3,0(∂2,0(σ)) ∗ ∂3,4(∂2,3(σ)) ∗ ∂3,1(∂2,2(σ)) (by (110))
= ∂3,3(ωσ) ∗ ∂3,4(∂2,3(σ)) ∗ ∂3,1(∂2,0(σ)) ∗ ∂3,1(∂2,2(σ)) (by (108))
= ∂3,3(ωσ) ∗ ∂3,4(∂2,3(σ)) ∗ ∂3,1(ωσ) ∗ ∂3,1(∂2,3(σ)) ∗ ∂3,1(∂2,1(σ)) (∂3,1 is a group 
morphism and by (100))
= ∂3,1(ωσ) ∗ ∂3,3(ωσ) ∗ ∂3,4(∂2,3(σ)) ∗ ∂3,1(∂2,3(σ)) ∗ ∂3,1(∂2,1(σ)) (by (110))
= ∂3,1(ωσ) ∗ ∂3,3(ωσ) ∗ ∂3,4(∂2,3(σ)) ∗ ∂3,4(∂2,1(σ)) ∗ ∂3,2(∂2,1(σ)) (by (109)). �

Theorem 5.9. Let σ be as in Definition 5.7. Then, θσ ∈ Im(D2
ϕZ(B)

) iff there exists 
α ∈ RegϕB

(H2, B) that satisfies the twisted condition (38) and the cocycle condition 
(39).

Proof. If θσ ∈ Im(D2
ϕZ(B)

), there exists τ ∈ RegϕZ(B)(H2, Z(B)) such that D2
ϕZ(B)

(τ) =
θσ. Then, zB ◦ D2

ϕZ(B)
(τ) = ωσ. By Proposition 4.16, the morphism α = (zB ◦ τ−1) ∗ σ

satisfies the twisted condition (38) and belongs to RegϕB
(H2, B). On the other hand, 

by the properties of ∂i,j , τ and D2
ϕB

, we have that ωα = D2
ϕB

(zB ◦ τ−1) ∗ ωσ = zB ◦
D2

ϕZ(B)
(τ−1) ∗ ωσ = ω−1

σ ∗ ωσ = uϕB

3 and, as a consequence, α satisfies the cocycle 
condition (39).
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Conversely, assume that there exists α ∈ RegϕB
(H2, B) that satisfies the twisted 

condition (38) and the cocycle condition (39). Then, by Proposition 4.16, there exists 
τ ∈ RegϕZ(B)(H2, Z(B)) such that (90) holds, i.e., α = (zB ◦ τ) ∗ σ. As a consequence, 
σ = (zB ◦ τ)−1 ∗ α and θσ ∈ Im(D2

ϕZ(B)
) since ωσ = D2

ϕB
(zB ◦ τ−1) ∗ ∂2,0(α) ∗ ∂2,2(α) ∗

∂2,1(α−1) ∗ ∂2,3(α−1) (96)= D2
ϕB

(zB ◦ τ−1) = zB ◦ D2
ϕZ(B)

(τ−1). �
Proposition 5.10. Let σ ∈ Reg+

ϕB
(H2, B) be as in Definition 5.7. A morphism α in 

Reg+
ϕB

(H2, B) satisfies the twisted condition (38) iff there exists τ ∈ Reg+
ϕZ(B)

(H2, Z(B))
satisfying (90).

Proof. First note that, if H is cocommutative, (D, ϕD) is a left weak H-module algebra 

and β ∈ RegϕD
(H2, D), using that ΠL

H = ΠL
H and (45) we obtain that β ◦ (η ⊗ H) =

β ◦ (ΠL
H ⊗ H) ◦ δ holds. Also, (46), holds for β and therefore β satisfies the normal 

condition (47), i.e., β ∈ Reg+
ϕD

(H2, D) iff

β ◦ (ΠL
H ⊗ H) ◦ δ = β ◦ (H ⊗ ΠR

H) ◦ δ = uϕD

1 . (111)

Let α ∈ Reg+
ϕB

(H2, B) satisfying (38). By Proposition 4.16 there exists τ ∈
RegϕZ(B)(H2, Z(B)) satisfying (90). Then, zB ◦ τ = α ∗ σ−1 and τ satisfies the normal 
condition (47) because, in one hand, by the naturality of c, [2, Proposition 2.6](i), the 
cocommutativity of δ, (111) for α and (89) we have zB ◦τ ◦(ΠL

H ⊗H) ◦δ = zB ◦u
ϕZ(B)
2 and, 

on the other hand, using the same arguments we have zB ◦τ ◦(H ⊗ΠR
H) ◦δ = zB ◦u

ϕZ(B)
2 .

Conversely, if there exists τ ∈ Reg+
ϕZ(B)

(H2, Z(B)) satisfying (90), by the previous 
arguments, we obtain that α ◦ (ΠL

H ⊗ H) ◦ δ = (zB ◦ τ ◦ (ΠL
H ⊗ H) ◦ δ) ∗ (σ−1 ◦ (ΠL

H ⊗
H) ◦ δ) = (zB ◦ u

ϕZ(B)
2 ) ∗ uϕB

2 = uϕB

2 and similarly α ◦ (H ⊗ ΠR
H) ◦ δ = uϕB

2 . Therefore, 
α ∈ Reg+

ϕB
(H2, B). �

Remark 5.11. Let σ, β ∈ Reg+
ϕB

(H2, B) be as in Definition 5.7. Let θσ, θβ be the corre-
sponding obstructions of σ and β. Then, by the previous proposition, it is easy to show 
that [θσ] = [θβ ] in H3+

ϕZ(B)
(H, Z(B)), i.e., θσ and θβ are cohomologous.

Corollary 5.12. Let σ ∈ Reg+
ϕB

(H2, B) be as in Definition 5.7. Then, θσ ∈ Im(D2+
ϕZ(B)

)
iff there exists α ∈ Reg+

ϕB
(H2, B) that satisfies the twisted condition (38) and the cocycle 

condition (39).

Proof. The result is a direct consequence of Theorem 5.9 and Proposition 5.10. �
Corollary 5.13. Let σ ∈ Reg+

ϕB
(H2, B) be as in Definition 5.7. Then, [θσ] = 0 in 

H3+
ϕZ(B)

(H, Z(B)) iff there exists a morphism α ∈ Reg+
ϕB

(H2, B) that satisfies the twisted 
condition (38), the cocycle condition (39) and the normal condition (47).

Proof. The proof follows by the previous corollary and Corollary 1.18. �
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As a consequence of this corollary, we can assure that the obstruction vanishes iff 
there exists a weak crossed product with preunit ∇ϕB

BH ◦ (η ⊗ η) and normalized with 
respect to ∇ϕB

BH . Equivalently, by [12, Theorem 6.17, Corollary 6.18], this is equivalent 
to say that B admits a H-cleft extension (see also [3, Proposition 3.5]).
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