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0. Introduction

Crossed products of a Hopf algebra by an algebra have been widely studied in rela-
tion to extensions of algebras, generalizing classical results of semidirect products and
extensions of groups, together with a generalization of group cohomology to the Hopf
algebra setting. In [17] Sweedler defines the so-called Sweedler’s cohomology for a cocom-
mutative Hopf algebra H and a commutative H-module algebra B. In this paper he also
shows that any cleft H-extension of algebras B < A (that is, roughly speaking, a split
extension) can be realized as a crossed product given in terms of the action of H on B
and a 2-cocycle o : H> — B. Moreover, cleft extensions of B are classified by the second
cohomology group H?(H, B). Several generalizations of these results were carried out
by Doi and Takeuchi [7], Blattner, Cohen and Montgomery [4] and Blattner and Mont-
gomery [5] by dropping out the conditions of cocommutativity and commutativity, and
the associativity of the action yp : H® B — B and thus, the use of Sweedler’s cohomol-
ogy. However some of its formalism is preserved: for an arbitrary Hopf algebra H and an
arbitrary algebra B, a crossed product is given in terms of a measuring yp: H® B — B
and a formal 2-cocycle o : H? — B that must also satisfy the twisted condition needed
to substitute the associativity of ¢ 3. Moreover, two such crossed products are equivalent
if the cocycles satisfy a cohomological-like equivalence. This last result was interpreted
in an actual cohomological setting by Doi in [8], where he shows that cleft extensions of
an algebra B by a cocommutative Hopf algebra H with the same action are classified by
H2(H, Z(B)), where Z(B) denotes the center of B. All these results can be interpreted
in a symmetric monoidal category with base object K (see for example [1] and [11] for
cleft extensions in a monoidal setting).

The next objective became to decide when an algebra B admits a cleft extension by H.
Following some classical results of obstructions to extensions of groups (see, for example,
[13]), Schauenburg finds in [16] a relation between the third Sweedler’s cohomology group
H3(H, Z(B)) and cleft extensions. For a measuring ¢p and a twisted morphism o, he
generalizes the notion of obstruction as Sweedler three cocycle 8, on H with values on
the center of B and shows that the class [0,] € H?(H, Z(B)) vanish if, and only if, ¢
and o give rise to a crossed product on H ® B and, at last, to a cleft extension.

With the apparition of weak Hopf algebras as generalizations of groupoid algebras (see
[6]) all the theory of cleft extensions, Sweedler’s cohomology and crossed products needed
a deep review. Recall that the main point of a algebra-coalgebra H to be weak is that
its unit does not need to be comultiplicative, nor its counit multiplicative. These appar-
ently innocent generalizations conceptually imply the existence of two objects, different
from the base object K in the ground monoidal category when H is actually weak, that
somehow will play the role of K. From a practical point of view, this lack of (co)mul-
tiplicativity of the (co)unit forces to a change in the definition of regular morphisms,
and thus to a change in the tackling of cleft extensions, cohomological interpretations of
crossed products and a rethinking of cohomology and crossed products themselves. For
the cocommutative case these problems were successfully solved in [2] and [3], where the
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authors explore the meaning of cleft extension and weak crossed product for a cocom-
mutative weak Hopf algebra H weakly acting on an algebra B, and define Sweedler’s
cohomology in weak contexts. In order to achieve these objectives, they consider the
unit in Reg(H, B) as ¢p o (H @ np) (and thus, regular morphisms depend on ¢p and
we denote the set by Reg,, (H, B)), where pp is the weak action of H on B, and 7p is
the unit of B. Moreover, to study weak crossed products they consider a preunit instead
of a unit, so they obtain an algebra as a subobject of H ® B, whose product is given
in terms of ¢p and a twisted formal 2-cocycle o : H?> — B. In such terms, they are
able to define a cohomology theory for a cocommutative weak Hopf algebra H and a
commutative H-module algebra B. Moreover, they identify cleft H-extensions of a weak
H-module algebra B with products with convolution invertible 2-cocycle and classify
them by H?PZ(B)(H, Z(B)), this is, the second cohomology group. The relation of weak
crossed products and cleft extensions for the non-cocommutative case was also studied
in [12] by Guccione, Guccione and Valqui.

So once we have the proper concepts of cleft extensions, weak crossed products and
Sweedler’s cohomology for the weak setting, we just need to find out the role of obstruc-
tions in relation to cleft extensions and their cohomological meaning, and these are the
main objectives of the present paper. In order to attain such objectives, we first make
a wide review of weak crossed products, and we find that we just need a measuring
op : H® B — B together with a twisted morphism ¢ : H?> — B that does not need
to be convolution invertible but a formal 2-cocycle to define a weak crossed product on
H ® B. Moreover we obtain necessary and sufficient conditions for weak crossed products
to be equivalent that, in particular, are given in terms of morphisms in Reg,,(H, B).
We finally use these results in the particular case of a cocommutative weak Hopf algebra
H and a weak H-module algebra (B, ¢p). We consider a twisted convolution invertible
morphism o : H?> — B and define its cohomological obstruction 6, through the cen-
ter of B. We obtain that this obstruction vanishes in #,  (H,Z(B)) if, and only if,
there exists a twisted convolution invertible 2-cocycle v : H?> — B such that H ® B
can be endowed with a weak crossed product structure with o keeping a cohomological-
like relation with o. This result means, in terms of cleft extensions, that if (B, ¢p) is
a weak H-module algebra with ¢ : H?> — B twisted and convolution invertible then its
obstruction vanishes if, and only if, there exists a cleft extension of B by H.

Throughout this paper C denotes a strict symmetric monoidal category with tensor
product ®, unit object K and symmetry isomorphism c. There is no loss of generality in
assuming that C is strict because every monoidal category is monoidally equivalent to a
strict one. Then, we may work as if the constrains were all identities. We also assume
that in C every idempotent morphism splits, i.e., for any morphism g : M — M such
that gog = ¢ there exists an object IV, called the image of ¢, and morphisms ¢ : N — M,
p: M — N such that ¢ = iop and poi = idy (idy denotes the identity morphism
for N). The morphisms p and i will be called a factorization of ¢q. Note that N, p and ¢
are unique up to isomorphism. Given objects M, N, P and a morphism f: N — P, we
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write M ® f for idp; ® f and f ® M for f ® idys. Finally, we write c instead cps v if M
and N are clear from the context.

We assume well known the notions of (unitary associative) algebra A = (A4, n, 1) with
unit  and product g in C, (counitary coassociative) coalgebra D = (D, e, d) with counit
¢ and coproduct ¢ in C, commutative algebra, cocommutative coalgebra, morphism of
algebras, morphism of coalgebras, tensor product of algebras and tensor product of coal-
gebras. If necessary we will write 4 (pa) instead of ) (). Given an algebra A = (A, n, 1)
we set u°? := p o c. Similarly, given a coalgebra D = (D, €, ), we set §°°P := co .

Let M be an object in C. For n > 1, we denote by M" the n-fold tensor power
M®---® M. By M° we denote the unit object of C, i.e., M? = K. If A is an algebra
and n > 2, m" denotes the morphism m? : A" — A defined by m% = u and by
mk = m% 1o (A¥2 @ p) for k > 2. On the other hand, if C is a coalgebra, with dcn we
denote the coproduct defined in the coalgebra C™. Then by the coassociativity of § and
the naturality of ¢, for k =1,--- ,n — 1, the identity dc» = dgn-rgcr holds.

Finally, if A is an algebra, C' is a coalgebra and f: C' — A, g : C'— A are morphisms
in C, we define the convolution product by f*g=po (f ®g)cd.

1. Generalities on measurings and crossed products in a weak setting

In this section we resume some basic facts about the general theory of weak crossed
products in C, introduced in [9], particularized for measurings over a weak Hopf algebra
H. Firstly, we recall the notion of weak Hopf algebra, introduced in [6], and summarize
some basic properties of these algebraic objects in a monoidal setting.

Definition 1.1. A weak bialgebra H is an object in C with an algebra structure (H, 7, )
and a coalgebra structure (H,¢, ) such that the following axioms hold:

(al) dop=(p®p)ody2,
(2) copo(ue H) = (@) o (1@ p)o (H©5@ H) = (c@2)o (1o )0 (H & (cod)  H),
(a3) (0@ H)odon=(HRu®H)o(d®d)o(n®n)=(HR(uoc)@H)o(0®Jd)o(nemn).

Moreover, if there exists a morphism A : H — H in C (called the antipode of H)
satisfying

(ad) id* A= ((eop)@ H)o(H®c)o((don) ® H),
(ab) Axid=(H® (cop))o(c® H)o(H® (§0n)),
(a6) Axid*x A=\,

we will say H is a weak Hopf algebra.
We say that H is commutative, if it is commutative as algebra and we say that H is
cocommutative if it is cocommutative as coalgebra.
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1.2. For any weak bialgebra, if we define the morphisms I1% (target), 1% (source), ﬁz,
Tif € Ende(H), by Il = (o) @ H) o (H& c)o ((5on) @ H), I = (H (s0p))o (c®
—I =R
H)o(H®(5om)), Iy =(H®(Eop))o((0on)@H), Il = ((cop)®@H)o(H® (don)).
It is straightforward to show that they are idempotent and the following equalities
hold:

Ik oy, =11k, Ik ol =T, [OEoly =15, oy =1% (1)
O, ol =T, Myoll=mk, TMyolk =1k, Myolk=T. (2
On the other hand, let Hj be the image of the target morphism 1% and let pk :
H — Hp, i% : H, — H be the morphisms such that i& o p& = 1% and ph oily = idy, .
Then Hy, is an algebra and a coalgebra via ng, = p% on, pu, = pk o po (i ®ik)),
€H = goi%{, 6HL = (plfl ®p£{) o 507;%'
For the morphisms target and source we have the following identities:
(H®ﬁg)o(50ﬁ§:5oﬁf], (ﬁg@H)o(Soﬁqu:(SOﬁf{, (3)
po (H@TE) = ((cop) @ H)o (H®c)o (3 H), (4)
(I @ H) 08 = (H @ p) o (¢ H) o (H @ (§07)) (5)
—
o (HeTy) = (H& (o) o (5 H), (6)
—L
(g @ H)od=(H@p)o((don)®H), (7)
—R —L
don=ME@H)odon=(HeI)odon=(Hy)odon= (ly®@H)odon, (8)
cop=copo(MME@H)=copo(H®IL) zeouo(ﬁg®H) :fso,uo(H®ﬁ?I). (9)
If H is a weak Hopf algebra in C, the antipode A is unique, antimultiplicative, anti-
comultiplicative

Aopu=po(A®A)oec, dod=co(A®A)od, (10)

and leaves the unit and the counit invariant, i.e., Aon =mn and € o A = ¢ hold.
Also, it is straightforward to show that Ik, TIZ satisfy the equalities

Il =id+ A\, TR = Axid, T% xidy = idy = id * 1%, (11)

OE s X=X = X\«11§, 0L «0f =11k, 0«1k =0k,
Finally we also have
pP o (H®I) 0 =idy = pP o (TI ® H) o 4. (12)

Now we recall the notions of measuring, left weak H-module algebra, and left H-
module algebra.
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Definition 1.3. Let H be a weak Hopf algebra and let B be an algebra. We say that the
morphism pp : H® B — B is a measuring if the following equality holds:

(b1) ppo(H®pu)=po(pp®@¢p)o(H®c®B)o(d®B® B).
Set u¥? = pp o (H @ng). If pp is a measuring satisfying
(b2) ¢po(n®@B)=idp, (b3) uf”op=ppo(H®uf"),

we will say that (B,¢g) is a left weak H-module algebra. If we replace (b3) by ¢p o
(bL® B) = ppo(H®pp) we will say that (B, pp) is a left H-module algebra.

If (B, pp) is a left weak H-module algebra the following conditions are satisfied:

opo (Il ® B) = po (uf? @ B), (13)

pp o (I ® B) = u o (uf” ® B), (14)

uf® o Il = uf®, (15)

uf? op=uf? opo (H®TY), uf® op=uf? opo (H@Tly), (16)

For each n > 1 we define ¢% : H" ® B — B, recursively by ¢k = ¢p and ¢ =
¢p o (H® @5 1). An inductive argument using Definition 1.3(b1) shows that

ppo(H"@p)=po(pp®¢p)o(H"®@c® B)o (dyn ® B® B). (17)
For n > 2 we define uf2 := ¢pp o (M} ®n) and, by Definition 1.3(b3), u¥? =

@’é_l o (H" ! ®@uf?) holds. On the other hand, by a direct computation and [2, Propo-
sition 2.11], we have that

uf? =ufP omly, uf? xuf? =ufs. (18)
In the rest of this section H is a weak Hopf algebra and ¢p is a measuring.
Definition 1.4. For each morphism o : H?> — B we define the morphisms

P,,H®B—-B®H, F,:H>-B®H, G,:H>— H®B,

by Py, = (pp®@ H)o(H®c)o (6®B), Fy =(c®@p)ody2, and G, = (L ®0) 0 b2
respectively.

By [2, Proposition 3.3] and some easy computations we have the following result.
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Proposition 1.5. The morphism P, introduced in the previous definition satisfies
(n@H)o(B®Pyy,)o (P ®B) = Ppyo(H®p). (19)

The morphisms V55, : B H— B® H and Vi, : H® B — H @ B, defined by

Vi =w®H)o(BRP,y,)o(BoH®N), Vip=(Hop)o((HRep)o(d®n)®B)

are idempotent. We also have the following identities, in which T' = (u{® ® H) o4 and
T =(H®uf{?)od:

P«/JBO(H‘X’W):Tlv (B®e¢)o Py, =, VBHOP =Py, (20)

Vi =(weH)o (BT, Vi =(H®ou)o (T ®B), (21)
ViiomeH) =T Vigo(Hon) =T, (22)
(n@H)o(BaVEh) = (BoVyh)o(u@H), (Heu)o(VEzeB) = (Viz®B)o(H®w),
(23)

(Bee)oVeh =po(Beuf?), (e®B)oViy, =puo (uf® ® B), (24)
(B)oVEL, = (Ve ®H)o(B®J), (6@ B)oVy, =(H®VYE) o (0® B), (25)
po(B@yp)o(T'®B)=¢p, (n@H)ou{® @ P,,)o0(8®B)=P,,. (26)

On the other hand, by a similar proof to the one used in [2, Proposition 3.4], it is
possible to obtain the following identities:

(BRJO)oF,=(F,®@u)odygz, (0@ B)oG, =(u®G,)odyez. (27)
Proposition 1.6. The equality
o (BOUS) 0 Py, = o1, (28)
holds. Let o : H*> — B be a morphism. If o x uy® = o, the equality
o(B@uf?)oF, =o, (29)
holds and, as a consequence, we have the following identities:

V5 o Fy = F,, (30)
(BRe)o b, =o0. (31)

Moreover, if o : H> — B is a morphism satisfying (30) and (51), we have that

vB

oxuy,’ =o.
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(20)

24
Y (Beaovor, ©

Proof. Note that, (28) holds because po (B®@uf?)o P,, =

(B®e)oP,, (0)303.

Trivially, po (B®uf?) o F, = o * uy® holds and then we obtain (29). On the other

hand, V%2 0 Fy 2 (o (B®uf®) o Fy) @ ) 0 6z = F,. Then, (B®¢) o Fy =)

(Boe)oVe oF, 2 po(Bouf®) o F, 2 0. Finally, if o satisfy (30) and (31), we
have o &) (B®e)oF,

(50)(B®) Vg?{oFgQé)uo(B@ufB)oFg:a*ugB. m]

1.7. In a similar way to what was proven in the previous proposition, we have that
po (uf? @ B) o G, = uf®? x 0. Then, we can obtain the following result:

Proposition 1.8. Let o : H?> — B be a morphism. If u§® x o = o, the equality po (uf? ®
B) oG, = o, holds and, as a consequence, we have the following identities:

Vi 0G, =G,, (e®B)oG,=o0. (32)
Moreover, if o satisfies (32), uy® * o = o holds.

Remark 1.9. By the previous propositions, [12, Propositions 2.7 and 2.8], (1) and (2), if

o satisfies o * uy® = o, we have
o(p@H)o(Holf@H)=0o0(H®pu)o(HeIe H), (33)
o(pe@ H)o(HaTE @ H)=0co0(H®p)o (HIl, @ H). (34)

1.10. Let o : H? — B be a morphism such that o * u§? = o. Under these conditions,
we have a quadruple By = (B,H,y5 = P,,,08 = F,) as the ones introduced in
[9] to define the notion of weak crossed product. For the quadruple By there exists a
product in B ® H defined by “B@’ZBH = (@ H)o(u® F,)o(B® P,, ® H). Let
lAxg H be the product HBxg H = pg%H O 1Bgg HO (ig’f@H ®i‘g%H), where B x7 _H,
ZB®H : Bxg, H — B®H and pB®H : B®@ H — B xg, H denote the image, the
injection, and the projection associated to the factorization of V%4,. Following [9], we
say that By satisfies the twisted condition if

(© H) o (B® Pyy)o (Fy ©B) = (1@ H)o (B® Fy)o (Ppy @ H)o (H® P,y) (35)
and the cocycle condition holds if
(& H) o (B® Fy)o(Fy ® H) = (1® H) o (B Fy) o (Ppy ® H) o (H& F,). (36)

Note that, if By satisfies the twisted condition, by [9, Proposition 3.4], and (30) we
obtain the equality:

(n®H) o (A® F,)o (Vi © H) = (n® H) o (B® F,). (37)
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Taking into account that the cocommutativity condition for H is not necessary, we
can repeat the proofs of [2, Theorems 3.12 and 3.13] getting the following theorem.

Theorem 1.11. Let o : H? — B be a morphism such that oxuf® = o. Then, the following
assertions hold.

(i) The quadruple By satisfies the twisted condition (35) iff o satisfies the twisted con-
dition

no(B®0)o(Pyy®H)o (H® P,y) = po (B gs)o(F,®B).  (38)

(ii) The quadruple By satisfies the cocycle condition (36) iff o satisfies the cocycle con-
dition

o (Boa)o (P, @ H)o (H F,) = po(Boa)o(F,@B).  (39)

If the twisted and the cocycle conditions hold, the product u B®g H is associative and
normalized with respect to V%7, i.e., the following identities hold:

ViH o Beg H = 1By, 1 = IBey n° (VEh ® Vi) (40)

poeg,n© (Ve ® BOH) = ppeg, n = ooy, 1o (B H® V).

Then, under these conditions ppxg p is associative as well (see [9, Proposition 3.7]).
Hence we define:

Definition 1.12. If By satisfies (35) and (36) we say that (B ® H, MB®33H> is a weak
crossed product.

The next natural question that arises is if it is possible to endow HBxg H with a
unit, and hence with an algebra structure. As we recall in [9], we need to use the notion
of preunit to obtain this unit. In our setting, v : K — B ® H is a preunit for the
associative product ppgg if 1By H © (B H®v) = 1By H © (v®@ B® H) and
V= By, H° (v ® v) hold (see [9, Definition 2.3, Remark 2.4]). Following [9, Theorem
3.11] (see also [10, Definition 1.4]) we will say that (B ® H, upgg_n) is a weak crossed
product with preunit v : K — B® H if

(@ H)o(B® Fy)o(P,;, ® H)o(H®v)=VgionmeH), (41)
(M@ H)o(BRF,)o(v@H)=VgyoneH) (42)

and
(M@ H)o(B®Pyp)o(v@B)=(n® H)o(B®wv) (43)

hold.
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Note that, by [9, Theorem 3.11], if (B ® H, MB@’@BH) is a weak crossed product
with preunit v, the morphism v is a preunit for the associative product u B®g H and
Vi = 1Bey, Ho(v®B®H). Also, by [9, Corollary 3.12], we know that, if v is a preunit
for (B® H, 1B®g 1), the object B 7, H is an algebra with product 1Bxg H and unit
NBxg H = pfg‘f@Hov. Finally, ;LB®3:BH is normahzed with respect to ﬂB@gBHO(U(X)B@H)
because V54, = pBeg Ho(v®B® H) (see [9, Theorem 3.11]).

Remark 1.13. Note that, if v is a preunit for the weak crossed product (B® H, MB@ZBH)’
by (43) the following equality holds:

Viov=uv (44)

Therefore the preunit of a weak crossed product, if it exists, is unique because if
. . _ ¥B _ . ¥B
(B®H, HB®g #r) admits two preunits vy, vo, we have NBxg H = Ppam V1 = Ppgy OU2
and then v; = V‘g,?{ ovy; = Vi}, ovy = vs.

The following proposition is a tool to establish the conditions under which the mor-
phism v = V% o (n ®n) is a preunit for a weak crossed product (B ® H, ,u3®3’BH).

Proposition 1.14. Let o be a morphism as in Theorem 1.11. Then, the following equalities
hold.

so(n@H)=coco(Hwly)od, (45)
co(H®n) =co(H®MOE)os. (46)

Proof. The equality (45) follows from (34) and (12), and (46) is a consequence of (33)
and (11). O

Definition 1.15. Let o : H2 — B be a morphism. We say that o satisfies the normal
condition if

o(n@H) =00 (H®n) =uf”. (47)

Therefore, if o x us® = o, by Proposition 1.14, ¢ is normal iff 0 o co (H @ ﬁqu) 0 =

co(HUE)os§=uf".
Theorem 1.16. Let o be a morphism as in Theorem 1.11 and assume that
Vih o (B®n) =Py, o(n® B), (48)

holds. If By satisfies the twisted and the cocycle conditions (35) and (36), the morphism
v =V o(n®n) is a preunit for the weak crossed product associated to By iff

F,on®H)=F,o(H®n)=V§oneH). (49)
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Proof. Tt suffices to check that the left side of (41) equals F,,o(H ®n), the left side of (42)
equals F,,o(n®H) and the left side of (43) equals P, o(n®B). But the first equality holds
by (35) and (30); the second one, using that (u@H)o(B®F,)o(P,, @H)o(H®nQH) =
F,; and the third one by (19). O

As a consequence of Theorem 1.16, and by Proposition 1.14 we have:

Corollary 1.17. Let 0 : H?> — B be a morphism and let By be the associated quadruple
such that the assumptions of Theorem 1.16 hold. Then, v = V'35, o (n®n) is a preunit
for the weak crossed product associated to By iff o satisfies the normal condition (}7).

Proof. Counsidering (22), the proof follows from the equalities F, o (n ® H) = ((coco
(H®Ty)08)® H)od and Fyo (H ®n) = (0o (H®IE) 0 6) ® H) o6, which hold by
(7), (5) and the naturality of c. O

Therefore, by the previous results, we obtain the complete characterization of weak
crossed products associated to a measuring with preunit v = V35, 0 (n®@ 7).

Corollary 1.18. Let 0 : H?> — B be a morphism and let By be the associated quadruple
such that the assumptions of Theorem 1.16 hold. Then the following statements are
equivalent:

(i) The pair (B® H, uB@,gBH) is a weak crossed product with preunit v = V55, 0(n®mn).
(ii) The morphism o satisfies the twisted condition (38), the cocycle condition (59) and
the normal condition (47).

Remark 1.19. If (B, ¢g) is a left weak H-module algebra the equality (48) follows from
(21), (14), (8) and by the naturality of c.

2. Equivalent weak crossed products

The general theory of equivalent weak crossed products was presented in [10]. In this
section we remember the criterion obtained in [10] that characterises the equivalence
between two weak crossed products and we give the translation of this criterion to the
particular setting of weak crossed products induced by measurings. We shall start by
introducing the notion of equivalence of weak crossed products induced by measurings.
As in the previous one, in this section H denotes a weak Hopf algebra.

Definition 2.1. Let ¢p, ¢p : H ® B — B be measurings and let o, 7 : H> — B be
morphisms such that o *x uf? = o, 7 % ugB = 7. Assume that o, 7 satisfy (38), (39)
and suppose that v is a preunit for the weak crossed product (B ®,, H, “B®$BH)7
and v is a preunit for the weak crossed product (B Qg H, MB®;BH). We say that
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(B® H, /“LB®$BH) and (B ® H, MB®¢IBH) are equivalent weak crossed products if there
is an isomorphism 1" : B x¢, H — B x7 H of algebras, left B-modules and right H-
comodules, where the left actions are defined by ¢pxs n = Pheno (W@ H)o(BRi%E ),
PBx; H = p%lf@H o(u® H)o(B® i%’f@H), and the right coactions are PBxg H =
(P5on @ H) o (B®6) 0 iflhy, paxy, 1 = (Phpn ® H) o (B® ) 0ifl .

In our setting the general criterion [10, Theorem 1.7] that characterizes equivalent
weak crossed products admits the following formulation.

Theorem 2.2. Let pp, ¢p : H ® B — B be measurings. Let o, 7 : H> — B and
v, u: K — B® H be morphisms satisfying the conditions of the previous definition.
Let (B,H,P,,,Fy) and (B, H, Py, , F.) be the corresponding quadruples. The following
assertions are equivalent:

(i) The weak crossed products (B ® H, 'uB@iBH) and (B® H, ,U,B®;BH) are equivalent.

(ii) There exist two morphisms T,S : BQ H — B® H, of left B-modules for the trivial
action opon = p® H, and right H-modules for the trivial coaction ppgy = B®,
satisfying the conditions

Tov=u, (50)
Toppeg u=ppey uo(TOT), (51)
SoT =V%, ToS=NY%,. (52)

(iii) There exist two morphisms 0,~v: H — B ® H of right H-comodules for the trivial
coaction satisfying the conditions

0 =V%, 00, (53)
(h®H)o(B®0)oy=VgjomeH), (54)
Pop =(n®H)o(n®y)o(B® Pyp)o (0 ®B), (55)
Fr=(u®H)o(B®7y)oupeg, uo(l®0), (56)
u=(p® H)o(B®7)owv. (57)

Recall that, by the proof of the part (i) = (ii) of [10, Theorem 1.7], the morphisms T'
and S also satisfy the identity

ToSoT =T, SoToS=S5. (58)

On the other hand, if v and u are the preunits for (B ® H, MB®3>BH) and (B ®
H, MB@;BH) respectively, by (50), we have that SoT ov = Sowu. Then, by (52) we have
that V7, ov = S ow and applying (44) we obtain that
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Sou=uwv (59)
holds.

Proposition 2.3. Let g, ¢p, 0 and T be morphisms satisfying the conditions of Defini-
tion 2.1 and suppose that V'37,0(n®@n) is a preunit for (BRH, MB@S;BH) and V%%O(n(@n)
is a preunit for (B® H, uB®;BH). If( BoH, HB@Z’BH) and (B H, LLB®;BH) are equiva-
lent weak crossed products, there exist morphisms T, S : BAH — B&H of left B-modules
for the trivial action and right H-comodules for the trivial coaction such that

Viuomen) =To(nen), Vijenon) =Somen). (60)
Proof. We have that following:

(

( (58)

Va0 (n@n) 5:0)T°V§%O(n®n) 5:2)ToSoTO(n@m) ="To(m®n),

and V2 0 (non) 2 50V omen L soToSoman L somen. o

Theorem 2.4. Let pp, ¢p, o, 7, v and u be morphisms satisfying the conditions of
Definition 2.1. The following assertions are equivalent:

(i) The weak crossed products (B ® H, “B®Z>BH) and (B® H, HB@QBH) are equivalent.
(ii) There exists two morphisms h,h™' : H — B such that

Rt s h = uf®, (61)

hsh Ysh=h, h ' shxh'=h"" (62)
¢p=po(u®h™)o(h®Pyy)o(6® B), (63)
T=po(B@h ™) opupgy no((h®H)od)® ((heH)od)), (64)
u=((po(Bah™ ™)) @ H)o(B®?J)ou. (65)

Proof. First we will prove that (i) = (ii). By the proof of the part (i) = (ii) of [10,
Theorem 1.7], there exists two morphisms T, S : B® H — B ® H of left B-modules for
the trivial action and right H-comodules for trivial coaction and satisfying the conditions
(50), (51), (52) and (58) ([10, (32)]). Also, S preserves the preunit, i.e., (59) holds, and
it is multiplicative ([10, (37)]). In the proof of the part (ii) = (iii) of [10, Theorem 1.7],
the morphisms 6,~ : H — B® H where defined by § = So(n® H) and v =To(n® H).
Since S and T are left B-bilinear for the trivial action it is clear that

S=u®H)o(B®0), T=poH)o(B®Y). (66)

Furthermore, by (ii) = (iii) of [10, Theorem 1.7], for 6 and ~ the equalities (53), (54),
(55), (56), and (57) hold. Moreover, (u®@ H)o(B®6@)oy = V37, 0(n@ H), v = V%I}{ 07,
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Pop = (n@H)o(u®0)o(B&Fyy)o(y®B), Fo = (n@H)o(B®b)oupgy no(y®7)
and v = (p® H) o (B ® 0) o u also hold. Define

h=(B®e)oh, hm' =(B®e)on. (67)
Then, by the condition of right H-comodule morphism for # and v, we have
0=(h®H)os, v=(ht®H)od. (68)

The equality (61) follows from the comodule morphism condition for v, (54) and the
counit properties. Mimiking the proof of (61) one can check that

hxh™' = uf?. (69)
By (67) and the definition of 6, we have
h=(B®e)oSo(n@H) = (Boe)oSoVEjo(n@H) = (u®e)o(BR0)oVEyo(neH),

where the second equality holds by (52) and (58), and the last one by (66). Since V5, o
(@ H) = (uf? @ H)od and (u®e) o (B®0) = po(B®h), by (69), we obtain

h:u‘fB*hzh*h_l*h.

In a similar way, we can prove that ™' x hx h=1 = b1,

The equality (65) follows directly from (57) and (68). Moreover, composing in (55)
with B ® e, we prove (63) using (67) and (68). Finally, (64) holds because
oy

7(3:1)(B®5)0FT p®e)o(B®y)oupey e (0®0)

E (woh ) o sy, o (he H)o ) (he H) o)),

Conversely, to prove (ii) = (i), define § = (h@ H)oé and v = (h~* ® H) o 6. Then
6 and v are morphisms of right H-comodules, h = (B®¢)of and h™! = (B®¢) o7.
To prove the equivalence between (B ® H, 1By, H) and (B® H, MB@;BH), we must
show that (53), (54), (55), (56) and (57) hold. First note that, (57) follows from (65).
Also, (53) follows from the coassociativity of d, (21), (61) and (62). On the other hand,
(54) follows by the coassociativity of ¢, (61) and (22). Similarly, (55) follows by (63), the
coassociativity of § and the naturality of ¢. Finally, (56) holds by (64), the coassociativity
of 4, the naturality of ¢ and (27). O

Remark 2.5. Note that, in the conditions of (ii) of Theorem 2.4 composing with H ® n
in (63) we obtain the identity (69).
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Definition 2.6. We will say that the pair of morphisms h,h~! : H — B is a gauge
transformation for a measuring ¢p if they satisfy (61) and (62).

By the previous Theorem 2.4 we know that, under suitable conditions, equivalent
weak crossed products are related by gauge transformations. After the next discussion,
we should be able to secure that the converse is also true.

2.7. Let (h, h™1) be a gauge transformation for a measuring ¢z and let o be a morphism
satisfying the conditions of Definition 2.1. Suppose that v is a preunit for the associated
weak crossed product (B ® H, MB@ZZBH)' Define 6 and v as in (68). Then 6 and v are
morphisms of right H-comodules and (53) and (54) hold. Define ¢/ : H ® B — B and
oh: H?> —» B by

¢ =po(p@h ') o(B®P,y))o(0® B), (70)
o =po(B@h™")oupe; mo(0®0). (71)

The morphism ¢% is a measuring and Py =(p@H)o(n®y)o(B®P,,)0(0®B).
Therefore, (55) and

W — ! (72)

hold. On the other hand, for F,» we have the identity (56), i.e., Fyon = (u®@ H)o(B®7)o
MB@;BHO(‘g@e)’ and the equality Uh*ug% = ¢". Finally, the quadruple (B, H, P, E,n)
satisfies the twisted and the cocycle conditions. Moreover, if v" := (u® H) o (B® ) ow,
(57) holds trivially and we have that v” is a preunit for the weak crossed product

(B® H, MB@Z;: H)'
B
Therefore, as a consequence of the previous facts, we have a theorem that generalizes
to the monoidal setting [15, Theorem 5.4].

Theorem 2.8. Let ¢p, ¢p, o, T, v and u be morphisms satisfying the conditions of
Definition 2.1. The weak crossed products (B ® H, MB@Z?BH) and (B® H, “B®§>BH) are
equivalent iff there exists a gauge transformation (h,h=1) for ¢p such that ¢p = go%,

T=0" and u=o".

3. Regular morphisms

Definition 3.1. Let H be a weak Hopf algebra and ¢pp be a measuring. We say that a
morphism h : H — B is a regular morphism if there exists h~' : H — B, called the
convolution inverse of h, such that the pair (h,h™!) is a gauge transformation for ¢p
and

hxh ! =uf?, (73)
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holds. We will denote by Reg,,, (H,B) the set of regular morphisms, that it is a group
with product the convolution product and unit u{”.

3.2. Let P, be the set of all pairs (¢p, ), where:

(i) The morphism ¢p is a measuring satisfying ufB =uf”.

(ii) The morphism 7 : H?> — B is such that 7 = 7 x ug5 5 and the associated quadruple
(B, H, Py, F.) satisfies the twisted condition and the cocycle condition.
(iif) The associated weak crossed product (B ® H, /1,B®$BH) admits a preunit v.

By the results proved in the previous section we know that Reg,, (H, B) acts on P, .
The action R : Regy,,, (H, B) X Py, — Py, is defined by R(h, (¢5,7)) = (¢, 7").

Proposition 3.3. Let (B, pp), (B, ¢p) be left weak H-module algebras.

(1) Let h: H — B be a morphism such that h*uf{? = h = u‘fB x h. Then, the following
assertions are equivalent:

(i) hon=mn, (i) hollk =uf®, (i) holly =uf”.
If one (hence any) of the previous condition is satisfied we have:
(@ H)o(B® ((heH)odon) = Vi o(B@n). (74)

(2) Ifg: H— B is a morphism such that gxu{® = g = u{" *g, the following assertions
are equivalent:

(iv) gon=mn, (v) gollh=wul?, (vi) goﬁi[:ufB.
If one (hence any) of the previous conditions is satisfied the identity
(n®H)o(B® ((g® H)odon) =V o(Bon (75)

holds.
(3) If there exists h=' : H — B such that (h,h™1) is a gauge transformation for pp and
hxh™!= ufB holds, we have hon =n iff h "L on =n.

Proof. By the properties of 1 and Definition 1.3(b2), we obtain that (ii) = (i), and
(iii) = (i). Also, (i) = (ii) holds because,

hollly = (uf” x h) oIl (by h=uf” x h)
= po((uf®opo(HoML)@h)o(H®c)o((60n) ® H) (by naturality of ¢,
coassociativity of ¢ and (4))
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o((¢ppo(H@ul"))@h)o(H®c)o((6on)® H) (by Definition 1.3(b3) and (16))

o((¢po (ﬁz ® B)) ®@h)o(H®c)o((6on) @uf?) (by naturality of ¢ and (8))

= po((pocppo(uf” @B))@h)o(H®c)o ((5on) @uf”) (by (14))

=pocppo((hon) ®@ul?) (by naturality of ¢, associativity of y and h = ul? * h)
5 (by (i), naturality of ¢, and properties of 7).

On the other hand, the proof of (i) = (iii) is similar to (i) = (ii) using (6) and (13)
instead (4) and (14) respectively. Therefore, we have (i) < (ii) < (iii). As a consequence
of these equivalences, by (8), (iii) and (21), we obtain (74). The proof for 2 is similar
and we leave the details to the reader.

Finally, assume that there exists h=1': H — B such that (h,h™1) is a gauge transfor-
mation for ¢ and h* h™1 = u?® holds. If h oy = 1, we have

>

“lonp=(uf®xh Y)on (by u{® xh~t =h~1)
((hoTlpy) * h) o (by (iii))

ul” on (by (8) and uf® = hx h™1)

71 (by Definition 1.3(b2)).

Conversely, if h=! o = n, by similar arguments, hon = (hxuf?)on= (hx(h™1o
) en=uion=n. 0

As a particular instance of the previous proposition we have the following corollary.

Corollary 3.4. Let (B, ¢p) be a left weak H-module algebra and let h : H — B be a
morphism such that hxu${® = h = u{® xh. Then, the following assertions are equivalent:

(i) hop=n, (i) hollg=uf”, (i) hOHH_ul

Moreover, if h € Reg,,(H,B) with convolution inverse h=' : H — B, we have
hon = n iff k"L on = n. Then, under these conditions, if hon = n, the following
assertions hold:

(iv) hoton=mn, (v) hlollh=uf?, (vi) hlo H =uf?

Definition 3.5. Let pp be a measuring. With Reg! (H,B) we will denote the set of
morphisms h : H — B in Reg,, (H, B) such that hon =n.

Remark 3.6. Assume that (B,¢p) is a left weak H-module algebra, and let h,l €
Regl, (H, B). Since, by (8) and Corollary 3.4, (h1~")on = ((h oﬁf{) (I"tollh)) =

(uf® xuf®)on=wuf® on=mn, Regl, (H, B) is a subgroup of Reg,, (H,B).



508 R. Gonzdlez Rodriguez, A.B. Rodriguez Raposo / Journal of Algebra 610 (2022) 491-526

Remark 3.7. The set Regt@B (H,B) also acts on P,,, ie., we have a map R’
Regl,, (H,B) x Py — Py, defined by R'(h, (¢p,7)) = R(h,(¢5,7)), where R is the
action defined in 3.2.

Note that, if (B, pg) is a left weak H-module algebra, the measuring % defined in
(70) satisfies Definition 1.3(b2) because we have

o (n®B) = po((uo((hoTly)© B)@h~Y) o (H® Pyy)o((80n) @ B) (by (8))
= po((uo(uf? ®B))@h 1) o(HR®P,,)o ((60n)®B) (by (i) = (iii) of Corollary 3.4)
(n®h~ )(B®RM)MU%B(H®W) B) (by (20))
(B®h 1) oP,, o(n® B) (by (19) and properties of 7)
o(pp®@B)o(H®c)o((H® (h™tollk))odon)® B) (by (8) and naturality of

=po(Bouf?)oP,, o(n® B) (by Corollary 3.4(v) and naturality of ¢)
= idp (by (28) for ¢ and Definition 1.3(b2)).

Theorem 3.8. Let (B, pp), (B,¢p) be left weak H-module algebras and let o, 7 be mor-
phisms satisfying the conditions of Definition 2.1 and the normal condition (47). The
following assertions are equivalent:

(i) The weak crossed products (B ® H, ;LB®$BH) and (B® H, uB@,;BH) are equivalent.
(ii) There exists a gauge transformation (h,h=') for ¢p such that (69),

hon=mn, (76)

o(B®h)o Py, =po(h®eg)o(d® B), (77)

o (Boh)oF, = 1o (u®0)0 (BE Py ® H)o ((h® H) 08) @ (h® H) 06)), (78)
hold.

Proof. We first prove (i) = (ii). By Corollary 1.18, we know that (B ® H, uB@,gBH)
and (B ® H, “B®55H> are weak crossed products with preunits v = V%7, o (n ® n),
u = V%BH o (n ®n), respectively. Define 6, as in the proof of Theorem 2.4 and h, h~!
by (67). Then, using that T,S are morphisms of left B-modules and (68) we have the
following identities:

(Boe)oT=po(Boh™), (Boe)oS=po(Bah). (79)

By (i) = (ii) of Theorem 2.4, the pair (h,h™!) is a gauge transformation for ¢ 5 and
the identities (63), (64) and (65) hold. Therefore, by Remark (2.5) we obtain that (69)
holds. Moreover, (76) follows by (79), (60), the naturality of ¢, the counit properties and
Definition 1.3(b2).
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Now, by the proof of (i) = (ii) of Theorem 2.4 we know that S is multiplicative, i.e.,
SO/LB@;BH:LLBQ%BHO(S@S). (80)

In fact this is the version of identity (51) for S (see ([10, (37)])).
Then composing with n ® H ® B ® n in the previous identity we have

Soppey no(n®H®B@)
— (@ H) 3 (1@ 6) o (B (Fyo(Han))o Py, (by (66) and properties of 1)
= (e H)o (1 0) 0 (B (Vo (n® H))o Py, (by (49))
= (u®@ H) o (B®80)o Py, (by left B-linearity of V45, properties of i and (20))

and

1Beg e (S®S)o(ne@H®B®n)
=pBeg, Ho(h@H)od) & (h©H)o (B ((h®H)edon))) (by (66), (68), and
propertles of )

= ppeg, o ((h® H)od)® (Vi o (B@mn))) (by (74))

= uBeg, o (h® H)od)®Ben))) (by (40))

=(peH)o(n® (Vi oo H)))o(B&Pyy) o ((he H)ed)® B) (by (19))
=(u®H)o(B®P,,)o(((h®@H)od)® B) (by left B-linearity of V%, properties

of n and (20)).
Therefore,
(4@ H)o (B©0)o Py, = (n® H)o (BO P,,)o(h@ H)od)®B)  (81)

holds and, composing with B® ¢ in (81), we obtain (77) by the naturality of ¢, (67) and
(20).

Finally, composing with n® H ® n® H in (80), by (20), (21), (37), (66), (68) and the
properties of 1, we have SOMB@;BHO MRHN®H)=(u®@H)o(BR((h®H)od))oF,
and, by (66), properties of , and (68), we obtain ppg; ro(S®S)o(n@H@N®H) =
1By, Ho((h@H)od)®((h@H)od)). As a consequence, (u@H)o(BR((h@H)od))oF; =
1Bg  H © (h®@ H)od)® ((h® H) od)) holds and, composing with B ® e, we obtain
(78) by the counit properties and (31).

Conversely, suppose that (ii) holds. In light of (ii) = (i) of Theorem 2.4 we only need
to prove equalities (63), (64) and (65). Indeed, note that by Proposition 3.3, h=ton =17
because (76) holds. Then, (63) is satisfied because

po(u@h 1) o (h® P,y,)o (58 B)
=po(B@(uo(h®@h™)))o(Ps, ® H)o(H ®c)o (6§ ®B) (by (77), coassociativity
of ¢ and associativity of u)
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= po(Beul?)o P, (by naturality of ¢, coassociativity of ¢ and (69))
= ¢p (by (28) for ¢p).

On the other hand,

po(B&h ) ouses no((heH)od)®(he H)os)
=po(B®(no(h®h™ ))) (Fr ® p) o ez (by naturality of ¢, coassociativity of
( 8) and assoc1at1v1ty of w)

(B@ (hxh” )) Fr (by (27))
(B ugr)o F, (by (9)

and then (64) holds. Finally, we obtain (65) because

(uo(B@h )@ H)o(B@d)o Vi onen)
((ufB Y ® H)odon (by (22) and by the coassociativity of §)
=((h7to HH) ® H) o d on (by the gauge transformation condition and (8))
(u$" @ H) 0§ o n (by Proposition 3.3(vi))

= V3o e by (22). o

3.9. As a consequence of the previous theorem, it is possible to define a groupoid, denoted
by GE whose objects are pairs (pp,0), where (B, pp) is a left weak H-module algebra,
o : H? — B is a morphism such that u$? xo = o = o*uj” and the associated quadruple
By satisfies the twisted, cocycle and normal conditions. A morphism between two objects
(¢B,0), (¢5,7) of GE is defined by a morphism h : H — B for which there exists a
morphism h~! : H — B such that (h,h™!) is a gauge transformation for pp satisfying
the conditions (ii) of Theorem 3.8. The identity of (¢p,0) is id(,, - = ui” and, if
h: (¢B,0) = (¢5,7), g : (¢5,7) = (XxB,w) are morphisms in GZ, the composition,
denoted by g ® h, is defined by g ® h = g x h with (g @ h)™! = h=t % g=1. We left the
details to the reader (use (66), (68), that (u®@ H)o (BRI® H)o(B®Jd)o(Bu H)o
(Be@h®@H)o(BR§) =pueH)o(B®(h*xl)® H)o (B®)J)).

3.10. Let (B, ¢p) be a left weak H-module algebra and let o be a morphism satisfying
the conditions of Definition 2.1 and the normal condition (47). Let h be a morphism in
Regl, (H,B). Then (h,h™') is a gauge transformation for ¢p such that (73) and (76)
hold. Define ¢% and o as in (70) and (71) respectively. Then, by 2.7, ¢’ is a measuring

such that (72) holds. Therefore u{” = ufB and then

Vi = Vi (82)

Moreover, by Remark 3.7, we know that ¢ satisfies (b2) of Definition 1.3. On the

h
other hand, o" is such that o * uj? = o” and satisfies the twisted condition (38), the
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cocycle condition (39) and v" = (u® H) o (B® (h"' ® H)04)) o V&5, 0 (n®n) is a
preunit for the associated weak crossed product (B ® H, u Be" H) Note that
el

vh = (h™' ® H) o 6 on (by coassociativity of § and the condition of gauge transfor-
mation)
= (k"o Tly) @ H) o 5 on (by (8))
= (u{” @ H) o § on (by Corollary 3.4(vi))
h
= Vi o (m®n) (by (22) and (82)).

h
Therefore, v" = V52 o (n@n) = V5 0 (n@n) = v. Also, ¢y satisfies (14) because:

¢y o (T © B)
=@ peh ) o(B®P,,))o((holly)® H)osolly)® B) (by (3) and (77) for
hh)
=p®@@peoh o’ ®P,,))o((6o ﬁf{) ® B) (by (ii) of Corollary 3.4)
=n®(BOh )0 Py, o ([T © B) (by (26)
=po((ppo [y ®B)@h™) o (H o ((§o1ly) © B) (by (3))
= po((woco(uf® @ B)) @h™')o(Hac)o((d0T0y) @ B) (by (14) for ¢p)
=po((h~to ﬁé) ® B) (by associativity of u, naturality of ¢ and the condition of
gauge transformation)
=pu?o (uf’é ® B) (by Corollary 3.4(vi) and uf? = ufg)

As a consequence, we obtain that (48) holds for /. Therefore, by Corollary 1.17, we
have that o” satisfies the normal condition (47). Finally, if B is commutative and H is
cocommutative, the equality

po(B®h)oP,, =po(h®yp)o(éd® B) (83)
holds and then by the usual arguments, (83), (73) and (28) we have that ¢% = pp.

4. Hom-products, invertible morphisms and centers

In this section, for a weak Hopf algebra H and an algebra B, we will explore a new
product in Homc(H®™ ® B, B) that will permit us to extend some results about the
factorization through the center of B, given in [14] for Hopf algebras, to the weak Hopf
algebra setting.

Definition 4.1. Let ¢ and ) € Homc(H"™ ® B, B). We define the product
A:Homc(H" ® B,B) x Homc(H" ® B,B) — Homc(H™ ® B, B)

between ¢ and ¢ as o A :=po (H" Q) o (dyn ® B).
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Obviously, A is an associative product because dgn» is coassociative. We say that a
morphism ¢ € Homc(H™ ® B, B) is pp-invertible if there exists a morphism ¢ €
Homc(H™ ® B, B) such that ¢ A pf = o (u¥? @ B).

Proposition 4.2. Let op be a measuring. For a morphismw : H™ — B define @ := po(w®
B) and P := p°? o (w® B). Then, if w, 6 € Homc(H™,B) and v € Homc(H"™ ® B, B)
the following equalities hold:

)

) If H is cocommutative, w°? Ay = po(y®w)o (H"®c)o (dy» ® B).
iii) If H is cocommutative, WP A 0" =0 w™.
)

)
)

If H is cocommutative, WP N0 = 0 N@°P.

If (B, ppB) is a left weak H-module algebra, uf? A O = k.

If H is cocommutative and (B, pp) is a left weak H-module algebra, unwop ANl =
Ph-

(vit) pp o (HEW) A (pp o (H7) = pp o (HE @A)).

(viii) If H is cocommutative, pp o (H @ w) = A(ppo (H®7)) = ¢po (H® @ A7)).

Proof. The proof of (i) follows directly from the associativity of u. If H is cocommutative,
so is H™ and, by the naturality of ¢, we obtain (ii). By similar reasoning and using the
associativity of p we obtain (iii) and (iv). On the other hand,

) L oo (H"® (1o (n@ B))) = &,

uR” Ny = po (P @¢p)o(H"@c@B)o (0 @n® B
and then (v) holds. Similarly, using that H™ is cocommutative, the naturality of ¢ and
(17) we prove (vi). The identity, (vii) follows from the naturality of ¢ and (17). Similarly,
using that H is cocommutative, we obtain (viii). O

Remark 4.3. The equivalence of measurings (or, in particular, of weak actions) in terms
of gauge transformations acquires a new meaning in terms of this product. Actually,
if H is cocommutative, the action described in 3.2 on a measuring ¢p can be seen as
a conjugation by gauge transformations in the following way: ¢ = h A h=1" A ¢5.
Moreover observe that for a cocommutative weak Hopf algebra H and measurings ¢p
and ¢p satisfying conditions of Theorem 2.4, we can re-write equality (63) using the
Hom-product as ¢p = AR App. Also in this way, equality (77) of Theorem 3.8 can
be interpreted as EOP/\QS B = hApp, in coherence with the action of gauge transformations
as a conjugation given above.

Definition 4.4. Let (B,¢p) be a left weak H-module algebra. For n > 1, with
Reg,,(H", B) we will denote the set of morphisms o : H” — B such that there ex-

ists a morphism o~! : H™ — B (the convolution inverse of o) satisfying the equalities

—1 1 1 1 -1

oxol=0c"txo=uft  oxo txo=cand o txoxo =0
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Note that, for n = 1, we recover the group Reg,, (H, B) introduced in Definition 3.1.
For any n, Reg,,(H",B) is a group with unit element u$? because by (18) we know
that uf? xu¥? = uf?. Also, if B is commutative and H is cocommutative, we have that
Reg,,, (H®™, B) is an abelian group.

We denote by Reg,, (Hr, B) the set of morphisms g : H, — B such that there exists a

morphism g~! : H, — B (the convolution inverse of g) satisfying gxg—! = g7 'xg = uf?,

gxgtxg=gand g lxgxg ! =g, where uf? = uf” oil. Then by (15) we have
¥YB _ ,,¥B L

uf® =uf® o pk.

Definition 4.5. For an algebra B we define the center of B as a subobject Z(B) of B
with a monomorphism zp : Z(B) — B satisfying the identity

po(B®zp)=u”o(B®zp) (84)

and such that, if f : A — B is a morphism such that po(B®f) = u°?o(B®f), there exists
an unique morphism f’': A — Z(B) satisfying zp o f' = f. As a consequence, we obtain
that Z(B) is a commutative algebra, where 7z(p) is the unique morphism satisfying
zp o Mz(p) =N and pz(p) is the unique morphism satisfying zp o puz(py = po (25 ® 2B).

For example, if C is a closed category with equalizers and ap and Sp are the unit
and the counit, respectively, of the C-adjunction B® — -4 [B,—] : C — C, the center of
B can be obtained by the equalizer of 95 = [B, u] o ap(B) and 05 = [B, u°?] o ap(B).
Then in the category of modules over a commutative ring the center is an equalizer
object. Finally, note that by (84), composing with the symmetry isomorphism we obtain
po(zp® B) = pu?o(zp ® B).

Example 4.6. Assume that H is cocommutative and let (B, ¢p) be a left weak H-module
algebra. Then, 15 = ﬁf{ and by (13) and (14) we have that u? o (uf? ® B) = po
(uf” ® B). Then, u{® factors through Z(B). Therefore, there exists an unique morphism
v{? : H — Z(B) such that zp o v{? = u{”. Then, taking into account the equality
(18), we obtain p° o (uf? ® B) = po (uf? ® B) and, as a consequence, u$? factors
through Z(B). Therefore, there exists an unique morphism v## : H?> — Z(B) such that

ZBOUFE = u¥s.

Remark 4.7. Let w : H™ — B be a morphism. Then, w factors through the center of
B iff w = w°P. Therefore, if H is cocommutative and (B, pg) is a left weak H-module
algebra, ufs = Wop for all n > 1. Also, if w factors through the center of B, then by
items (i) and (iv) of Proposition 4.2, we have w7 = 7 xw for all 7: H™ — B.

In the rest of this section we will assume that H is a cocommutative weak Hopf algebra
and (B, ¢p) is a left weak H-module algebra.
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Proposition 4.8. A morphism o : H> — B satisfies the twisted condition (38) iff
TP Ngp =7 A (ppo(1® B)) (85)
holds.

Proof. The proof follows from the following facts: By definition of F,, we have that
po(B®yp)o(Fy® B) =3 A (¢po (1t ® B)). On the other hand, by cocommutativity
of ¢ and naturality of ¢, we have po (B®o)o (P,, @ H)o(H® P,,) =5 A¢%. O

Proposition 4.9. Assume that there exists o € Regy,, (H?, B) satisfying the twisted con-
dition (38). Then, ¢p is pp-invertible.

Proof. Let h, and h,-1 be the morphisms defined by h, = 0o (H ® A) 04, hy-1 =
o7l o(H®A)od. Then, h, € Reg,,(H, B) and h; ' = h,-1. Indeed, first note that

ho ¥ he—1 = (e x 07 ) o (H® X) od (by coassociativity and cocommutativity of §,
naturality of ¢ and (10))

=uf? o1& (by (11) and the fact that o € Reg,, (H?, B))

— uf® (by (15))

and similarly, h,-1 * h, = uf{?. Also, by the coassociativity and the cocommutativity
of 4, the naturality of ¢, (10) and o € Reg,, (H?, B) we have that hy * hy—1 * hy =
(0x0 1 x0)o(H®M)od = h,. Similarly we obtain that h,—1 % hy * hy—1 = h,—1 holds.

Now, let ¢, be the morphism defined by ¢, := po (u® B)o (h; @ BRhgy-1)o (H®
¢)o(d® H). Then, @, is pp-invertible with inverse defined by ¢! = po(u® B)o (hy-1 ®
B®hy)o(H®c)o (6 ® H). Indeed:

0o A&}
=po (uf? @ (u? o (uf? ® B))) o (§ ® B) (by coassociativity and cocommutativity
of ¢, naturality of ¢, associativity of 1 and h, € Reg,, (H, B))
= po ((uf? xuf?) @ B) (by the factorization of u{® through the center of B)

— i (uf” ® B) (by (18)).

On the other hand, let be the morphism ¢p A (pp o (A ® B)). For this morphism we
have the following:

he" A A (g o (M@ B)))
=po(pp®o)o(HR®c@H)o(6® (co(H®pp)o((oX)® B)))o (6 ®B) (by
coassociativity and cocommutativity of 4, naturality of ¢ and (10))
=po(Boyp)o(F,®B)o(((H®A)od)® B) (by cocommutativity of ¢, naturality
of ¢ and (38))
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po(B®wg)o (((he %) 0d) ® B) (by cocommutativity of &, the naturality of
¢, (10) and (11))
1o (B o ((hy ®uf®) o) B) (by (13))

hs (by associativity of u and h, € Reg,,(H, B))

and, as a consequence,

Yo =¢B A (ppo(A® B)) (86)
holds. Indeed, on the one hand:

ho=i" A (he™ A (op A (95 0 (A® B))))

=g ¥ g1 " A(eB A (0B o (A® B))) (by associativity of A and Proposition 4.2(iii))
A

=uf" " A (B A (pro (M@ B))) (by hy € Regy, (H, B))

=pp A (¢ o (A® B)) (by associativity of A and Proposition 4.2(vi))

and, on the other hand, by the cocommutativity of §, the naturality of ¢ and the
associativity of pu, mw A he = ¢, holds. Finally, define the morphism apjg by
¢h = (pp o (A® B)) A gl. By (86) we have op A ¢l = 0o A gl = po (uf® ® B)
and then ¢p is ¢p-invertible with inverse cpTB. a

Proposition 4.10. If pp is pp-invertible, ¢ is @} -invertible.

Proof. By assumption the assertion is true for n = 1. Then we will proceed by induction.
Define ¢ by @i = ¢ o (H®=D @ o}) o (cy o1 @ B). Then,

oF" N5
=ppo(H® (uouf® ®B))o(HaH" '@¢h)o(Hec®B)o(0®H" @ B)
(by naturality of ¢ and the induction hypothesis)
=ppo(Hop)o(H®ph®B)o(d® (co(uf?, ® B))) (by the factorization of u£”?,
through the center of B and the naturality of ¢)
= Mo((pB®<pB)o(H®C®B)o(6®@2®3)o(5®(co(uﬁfl ®B))) (by Definition 1.3(b1))
=po((po(uf? ®B))@pp)o(HRc® B)o(d® (co(ul?, @ B))) (by naturality of
¢, coassociativity and cocommutativity of § and the ¢p-invertivility of ¢p)
— 110 (B (uo (uf® @) 0 (58 B)))o (c® B) o (H & (co(uf®, @ B))) (by naturality
of ¢, associativity of u and the factorization of uf” through the center of B)
=po(B®yp)o(c®B)o(H® (co(ug?y ®B))) (by (26))
= po (uf? ® B) (by naturality of ¢ and the factorization of u#? through the center
of B)

and, therefore, ¢% is @-invertible. O
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Proposition 4.11. Assume that ¢ is pp-invertible. Then, a morphismw € Reg,,,(H", B)
satisfies

WAQE=w" A (87)
iff it factors through the center of B.

Proof. Assume that (87) holds. Then, by the associativity of 4 and w € Reg,,,(H", B),
we have W A ¢ /\gogr =wWA(po(uf? ® B)) = po ((wxuf?)® B) =w.
On the other hand,

WP A O A @%T =w?P A (po (uf® @ B)) (by the ¢}-invertivility)

=pPo(w® (uoco(uf® ® B)))o (duyn ® B) (by the factorization of u¥? through
the center of B)

= w (by naturality of ¢, associativity of u, cocommutativity of § and w €
Regon (H®", B)).

Therefore, w = W and, as a consequence, w factors through the center of B.
Conversely, if w factors through the center of B, by Remark 4.7, we have that w = @
and then (87) holds trivially. 0O

Proposition 4.12. Assume that ¢ is pp-invertible. Then, if w € Reg,,(H", B) satisfies
(87), w™t also satisfies (87). As a consequence, w™! factors through the center of B.

Proof. By the equalities of Proposition 4.2, Remark 4.7 and Proposition 4.11, the fol-
lowing equalities:

wWAw =wsxw 1 =uf?

op o _ —op op
=ufP = lxw =wPAw !l =wAw!

hold. Then, we have that

— T —goP o5 A T TOP
WIAES =w T ATAWwT T APE" =uf? Aw=1 A S
—op g —op
=w T AP NS =w 1 A S

Therefore, w1 satisfies (87) and, by the previous proposition, w~! factors through
the center of B. O

Proposition 4.13. If there exists o € Reg,, (H?, B) satisfying the twisted condition (38),
the action pp induces a left H-module algebra structure on the center of B, where the
action @z(py is the factorization of pp o (H @ zp) : H ® Z(B) — B through the center
of B.
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Proof. First note that, by (84), Definition 1.3(b1), the cocommutativity of § and the
naturality of ¢, the identity

no(pp@¢pp)o(H®c®B)o(dp®2p@B) = 1 o(pp@¢p)o(H®c®B)o(d5®25@B) (88)
holds. Then, on the one hand, by the associativity of u and (26)
pro(pp @ (po(uf” ®B)))o(H®c®B)o(0®zp ®B) =po((¢po(H®z2p)) ®B)

holds and, on the other hand,

po(pp®(po(uf® @B)))o(H®cw B)o(6® 25 ®B)
=po(pp®(pB A @TB)) o(H®c® B)o(0®zp ® B) (by pp-invertivility of pp)
=poco(pp®epp)o(H®c® cpg) 0(0®c® B)o (0 ®zp ® B) (by coassociativity
of §, naturality of ¢ and (88))
= po(p®@B)o(B®c)o((co(pp@ui®)o(H®c)o(d®zp))®@B) (by the ¢ g-invertivility
of ¢ and naturality of ¢)
=po(B@p)o(c®B)o(B®c)o(((u” ® pp)o(d ® zp)) ® B) (by naturality of c,
cocommutativity of §, (84) and associativity of p)
=u?o ((ppo(H ® zp)) ® B) (by naturality of ¢, (26) and the factorization of u{”
through the center of B).

Therefore, as a consequence of the previous equalities, we have that there exists a
unique morphism ¢z gy : H ® Z(B) — Z(B) such that zp o pz(py = ¢p o (H ® zp).
Using this last equality, it is an easy exercise to prove that (Z(B),¢z(p)) is a left H-
module algebra and the details are left to the reader. O

Remark 4.14. Note that, under the conditions of the previous proposition, the equality
zgoul P = uf? (89)
holds.

4.15. By [3, Theorem 3.1] we know that, if 0 € Reg,,(H?, B) satisfies the twisted
condition (38), (B, ¢p) is a left H-module algebra iff the morphism o factorizes through
the center of B. Moreover, by [3, Corollary 3.1], (B, ¢p) is a left H-module algebra iff
the morphism u3” satisfies the twisted condition (38).

Proposition 4.16. Let o € Reg,, (H?, B) satisfying the twisted condition (38). Then, o €
Reg,, (H?, B) satisfies the twisted condition (38) iff there exists T € Regy, , (H*, Z(B))
such that

a=(zpoT)*o. (90)
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Proof. Suppose that « satisfies the twisted condition (38). Then o xa~! factors through
the center of B. Indeed, following Proposition 4.11, to prove it we will see that o x a—1 A
0L =0 a 1P A ©%. First, note that ¢p o (1 ® B) = 0=1 AT A p% because

¢po(p®B) =ul? A(ppo(u® B)) (by Definition 1.1(al) and (26))
=0 'ATA(ppo(p®B)) (by o € Reg,, (H?, B) and Proposition 4.2(i))
=01 AGP A% (by (85)).

Thus, for a we have the same identity and then
oTINGP A% =a L ATP A ) (91)
holds. As a consequence,
TP AL =a® ANoxaLAp% (92)
also holds since

TP A 0% = ul® AT A % (by Proposition 4.2(v)—(iv))

=T ANo L ANTP A% (by 0 € Reg,, (H?, B) and Proposition 4.2(i))
=G Aa" L ATP A% (by (91))

=a% Ao x a1 Ap% (by items (i) and (iv) of Proposition 4.2).

Therefore,

cra 1T A 0L = a TP AToP A ©% (by Proposition 4.2(iii))

—a 17 Aa® Ao xa LAY (by (92))

=ug® P ATraTA ©% (by a € Reg,, (H?, B) and Proposition 4.2(iii))
=uf? ANoxa 1 A% (by Remark 4.7)

=oxa T AuS® A% (by Remark 4.7 and Proposition 4.2(iv))
=oxa~! Ap% (by Proposition 4.2(v))

and this implies that o a~! factors through the center of B. Then, by Proposition 4.12,
the morphism (o * a=1)™! = a x o~ also factors through the center of B. If 7 is the
factorization, we have that zg o 7 = a * 1. Then, (90) holds.

Conversely, if (90) holds for 7 € Reg,, , (H?, Z(B)), we have that

AP AgL =(zgoT)xa Ay (by (90))
=05? Nzp o7°? A p% (by Proposition 4.2(iii))

=0? NzZp o7 A 9% (by the factorization through the center of B)
=zp o1 AT A p% (by Proposition 4.2(iv))
=ZpoT AT A (ppo(u®B)) (by (85))
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=(zpoT)oo A(ppo(u® B)) (by Proposition 4.2(i))
and, therefore, « satisfies the twisted condition. O
5. Cohomological obstructions in a weak setting

In the beginning of this section we review the basic facts about the Sweedler coho-
mology in a weak setting. This cohomology was introduced in [2] as a generalization of
the classical Sweedler cohomology for Hopf algebras [17].

Let H be a cocommutative weak Hopf algebra and let (B, ¢p) be a left weak H-module
algebra. The groups Reg,,(H,B) and Reg,,(H", B), introduced in the previous sec-
tion, are the objects of the corresponding cosimplicial complex. Following [2] we define
the coface operators as dp; : Regy, (Hr, B) = Reg,,(H,B), i € {0,1}, where 0y 0(g) =
ppo(H®(goprollff))od, do.1(g) = gopr, and Oy : Reg,, (H*, B) = Regy,, (H**', B),
k>1,i€{0,1,--- ,k+1}

ppo(H®ao), i=0
Ok,i(0) = Jo(Hi_l(X),u@l‘[’f_i)7 ie{l,--- k}
JO(H®(k_1)®(MO<H®H§}))), i= k1.

On the other hand, we define the codegeneracy operators by s1 : Reg,,(H,B) —
Regy, (Hp,B), by s10(h) = hoir, and sp41,; : Regy, (H*™', B) — Reg,,(H*, B),
k>1,i¢€ {01, -k}, spr1.i(0) = 0o (H' ®n® H¥ ). Taking into account the
codegeneracy operators, we define the groups

k

Reg;fB (HkH,B) = ﬂ Ker(sg+1,i)s
i=0

Regt (Hp,B) ={g € Reg,,(H,B); gonu, =n}.

Note that Reg;fB (H?, B) is the subgroup of Reg,,(H?, B) formed by the elements
satisfying the normal condition and Reg, (H®, B) = {0 € Reg,,(H? B) ; co(n®H?) =
co(Hen®H)=0co(H>®n)=ui"}.

If (A,pa) is a left H-module algebra, by [2], the groups Reg,,(Hr,A) and
Reg,,(H", A), n >,1 are the objects of a cosimplicial complex of groups with the pre-
vious coface and codegeneracy operators. In this case, DZZA = O 0 * 8,;% Kook 5‘,&;:_2?1 :
Reg,,(H*, A) — Reg,,(H**!, A) denote the coboundary morphisms of the cochain
complex associated to the cosimplicial complex Reg,, (H*®, A).

5.1. If o € Reg,, (H?, B), by [12, Proposition 5.5], the morphism F(c) : H*> — B defined
by E(o) = 0 ® ¢ satisfies the following identities:

E(o) *uf® = uf® « E(o) = 023(0). (93)
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Then, using that 0 3 is a group morphism, we have u§? = 9s 3(c) ! * uf? * E(o) =
02.3(c) 71 * E(0). Therefore,

92,3(0) = E(0). (94)

Similarly, 82 3(c71) = E(o™Y)*uf? = u{?+E(c) = E(c1), where E(c™1) = 07! ®e.

If (A, 4) is a left H-module algebra, by (93), the second coboundary morphism of the
cosimplicial complex Reg,, (H®, A) is D2, (0) = d2,0(0) % 821(07 ") % Dp2(0) * E(o™1).
Moreover, if A is commutative, (Reg,,(H®, A), Dg, ) gives the Sweedler cohomology of
Ker(Df;A)
Im(Dg3")
normalized cochain subcomplex of A, denoted by (ReggA (H*,A), D;Jg), is defined by the
groups Regl (H*1 A), Regf (Hp, A) with DZZj the restriction of DZZA. We have that
(Regf,(H®,A),DgY), is a subcomplex of (Reg,,(H*®,A), D¢ ) and the injection map
induces an isomorphism of cohomology.

. : k
H in (A, pa), where the kth group is defined by H, , (H, A) = for k > 1. The

5.2. Let 0,7 € Reg}, (H 2 B) satisfying the twisted condition (38) and the 2-cocycle
condition (39). Then by Theorem 3.8, (B ® H, /AB®;BH) and (B ® H, “B®$BH) are
equivalent if, and only if, there exists h € Reg;‘;B (H, B) satisfying (83) and (78). Then,
by [2, Corollary 4.8, Theorem 4.9], (B®H, MB@ZBH) and (B®H, HB@EBH) are equivalent
iff there exists h € Reg}, (H, B) such that the equalities (83) and

g * 6171(/1) = 81)0(}1) * 81)2(}7/) * T, (95)

hold. Note that the equality (83) is always true if B is commutative. Then, under these
conditions, if (B, ¢p) is a left H-module algebra, the equivalence between two weak
crossed products (B® H, MB@s”oBH) and (B® H, MBQ%BH) is determined by the existence
of h in Reg} (H,B) satisfying the equality (95). In this case (95) is equivalent to say
that o+ 7' € Im(D!), ie., [0] = [7] in H2E (H, B).

5.3. Let 0 € Regy, (H?, B). Then, using the coface operators, it is an easy exercise to
prove that o satisfy the cocycle condition (39) iff

82,0(0') * 8272(0) = 82,3(0') * 3271(0) (96)

holds. Then, by (93), we have that o satisfy the cocycle condition (39) iff o satisfies the
equality 020(0) * 022(0) = E(0) * 02,1(0).

Definition 5.4. Let 0 € Reg,,, (H?, B). We define the pre-obstruction of o as the mor-
phism w, : H3 — B, where w, = 95,0(0) % O2.2(0) *x 9a1(0) ™1 % Dz 3(0) 1.

Then using that d21(0)™ = d91(c7 ') and d23(c)~' = 23(c™1), by the previous
considerations, we have that o satisfies the cocycle condition (39) iff w, = uf”. Also,

note that by (94) for 071, we have wy = 020(0)*02,2(0)*02.1 (07 1)xE(c~1). On the other
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hand, it is easy to show that w, = S, * Ry, where S, = 020(0) *022(0) = po (B®o)o
(Pp,®H)o(H®F,) and R, = 021(c 1) E(c™!) = po(c7'@B)o(H®c)o(Gy-1 @ H),
are morphisms in Reg,,, (H?, B), where S;' = po(c7'®¢p)o(H®c®B)o (6 ® Gy-1)
and R;'=po(B®ao)o (F,® H).

Proposition 5.5. Let o € Reg,, (H?, B). Then 95 4(w,) = wy @ €.

Proof. Using that w, = S, * Ry, if we prove that 05 4(S,) = So ® ¢, d34(Rs) = R, ®¢€
hold, we obtain the desired identity because 93 4(w,) = 93.4(Ss * Ry) = 03.4(Ss) *
034(R,) = (S;, @) x (R, @) = (Sy * Ry) ® € = w, ® e. The identity 954(S,) =
Se ® ¢, follows from [2, Proposition 2.6](i), Definition 1.1(al), the naturality of ¢, the
associativity of u and (94). Finally, 93 4(R,) = R, ® ¢ follows from the naturality of ¢
and (94) for =1, O

Proposition 5.6. Let 0 € Reg,,(H?, B) satisfying (38). Then, w, factors through the
center of B.

Proof. We will use Proposition 4.11 to obtain that w, factors through the center of B.
To prove that W, A ¢% = 0,7 A ¢3, we first see

85.0(0) % D22(0) " Aol = Ba0(0) % Da2(0) A (95 © (MY @ B)) (97)
and
D2.3(0) % 02.1(0) " A = Das(0) % Da1(0) A (05 o (MY ® B)). (98)

Indeed:

D2.0(0) % O2.2(0) " N = a2(0) " ADag(0)” NS (by Proposition 4.2(iii))

= 82,2(0)” A (pp o (H @ (T°° A ¢%))) (by naturality of ¢, Definition 1.3(b1) and
cocommutativity of ¢)

(@) A ppo (H® @A (ppo(n® B))) (by (85))

(U)Op N D20(0) A (ppo(H® (ppo(u® B)))) (by Proposition 4.2(vii))

= O,0(0) A 82’2(0)01) A (9% o (H ® p @ B)) (by Proposition 4.2(iv))

= Oy0(0) * O22(0) A (pp o (m3; @ B)) (by Definition 1.1(al), naturality of ¢, (85)
and Proposition 4.2(i))

and

82)3(0‘) * 80271(0')01) A\ (p% = 82)1(0')01) A 62)3(0’)010 A QO% (by Proposition 4.2(iii))
P A ((EP A v%) o (H? ® pp)) (by naturality of ¢, counit properties and

I
N
—
—
~—

g

— Br (@ A (E A (o (1 ® B)) o (H2 @ o)) (by (55))
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= Og3(0) A [“)2,1(0)017 A (pp o (p® pp)) (by naturality of ¢, counit properties and
Proposition 4.2(iv))

= 0a3(0) A1 (o) A(ppo(mi; @ B)) (by naturality of ¢, Definition 1.1(al) and (85))
=0y 3(0) % 02.1(0) A (pp o (m3; @ B)) (by Proposition 4.2(i)).

Also,

02,3(0) * Bp.1(0) A Do (01) 5 Ba3(0~1) " A (0 © (miy © B))
=021(07 1) % 0a3(0~ 0’ /\5‘273(0) * 02.1(0) A(ppo(m3;®B)) (by Proposition 4.2(iv))
= 8o (0 ) Da3(0 1) ABaz(0) % Da1(0) . Ap¥ (by (98))
= 82 3(0) % 0a1(0) % D21(07 1) % Da3(0 —1)Op A ¢% (by Proposition 4.2(iii))
= % (by the property of group morphism for 9, 1 and 82 3 and Proposition 4.2(v))

and, as a consequence, the following identity holds:

Do1 (0 ) % Daz(0 )" Appo(my @ B)) = o1(0- 1) x Dag(o- ) Al (99)

Therefore,

WeP Ap, = Daq (0 1) % Dag(0 1) ABao(0) x Daa(0) | Apd, (by Proposition 4.2(iii))
=0p1(0 1) x0a3(0 ™))" A By0(0) * D22(0) A (i © (m; ® B)) (by (97))

= 02.0(0) % D2.2(0)ADa1 (0 1) % Dag(o— 1) Alepo(m3,@B)) (by Proposition 4.2(iv))
= 02,0(0) ¥ D22(0) N2 1(07 1) % Do 3(0 1) A 4,0‘}53 (by (99))

=Wy A 4,035’3 (by Proposition 4.2(i)) O

Definition 5.7. Let o € Reg,,(H?, B) satisfying (38). The obstruction of ¢ is defined
as the unique morphism 6, : H> — Z(B) such that 25 0 0, = w,, where w, is the
pre-obstruction of o.

Note that, by the previous proposition, we can assure that 6, exists. Also, 0, €
Reg¢Z(B)(H3,Z(B)).

Theorem 5.8. Let o be as in Definition 5.7. Then, wy, is a 3-cocycle, i.e., the equality
03.0(ws) * 03 2(ws) * 05 4(we) = 031 (ws) * 05 3(ws) holds.

Proof. In order to prove the theorem we will see some equalities. First of all observe
that by the definition of the pre-obstruction w, we have:

D2.0(0) % D2 2(0) = wy % Do 3(0) % Do 1(0). (100)

Now using that 03 o is group morphism we have that

(9372(82,0(0')) * (9372(82,2(0')) = 832(&}0) * 8372(82,3(0')) * 6372(82,1(0')). (101)
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But observe that, by the associativity of u and (94), we have

05,2(02,3(0)) = 05,4(02,2(0)), (102)
83,3(3272(0')) = 8372(6272(0')). (103)

Then, as a consequence of (101), (102) and 95,2(02,0(0)) = 05,0(02,1(c)) we obtain
03,0(02,1(0)) * 03,2(02,2(0)) = 03,2(wes) * 03,4(D2,2(0)) * 03,2(02,1(0)). (104)
On the other hand, by (94), we have
05,0(02,3(0)) = 05,4(02,0(0)). (105)
Also,
03,3(02,1(07 1)) % B3 3(D2,3(07 1)) = Bz 1(D22(0 1)) * Bz a(Da3(0 1)) (106)
holds, because
03.3(92,1(07 1)) %03 3(D2,3(c7 1)) = 033(02,1 (07 1) D2, 3(c7 1)) (because J5 3 is a group
morphism)
=po(c ' ®B)o(H®c)o (Go—1 @ ) (by (94) for 0~1, counit properties and

naturality of ¢)
= 031(022(071)) * 03 4(D2,3(c™ 1)) (by Definition 1.1 (al), naturality of ¢ and (9)).

Then, as a consequence of (106), we have the identity 05 3(02,3(0)) * 03,3(92,1(0))
8374(82,3(0')) * (93’1(8272(0')) and, using that (9373 is a group IIlOI‘phiSHl7 83,3(3270(0'))
03,0(02,2(0)) and (103) we can assure that

8&0(82}2(0‘)) * 83’2<82,2(0')) == 83’3((,00) * 83’4(82’3(0')) * 83’1(82’2(0')) (107)

holds. Moreover,

03,0(02,0(0)) * 03,4(02,3(0)) = 05,4(02,3(0)) * 03,1(02,0(0)) (108)

holds because

a3,0(32,0(0)) * 83,4(82,3(0))
=po(B®o)®(P,, ®H)o(H®(P,,o(H®o))) (by (9), naturality of ¢ and (31))
=po(B®eyp)o(Fy® ((e® B)oG,)) (by (38) and (32))
= 03,4(02,3(0)) * 03,1(02,0(c)) (by (94), naturality of ¢ and (9))
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and by, (94) and the associativity of u, we obtain the equalities

03,1(02,3(0)) = 05,4(02,1(0)), 03,1(02,1(0)) = 03,2(02,1(0)). (109)

Finally, observe that, as w, factors through the center of B, for all i € {1,2,3,4} and
T € Reg,, (H*, B), we have

7 * 03,i(Wy) = 03,i(wo) * T. (110)
Therefore, we conclude the proof by cancellation because in one hand

03,0(02,0(0) * O2.2(0)) % F32(02.2(0))
= 03,0(wy) *03,0(02,3(0)) % 03,0(02,1(0)) ¥ 03.2(02.2(c)) (5,0 is a group morphism and
(100))
= 030(Wo) * 05,0(02,3(0)) * 05 2(ws) * O3,4(D2,2(0)) * O3 2(02,1(0)) (by (104
= 03,0(wWo) * O3 2(wy) * O3,0(D2,3(0)) * O3,4(D2,2(0)) * 05 2(D2,1(c)) (by (110
= 83,0(%) * 83’2(0.}0) * (‘:)3’4((92’0(0)) * (‘:)3,4(82’2((7)) * (‘:)3’2(82’1(0)) (by (10
= 03,0(wo) * 032(Wy) * O3 4(wWs) * 034(02,3(0)) * 03,.4(02,1(0)) * 032(02,1(0

condition of group morphism for d3 4 and (100)),

and on the other hand

8370(82’0(0') * 822(0‘)) * 83’2(82’2(0'))
= 03,0(02,0(0)) * 03 3(we) * 03.4(02,3(0)) * J3,1(2,2(0)) (by (107) and because 05 is
a group morphism)
= 03,3(wo) * 03,0(02,0(0)) * 03,4(02,3(0)) * 05,1(02,2(0)) (by (110))
= 03,3(wo) * 03,4(02,3(0)) * 93,1(02,0(0)) * 03,1(02,2(c)) (by (108))
= O3 3(wy) * 054(023(0)) * 031(ws) * 03.1(92,3(0)) * 03.1(02,1(0)) (31 is a group
morphism and by (100))
= 03.1(wy) * 03 3(wy) * 03,4(D2,3(0)) * F3,1(F2,3(0)) * F3.1(02.1(0)) (by (110))
= 031(we) * 03 3(we) * 03.4(02,3(0)) * 03,.4(02,1(0)) * 03.2(02,1(0)) (by (109)). O

Theorem 5.9. Let o be as in Definition 5.7. Then, 0, € Im(D?p (B)) iff there exists

a € Reg,,(H? B) that satisfies the twisted condition (38) and the cocycle condition

(39).

Proof. If 0, € Im(Di 25> there exists T € Reg,, , (H?, Z(B)) such that D7 (1) =

5. Then, zp o DWZ B)(T> Wy By Proposition 4.16, the morphism o = (zg o7~ 1) x o
satisfies the twisted condition (38) and belongs to Reg,, (H?, B). On the other hand,

: 2

by the properties of 9; ;, 7 and D,

2 -1 — 1 ¥YB
oo (T ) FWe = W, *we = ug

condition (39).

we have that w, = DiB (2po7 Y *w, = zg o
and, as a consequence, « satisfies the cocycle
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Conversely, assume that there exists o € Reg,, (H 2 B) that satisfies the twisted
condition (38) and the cocycle condition (39). Then, by Proposition 4.16, there exists
T E Reg¢Z(B)(H2 Z(B)) such that (90) holds, i.e., « = (zp o 7) * 0. As a consequence,
o= (zpo7) ' xaand f, € Im(D2, . ) since wy = D2 (zp o7 ")* dag(a) * Do a(a)

$z(B)
Dop(at) %Dy 3(a™t) = @ D2, (zpor ") =zp0D2, _(r Y. D

¥Yz(B)
Proposition 5.10. Let o € Reg;fB(HQ,B) be as in Definition 5.7. A morphism « in
Regt, (H?, B) satisfies the twisted condition (38) iff there ewists T € Reg;fzw) (H? Z(B))
satisfying (90).

Proof. First note that, if H is cocommutative, (D, pp) is a left weak H-module algebra
and 3 € Reg,,(H? D), using that ﬁILq = 14 and (45) we obtain that fo (n® H) =
Bo (IT4 ® H) o § holds. Also, (46), holds for 3 and therefore 3 satisfies the normal
condition (47), i.e., 8 € Reg} (H?, D) iff

Bo(MME®H)od=Bo(HRIE)od =ulP. (111)

Let a € ReggB (H?,B) satisfying (38). By Proposition 4.16 there exists 7 €
Regyp, s (H?,Z(B)) satisfying (90). Then, zp o7 = a * 0! and 7 satisfies the normal
condition (47) because, in one hand, by the naturality of ¢, [2, Proposition 2.6](i), the
cocommutativity of §, (111) for o and (89) we have zgoTo (Il @ H)od = zgous?™ and,
on the other hand, using the same arguments we have zgo1o(H®II%)od = 25 ouSOZ(B)

Conversely, if there exists 7 € Reng(B)(HQ,Z(B)) satisfying (90), by the previous
arguments, we obtain that a o (HIL{ ®H)od = (zpoTo (Il ®H)od)x ( “lo (I ®
H)od) = (zpous”®)xuf? = u$® and similarly a o (H ® II}) 0 § = u$”. Therefore,
o € Regf, (H? B). O

Remark 5.11. Let 0,5 € Reg;fB (H?, B) be as in Definition 5.7. Let 6,, 05 be the corre-
sponding obstructions of ¢ and 8. Then, by the previous proposition, it is easy to show
that [0,] = [05] in HZE  (H,Z(B)), i.e., 0, and 0 are cohomologous.

Corollary 5.12. Let 0 € Reg, (H?, B) be as in Definition 5.7. Then, 6, € Im(DiJ;(B))
iff there exists € Regf, (H?, B) that satisfies the twisted condition (38) and the cocycle

condition (59).
Proof. The result is a direct consequence of Theorem 5.9 and Proposition 5.10. O

Corollary 5.13. Let o € Reg;fB(HQ,B) be as in Definition 5.7. Then, [0,] = 0 in
7—[2‘;(3) (H,Z(B)) iff there exists a morphism o € Reg}  (H?, B) that satisfies the twisted
condition (38), the cocycle condition (39) and the normal condition (47).

Proof. The proof follows by the previous corollary and Corollary 1.18. O
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As a consequence of this corollary, we can assure that the obstruction vanishes iff
there exists a weak crossed product with preunit V%% o (n ® n) and normalized with
respect to V%7,. Equivalently, by [12, Theorem 6.17, Corollary 6.18], this is equivalent
to say that B admits a H-cleft extension (see also [3, Proposition 3.5]).
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