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Non-active adaptive sampling is a way of building machine learning models from a training
data base which are supposed to dynamically and automatically derive guaranteed sample
size. In this context and regardless of the strategy used in both scheduling and generating
of weak predictors, a proposal for calculating absolute convergence and error thresholds
is described. We not only make it possible to establish when the quality of the model no
longer increases, but also supplies a proximity condition to estimate in absolute terms
how close it is to achieving such a goal, thus supporting decision making for fine-
tuning learning parameters in model selection. The technique proves its correctness and
completeness with respect to our working hypotheses, in addition to strengthening the
robustness of the sampling scheme. Tests meet our expectations and illustrate the proposal
in the domain of natural language processing, taking the generation of part-of-speech
taggers as case study.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A recurrent issue in machine learning (ml) relates the determination of optimal sampling data sets, the aim being to re-
duce both training costs and time without making the modelling process less reliable. In this sense, the operating principle 
for adaptive sampling is simple and involves beginning with an initial number of examples and then iteratively learning the 
model, evaluating it and acquiring additional observations if necessary. Accordingly, there are two questions to be consid-
ered: it is necessary to determine the training data to be acquired at each cycle, and also to define a halting condition to 
terminate the loop once a certain degree of performance has been achieved by the learner. Both tasks confer the character 
of research issues to the formalization of scheduling and stopping criteria [20], respectively. The former has been researched 
for decades in terms of fixed [20,30] or adaptive [30] sequencing, and it is not our objective. As regards the halting criteria, 
they are independent of the scheduling and mostly start from the hypothesis that learning curves are well-behaved, includ-
ing an initial steeply sloping portion, a more gently sloping middle one and a final balanced zone [28]. Accordingly, the 
purpose is to identify the moment in which such a curve reaches a plateau, namely when adding more data instances does 
not improve the accuracy, although this often does not strictly verify. Instead, extra learning efforts almost always result 
in modest increases. This justifies the interest in having a proximity condition, understood as a measure of the degree of 
convergence attained from a given iteration, rather than a stopping one. In short, this will make it possible to select the 
level of reliability in predicting a learner’s performance, both in terms of accuracy and computational costs. We will thus 
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have a powerful and flexible decision support tool in the field of model selection, capable of adapting to the user’s needs in 
terms of the evaluation quality of both the learning strategy and its parameterization.

A major challenge is then to avoid the overvaluation of learning perturbations, in such a way that the training does 
not stop prematurely due to temporary increases in accuracy. Namely, we are interested in proving the correctness of a 
proximity criterion with respect to the working hypotheses, but also in improving its capacity to mitigate the impact of 
such fluctuations without compromising it, i.e. its robustness. Given that we are looking for a practical formula, it is finally 
necessary to ensure its applicability, which relies on proving the completeness of the approach. These properties focus the 
attention of this work, the structure of which we briefly describe. Firstly, Section 2 examines the methodologies serving 
as an inspiration to solve the question posed, as well as our contributions. Next, Section 3 reviews the mathematical basis 
supporting the proposal, whose model we introduce in Section 4. In Section 5, we describe the testing frame for the 
experiments illustrated in Section 6. Finally, Section 7 presents the final conclusions.

2. The state of the art

Below is a brief review on how correctness, robustness and completeness have been addressed over time in the definition 
of halting conditions in adaptive sampling, thus allowing to contextualize our contribution in that respect.

2.1. Working on correctness, robustness and completeness

Regarding correctness, most adaptive samplers assume a set of hypotheses guaranteeing concurrence, such as access to 
independent and identically distributed observations [36,38]. The learning curve is then monotonic and, since it is bounded, 
training converges on a supremum. At this point, the conditions for halting are addressed from two viewpoints, depending 
on whether predictive accuracy is the only factor to take into account [14] or just another one in an optimization scenario 
stated in decision theory [19]. In this latter context, performance is understood as the search for a proper cost/benefit trade-
off and authors resort to statistically based strategies by applying the principle of maximum expected utility [28] (meu). 
This implies taking all effectiveness considerations into account, which depends on the degree of control exercised by the 
user on the learning process. In its absence, namely using non-active techniques as we do, the final cost is the sum of 
data acquisition, error and model induction charges [44]. Nonetheless, at best, heuristics are used to calculate the first two 
and there is thus no way of guaranteeing the location of a global optimum [22], which often results in assuming fixed 
budgets [21]. Alternatively, procedures exclusively based on accuracy estimates try to identify the plateau of the learning 
curve in terms of functional convergence. Among the most popular ones are local detection and learning curve estimation [20], 
or linear regression with local sampling [30], all of them based on heuristics. Again, we cannot talk here about proximity 
criteria, only of stopping conditions. More recently, this issue has been corrected [42], although the proposal is still far from 
our objective because the proximity is expressed in terms of the net contribution of each iteration to the learning process, 
which provides not absolute but relative estimates.

Turning to robustness, one common idea is to generate different versions (weak predictors) of the partial learning curves 
by changing the training data distribution repeatedly, and integrating the hypotheses thus obtained. That way, bagging1
procedures [6] build the predictors in parallel to combine them by voting (classification) [24] or averaging (regression) [23]. 
On the contrary, boosting algorithms [33] do it sequentially, which allows the adapting of such a distribution from the 
results observed in previous predictors. This gives rise to arcing2 strategies [13], where increasing weight is placed on the 
more frequently misclassified observations. Since these are the troublesome points, focusing on them may do better than 
the neutral bagging approach [2], justifying [15] its popularity. Another well-known method is the k-fold cross validation [9], 
where the sample is randomly partitioned into k equal sized subsamples. For each fold, a model is trained on the other k −1
ones and tested on it, which gives an advantage to working with small data sets. The performance reported is the average of 
the values computed. Whatever the format, such as online proposals, all these build on the observations available, a major 
constraint for making estimations beyond the last one. One simple way to alleviate this problem is by using anchors [42], 
i.e. extra examples placed at the point of infinity to generate the weak predictor in each cycle. As any one of such curves 
is the result of a fitting action, the sum total of its residuals, namely the differences between the observed values and the 
fitted ones, is null. This gives the anchor the chance to neutralize irregularities by choosing an appropriate value.

Finally, completeness of the halting conditions has received no attention before to the best of our knowledge, probably 
because so far no additional assumptions on the sampling premises were necessary to provide a practical solution.

2.2. Our contribution

It revolves around foundations, reliability and applicability to provide correctness, robustness and completeness in a 
context for which the ease of use is a priority. The former is established from a set of working hypotheses widely recognized 
in ml and a previous outcome, whose interest was only formal to date, on learning convergence in adaptive sampling [42]. 

1 For bootstrap aggregating.
2 For adaptive resampling and combining.
40



M. Vilares Ferro, V.M. Darriba Bilbao and J. Vilares Ferro Journal of Computer and System Sciences 129 (2022) 39–61
Fig. 1. Learning curve for fntbl on frown corpus, and an accuracy pattern fitting it.

To that end, the adaptation to the premises of the theoretical result must be guaranteed. The solution is based on the 
concept of anchoring, also proposed by those authors but only as a robustness mechanism, which requires the development 
of a specific family of such techniques.

We choose the domain of natural language processing (nlp) as case study, and more precisely the modelling of part-of-
speech (pos) taggers, the classifiers that mark a word in a text (corpus) as corresponding to a particular pos,3 based on its 
definition and context. The reasons are the significant resource and time costs of generating training data, the complexity of 
the relations to be learned and the fact that pos tagging is prior to any other nlp task, so errors at this stage can lower its 
performance [37]. That highlights the scale of the challenge, but also justifies its interest and popularity as experimentation 
field for new ml facilities, particularly around sampling technology [3,25,32,35,43], which is the case here.

3. The formal framework

We introduce the concepts underlying the proposal, most of them taken from [42], denoting the real numbers by R and 
the natural ones by N , assuming that 0 /∈ N . A prior question to clarify, because the generation of ml-based pos taggers 
serves as an illustration guide, is the accuracy notion usually accepted in that kind of model. We define it as the number of 
correctly tagged tokens divided by the total ones, expressed as a percentage [41] and calculated following some generally 
admitted usages: all tokens in the testing data set are counted, including punctuation marks, and it is supposed that only 
one tag per token is provided.

3.1. The working hypotheses

We start with a sequence of observations calculated from cases incrementally taken from a training data base, meeting 
some conditions to ensure a predictable progression of the estimates over a virtually infinite interval. So, they are assumed 
to be independently and identically distributed [12,36,38]. We then accept that a learning curve is a positive definite and 
strictly increasing function on N , where numbers are the position of the case in the training data base, and upper bounded 
by 100. This results [1] in a concave graph with horizontal asymptote. Such hypotheses make up an idealized working 
frame to support correctness, while real learners may deviate from it, thus justifying the study of robustness. These de-
viations impact both the concavity and increase of those curves, as shown in the left-most diagram of Fig. 1 for the fast 
transformation-based learning (fntbl) tagger [29] on the Freiburg-Brown (frown) corpus of American English [26].

3.2. The notational support

Having identified the context of the problem, it is necessary to formalize the data structures we are going to work with, 
such as the collection of instances whose convergence is intended to be measured.

Definition 1. (Learning scheme) Let D be a training data base, K � D a set of initial items from D, and σ : N → N a function. 
We define a learning scheme for D with kernel K and step σ , as a triple DK

σ = [K, σ , {Di}i∈N ], such that {Di}i∈N is a cover of D
verifying:

D1 := K andDi := Di−1 ∪ Ii, Ii ⊂ D \Di−1, ‖Ii‖ = σ(i), ∀i ≥ 2 (1)

with ‖Ii‖ the cardinality of Ii . We refer to Di as the individual of level i for DK
σ .

3 A pos is a class of words which have similar grammatical properties. Words that are assigned to the same pos generally display similar behaviour in 
terms of syntax, i.e. they play analogous roles within the grammatical structure of sentences. The same applies in terms of morphology, in that they undergo 
inflection for similar properties. Common pos labels are lexical categories (noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection, 
numeral, article, determiner, ...), the number or the gender.
41
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Fig. 2. Learning trace for fntbl on frown, with details in zoom.

A learning scheme relates a level i with the position ‖Di‖ in the training data base, determining the sequence of observa-
tions {[xi, A∞∞∞∞∞∞∞∞∞[D](xi)], xi := ‖Di‖}i∈N , where A∞∞∞∞∞∞∞∞∞[D](xi) is the accuracy achieved on such an instance by the learner. Thus, 
a level determines an iteration in the adaptive sampling whose learning curve is A∞∞∞∞∞∞∞∞∞[D], whilst K delimits a portion of D
we believe to be enough to initiate consistent evaluations of the training. For its part, σ identifies the sampling scheduling. 
As we want stable estimates, partial learning curves are extrapolated according to a functional pattern that verifies the 
working hypotheses, but are also infinitely differentiable. This supplies graphs without disruptions due to instantaneous 
jumps while ensuring their regularity.

Definition 2. (Accuracy pattern) Let C∞
(0,∞) be the C-infinity functions in R+, we say that π : R+n → C∞

(0,∞) is an accuracy pattern 
iff π(a1, . . . , an) is positive definite, upper bounded, concave and strictly increasing.

An example is the power law family of curves π(a, b, c)(x) := −a ∗ x−b + c, hereafter used as the running one. Its upper 
bound is the horizontal asymptote value lim

x→∞π(a, b, c)(x) = c, and

π(a,b, c)′(x) = a ∗ b ∗ x−(b+1) > 0 π(a,b, c)′′(x) = −a ∗ b ∗ (b + 1) ∗ x−(b+2) < 0 (2)

which guarantees increase and concavity in R+ , respectively. This is illustrated in the right-most diagram of Fig. 1, whose 
goal is to fit the learning curve represented on the left-hand side. Here, the values a = 542.5451, b = 0.3838 and c = 99.2876
are provided by the trust region method [4], a regression technique minimizing the summed square of residuals, namely 
the differences between the observed values and the fitted ones. Furthermore, as the aim is to determine the degree of 
convergence attained by the learning process, we need to evaluate the progression of accuracy through the sequence of 
weak predictors being computed.

Definition 3. (Learning trend) Let DK
σ be a learning scheme, π an accuracy pattern and � ∈ N, � ≥ 3 a position in the train-

ing data base D. We define the learning trend of level � for DK
σ using π , as a curve Aπ

� [DK
σ ] ∈ π , fitting the observations 

{[xi, A∞∞∞∞∞∞∞∞∞[D](xi)], xi := ‖Di‖}�i=1 . A sequence of learning trends Aπ [DK
σ ] := {Aπ

� [DK
σ ]}�∈N is called a learning trace. We refer 

to {α�}�∈N as the asymptotic backbone of Aπ [DK
σ ], where y = α� := lim

x→∞Aπ
� [DK

σ ](x) is the asymptote of Aπ
� [DK

σ ].

A learning trend Aπ
� [DK

σ ] requires a level � ≥ 3, because we need at least three observations to generate a curve. Its 
value Aπ

� [DK
σ ](xi) represents the prediction for accuracy on a case xi , using a model generated from the first � cycles of 

the learner. Accordingly, the asymptotic term α� is nothing other than the estimate for the highest accuracy attainable. This 
way, a learning trace gives a comprehensive picture of the increase in accuracy due to new observations, as well as future 
expectations. Continuing with the tagger fntbl and the corpus frown, Fig. 2 illustrates a portion of the learning trace with 
kernel and uniform step function 5 ∗ 103, including a zoom view.

4. The abstract model

Learning traces lay the foundations for estimating absolute convergence and error thresholds in adaptive sampling [42], 
thus giving coverage to the correctness we are looking for, while only a relative solution is described in practice. In short, 
assessing is done from the gain of accuracy between consecutive iterations, which is not enough for our purposes. To 
overcome this limit, we turn to the concept of anchoring, originally introduced to improve robustness, but which is now 
also useful to ensure completeness. The problem formulates in terms of the uniform approximation of a learning curve 
42
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A∞∞∞∞∞∞∞∞∞[D] by means of the limit function Aπ∞[DK
σ ] for a learning trace Aπ [DK

σ ] := {Aπ
i [DK

σ ]}i∈N incrementally built from 
sampling. We start with a brief reminder of the key results on robustness and correctness. The reader can focus on the less 
formal aspects, to later address in detail completeness as main contribution.

4.1. Robustness

Real learning conditions may diverge slightly from the ideal ones in the working hypotheses on which correctness is 
stated. In this sense, robustness is studied in the context of a more flexible set of testing hypotheses. These captures the
notion of irregular observation by assuming that learning curves are positive definite and upper bounded by 100, but only 
quasi-strictly increasing and concave. We then differentiate the alterations according to their position in relation to the 
working level (wlevel), i.e. the cycle from which they would have a small enough impact to work on their softening. As this 
depends on unpredictable factors such as the magnitude, distribution and the very existence of these disorders, a heuristic 
is necessary to identify it. Considering that the model stabilizes as the training advances and that the monotony of the 
asymptotic backbone is at the basis of the correctness for any halting condition, a way of doing it is to categorize the 
variations induced in the latter. This allows to estimate wlevel as the level providing the first fluctuation below a given 
ceiling and, once passed, the prediction level (plevel) marking the beginning for learning trends which could feasibly predict 
the learning curve, namely not exceeding its maximum (100).

Definition 4. (Working and prediction levels) Let Aπ [DK
σ ] be a learning trace with asymptotic backbone {αi}i∈N , ν ∈ (0, 1), 

ς ∈ N and λ ∈ N ∪ {0}. The working level (wlevel) for Aπ [DK
σ ] with verticality threshold ν , slowdown ς and look-ahead λ, is 

the smallest ω(ν, ς, λ) ∈N verifying

ς
√

ν

1− ν
≥ | αi+1 − αi |

xi+1 − xi
, xi := ‖Di‖ , ∀i such that ω(ν,ς,λ) ≤ i ≤ ω(ν,ς,λ) + λ (3)

while the smallest ℘(ν, ς, λ) ≥ ω(ν, ς, λ) with α℘(ν,ς,λ) ≤ 100 is the prediction level (plevel). Unless they are necessary for un-
derstanding, we shall omit the parameters, referring towlevel by ω (resp. plevel by ℘).

The wlevel is the first level for which the normalized absolute value of the slope of the line joining consecutive points 
on the asymptotic backbone is less than the verticality threshold ν , which is corrected by a factor 1/ς in order to slow 
down the normalization pace for ν . In effect, since the absolute value for a slope is defined in the interval [0, ∞), the 
normalizing function to be applied can be expressed as follows:

n : [0,∞) −→ [0,1)
x � x

x−1
(4)

That way, given two consecutive points (xi, αi) and (xi+1, αi+1) in the asymptotic backbone, the absolute slope to be con-
sidered and the original condition we are looking for are then, respectively:

| αi+1 − αi |
xi+1 − xi

and n(
| αi+1 − αi |
xi+1 − xi

) < ν (5)

The latter condition can be easily transformed into the following equivalent one:

ν

1− ν
≥ | αi+1 − αi |

xi+1 − xi
(6)

from which, including the slowdown factor 1/ς and the condition on the look-ahead λ, we derive Eq. (3). The use of 
normalized slopes corrected by the slowdown parameter ς allows recursion to infinitely large values and to extremely 
small decimal fractions to be avoided, thus facilitating the setting of the threshold ν .

Intuitively, since slope values decrease together with the deviations in the monotony studied, we can use them to catego-
rize the latter, taking the look-ahead λ as verification window. We then place plevel on the first cycle with a learning trend 
below 100, which would therefore be the first level with real predictive capacity, since the previous ones would exceed this 
maximum accuracy value for any model generated. In our example, Fig. 3 shows the scale of such deviations before and 
after wlevel, for ν = 2 ∗ 10−5, ς = 1 and λ = 5. Now the way is clear to introduce anchoring as a mechanism for robustness 
in sampling.

Definition 5. (Anchoring learning trace) Let Aπ [DK
σ ] be a learning trace withwlevel ω, and {Â�(∞)}�>ω ⊂ R+ . A learning trend 

of level � > ω with anchor Â�(∞) for A∞∞∞∞∞∞∞∞∞[D] using the accuracy pattern π , is a curve Âπ
� [DK

σ ] ∈ π fitting the observations 
{[xi, A∞∞∞∞∞∞∞∞∞[D](xi)], xi := ‖Di‖}�i=1 ∪ [∞, Â�(∞)]. We denote by ρ̂�(i) := [A∞∞∞∞∞∞∞∞∞[D] − Âπ

� [DK
σ ]](xi) the residual of Âπ

� [DK
σ ] at the 

level i, by ρ̂�(∞) := Â�(∞) − α̂� its residual at the point of infinity and by y = α̂� its asymptote. When {α̂�}�>ω is positive 
definite and converges monotonically to the asymptotic value α∞∞∞∞∞∞∞∞∞ of A∞∞∞∞∞∞∞∞∞[D], we say that Âπ [DK

σ ] := {Âπ
� [DK

σ ]}�>ω is an anchoring 
learning trace of reference [Aπ [DK

σ ], ω].
43
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Fig. 3. Working and prediction levels without and with canonical anchors for fntbl on frown, with details in zoom.

These new learning trends differ from standard ones in the use of fitting points at infinity, while in practice they are 
located as far as the computer allows. The use of anchors to improve robustness responds to the idea that extra observations 
facilitate the realignment of the monotony for the asymptotic backbone, its residual at the point of infinity being the 
maximum degree of smoothing applicable at a given learning trend. This should be enough for small irregularities, thus 
limiting the strategy to levels after wlevel. A simple example is canonical anchoring.

Theorem 1. (Canonical anchoring) Let Aπ [DK
σ ] be a learning trace with asymptotic backbone {αi}i∈N and {Âi(∞)}i>ω the se-

quence defined from itswlevel ω as

Âω+1(∞) := αω Âi+1(∞) := α̂i := lim
x→∞ Âπ

i [DK
σ ](x) (7)

with Âπ
i [DK

σ ] a curve fitting {[x j, A∞∞∞∞∞∞∞∞∞[D](x j)], x j := ∥∥D j
∥∥}ij=1 ∪ [∞, Âi(∞)], ∀i > ω. Then αω+i ≤ α̂ω+i (resp. αω+i ≥ α̂ω+i), 

∀i ∈N , when {αi}i∈N is decreasing (resp. increasing). Also, {Âπ
i [DK

σ ]}i>ω is an anchoring learning trace of reference [Aπ [DK
σ ], ω], 

with {Âi(∞)}i>ω its canonical anchors.

Proof. To see in [42]. �
Since in each cycle the anchor takes the value from the asymptote of the last learning trend, the technique described has 

a conservative nature, which translates into a slower convergence process. The effect of canonical anchoring in smoothing 
irregularities after the wlevel is illustrated vs. its absence, in our running example by a dashed line, in Fig. 3.

4.2. Correctness

It is addressed from the working hypotheses. That way, the uniform convergence of learning traces has been demon-
strated, and the topology of the limit function described.

Theorem 2. Let Aπ [DK
σ ] be a learning trace with or without anchors. Then, its asymptotic backbone is monotonic and Aπ∞[DK

σ ] :=
lim
i→∞

uAπ
i [DK

σ ] exists, is positive definite, increasing, continuous and upper bounded by 100 in (0, ∞).

Proof. To see in [42]. �
This provides a way to estimate a learning curve A∞∞∞∞∞∞∞∞∞[D] by iteratively approximating the function Aπ∞[DK

σ ], while a 
proximity criterion also needs to measure the convergence (resp. error) threshold at each stage. Namely, after fixing a level 
i in a learning trace Aπ [DK

σ ], we have to calculate an upper bound for the distance between Aπ
j [DK

σ ] and Aπ∞[DK
σ ] (resp. 

A∞∞∞∞∞∞∞∞∞[D]) in the interval [∥∥D j
∥∥ , ∞), ∀ j ≥ i.

A previous result is needed. Let {(qi−1
i,x , qi−1

i,y )}i≥4 (resp. {(pi−1
i,x , pi−1

i,y )}i≥4) be the sequence of the last (resp. first, if ex-
isting) points in Aπ

i [DK
σ ] ∩Aπ

i−1[DK
σ ]. Then, {qi−1

i,x }i≥4 and {qi−1
i,y }i≥4 (resp. {pi−1

i,x }i≥4 and {pi−1
i,y }i≥4) are monotonic, except 

perhaps when there is a transition from one (resp. two) to two (resp. one) intersection points at a level ı , or when we 
introduce/modify anchors. In that case, qı−1

ı,y and qı
ı+1,y (resp. pı−1

ı,y and pı
ı+1,y) may momentarily invert their relative posi-

tions, and the same applies to qı−1
ı,x and qı

ı+1,x (resp. pı−1
ı,x and pı

ı+1,x). We then say that ı is a level of rupture for Aπ [DK
σ ]. 

The order in N is also extended to NNN := N ∪ {∞, ∞∞∞∞∞∞∞∞∞}, in such a way that ∞∞∞∞∞∞∞∞∞ > ∞ > i > 0, ∀i ∈N .
44
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Fig. 4. Asymptotic backbones without and with fixed anchors for maxent on penn.

Theorem 3. (Correctness) Let Aπ [DK
σ ] be a learning trace with or without anchors, with wlevel ω, and y = αi the asymptote for 

Aπ
i [DK

σ ], ∀i ∈NNN := N ∪ {∞, ∞∞∞∞∞∞∞∞∞}. Let also (qi−1
i,x , qi−1

i,y ) be the last point in Aπ
i [DK

σ ] ∩ Aπ
i−1[DK

σ ], ∀i ≥ 4, i �= ı , with ı level of 
rupture for Aπ [DK

σ ]. We then have, using for the occasion the notation Aπ∞∞∞∞∞∞∞∞∞[DK
σ ] to refer A∞∞∞∞∞∞∞∞∞[D], that

| [Aπ
k −Aπ

j ][DK
σ ](x) |≤ εi :=| qi−1

i,y − αi |, ∀k, j ≥ i ≥ 4, ∀x ∈ [qi−1
i,x ,∞) (8)

(resp. | [Aπ
k −Aπ

j ][DK
σ ](x) |≤ εi :=| qi∞∞∞∞∞∞∞∞∞,y − α∞∞∞∞∞∞∞∞∞ |, ∀k, j ≥ i ≥ 1, ∀x ∈ [qi∞∞∞∞∞∞∞∞∞,x,∞)) (9)

if {αi}i>ω+1 is decreasing (resp. increasing), with {εi}i>ω+1 decreasing and convergent to 0

Proof. To see in [42]. �
This result establishes the uniform convergence [1] of the learning trace Aπ [DK

σ ] to the learning curve A∞∞∞∞∞∞∞∞∞[Dσ ]. In 
particular, this implies that the curve Aπ∞[DK

σ ] we are iteratively approximating matches the latter if the training process 
is long enough and, therefore, α∞ = α∞∞∞∞∞∞∞∞∞ . Sadly, the result only has a practical reading when the asymptotic backbone is 
decreasing, as it was in Fig. 2. Otherwise, the bound depends on the final accuracy we want to estimate (α∞∞∞∞∞∞∞∞∞), as with
opennlp maxent (see opennlp.apache.org/) on the section of the Wall Street Journal (wsj) in the penn treebank [27]. In this 
case, the asymptotic backbone is increasing, as reflects the continuous line in Fig. 4. This gap must therefore be closed to 
guarantee the operability of the approach.

4.3. Completeness

The bulk of our work focuses on this issue, through research on anchoring as a tool to force the dynamics of convergence 
on learning traces and obtain a decreasing asymptotic backbone, thus ensuring the completeness sought. As a first step, we 
introduce a sufficient condition to identify anchors verifying such a property.

Theorem 4. Let Aπ [DK
σ ] be a learning trace with wlevel ω and plevel ℘ , y = α∞∞∞∞∞∞∞∞∞ the asymptote for the learning curve A∞∞∞∞∞∞∞∞∞[D] and 

{Âi(∞)}i>ω ⊂ R+ a convergent sequence such that:

Âi(∞) ≥ αi, ∀i > ℘ (10)

Âi(∞) − Âi+1(∞) ≥ ρ̂i(∞) − ρ̂i+1(∞), ∀i > ω (11)

Let also Âπ
i [DK

σ ] be the learning trend with anchor Âi(∞) and asymptote y = α̂i , and ρ̂i(∞) := Âi(∞) − α̂i, ∀i > ω. Then, 
{Âπ

i [DK
σ ]}i>ω is an anchoring learning trace of reference [Aπ [DK

σ ], ω], such that {α̂i}i>ω is decreasing.

Proof. To see in Appendix A. �
So, a criterion to generate a learning trace with decreasing backbone is to select a set of anchors never below the 

accuracy extrapolated at each cycle to the total training data base (10), as long as the learner does not override the read-
justment applied by the anchoring (11). Intuitively simple, we will first study the practical utility of this idea for the case 
of the previously introduced canonical anchors.

Theorem 5. Let Âπ [DK
σ ] be a learning trace with canonical anchoring. We then have that if the asymptotic backbone of the reference 

is decreasing, then the same thing applies to that of the former.
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Proof. To see in Appendix A. �
Unfortunately, this result does not settle the question at hand, i.e. to guarantee decreasing asymptotic backbones by using 

anchors in order to have a practical absolute measure of the convergence of learning traces. As shown above, when using 
a canonical approach, this is ensured only if the reference already verifies it. Otherwise, the resulting asymptotic backbone 
can also be increasing, as is shown by the dashed line in Fig. 4, and another anchoring strategy is needed to respond to the 
challenge.

4.3.1. Fixed anchoring
Learning trends are fitting curves on the set of observations available at that time and, when using anchoring, also the 

value of the latter associated to the point of infinity. This is the key to making the proximity criterion in Theorem 3 fully 
operational, because the sum total of residuals on such curves is null. So, to achieve decreasing asymptotic backbones it 
suffices to fix anchors with negative or null residual, which is to say that they must rise above all existing and future 
observations, for example using values higher or equal than the maximum accuracy (100).

Theorem 6. (Fixed anchoring) Let Aπ [DK
σ ] be a learning trace with wlevel ω and Â

β
π
i [DK

σ ] the learning trend with anchor 

Âβ

i (∞) := β ≥ 100, ∀i > ω. Then, Â
β
π [DK

σ ] := {Â
β
π
i [DK

σ ]}i>ω is an anchoring learning trace of reference [Aπ [DK
σ ], ω] with asymp-

totic backbone decreasing. We call {Âβ

i (∞)}i>ω the fixed anchors of value β for Â
β
π [DK

σ ].

Proof. To see in Appendix A. �
Fixed anchoring therefore guarantees the hypotheses under which we can determine a computable estimation of the con-

vergence and error thresholds in absolute terms. Namely, it allows us to generate learning traces with decreasing asymptotic 
backbones, regardless of the training process considered. An example of this is shown in Fig. 4, where the monotony of the 
starting asymptotic backbone changes from increasing to decreasing when using fixed anchors of value β = 100. In these 
conditions, the completeness of our abstract model derives immediately.

Theorem 7. (Completeness) Let Â
β
π [DK

σ ] be a learning trace of fixed anchoring with wlevel ω and y = αi the asymptote for 

Â
β
π
i [DK

σ ], ∀i ∈NNN := N ∪ {∞, ∞∞∞∞∞∞∞∞∞}. Let also be (qi−1
i,x , qi−1

i,y ) the last point in Â
β
π
i [DK

σ ] ∩ Â
β
π
i−1[DK

σ ], ∀i ≥ 4, i �= ı , with ı level of 

rupture for Â
β
π [DK

σ ]. We then have, using for the occasion the notation Â
β
π∞[DK

σ ] (resp. Â
β
π∞∞∞∞∞∞∞∞∞[DK

σ ]) to refer Aπ∞[DK
σ ] (resp. A∞∞∞∞∞∞∞∞∞[D]), 

that

| [Â
β
π
k − Â

β
π
j ][DK

σ ](x) |≤ εi :=| qi−1
i,y − αi |, ∀k, j ≥ i > ω + 1, ∀x ∈ [qi−1

i,x ,∞) (12)

with {εi}i>ω+1 decreasing and convergent to 0. We call the smallest ι ≥ 4 for which | qι−1
ι,y −αι |≤ τ , the threshold level for τ ∈ R+ .

Proof. To see in Appendix A. �
Contrary to what happened with canonical anchors, the fixed ones free us from checking the decrease in the asymptotic 

backbone. Following Theorem 3, this provides a practical and extremely simple criterion for implementing a proximity 
condition measuring absolute thresholds, henceforward referred to as Ha .

More in detail, given a learning trace with fixed anchoring Â
β
π [DK

σ ] and a value τ ∈ R+ , we can assure that, once the 
corresponding threshold level ι has been located:

| [Â
β
π∞ − Â

β
π
j ][DK

σ ](x) |≤ ει :=| qι−1
ι,y − αι |≤ τ , ∀ j ≥ ι > ω + 1, ∀x ∈ [qι−1

ι,x ,∞) (13)

Namely, all estimates in the interval [qι−1
ι,x , ∞) ⊇ [‖Dι‖ , ∞) for the learning trends computed from the ι level are at a 

distance from the curve Aπ∞[DK
σ ] to which we converge (resp. the learning curve A∞∞∞∞∞∞∞∞∞[D]), which is less than the threshold 

τ set.
As for canonical anchors, the fixed ones also contribute to a litte delay in the convergence, as can be seen in Fig. 3

because their values are always higher than the asymptotes associated with the learning trends. One way to reduce this 
undesirable side effect is to provide the anchoring with mechanisms that allow it to adapt to the dynamics of the learning 
process.
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], 
Fig. 5. Asymptotic backbones with fixed anchors for maxent on penn (look-ahead ı , value β).

4.3.2. Endowing fixed anchoring with flexibility
The goal is to define a configurable family of anchorings ensuring the completeness of the proposal, thus allowing us to 

control the performance via an appropriate setting. Our starting point is the fixed anchor concept described above. Since 
the residuals at the point of infinity are then negative, we can fine tune anchors from the approximations for accuracy 
generated as learning progresses, without compromising our objective.

Theorem 8. (Fixed anchoring with look-ahead) Let Aπ [DK
σ ] be a learning trace with plevel ℘ , β ≥ 100, � ∈N and {Âβ,�

i (∞)}i>ω

the sequence defined from its wlevel ω by

Âβ,�

i (∞) := β, ∀ ℘ + � + 1 > i > ω Âβ,�

i (∞) := α̂
β,�
℘+�, ∀i ≥ ℘ + � + 1 (14)

Let also Â
β,�
π
i [DK

σ ] be the learning trend with anchor Âβ,�

i (∞), ∀i > ω. Then, Â
β,�
π [DK

σ ] := {Â
β,�
π
i [DK

σ ]}i>ω is an anchoring learning 
trace of reference [Aπ [DK

σ ], ω] and asymptotic backbone {α̂β,�

i }i>ω decreasing, and we call {Âβ,�

i (∞)}i>ω its set of fixed anchors 
with look-ahead � and value β .

Proof. To see in Appendix A. �
Intuitively, we are talking about a learning trace with conventional fixed anchoring, in which the anchor is subject to 

revision once the study of the levels in the interval [ω + 1, ℘ + �] has been completed. Since ω ≤ ℘ , this interval includes 
[℘ + 1, ℘ + �], which in either case allows us to take advantage of the knowledge provided by the first � iterations from 
the plevel ℘ . As these are the best performing training cycles – together with the one associated with level ℘ , in the case 
where ω = ℘ – among those with real predictive capability, convergence can be expected to accelerate significantly once 
the anchor has been updated.

To illustrate this, we look again at the learning process shown in Fig. 4, to compare in Fig. 5 the asymptotic backbones 
associated to some value/look-ahead combinations, focusing on two use cases: different look-aheads (ı = 0 and ı = 41) 
with the same value (β = 100) and the same look-ahead (ı = 0) with different values (β = 100 and β = 101). In the 
former scenario, we check how a non-trivial look-ahead (ı = 41) causes the desired effect. Also, as might be expected, the 
second one suggests that the closer the anchor to the real accuracy, the faster the convergence. All the above underscores 
the importance of an in-depth study on the impact of values and look-aheads on accuracy prediction. The objective is to 
establish whether these first impressions have a formal basis that allows us to effectively categorize the anchoring strategies 
described.

Theorem 9. (Anchoring categorization) Let Âπ [DK
σ ], Â

η,ı
π [DK

σ ], Â
β,ı
π [DK

σ ] and Â
β,j
π [DK

σ ] be learning traces of reference [Aπ [DK
σ ], ω

generated from canonical and fixed anchors with look-aheads ı, j ∈ N ∪ {0} for values η, β ≥ 100 respectively. We then have that, in 
any case (resp. when {αi}i∈N decreasing), it verifies that ∀i > ω

| αi − α∞∞∞∞∞∞∞∞∞ |≤| α̂i − α∞∞∞∞∞∞∞∞∞ | (15)

and also ∀j > ı, η > β, i ≥ ℘ + j

| α̂β,j

i − α∞∞∞∞∞∞∞∞∞ |≤| α̂β,ı

i − α∞∞∞∞∞∞∞∞∞ |≤| α̂η,ı

i − α∞∞∞∞∞∞∞∞∞ | (16)

(resp. | αi − α∞∞∞∞∞∞∞∞∞ |≤| α̂i − α∞∞∞∞∞∞∞∞∞ |≤| α̂β,j

i − α∞∞∞∞∞∞∞∞∞ |≤| α̂β,ı

i − α∞∞∞∞∞∞∞∞∞ |≤| α̂η,ı

i − α∞∞∞∞∞∞∞∞∞ |) (17)

with {α̂i}i>ω , {α̂η,ı

i }i>ω , {α̂β,ı

i }i>ω , {α̂β,j

i }i>ω and {αi}i∈N their corresponding asymptotic backbones, and α∞∞∞∞∞∞∞∞∞ the asymptotic value 
for the learning curve A∞∞∞∞∞∞∞∞∞[D].
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Proof. To see in Appendix A. �
The result guides the choice of anchoring. So, the fastest way to converge when the working hypotheses verify is to 

avoid fixed anchors, except if the asymptotic backbone is not decreasing. When this is quasi-decreasing because only the 
testing hypotheses are guaranteed, the canonical strategy is the most adequate. Finally, fixed anchoring with look-ahead 
is the alternative when no data about the training are available. The convergence speed here is inversely proportional to 
the value, which is why the best option is 100, the minimum one. Once a value is selected, the look-ahead introduces an 
extra factor to speed up the convergence according to its length, but only from the time the anchor is updated. Because of 
this, our objective could be reached before the latter is activated, in such a way that a smaller look-ahead might be more 
effective. Namely, an optimal choice depends on the convergence threshold – that matches, by Theorem 3, the error one – 
we are trying to identify, thus suggesting an iterative approach for dealing with it. We then make the decision to depend 
on the degree of convergence reached with respect to that threshold, taking into account that the first reliable level for 
predictions is plevel.

Definition 6. (Percentage of uncovered threshold) Let Â
β
π [DK

σ ] be a learning trace with fixed anchoring and plevel ℘ , and τ a 
threshold for a proximity condition H. We define its percentage of uncovered threshold for τ on H at a level � > ℘ + 1 as

put[Â
β
π [DK

σ ], τ ,H](�) :=
⎧⎨
⎩ 100 ∗ |α∞∞∞∞∞∞∞∞∞−α̂

β
� |H−τ

|α∞∞∞∞∞∞∞∞∞−α̂
β
℘+2|H−τ

if | α∞∞∞∞∞∞∞∞∞ − α̂
β
� |H≥ τ

0 otherwise
(18)

with | α∞∞∞∞∞∞∞∞∞ − α̂
β
� |H the estimates of H for | α∞∞∞∞∞∞∞∞∞ − α̂

β
� |, and α̂β

� (resp. α∞∞∞∞∞∞∞∞∞) the asymptotic value for the learning trend (resp. learning 

curve) Â
β
π
� [DK

σ ] (resp. A∞∞∞∞∞∞∞∞∞[D]).

The put takes values in the interval [0, 100] and is decreasing in the level covered. Its geometric interpretation is shown 
in Fig. 6. Its minimum is 0 and is reached when the estimated degree of approximation improves or equals the threshold τ
set by the user, in asymptotic terms. That is, when the efficiency of the last asymptotic value as fixed anchor can no longer 
be improved, which implies that the current level is the last one at which a possible update of the fixed anchor based 
on learning asymptotic values makes sense. As for the maximum value, it is reached at level ℘ + 2, the first at which the 
anchor could be updated and is 100, unless at that point the convergence is already effective.

Once we have captured the concept of put and the user has selected a particular value, we can assess for which particular 
level a fixed anchoring should be updated. That is, we are in a position to determine the look-ahead that matches the user’s 
requirements.

Definition 7. (Minimal look-ahead for a tentative put value in fixed anchoring) Let Â
β
π [DK

σ ] be a learning trace with fixed 
anchoring and plevel ℘ , τ a threshold for a proximity condition H and ζ ∈ [0, 100] the put value we want to reach before updating 
the anchor. We then define

λ := min
�>℘+1

{put[Â
β
π [DK

σ , τ ,H](�) ≤ ζ } − ℘ (19)

as theminimal look-ahead for the tentative put value ζ .

Formally, the fact that put is monotonic and bound guarantees that the concept of minimal look-ahead is well-
defined [1]. Regarding its geometric interpretation and calculation process, both of them are schematized in Fig. 6. We 
start from the asymptotic values α∞∞∞∞∞∞∞∞∞ , α̂β

� and α̂β
℘+2, which respectively correspond to the learning curve, the last learning 

trend and the first one for which the fixed anchor could be updated. We can then estimate, according the H criterion, the 
distance yet to be completed from the current level (resp. the first level at which a look-ahead would be applicable) to 
reach the required convergence threshold, by means of the value | α∞∞∞∞∞∞∞∞∞ − α̂

β
� |H −τ (resp. | α∞∞∞∞∞∞∞∞∞ − α̂

β
℘+2 |H −τ ).

By way of illustration, assuming that we want the update of a fixed anchoring to be activated once half of the conver-
gence distance has been covered, it is sufficient to identify the first level � > ℘ + 1 at which the put is less than or equal 
to 50 and then choose λ := � − ℘ as the minimal look-ahead for that tentative value. Returning to the example in Fig. 5
when the value of the fixed anchoring for the learning trace is β = 100, this results in a look-ahead of 41, whose associated 
asymptotic backbone shows the best results from among those represented.

5. The testing frame

The focus is now on evaluating the proposal, taking the generation of ml-based pos taggers as a case study. This first 
involves the design of a uniform framework, in the sense that its standards of evidence do not favour any particular approx-
imation technique, namely any proximity condition nor particular setting. Once a learner and a training data base are fixed, 
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Fig. 6. Computing the minimal look-ahead λ for the tentative put value of 50 associated with a fixed anchoring.

the aim is to assess the impact of forcing the completeness of our argument, the balance between its costs and benefits, 
and also its stability against look-ahead variations.

To do this, we introduce the corresponding performance metric, together with its monitoring architecture for data col-
lection. The latter captures the concept of testing round (run), which serves to normalize the conditions under which the 
experiments take place. Runs only distinguishable by their approximation technique are grouped around a baseline, in what 
we call a local testing frame, thus providing the environment we are looking for.

5.1. The monitoring structure

After setting an ml task represented by a learning trace Aπ [DK
σ ], the goal is to standardize the testing conditions, with 

a view to allowing for its objective assessment.

5.1.1. The testing rounds
Our evaluation basis is the run, a tuple ÊH = [Âπ [DK

σ ], τ , H] characterized by a learning trace Âπ [DK
σ ] of reference 

Aπ [DK
σ ] and anchoring ˆ, a convergence or error threshold τ and a proximity condition H. We can then express the put

as a function on the runs, denoting is value on a given testing round ÊH as put[ÊH], while the notion of prediction level
is naturally extended as the one of its learning trace and denoting it by plevel[ÊH]. A value clevel[ÊH] is associated as 
its convergence level, the one from which H verifies for τ and the training stops. Given two runs ÊH = [Âπ [DK

σ ], τ , H]
and ĚH′ = [Ǎπ [DK

σ ], τ , H′], they are similar when they are only distinguishable by the anchoring strategy used, i.e. when 
H = H′ , and dissimilar otherwise. As our proposal requires decreasing asymptotic backbones, it is mandatory to use runs 
meeting such a condition to give a comprehensive understanding of the tests.

5.1.2. The testing scenarios
Our aim is to define run groupings to study the behaviour of an approximation technique beyond the qualitative con-

siderations in Theorem 9. As the idea is to do it through a ratio with respect to a benchmark, it is necessary to compare 
runs sharing the reference but not the anchoring or the proximity condition. To this end, we introduce an order relation for 
these latter ones.

Theorem 10. Let L be a set of runs only distinguishable by a proximity condition taken from �. Then, the relation

∀H,H′ ∈ �, H �L H′ :⇔ clevel[EH] ≤ clevel[EH′ ],∀EH,EH′ ∈ L (20)

defines a partial order and we say that H is faster than H′ on L.

Proof. Trivial. �
Comparing runs also entails normalizing a threshold when it applies to proximity conditions with different scales, as 

with the absolute criterion just introduced and the relative one based on the layered correctness [42], which we refer to as 
Ha and Hr , respectively. Once that happens, we first fix the relative threshold τr to be used with Hr . The corresponding 
absolute one τa concerning Ha is then calculated, as Theorem 3 indicates for decreasing asymptotic backbones, from the 
level at which Hr determines the layered convergence. Such absolute thresholds are the ones referred to in the runs, which 
can then be grouped for testing purposes.

Definition 8. (Local testing frame) Let Aπ [DK
σ ] be a learning trace, τ a convergence or error threshold and � (resp. �) a set of 

proximity criteria (resp. anchoring strategies). We say that the collection
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L�
� [Aπ [DK

σ ], τ ] := {[Âπ [DK
σ ], τ ,H], such that ˆ∈ � andH ∈ �} (21)

is a local testing frame iff exists F ∈ � which is the fastest on it.

Intuitively, we are talking about sets of items only distinguishable by the anchoring and/or proximity condition, i.e. by the 
approximation technique considered. As ∅ ∈ �, any local testing frame L�

� [Aπ [DK
σ ], τ ] includes the anchor-free runs EH :=

[Aπ [DK
σ ], τ , H] whatever H ∈ �. We baptize EF := [Aπ [DK

σ ], τ , F ], the one using the fastest proximity criterion, as the 
baseline run. Since the anchors decelerate the convergence, their absence automatically increases its speed, depending on the 
proximity criteria used. That way, from a computational viewpoint, the baseline is the most efficient learning configuration 
in a local testing frame.

5.2. Performance metric

According to the principle of maximum expected utility (meu) [28], we interpret the performance associated with a run 
as the search for a satisfactory cost/benefit trade-off. In that regard, any estimate of such performance requires the prior 
formalization of the concepts of cost and benefit for a run within its local testing frame, i.e. within its referential context. 
At this point, since we are interested in studying the behaviour of different anchorages and/or proximity conditions through 
a collection of local testing frames, it will be necessary to resort to measures relative to the baseline runs.

5.2.1. Cost of a run
The effort of convergence for a run identifies with its clevel, provided it may be expressed in terms of the number 

of iterations needed to attain the degree of refinement required. We can do this by considering the same computational 
reference and threshold in all runs compared, as occurs within a local testing frame L�

� [Aπ [DK
σ ], τ ], assuming that the 

costs associated to the anchoring (resp. proximity condition) itself are comparable for all ˆ∈ � (resp. H ∈ �). This also 
provides a simple way for normalizing the cost associated with a run, taking the baseline as a benchmark.

Definition 9. (Relative cost) Let ÊH ∈ L�
� [Aπ [DK

σ ], τ ] be a run in a local testing frame of baseline EF . We define its relative cost 
as

rc(ÊH) := clevel[EH]
clevel[ÊF ] ∈ [1,∞) (22)

The rc is positive and greater the greater the number of epochs needed to converge, i.e. the faster the limit curve is 
approximated the more its value is reduced, which allows Theorem 9 to be interpreted in terms of computational costs. 
That way, its minimum is 1 and is reached when the cost is that of the baseline, thus justifying our interest in rcs as close 
as possible to the unit. However, a low cost is not enough to conclude the advisability of using absolute thresholds against 
relative ones. Unless the specifications explicitly require one or the other, such a decision should be the consequence of 
balancing costs and benefits.

5.2.2. Performance of a run
Understood as the balance between benefit and cost, the performance of a run in the context of its local test frame 

is assimilable to the ratio between the degree of accuracy achieved and the relative cost accumulated during the learning 
process. With this aim in mind, we still have to formalize the concept of accuracy. If we refer to a convergence (resp. error) 
threshold τ , this should be higher the better the fit of the latter to the difference between the curve Aπ∞[DK

σ ] to which 
we converge (resp. the learning curve A∞∞∞∞∞∞∞∞∞[D]) and the converging learning trend, which is used to provide an estimate at 
which the proximity condition H is verified, as indicated in Theorem 7.

Definition 10. (Convergence and error accuracy) Let ÊH ∈ L�
� [Âπ [DK

σ ], τ ] be a run with clevel �. We define its convergence
(resp. error) accuracy as

a
c(ÊH) (resp. ae(ÊH)) :=

{
0 if ∃ i ≥ ι, δc�(i) (resp. δe�(i)) > τ

100 ∗ maxi≥ι{|δc�(i)| (resp. |δe�(i)|)}
τ otherwise

(23)

with ι the threshold level for τ , and δc�(i) (resp. δe�(i)) :=| [Âπ∞[DK
σ ] (resp. A∞∞∞∞∞∞∞∞∞[D]) − Âπ

� [DK
σ ]](‖Di‖) | the divergence of 

Âπ
� [DK

σ ] with respect to Âπ∞[DK
σ ] (resp. A∞∞∞∞∞∞∞∞∞[D]) at level i.

Thus defined as a percentage, the accuracy corresponds to the intuitive concept, which justifies our choice for the name 
of these metrics. Indeed, we calculate ac(ÊH) (resp. ae(ÊH)) as the degree of precision achieved by run ÊH at its clevel 
in the estimation of the convergence (resp. error) threshold τ , starting from the iteration ι delimiting the interval for the 
completeness condition described in Theorem 7. That way, the value is zero when the threshold τ is not reached in that 
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Fig. 7. Computing the convergence (resp. error) accuracy for a convergence (resp. error) threshold τ .

interval. For ease of understanding, the calculation process is illustrated in the left (resp. right) diagram of Fig. 7 for the 
convergence (resp. error) accuracy. It can be seen that the threshold level ι from which we search for the maximum value 
for the divergence δc� (resp. δe�) on the learning trend Âπ

� [DK
σ ] associated with clevel �, and which in the case under 

consideration would be reached at its asymptote. The figure also shows the point (qι−1
ι,x , qι−1

ι,y ), which marks the beginning 
of the domain of completeness for the threshold τ . However, to calculate this accuracy measure we need to know the curve 
Âπ∞[DK

σ ] (resp. A∞∞∞∞∞∞∞∞∞[D]). To address this issue, we assume a large enough set of observations provided by an omniscient 
oracle for the learning curve A∞∞∞∞∞∞∞∞∞[D] through a sequence of contiguous individuals including the kernel K. Henceforth, 
we refer to this set as the horizon of the learning trace Aπ [DK

σ ]. From this, Âπ∞[DK
σ ] (resp. A∞∞∞∞∞∞∞∞∞[D]) is estimated by the 

learning trend approximating such a set (resp. by such a set) of observations, together with its asymptotic value α̂∞ (resp. 
α∞∞∞∞∞∞∞∞∞). Note that, following Theorem 3, α∞∞∞∞∞∞∞∞∞ = α̂∞ . According to this, the calculation of error accuracy will be made assuming 
in each case the same asymptotic value for the set of observations as for the approximation considered of Âπ∞[DK

σ ].
In practice, although we are interested in high values, it should be borne in mind that low accuracy does not necessarily 

imply a poor approximation process. Since the computationally more efficient runs are associated with larger convergence 
(resp. error) distances between epochs, it is more likely that it is in those runs where the divergences from the limit (resp. 
learning) curve will be smaller. In other words, runs with small rcs could eventually reach low accuracies, thus justifying 
the need for formalizing the concept of performance. As for accuracy, we differentiate between convergence and error 
performances to refer to the approximations of the limit and learning curves, respectively.

Definition 11. (Relative convergence and error performance) Let ÊH ∈ L�
� [Aπ [DK

σ ], τ ] be. We define its relative convergence
(resp. relative error) performance as

rp
c(ÊH) (resp. rpe(ÊH)) := a

c(ÊH) (resp. ae(ÊH))

rc(ÊH)
∈ [0,100] (24)

Intuitively, the lower the rp in either of its interpretations, the more we could argue that an alternative approximation 
strategy should be considered. We are therefore interested in rps as close as possible to 100.

6. The experiments

As said, they focus on learners for ml-based tagger generation, a demanding task in nlp. We thus need to introduce the 
linguistic resources and the testing space.

6.1. The linguistics resources

Corpora and pos tagger generators are selected from the most popular ones, as training data and learners respectively, 
the former together with their tag-sets:

1. The section of the wsj in the penn treebank [27], of over 1,170,000 words.
2. The Freiburg-Brown (frown) of American English [18], of over 1,165,000 words.

penn is annotated with pos tags and syntactic structures. By stripping it of the latter, it can be used to train pos taggers. 
To ensure well-balanced corpora, we have scrambled them at sentence level before testing.

We focus on models built from supervised learning, which make it possible to work with predefined tag-sets, thereby 
facilitating both the evaluation and the comprehension of the results:
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1. In the category of stochastic methods and representing the hidden Márkov models (hmms), we chose tnt [5]. We also 
include the treetagger [34], which uses decision trees to generate the hmm, and morfette [8], an averaged perceptron 
approach [10]. To illustrate the maximum entropy models (mems), mxpost [31] and opennlp maxent [39]. Finally, the
stanford pos tagger [39] combines features of hmms and mems using a conditional Márkov model.

2. Under the heading of other approaches we consider fntbl [29], an update of brill [7], as example of transformation-
based learning. As memory-based method we take the memory-based tagger (mbt) [11], while svmtool [17] illustrates 
the behaviour with respect to support vector machines. We also use a perceptron-based training strategy with look-
ahead, lapos [40].

This all ensures a good coverage of the linguistic resources for testing our proposal.

6.2. The testing space

We consider a collection L of local testing frames, with an entry for each combination of corpus and tagger. For each of 
these structures L�

� [Aπ [DK
σ ], τ ], the size of the kernel K and the step function σ are fixed to 5 ∗ 103, while a power law 

family parameterizable by the trust region method [4] is chosen as accuracy pattern π . The wlevel of the runs is calculated 
from the values proposed in [42]: ν = 2 ∗ 10−5, ς = 1 and λ = 5. With respect to �, it includes both canonical and fixed 
anchoring. The proximity conditions are taken from � = {Ha, Hr}, as defined above. Since the asymptotic backbone of any 
of the runs concerned is decreasing, the applicability of Ha is guaranteed and these local testing frames are well-defined. 
Whatever the learning trace Aπ [DK

σ ], we will consider as reference for testing purposes a horizon of 160 real observations 
provided by an omniscient oracle.

Having defined the testing structure, we address three aspects supporting the significance of the trials. The first relates to 
the exploitation of the training resources. Thus, as phrases are the smallest grammatical units with specific sense, samples 
should be aligned to the sentential distribution of the text. The second concerns the utility of the generated models, which 
depends on both the quality metrics being well-defined within the scope of the corpora and the reduction of variability 
phenomena. Finally, we tackle model optimization, i.e. the anchoring setting in each run.

6.2.1. Sampling fitting to sentence level and stability
We then need to adapt the learning schema. Given a corpus D with kernel K and a step function σ , we build the 

individuals {Di}i∈N with Di := �Wi� such that

W1 := K andWi := Wi−1 ∪ Ii, Ii ⊂ D \Wi−1, ‖Ii‖ := σ(i), ∀i ≥ 2 (25)

where �Wi� denotes the minimal set of sentences including the words in Wi . This has no impact on our foundations and 
allows us to reap the maximum from training. Following [11,16], 10-fold cross validation confers stability on our measures.

6.2.2. Parameter tuning
As the speed of convergence relies on the anchoring used, fine-tuning is required to select a configuration close to the 

most efficient one and provide credibility to the tests when the strategy is parameterizable, which is what happens with 
fixed anchors. Given a local testing frame L�

� [Aπ [DK
σ ], τ ], the way to do it is by choosing the optimal look-ahead for a 

value 100, namely the one with lowest rc. Moreover, as we will see, it is only necessary to focus on runs using the absolute 
proximity condition Ha .

To this end, the potential look-aheads are studied in order of increasing size, which is the same as saying that they 
are explored according to their corresponding put, in decreasing order. For a uniform and complete monitoring of the 
procedure, its codomain [0,100] is covered with step 10. We then compare the rc of the runs using the minimal look-
aheads corresponding to such a sequence of tentative puts.

Given ζ a tentative put for a run [Aπ [DK
σ ], τ , Ha], a candidate [Â

100,ι
π [DK

σ ], τ , Ha] is generated from its minimal look-
ahead ι and the rc calculated. The process is repeated for the next put until we locate the lowest rc. Hence, it is enough to 
identify the run associated to the turning point in such a rc sequence because, with respect to an increasing look-ahead, the 
performance is also increasing until reaching its maximum and then begins a decreasing trend. On this basis and to reduce 
the impact of irregularities, we chose that from which the window of increasing rcs is the largest one. So, it is hoped that 
the look-ahead is optimal with an error margin of 10% regarding the put metric.

6.3. The testing strategy

We do so according to the goals of our testing frame. That way, the cost of ensuring the completeness for Ha via fixed 
anchors is given by comparing within L the rc then applicable and the one estimated for similar runs when no anchoring 
or alternative canonical technique are used. These runs through L are hereafter referred to as Lrc and do not include the 
baseline ones.

To balance costs and benefits of Ha against Hr , we contrast the rp in its two interpretations – rpc and rpe – when 
applying the former on a run in L with fixed anchors, and when no or canonical anchors are used for its dissimilar ones. 
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Table 1
rc monitoring in Lrc .

τ No anchor + Ha Canonical + Ha Fixed + Ha

plevel clevel rc plevel clevel rc put �o plevel clevel rc

Fr
ow

n

fntbl 1.50 55 58 1.00 59 77 1.33 89.38 6 55 100 1.72
lapos 1.27 18 46 1.00 18 71 1.54 64.86 18 18 80 1.74
maxent 1.70 32 49 1.00 32 83 1.69 16.83 52 32 94 1.92
mbt 1.95 43 51 1.00 51 86 1.69 29.40 43 43 98 1.92
morfette 1.43 20 48 1.00 20 75 1.56 69.71 19 20 95 1.98
mxpost 2.84 22 30 1.00 22 31 1.03 75.63 11 22 59 1.97
stanford 1.91 24 36 1.00 29 72 2.00 78.29 12 24 82 2.28
svmtool 1.41 41 52 1.00 46 89 1.71 76.02 10 41 92 1.77
tnt 1.51 19 41 1.00 19 73 1.78 45.41 32 19 86 2.10

P
en

n mbt 1.66 15 39 1.00 15 85 2.18 39.50 44 15 98 2.51
mxpost 1.40 17 28 1.00 17 50 1.79 18.73 37 17 57 2.04
svmtool 1.25 26 31 1.00 26 66 2.13 29.69 47 26 87 2.81

Table 2
rp

c monitoring in Lrp .

τ No anchor + Hr Canonical + Hr Fixed + Ha

plevel clevel a
c

rc rp
c

plevel clevel a
c

rc rp
c

put �o plevel clevel a
c

rc rp
c

Fr
ow

n

fntbl 4.26 55 58 14.39 1.00 14.39 59 60 16.42 1.03 15.88 89.38 6 55 100 4.24 1.72 2.46
lapos 3.47 18 46 6.15 1.00 6.15 18 46 6.88 1.00 6.88 64.86 18 18 80 8.38 1.74 4.82
maxent 4.42 32 49 4.03 1.00 4.03 32 50 6.55 1.02 6.42 16.83 52 32 94 3.02 1.92 1.57
mbt 4.78 43 51 3.02 1.00 3.02 51 52 10.66 1.02 10.45 29.40 43 43 98 1.11 1.92 0.58
morfette 3.67 20 48 6.02 1.00 6.02 20 48 6.83 1.00 6.83 69.71 19 20 95 6.98 1.98 3.53
mxpost 6.28 22 30 1.81 1.00 1.81 22 30 0.85 1.00 0.85 75.63 11 22 59 6.73 1.97 3.42
stanford 4.31 24 36 7.88 1.00 7.88 29 38 16.01 1.06 15.16 78.29 12 24 82 5.33 2.28 2.34
svmtool 3.82 41 52 13.89 1.00 13.89 46 53 16.50 1.02 16.19 76.02 10 41 92 7.09 1.77 4.01
tnt 3.69 19 41 5.45 1.00 5.45 19 43 9.65 1.05 9.20 45.41 32 19 86 5.77 2.10 2.75

P
en

n mbt 3.72 15 39 18.89 1.00 18.89 15 39 5.96 1.00 5.96 39.50 44 15 98 12.85 2.51 5.11
mxpost 3.34 17 28 2.22 1.00 2.22 17 29 4.40 1.04 4.25 18.73 37 17 57 14.70 2.04 7.22
svmtool 2.64 26 31 23.09 1.00 23.09 26 35 28.46 1.13 25.20 29.69 47 26 87 22.94 2.81 8.18

Table 3
rp

e monitoring in Lrp .

τ No anchor + Hr Canonical + Hr Fixed + Ha

plevel clevel a
e

rc rp
e

plevel clevel a
e

rc rp
e

put �o plevel clevel a
e

rc rp
e

Fr
ow

n

fntbl 4.26 55 58 14.39 1.00 14.39 59 60 16.42 1.03 15.88 89.38 6 55 100 5.09 1.72 2.95

lapos 3.47 18 46 6.15 1.00 6.15 18 46 6.88 1.00 6.88 64.86 18 18 80 8.38 1.74 4.82

maxent 4.42 32 49 4.03 1.00 4.03 32 50 6.55 1.02 6.42 16.83 52 32 94 5.23 1.92 2.73

mbt 4.78 43 51 3.02 1.00 3.02 51 52 10.66 1.02 10.45 29.40 43 43 98 1.46 1.92 0.76

morfette 3.67 20 48 6.02 1.00 6.02 20 48 6.83 1.00 6.83 69.71 19 20 95 6.98 1.98 3.53

mxpost 6.28 22 30 1.91 1.00 1.91 22 30 2.62 1.00 2.62 75.63 11 22 59 6.73 1.97 3.42

stanford 4.31 24 36 7.88 1.00 7.88 29 38 16.01 1.06 15.16 78.29 12 24 82 5.33 2.28 2.34

svmtool 3.82 41 52 13.89 1.00 13.89 46 53 16.50 1.02 16.19 76.02 10 41 92 7.09 1.77 4.01

tnt 3.69 19 41 5.45 1.00 5.45 19 43 9.65 1.05 9.20 45.41 32 19 86 5.77 2.10 2.75

P
en

n mbt 3.72 15 39 18.89 1.00 18.89 15 39 7.80 1.00 7.80 39.50 44 15 98 12.85 2.51 5.11

mxpost 3.34 17 28 5.05 1.00 5.05 17 29 4.95 1.04 4.78 18.73 37 17 57 14.70 2.04 7.22

svmtool 2.64 26 31 23.09 1.00 23.09 26 35 28.46 1.13 25.20 29.69 47 26 87 22.94 2.81 8.18

We exclude the dissimilar run with fixed anchor because Theorem 9 makes it clear that the only practical interest of this 
anchoring technique is to provide completeness for Ha . Such runs through L are hereafter referred to as Lrp , including the 
baseline ones.

Finally, in order to assess the stability of using Ha via fixed anchoring against look-ahead variations, we shall simply 
extend the set � of anchorings in each local testing frame L�

� [Aπ [DK
σ ], τ ], to include a selection of representative look-

aheads. The runs involved in this study through L will be referred to as Lrp�
.

6.4. The analysis of the results

The detail of the monitoring is compiled separately for Lrc (resp. Lrp and Lrp�
) in Table 1 (resp. Tables 2–3 and 4–5) 

along with its plevel. We also include the clevel for each run, as well as its rc (resp. ac and rpc , and ae and rpe) value, 
which is better the closer it comes to 1 (resp. to 100). When using a fixed anchoring with value β = 100, the look-ahead 
is also visualized, together with the associated put in the case of the optimal value �o . These values are expressed to two 
53



M. Vilares Ferro, V.M. Darriba Bilbao and J. Vilares Ferro Journal of Computer and System Sciences 129 (2022) 39–61
Fig. 8. rc values for runs in Lrc and Lrp�
(look-ahead ı , value β = 100).

Fig. 9. rpc and rp
e values for runs in Lrp .

decimal places because of space limitations, using bold (resp. italic) fonts to mark the best results among all the (resp. 
baseline) runs, while all the calculations have been done to six decimal places of precision. Absent from these tables are the 
local testing frames whose baselines show increasing asymptotic backbones, as with fntbl, lapos, maxent, morfette, stanford,
tnt and treetagger trained on penn. We also discard those with any run converging beyond the boundaries of the training 
corpora, as with treetagger on frown.

6.4.1. Evaluating the cost of using Ha via fixed anchoring
The benchmark measure is now rc, whose values are compiled in Table 1 and illustrated in the left-most diagram of 

Fig. 8 for the set Lrc of significant runs for this issue. Note that the sole aim of the estimates for the canonical technique 
is to illustrate the smaller impact of using Ha with a less invasive anchoring where possible, because in no way does the 
latter guarantee the completeness of such a proximity criterion.

In greater detail, rcs range from 1 for the baselines – anchor-free runs – to 2.81 for svmtool on penn if fixed anchors 
are considered. In percentages, 77.78% of these values are less than 2, in an interval [1, ∞) of possible costs. Analyzing each 
anchoring approach, this ratio grows to 100% for the baselines, dropping to 75% for those applying a canonical one and 
to 58.33% for the fixed strategy with optimal look-ahead. The best score is for anchor-free runs in all local testing frames, 
while canonical anchors always provide the second best. Taking into account that convergence speed and relative cost are 
proportional, these results exemplify Theorem 9. Specifically, they support both the greater computational complexity of 
applying fixed anchors and the superiority of anchor-free runs when the impact of irregularities on the learning process is 
limited.

6.4.2. Evaluating the costs and benefits of using Ha against Hr
Our metric is now rpc (resp. rpe), whose values are compiled in Table 2 (resp. Table 3) and illustrated in the left-most 

(resp. right-most) diagram of Fig. 9 for the set Lrp of significant runs for this issue, as regards the treatment of convergence 
(resp. error) thresholds. Note that most of these two tables are identical, just 22.2% of the runs have different values, which 
we have underlined so they can be easily distinguished. The origin of this behaviour is the matching in most of the runs of 
the values for ac and ae . This, in turn, is a consequence of the fact that when the impact of irregularities in the learning 
process is limited, the maximum divergence values considered for their calculation often occur at the asymptotic level and, 
therefore, coincide.

In greater detail, anchor-free runs with Hr present the (resp. second) best rpc and rpe values in only one (resp. in ten) 
local testing frames, which corresponds to mbt on penn. Regarding the use of fixed anchors with Ha , it turns out to be the 
(resp. second) best choice in two (resp. in no) cases, mxpost in both frown and penn. In all other local testing frames, the 
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Fig. 10. rpc and rp
e values for runs in Lrp�

(look-ahead ı , value β = 100).

Table 4
rp

c monitoring in Lrp�
.

τ Fixed + Ha Fixed + Ha Fixed + Ha

put �o plevel clevel a
c

rc rp
c �m plevel clevel a

c
rc rp

c �n plevel clevel a
c

rc rp
c

Fr
ow

n

fntbl 4.26 89.38 6 55 100 4.24 1.72 2.46 3 55 101 4.31 1.74 2.47 0 55 102 4.37 1.76 2.49
lapos 3.47 64.86 18 18 80 8.38 1.74 4.82 9 18 82 8.83 1.78 4.95 0 18 82 9.55 1.78 5.36
maxent 4.42 16.83 52 32 94 3.02 1.92 1.57 26 32 98 4.00 2.00 2.00 0 32 103 5.17 2.10 2.46
mbt 4.78 29.40 43 43 98 1.11 1.92 0.58 22 43 102 1.40 2.00 0.70 0 43 103 1.76 2.02 0.87
morfette 3.67 69.71 19 20 95 6.98 1.98 3.53 10 20 98 6.85 2.04 3.35 0 20 99 7.18 2.06 3.48
mxpost 6.28 75.63 11 22 59 6.73 1.97 3.42 6 22 68 6.49 2.27 2.86 0 22 72 7.07 2.40 2.95
stanford 4.31 78.29 12 24 82 5.33 2.28 2.34 6 24 85 5.30 2.36 2.24 0 24 86 5.50 2.39 2.30
svmtool 3.82 76.02 10 41 92 7.09 1.77 4.01 5 41 97 6.71 1.87 3.60 0 41 96 7.22 1.85 3.91
tnt 3.69 45.41 32 19 86 5.77 2.10 2.75 16 19 90 6.69 2.20 3.05 0 19 90 7.65 2.20 3.49

P
en

n mbt 3.72 39.50 44 15 98 12.85 2.51 5.11 22 15 99 13.26 2.54 5.22 0 15 101 13.47 2.59 5.20
mxpost 3.34 18.73 37 17 57 14.70 2.04 7.22 19 17 61 18.58 2.18 8.53 0 17 65 25.46 2.32 10.97
svmtool 2.64 29.69 47 26 87 22.94 2.81 8.18 24 26 92 24.38 2.97 8.21 0 26 97 25.10 3.13 8.02

Table 5
rp

e monitoring in Lrp�
.

τ Fixed + Ha Fixed + Ha Fixed + Ha

put �o plevel clevel a
c

rc rp
c �m plevel clevel a

c
rc rp

c �n plevel clevel a
c

rc rp
c

Fr
ow

n

fntbl 4.26 89.38 6 55 100 5.09 1.72 2.95 3 55 101 5.10 1.74 2.93 0 55 102 5.13 1.76 2.92
lapos 3.47 64.86 18 18 80 8.38 1.74 4.82 9 18 82 8.83 1.78 4.95 0 18 82 9.55 1.78 5.36
maxent 4.42 16.83 52 32 94 5.23 1.92 2.73 26 32 98 5.62 2.00 2.81 0 32 103 6.13 2.10 2.92
mbt 4.78 29.40 43 43 98 1.46 1.92 0.76 22 43 102 2.79 2.00 1.40 0 43 103 1.76 2.02 0.87
morfette 3.67 69.71 19 20 95 6.98 1.98 3.53 10 20 98 6.85 2.04 3.35 0 20 99 7.18 2.06 3.48
mxpost 6.28 75.63 11 22 59 6.73 1.97 3.42 6 22 68 6.49 2.27 2.86 0 22 72 7.07 2.40 2.95
stanford 4.31 78.29 12 24 82 5.33 2.28 2.34 6 24 85 5.30 2.36 2.24 0 24 86 5.50 2.39 2.30
svmtool 3.82 76.02 10 41 92 7.09 1.77 4.01 5 41 97 6.71 1.87 3.60 0 41 96 7.22 1.85 3.91
tnt 3.69 45.41 32 19 86 5.77 2.10 2.75 16 19 90 6.69 2.20 3.05 0 19 90 7.65 2.20 3.49

P
en

n mbt 3.72 39.50 44 15 98 12.85 2.51 5.11 22 15 99 13.26 2.54 5.22 0 15 101 13.47 2.59 5.20
mxpost 3.34 18.73 37 17 57 14.70 2.04 7.22 19 17 61 18.58 2.18 8.53 0 17 65 25.46 2.32 10.97
svmtool 2.64 29.69 47 26 87 22.94 2.81 8.18 24 26 92 24.38 2.97 8.21 0 26 97 25.10 3.13 8.02

canonical anchoring with Hr achieves the (resp. second) best results. Overall, as one would expect from its ability to adapt 
dynamically to the evolution of the learning process, the best performances come from the use of canonical anchors on Hr . 
On the other hand, the strong static control imposed by the fixed ones to ensure the completeness for Ha should relegate 
their use to situations where we have no information about the magnitude of the irregularities and the monotonicity – 
increasing or decreasing – of the learning trace involved, or we simply need to ensure an absolute threshold.

6.4.3. Stability of using Ha via fixed anchoring against look-ahead variations
Although the results above illustrate the application of proximity conditions based on absolute thresholds, they were 

obtained from runs with fixed anchors and an optimal look-ahead �o resulting from a tuning process. The aim therefore is 
now to determine the real impact of such a process on run performance. In this context, we extend the set � of anchorings 
in each local testing frame L�

� [Aπ [DK
σ ], τ ] with the fixed ones of value β = 100 and null look-ahead �n , and also �m :=

�o/2. As �o is assumed to provide the best convergence speed for the proximity condition Ha in an increasing setting 
sequence, �n should supply the lowest one and �m intermediate ones. The monitoring of set L� , which brings the significant 
runs for this issue, is compiled (resp. illustrated) respectively for rpc and rpe in Tables 4 (resp. in the left-most diagram 
of Fig. 10) and 5 (resp. in the right-most diagram of Fig. 10). These tables also include the rc scores, which are illustrated 
separately in the right-most diagram of Fig. 8, and most of their entries are identical as for runs in Lrp . Specifically, only 
22.2% of the rpc and rpe values are different, and we have again used underlined text to highlight them.
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In short, we find that rcs range from 1.72 for fntbl on frown with a look-ahead �o , to 3.13 for svmtool on penn with 
�n . In percentages, 36.11% of these values are less than 2, in an interval [1, ∞) of possible costs. Analyzing each anchoring 
approach, this ratio grows to 58.33% when using �o look-aheads and drops to 25% otherwise. The best score is for �o in 
all local testing frames, while �m provides the second best result in all cases but one, and �n in three. Note that �m and 
�n obtain the same rcs for lapos and tnt in frown. This again exemplifies the conclusions of Theorem 9 about anchor 
categorization, this time regarding the use of look-aheads, but also illustrates the usefulness and validity of the concept of 
minimal look-ahead for a tentative put as a mechanism for optimizing fixed anchorings.

As for rpc (resp. rpe), the optimal look-ahead �o gives the best values in four (resp. five) cases, while �m and �n do so in 
two (resp. three) and six (resp. four) ones, respectively. Regarding the second best choice, it corresponds to �o in only one 
(resp. one) case and in six (resp. five) ones to �m , while anchor-free runs reach that position five (resp. six) times. Overall, 
the best performances seem to correspond to the absence of look-ahead, followed by those associated with the use of the 
mean value �m and the optimum one �o , although the differences are very small as can be seen in Fig. 10. This suggests 
that the choice of look-ahead has a minor impact on the performance, thus allowing its use to be simplified, as it would no 
longer require a prior tuning phase.

7. Conclusions

We have responded to the challenge of estimating absolute convergence thresholds associated with the prediction of 
learning processes as a means of reducing training effort and the need for resources in the generation of ml-based systems. 
The goal is to get the most from a non-active adaptive sampling scheme used for that purpose, by limiting its application 
in time to what is strictly necessary, while avoiding the limitations of relative measures.

Our proposal proves its correctness with respect to its working hypotheses. Namely, it determines the cycle from which 
we can ensure that the threshold fixed by the user has been reached. Since this can only be established in practice when the 
successive estimates for accuracy are decreasing, the completeness of the technique is also stated. To do so, we demonstrate 
that it is possible to redirect the training dynamics in such a way that such a property verifies. This is achieved by properly 
using the concept of anchor, a conservative assessment of the final accuracy achievable by the learner, which is calculated 
from a sufficiently representative sample interpreted as an observation at the point of infinity for the calculation of the next 
estimate. Furthermore, since the primary function of anchoring is to compensate the irregularities in the learning process 
due to deviations in the working hypotheses, the proposal shows a good degree of robustness.

To reduce the slowdown caused on the pace of convergence by the use of anchors, we introduce a parameterizable family 
of these structures, categorizing them with respect to both the costs and the balance between these and their benefits. 
The tests, taking the generation of pos taggers in nlp as case study, corroborate our expectations. In particular, although 
the consideration of absolute thresholds applying our proposal entails greater computational cost, it has demonstrated its 
reliability and practical applicability, providing a stable and robust way to proceed when relative estimations of the learning 
curve are not sufficient for the development of ml applications.
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Appendix A. Proofs for Subsection 4.3

A.1. Proof of Theorem 4

Since ρ̂i(∞) := Âi(∞) − α̂i, ∀i > ω, the asymptotic backbone {α̂i}i>ω is decreasing iff it verifies that

∀i > ω, α̂i ≥ α̂i+1 ⇔ Âi(∞) − Âi+1(∞) ≥ ρ̂i(∞) − ρ̂i+1(∞), (26)
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which derives immediately from Equation (11). To now complete the proof, we only need to demonstrate that {α̂i}i>ω

converges to α∞∞∞∞∞∞∞∞∞ . As Âπ
i [DK

σ ] is a fitting curve for the values

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)], x j :=
∥∥D j

∥∥}ij=1 ∪ {[∞, Âi(∞)]}, ∀i > ω (27)

we then have that

Âi(∞) ≥ α̂i := lim
x→∞ Âπ

i [DK
σ ](x), ∀i > ω (28)

If we also take into account that Aπ
i [DK

σ ] is a curve fitting the set

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)], x j :=
∥∥D j

∥∥}ij=1 ∪ {[∞,αi]}, ∀i > ω (29)

with anchors verifying the Equation (10), we then have that

Âi(∞) ≥ α̂i := lim
x→∞ Âπ

i [DK
σ ](x) ≥ αi, ∀i > ℘ (30)

from which

lim
i→∞

Âi(∞) ≥ lim
i→∞

α̂i ≥ lim
i→∞

αi = α∞∞∞∞∞∞∞∞∞ (31)

Moreover, the impact of the singularity Âπ∞[DK
σ ](∞) in the generation of the learning trends {Âi[DK

σ ]}i>ω decreases as the 
level ascends. Namely, α∞∞∞∞∞∞∞∞∞ is a supremum for {α̂i}i>ω and lim

i→∞
α̂i = lim

i→∞
αi = α∞∞∞∞∞∞∞∞∞ , which proves the thesis.

A.2. Proof of Theorem 5

Let {αi}i∈N be the backbone for the reference [Aπ [DK
σ ], ω] of Âπ [DK

σ ] and ℘ the plevel of the latter. By Theorem 4, it 
is enough to prove that its hypotheses verify. Focusing on Equation (10), let us first assume i = ω + 1. Since by hypothesis 
{αi}i∈N is decreasing, we conclude that

Âω+1(∞) := αω ≥ αω+1 (32)

Let us now assume that i > ω + 1, as {αi}i∈N is decreasing, Theorem 1 proves that α̂ω+i ≥ αω+i, ∀i > ω, from which we 
derive that

Âi+1(∞) := α̂i ≥ αi ≥ αi+1 (33)

and we can then affirm that Âi(∞) ≥ αi, ∀i > ℘ ≥ ω, completing the proof in this case.
Regarding the compliance of the condition referred in Equation (11), as ρ̂i(∞) := Âi(∞) − α̂i , demonstrating the in-

equality

Âi(∞) − Âi+1(∞) ≥ ρ̂i(∞) − ρ̂i+1(∞), ∀i > 0+ ω = ω (34)

which is to prove α̂i ≥ α̂i+1, ∀i > ω. As this was stated in Theorem 1, we conclude the thesis.

A.3. Proof of Theorem 6

By Theorem 4, as {Âβ

i (∞)}i>ω is convergent to β , it is enough to prove that its hypotheses verify. To this end, the 
condition in Equation (10) becomes trivial because the plevel ℘ is the first level after the working one ω from which the 
asymptotic backbone is below 100, and therefore

Âβ

i (∞) := β ≥ 100 ≥ αi, ∀i > ℘ (35)

With respect to the condition in Equation (11), given that Â
β
π
i [DK

σ ] is a curve fitting

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)], x j :=
∥∥D j

∥∥}ij=1 ∪ {[∞, β]} (36)

and the observations of the first set are lower or equal than 100 ≤ β , we have that the asymptotic backbone {α̂β

i }i>ω of 

Â
β
π [DK

σ ] is never greater than β and therefore the residuals {ρ̂β

i (∞)}i>ω are invariably positive or null, because

ρ̂
β
(∞) := Âβ

(∞) − α̂
β := β − α̂

β (37)
i i i i
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As {[xi, A∞∞∞∞∞∞∞∞∞[D](xi)], xi := ‖Di‖}i∈N is increasing, its impact on the generation of the learning trends {Â
β
π
i [DK

σ ]}i>ω grows 
with each sample and therefore the absolute value of the residuals {ρ̂β

i (∞)}i>ω also. We then derive that:

Âβ

i (∞) − Âβ

i+1(∞) = 0 ≥ ρ̂
β

i (∞) − ρ̂
β

i+1(∞), ∀i > ω (38)

and Equation (11) verifies.

A.4. Proof of Theorem 7

By Theorem 6, as Aπ [DK
σ ] is a learning trace with fixed anchor, its asymptotic backbone {αi}i>ω is decreasing and the 

thesis is proved applying the same reasoning used in Theorem 3.

A.5. Proof of Theorem 8

Following Theorem 4, as {Âβ,�

i (∞)}i>ω converges to Âβ,�
ω+�(∞), it is enough to prove that its hypotheses verify. With 

regard to the condition expressed in Equation (10), let us assume {Â
β
π
i [DK

σ ]}i>ω the fixed anchoring learning trace of value 
β for Aπ [DK

σ ]. As its asymptotic backbone {α̂β

i }i>ω is decreasing and ℘ ≥ ω, we have that, ∀i ≥ ℘ + � + 1

α̂
β
℘+� ≥ α̂

β

i := lim
x→∞ Â

β
π
i [DK

σ ](x) (39)

where Â
β
π
i [DK

σ ] is a curve fitting the set of values

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, Âβ

i (∞)]} = {[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, β]}, x j :=
∥∥D j

∥∥ (40)

Since Aπ
i [DK

σ ] is a curve fitting the first set {[x j, A∞∞∞∞∞∞∞∞∞[D](x j)], x j :=
∥∥D j

∥∥}ij=1 and by hypothesis β ≥ 100 ≥ A∞∞∞∞∞∞∞∞∞[D](x j), ∀ j ∈
N , we deduce that α̂β

i ≥ αi , with {αi}i∈N the asymptotic backbone for the reference [Aπ [DK
σ ], ω]. Taking also into account 

that lim
x→∞ Â

β
π
i [DK

σ ](x) := α̂
β

i and lim
x→∞Aπ

i [DK
σ ](x) := αi , it verifies that

Âβ,�

i (∞) := α̂
β,�
℘+� := α̂

β
℘+� ≥ α̂

β

i ≥ αi, ∀i ≥ ℘ + � + 1 (41)

Furthermore, since ℘ is precisely the first level after the working one ω from which the asymptotic backbone is below 100, 
we deduce that

Âβ,�

i (∞) := β ≥ 100 ≥ αi, ∀ ℘ + � + 1 > i > ω (42)

and therefore Âβ,�

i (∞) ≥ αi, ∀i > ω, thus matching the relationship described in Equation (10).
With respect to the condition in Equation (11), we study it separately in each interval of definition for the asymptotic 

backbone {α̂β,�

i }i>ω . Let us first assume ℘ + � + 1 > i > ω. As in this case

Âβ,�

i (∞) := Âβ

i (∞) := β ≥ 100 (43)

we can apply the same reasoning used in Theorem 6 to prove that {α̂β,�

i }i>ω is decreasing in that interval.

Let us now consider i > ℘ + � + 1. Then, Â
β,�
π
i [DK

σ ] is here a curve fitting the collection of values

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, Âβ,�

i (∞)]} = {[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, α̂
β,�
℘+�]} (44)

with x j :=
∥∥D j

∥∥. Given that the observations of the first set are always lower or equal than

Âβ,�

i (∞) := α̂
β,�
℘+� := α̂

β
℘+� (45)

because Theorem 6 states that {α̂β

i }i>ω is decreasing, the subsequence {α̂β,�

i }i>℘+�+1 of the asymptotic backbone of 

Â
β,�
π [DK

σ ] is never greater than α̂β,�
℘+� and therefore the sequence of its associated residuals {ρ̂β,�

i (∞)}i>℘+�+1 is invari-
ably positive or null, because

ρ̂
β,�

i (∞) := Âβ,�

i (∞) − α̂
β,�

i := Âβ,�

i (∞) − lim
x→∞ Â

β,�
π
i [DK

σ ](x) (46)

As {[xi, A∞∞∞∞∞∞∞∞∞[D](xi)], xi := ‖Di‖}i∈N is increasing, its impact on the generation of the learning trends {Â
β,�
π
i [DK

σ ]}i>℘+�+1

grows with each sample and therefore the absolute value of the residuals {ρ̂β,�
(∞)}i>℘+�+1 also. We then derive that:
i
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Âβ,�

i (∞) − Âβ,�

i+1(∞) = 0 ≥ ρ̂
β,�

i (∞) − ρ̂
β,�

i+1(∞), ∀i > ℘ + � + 1 (47)

and Equation (11) also verifies in the latter interval.
That way, what is lacking to match the relationship in Equation (11) on its full application domain is to demonstrate 

that

Âβ,�
℘+�(∞) − Âβ,�

℘+�+1(∞) ≥ ρ̂
β,�
℘+�(∞) − ρ̂

β,�
℘+�+1(∞) (48)

which is equivalent to prove that α̂β,�
℘+� ≥ α̂

β,�
℘+�+1, because ρ̂

β,�

i (∞) := Âβ,�

i (∞) − α̂
β,�

i .

From Theorem 6, {α̂β

i }i>ω converges decreasingly to the final accuracy α∞∞∞∞∞∞∞∞∞ := lim
x→∞A∞∞∞∞∞∞∞∞∞[D](x) attained from the training 

process. As A∞∞∞∞∞∞∞∞∞[D] is increasing, we infer that

A∞∞∞∞∞∞∞∞∞[D](xi) ≤ α∞∞∞∞∞∞∞∞∞ ≤ α̂
β
℘+� := α̂

β,�
℘+�, xi := ‖Di‖ (49)

Furthermore, α̂β,�
℘+�+1 := lim

x→∞ Â
β,�
π
℘+�+1[DK

σ ](x), where Â
β,�
π
℘+�+1[DK

σ ] is a fitting curve for the set

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}℘+�

j=1 ∪ {[∞, Âβ,�
℘+�(∞)]} = {[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}℘+�

j=1 ∪ {[∞, α̂
β,�
℘+�−1]} (50)

with x j := ∥∥D j
∥∥. As we have established that the ordinates of these values are below α̂β,�

℘+�+1, we derive what we were 
looking for

α̂
β,�
℘+� ≥ lim

x→∞ Â
β,�
π
℘+�+1[DK

σ ](x) := α̂
β,�
℘+�+1 (51)

thus terminating the proof.

A.6. Proof of Theorem 9

We first address the Equations (15) and (16), when no hypothesis regarding the monotony of the asymptotic backbone 
{αi}i∈N associated to the reference is established. Given that the former has already been stated [42], we focus on the 
second one, starting from its left-most inequality.

Let us assume j > ı , η > β and i ≥ ℘ + j , then α̂β,ı

i := lim
x→∞ Â

β,ı
π
i [DK

σ ](x), with Â
β,ı
π
i [DK

σ ] a fitting curve for the values

{[x j,A∞∞∞∞∞∞∞∞∞[DK
σ ](x j)]}ij=1 ∪ {[∞, Âβ,ı

i (∞)]} = {[x j,A∞∞∞∞∞∞∞∞∞[DK
σ ](x j)]}ij=1 ∪ {[∞, α̂β

ı ]} (52)

with x j :=
∥∥D j

∥∥. Similarly, α̂β,j

i := lim
x→∞ Â

β,j
π
i [DK

σ ](x), with Â
β,j
π
i [DK

σ ] a curve fitting

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)], x j :=
∥∥D j

∥∥}ij=1 ∪ {[∞, α̂β
j ]} (53)

where, as by Theorem 6 the sequence {α̂β

i }i>ω converges decreasingly to α∞ = α∞∞∞∞∞∞∞∞∞ ≥ 0, we conclude that α̂β
ı > α̂

β
j . As The-

orem 8 guarantees that {α̂β,ı

i }i>ω and {α̂β,j

i }i>ω also converge decreasingly to α∞ = α∞∞∞∞∞∞∞∞∞ ≥ 0, and ℘ ≥ ω, we can conclude 
that | α̂β,j

i − α∞∞∞∞∞∞∞∞∞ |≤| α̂β,ı

i − α∞∞∞∞∞∞∞∞∞ |. We thereby demonstrate the inequality in question.

On the other hand, α̂η,ı

i := lim
x→∞ Â

η,ı
π
i [DK

σ ](x), with Â
η,ı
π
i [DK

σ ] a fitting curve for the values

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, Âη,ı

i (∞)]} = {[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, α̂
η
ı ]} (54)

where x j :=
∥∥D j

∥∥ and α̂η
i := lim

x→∞ Â
η
π
i [DK

σ ](x), with Â
η
π
i [DK

σ ] a fitting curve for the values

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, Âη
i (∞)]} = {[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, η]}, x j :=

∥∥D j
∥∥ (55)

Similarly, α̂β

i := lim
x→∞ Â

β
π
i [DK

σ ](x), with Â
β
π
i [DK

σ ] a fitting curve for the values

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)], x j :=
∥∥D j

∥∥}ij=1 ∪ {[∞, β]} (56)

Since η > β , we then have that α̂η
ı ≤ α̂

β
ı , and therefore α̂η,ı

ı ≤ α̂
β,ı
ı . Accordingly, we also conclude that | α̂

β,ı

i − α∞∞∞∞∞∞∞∞∞ |≤|
α̂

η,ı − α∞∞∞∞∞∞∞∞∞ |, because {α̂η,ı}i>ω and {α̂β,ı}i>ω are both positive definite and ℘ ≥ ω.
i i i
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Finally, we demonstrate the Equation (17), when the asymptotic backbone {αi}i∈N of the reference is decreasing. On the 
basis of the result previously stated for the generic case, and taking into account that by definition ω ≤ ℘ ≤ 100 ≤ β and 

Â
β,0
π [DK

σ ] = Â
β
π [DK

σ ], it is sufficient to establish that

| α̂i − α∞∞∞∞∞∞∞∞∞ |≤| α̂β

i − α∞∞∞∞∞∞∞∞∞ |, ∀i > ℘ (57)

where α̂i := lim
x→∞ Âπ

i [DK
σ ](x), with Âπ

i [DK
σ ] a fitting curve for the values

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, Âi(∞)]} = {[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, α̂i−1]} (58)

with x j :=
∥∥D j

∥∥. Furthermore, α̂β

i := lim
x→∞ Â

β
π
i [DK

σ ](x), with Â
β
π
i [DK

σ ] a curve fitting

{[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, Âβ

i (∞)]} = {[x j,A∞∞∞∞∞∞∞∞∞[D](x j)]}ij=1 ∪ {[∞, β]}, x j :=
∥∥D j

∥∥ (59)

So, as {α̂i}i>ω is positive definite, for stating the desired relation it is enough to prove that α̂i−1 ≤ β , which is trivial because 
α̂i−1 ≤ 100 ≤ β . This completes the proof.
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