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ABSTRACT In this work, the tear-and-interconnect (T&I) surface-integral-equation (SIE) domain-
decomposition (DD) approach–previously developed for non-penetrable bodies–, is extended to composite
piecewise homogeneous penetrable objects including multiple materials and multiscale features. The main
advantage of the proposed T&I scheme, with respect to conventional DD approach, is that it obviates the
definition of large artificial surfaces (required for splitting the volumetric regions) with additional redundant
unknowns, which avoids a significant increase in the computational cost, especially when dealing with large
volumetric regions. In this sense, it has been shown that the T&I approach is an efficient and accurate
alternative, which besides complements the conventional DD approach, since both are compatible and can
be easily combined, which gives the possibility of applying one or the other as appropriate, depending on
the specific characteristics of the problems to be solved in each case.

INDEX TERMS Dielectrics, domain decomposition (DD), fast solvers, surface integral equations (SIE),
Maxwell’s equations, method ofmoments (MoM),multilevel fast multipole algorithm (MLFMA), scattering,
tear-and-interconnect.

I. INTRODUCTION
Domain decomposition (DD) methods based on transmis-
sion conditions have meant a breakaway from conven-
tional surface integral equation (SIE) approaches, enjoying
considerable success in the resolution of electromagnetic
scattering from complex problems made up of penetrable
and non-penetrable homogeneous and piecewise homoge-
neous components with different electromagnetic proper-
ties and multiscale features [1]. The resolution of such
strenuous problems is challenging and often unattainable
by conventional techniques. By decomposing the original
problem domain into a collection of smaller subdomains,
in which local sub-problems are solved separately and cou-
pled back together, the DD methods are able to address these
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challenging problems with a good degree of success.
Although initially conceived for the preconditioning of finite
element methods [2]–[8], the DD paradigm was finally
extended to conventional surface integral equation (SIE)
approaches, first applied to non-penetrable bodies [9]– [12]
and later on extended to penetrable and composite objects [1],
[13]–[19]. In these SIE-DD schemes, the local subdomains
are enclosed by closed surfaces prior to be solved individually
throughout the appropriate SIE fast algorithms. The transmis-
sion conditions are then enforced to guarantee the continuities
of tangential electric and magnetic fields on the interfaces
between touching subdomains, which provides the Huygens
equivalent currents posing well defined local solutions. One
drawback of this strategy is that it implies the introduction
of redundant unknowns on the artificial interfaces required to
close the subdomains, resulting in a significant computational
cost overhead in some cases.
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An alternative to these early DD schemes is the tear-
and-interconnect (T&I) SIE-DD approach, which has been
recently proposed applied to non-penetrable bodies [20]. This
alternative does not require artificially closing the surfaces
between adjacent (touching) subdomains, which instead can
remain open [20]–[24]. The transmission conditions prevent-
ing unphysical reflections from the subdomain interfaces,
which is essential to achieve good convergence, are then
enforced along the tearing contours between subdomains.
In some cases using overlapping regions to couple adjacent
subdomains [20], [22], and in some other without auxiliar
unknowns at all, directly enforcing the current continuity
through an interior penalty formulation [23], [24]. The
primarily advantage of the T&I scheme is the absence of
fictitious surfaces to close the open subdomains, thus pre-
venting the use of large numbers of redundant unknowns.
Additionally, this simplifies the algorithm, which indeed
can be more easily embedded into existing SIE codes, and
it has a good propensity for parallelization over distributed
computers.

In this work, we demonstrate that the T&I SIE-DD
approach can be further extended to expedite the solution of
fully homogeneous as well as composite piecewise homo-
geneous penetrable objects including multiple materials and
multiscale features. In particular, we apply this approach to
the accurate and efficient solution of complex, large-scale
nanoplasmonic assemblies combined with dielectric sub-
strates, in the context of the most recent advances in biosens-
ing nanosensors. Although at first glance the resolution of
open penetrable subdomains, as they arise from the appli-
cation of the tear-and-interconnect DD, might seem rather
counterintuitive, it must be noted that the local solutions
generate scattered fields that subsequently impinge on all
other subdomains, thus closing each subdomain via the right-
hand-side (or excitations vector) and posing well-defined
local subproblems. By a judicious selection of subdomains,
such that different scale and physics problems are isolated and
treated separately, the proposed approach constitutes a true
alternative for the efficient and accurate solution of different
kinds of complex real-life penetrable problems.

A major advantage of the proposed scheme is that it avoids
the definition of artificial surfaces and additional redundant
unknowns, which would burden the computational cost espe-
cially in the case of splitting large volumetric homogeneous
regions. Additionally, the tear-and-interconnect alternative
can be straightforwardly combined with the more conven-
tional approaches, thus allowing the DD partition method and
local solver to be tailored to the characteristics and needs of
each local subproblem.

II. FORMULATION
The DD method is outlined next. Let us start with the matrix
system of linear equations posed by the application of the
SIE formulation and theGalerkinmethod ofmoments (MoM)
procedure [25] to a piecewise homogeneous composite
object involving penetrable materials and material junctions,

which can be written as Z · I = V, where Z is the
impedance matrix, V is the known excitation vector and I is
the unknown (solution) vector with the complex coefficients
for the electric and the magnetic equivalent current expan-
sions in terms of a set of known vector basis functions. A non-
overlapping additive Schwarz domain decomposition (DD)
preconditioner can be applied to the solution of the above
matrix system. We start by applying a partition of the geom-
etry according to the geometrical features, materials and the
particularities of the different blocks and subsystems of the
overall problem. This results in a DD of the objects boundary
surfaces into a collection of non-overlapping touching and/or
non-touching subdomains. The matrix equation can be then
left-preconditioned throughout the solutions of the individual
subdomains, as follows:

P · Z · I = P · V (1)

where P is the DD block diagonal preconditioner, which can
be built as:

P =
p∑
i=1

RT
i · Z

−1
i · Ri (2)

where Ri is a rectangular restriction matrix that maps the
complete vector of unknowns to the sub-vector of unknowns
corresponding to subdomain i (which is denoted as Di),
the transpose RT

i is the prolongation matrix that extends
the sub-vector in Di to the whole domain, and Z−1i is the
inverse of the impedance matrix governing the local problem
enclosed in Di. The total number of subdomains in which the
whole problem is split is denoted as p.

The rightmost matrix vector product (MVP) in the
left-hand side of (1) corresponds to the global (outer) MVP,
coupling the different subdomain solutions with one another.
Meanwhile, the leftmost product by the matrix P provides the
DD preconditioner individual subdomain solutions. Though
formally written with the inverses of the subdomain matrices,
the individual solutions can be addressed by the method
deemed appropriate in each case.

Different SIE formulations can be applied to derive the
matrix system of linear equations. Among the many possi-
bilities, we have selected the electric (J) and magnetic (M)
current combined field integral equation (JMCFIE) formu-
lation, as it poses a well-conditioned system of linear equa-
tions for both the equivalent electric and magnetic currents.
For the discretization of the integral equations we used the
so-called multiregion (MR) piecewise vector basis functions,
which implicitly satisfy the boundary conditions for the cur-
rents on the boundary surfaces and line junctions where
different material regions intersect. The global and local
MVPs required in (1) have been sped up using a hybrid
MPI/OpenMP parallel implementation of the multilevel fast
multipole algorithm – fast Fourier transform (MLFMA-FFT),
which is applied in synergy with the DD scheme. The inter-
ested reader is referred to [20] and [22] for a more detailed
explanation of the method.
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A. TEAR-AND-INTERCONNECT DECOMPOSITION
In order to achieve good convergence with the above precon-
ditioner, it is crucial to enforce the proper transmission condi-
tions among touching subdomains. We apply the formulation
of [20], which consists of enlarging the subdomains leading
to the so-called augmented subdomains. With this scheme,
it is assumed that the near fields along the subdomain enlarge-
ments are able to cancel the potentials due to the charge
accumulation on the open edges. The preconditioner matrix
is defined for the augmented (overlapping) subdomains as
follows:

P =
p∑
i=1

R′Ti · Z
′−1
i · R

′
i (3)

where Z′i = R′i ·Z ·R
′T
i is the impedance matrix block of the

augmented subdomain D′i, and R′i and R′Ti are the restriction
and prolongation matrices for D′i respectively. Once these
systems are solved, their solutions are restricted-back to the
original non-overlapped subdomains and assembled together
to provide the whole solution of currents at the actual stage
using (1).

In our implementation, the enlargement to build the aug-
mented subdomains is done by including ‘‘flaps’’ of a quarter
to a half wavelength width (according to the medium with
the longest wavelength touching the interface), belonging to
the adjacent (touching) subdomain(s). Note that the use of
larger buffer regions would not affect convergence or preci-
sion, although this might pose reduced efficiency. Otherwise,
the restriction and prolongation matrices are not explicitly
computed. Instead, the subdomains are constructed following
an orderly sequence from the meshed CAD models, which
are generated specifically to facilitate the application of the
domain decomposition. The procedure is illustrated in Fig. 1,
compared to the conventional approach using artificial clos-
ing surfaces. The original (penetrable or non-penetrable)
domain, whose boundary surface is denoted as S, is split into
two subdomains, D1 and D2, made up as D1 = S1 ∪ 012
and D2 = S2 ∪ 021 in the conventional DD partition, and
D1 = S1 ∪ 0′12 and D2 = S2 ∪ 0′21 in the tear-and-
interconnect approach. Using this last approach, D1 and D2
are not the subdomains really solved in each global iteration,

FIGURE 1. Sketch of the geometry decomposition into subdomains using
conventional and T&I approaches.

but the augmented subdomains are solved instead, build up
as D′1 = S1 ∪ 0′12 ∪ 0

′

21 and D′2 = S2 ∪ 0′21 ∪ 0
′

12. Once
the local solutions of the augmented subdomains are found,
these solutions are restricted back to the original subdomains,
D1 andD2, and assembled to provide the global solution. The
portions of the solutions belonging to the enlargement flaps
in each case (0′21 and 0′12, respectively) are discarded, thus
paving the way to the global iterative solver, which will not
have to deal with the cancellation of the electric potentials
produced by the charges accumulated along the contours.
Remarkably, the size of the quarter to a half wavelength
width enlargement flaps, 0′12 and 0

′

21, as required by the tear-
and-interconnect approach, is usually much smaller than the
auxiliar (artificial) surfaces 012 and 021 required to close the
subdomains in the conventional DD approach.

III. NUMERICAL RESULTS
In this section, we illustrate the effectiveness of the SIE
tear-and-interconnect DD implementation in solving real-life
systems. To begin with, we consider two validation examples
showing the ability and accuracy of this procedure to decom-
pose the simulation of fully homogeneous dielectric objects.
A dielectric polytetrafluoroethylene (Teflon) cylinder is con-
sidered first, with 12.5 m in length, 2.5 m radius, and a
relative permittivity and permeability of εr = 2.1− j0.00042
and µr = 1. A θ̂ polarized plane wave impinging on the
cylinder with θinc = 45◦ and φinc = 0◦ at a frequency
of 300 MHz is considered as the excitation. Following the
tear-and-interconnect procedure, the cylinder is decomposed
into three open subdomains, as illustrated in Fig. 2, where
the overlapping flaps to construct the augmented subdomains
are also shown (using the notation of Fig. 1). A fairly dense
discretization was applied to benefit iterative convergence,
posing 1,615,392 unknowns for the equivalent electric and
magnetic currents. Fig. 3 shows the equivalent electric and
magnetic current distributions on the surface for the DD
solution, calculated with the JMCFIE formulation for pen-
etrable bodies. The parallel MLFMA-FFT algorithm was

FIGURE 2. Dielectric cylinder and partition into subdomains. The inner
flap(s) of each subdomain (outer flaps of the adjacent touching
subdomains) are identified using the notation of Fig. 1.
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applied to speed-up both the reference (single-domain) solu-
tion, as well as the local solutions and the global MVP within
the DD method. In both cases the simulations were run in
a single computing node with 64 parallel cores and 1 TB
RAM. Looking at Fig. 3, it can be seen that no artifacts are
observed around the tearing lines, with the current perfectly
flowing between subdomains. Additionally, the DD current
solution does not show appreciable differences with the ref-
erence solution calculated with conventional MLFMA-FFT
(not shown as they are identical). Bistatic radar cross
sections (RCS) were also calculated for the previous imping-
ing wave, and shown in Fig. 4. An excellent agreement
between the DD and the reference MLFMA-FFT solution is
observed. Iterative count and time to solve (wall-clock time)
convergences are gathered in Fig. 5 for both the DD and the
reference solution. A strong reduction of the iteration number
required to attain a residual error below 10−6 is observed for
the case of the DD solution, where only 48 iterations were
required. This contrasts with the more than 1,400 iterations
required for the the reference solution. Nevertheless, despite
the sharp reduction of the iterative count, it is important to
note that the application of the DD preconditioner poses a
significant increase in the cost per iteration. Indeed, we have
found that better convergence rates are reached if a high
precision is ascribed to the inner solvers making up the
preconditioner (consequently, the same iteration tolerances
have been prescribed for inner problems as for the external
solver). A better figure of merit to compare both solutions in
terms of computational cost is the wall-clock time required to

FIGURE 3. Equivalent electric (up) and magnetic (down) currents induced
on the surfaces of the domain decomposed dielectric cylinder.

FIGURE 4. Radar cross section (RCS) of the domain decomposed
dielectric cylinder.

FIGURE 5. Iteration count and wall-clock time for the dielectric cylinder.

complete the calculations. Looking at Fig. 3(down), it can be
observed that the wall-clock convergence is much faster in the
referenceMFLMA-FFT solution. This is as expected, consid-
ering that this is a well-conditioned homogeneous example,
without multiscale features or multiple materials, which was
entirely solved on a shared-memory computing node. Using
DD approaches for this kind of well-conditioned problems
does not report any benefit, as the reduction in the number of
Krylov iterations does not compensate the much higher cost
per iteration. Such well-conditioned and ‘‘medium-sized’’
problems can be solved faster using MLFMA or MLFMA-
FFT, provided they are properly parallelized to benefit from
the availability of many parallel cores.

Next, a dielectric slab is consideredwith 12× 12× 0.25m3

and a relative permittivity and permeability of εr = 2 and
µr = 1. The excitation is an oblique plane wave with incident
angles θinc = 45◦ and φinc = 0◦ and θ̂ polarized at the
frequency 300 MHz. A total of 7,381,344 unknowns are
applied tomodel the equivalent electric andmagnetic currents
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FIGURE 6. Partition of a dielectric plate into subdomains. Left inset: inner
and outer flaps for subdomain S1 using the notation of Fig. 1.

on the slab surfaces. The dielectric slab is divided into nine
mosaic-like subdomains, as shown in Fig. 6. Also in this case
the subdomains are open, which is not an inconvenience to
obtain proper local solutions through the JMCFIE formu-
lation. As an example, consider the first subdomain, in the
upper left corner, which is represented in more detail in the
inset. The subdomain is build up asD1 = S1∪0′12∪0

′

14∪0
′

15,
while the augmented (actually solved) subdomain is
D′1 = S1 ∪ 0′12 ∪ 0

′

21 ∪ 0
′

14 ∪ 0
′

41 ∪ 0
′

15 ∪ 0
′

51 ∪ 0
′

24 ∪ 0
′

42.
The other subdomains and augmented subdomains are con-
structed similarly. The induced electric and magnetic current
densities are shown in Fig. 7, where no artifacts are observed
around the tearing lines, with the current density flowing
perfectly across the different subdomains. Regarding conver-
gences, in Fig. 8, conclusions similar to those of the previous
example can be drawn: with the DD solution the number of
iterations is drastically reduced, although the wall-clock time
is higher for these homogeneous, well-conditioned problems.
Nevertheless, the above two examples demonstrate the valid-
ity of the tearing-and-interconnect approach to subdivide the

FIGURE 7. Equivalent electric (up) and magnetic (down) currents induced
on the surfaces of the domain decomposed dielectric plate.

FIGURE 8. Iteration count and wall-clock time for the dielectric plate.

solution of homogeneous dielectrics without need of defining
artificial surfaces to close the subdomains.

A different example is considered next, consisting of an
assembly of Au nanorods (NR) onto a Polystyrene (PS)
bead. The PS bead has a diameter of 400 nm and relative
permittivity εr = 1.5. The NRs have circular section and
they are ended with spherical end-caps, with a diameter
of 16 nm and a total length of 38 nm. The excitation of
this problem is a normally impinging plane wave (laser)
at 633 nm. The relative (dispersive) permittivity of gold
at this wavelength is interpolated from the measurements
of [26], being εr = −11.7522 − 1.2598i. This kind of
real-life hybrid dielectric/plasmonic system is of interest to
surface-enhanced Raman scattering (SERS) chemical sens-
ing of analytes, as they can directly interact with the NR
surfaces [27]. The tunable Au NR density can be used to
optimize the SERS efficiency of these hybrid nanomaterials.
Nevertheless, the presence of multiple materials governed
by a very different physics exhibiting rather high dielectric
contrast, such as in this case the PS surface (dielectric) and the
embedded gold nanorods (plasmonic at visible frequencies),
poses a slow convergence of the iterative solver. The above is
compounded by the fact that NRs are embedded onto the PS
bead. Although the multiple-material junctions can be pre-
cisely modeled by the MR piecewise basis/testing functions,
its presence hinders the already challenging multiphysics
problem.

To overcome the potential lack of convergence, the com-
plete problem is partitioned as sketched in Fig. 9(left).
Considering first the large size of this system, it is split
into 8 main subdomains, one for each octant. Next, con-
sidering the very different physical nature of the PS bead
and the Au NRs, each NR (and its respective plasmonic-to-
dielectric junction) is included into a different subdomain.
In all, the domain decomposition procedure of this system
with 496 Au NRs leads to 504 subdomains, 8 for the PS
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FIGURE 9. PS bead with embedded Au nanorods: Subdomains, inner and outer flaps (left); equivalent electric (center), and magnetic (right)
currents.

dielectric sphere and 496 for the NRs. Based on this decom-
position, we apply different solvers tailored to the different
subdomains. Subdomains 1 to 8 are solved iteratively via
MLFMA-FFT, while the remaining subdomains (NRs) are
solved by direct MoM factorization. In this particular case,
as all the NRs are equal in shape and material, the same
impedance matrix block is recycled for the calculations of
the 496 NRs, thereby benefiting from the multiple repetitions
(which is a usual feature of these nanosystems). Global inter-
actions between subdomains are accelerated through parallel
distributed MLFMA-FFT.

Given the presence of localized surface plasmon reso-
nances (LSPRs) supporting very fast (subwavelength) field
fluctuations, a high surface mesh density is considered for the
Au NRs, with an edge size around 1/400 wavelengths. The
size is reduced to around 1/20 wavelengths for the PS sphere.
This poses a total of 6,754,224 unknowns for the electric and
magnetic equivalent currents. The JMCFIE SIE formulation
is applied, and a relative error norm of 10−6 is considered
to halt the global Krylov iterative solver. The calculations
for both the DD solution and the MLFMA-FFT reference
solutions were run in a computer cluster of 4 computing
nodes with 64 parallel cores and 1 TB RAM each. For this,
highly scalable distributed parallel implementations based
on hybrid programming with the Message Passing Interface
(MPI) and OpenMP pragmas were used for both the DD and
the MLFMA-FFT methods.

Fig. 9 (center and right) shows the equivalent electric and
magnetic current distributions on the surface for this example,
calculated through the distributed DD implementation. As in
the previous examples, no artifacts are observed around the
tearing lines between the different PS octants or the NR sub-
domains. Iterative count and time to solve (wall-clock time)
convergences are shown in Fig. 10 for both the distributed DD
and MLFMA-FFT solutions. A fast convergence is observed
for the DD solution, requiring only 35 outer Krylov iterations
to attain a residual error below 10−6. In comparison, it can
be observed that MLFMA-FFT fails to reach the prescribed
residual error within 200 iterations (posing a residual error
above 5 · 10−2). A more big picture is obtained by observing
the wall-clock time convergence. Unlike in the previous

FIGURE 10. Iteration count and wall-clock time for the PS bead with
embedded nanorods.

canonical examples, which lacked a multi-scale component
and were solved on a single shared-memory node, in this
real-life case the proposed DD method brings a definitive
advantage both in terms of iteration count and solving time,
enabling convergence and providing a solution with a high
degree of accuracy in just over 5 hours. A solution of such pre-
cision would be very difficult to achieve with MLFMA-FFT
(if even possible), as it begins to stagnate at high residual
errors.

IV. CONCLUSIONS
In this work we have extended the tear-and-interconnect
domain decomposition approach to the decomposition of
homogeneous and/or piecewise homogeneous penetrable
objects. Importantly, even though the T&I methodology
poses local subproblems containing open dielectric surfaces,
they belong to larger closed dielectric regions. Therefore,
these apparently open local problems are indeed closed by
incoming radiation from the other subdomains (as collected
in the local excitation vector), and the usual dielectric for-
mulation can be perfectly applied (defined over the closed
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union of subdomains). The numerical examples illustrate
the applicability of the DD approach for solving large-scale
electrical problems including multi-scale features. In par-
ticular, the last example of the PS bead with embedded
NRs is also useful to infer the advantage of the proposed
T&I-DD approach compared to the conventional method
based on closing subdomains. In the latter, the artificial
boundary surfaces required to close the PS-bead octant
subdomains would be even larger than the actual dielec-
tric surfaces of the original problem, posing a much larger
number of unknowns and burdening the computational cost.
Nevertheless, it is also worth mentioning that the conven-
tional DD partition method could be more useful in the case
of the NR subdomains, since in this case no artificial surfaces
between the rods and the PS-sphere are required (as they
are made of different materials). In this sense, an additional
advantage of the tear-an-interconnect proposed solution is
that it can be easily combined with the conventional DD
approach, thus giving the chance to apply one or the other
depending on the specific characteristics of the problem to be
solved.
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