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ABSTRACT: 

Chestnut (Castanea sativa Mill.) managed forests in Galicia (Northwestern Spain) have important cultural, economic and ecosystem 
values. However, due to rural exodus chestnut stands are being degraded. In order to take restoration and conservation measures 
knowledge of these forests' location, expanse and stage is needed. The available Spanish official cartography is based on 
photointerpretation which is inaccurate in terms of chestnut forest location and classification. However, remote sensing has recently 
been proven to be an effective tool for this purpose. Sentinel 2 multi-temporal classification is recently acquiring importance as a 
method to classify tree species. This project intends to detect chestnut forests using LiDAR and Sentinel 2 multi-temporal data and to 
compare these results with those obtained using the official cartography. It also intends to assess how the use of different 
phenological stages could improve classification results. The results obtained provide an overall accuracy of 76% when a three-
month combination is used: (March, July and September) leaf-off stage, flowering and leaf-on stage. Overlapping of the current map 
and the official cartography lead to an accuracy and precision increase; highlighting the utility of the presented methodology to 
acquire knowledge about chestnut forests location.  

* Corresponding author 

1. INTRODUCTION

Information about forest resource distribution remains essential 
for policy makers and land management. European chestnut 
(Castanea sativa Mill.) covers more than 2.5 million ha in 
Europe of which 98.3 % are managed forests used for wood or 
fruit production purposes (Conedera et al., 2004). Since the first 
half of the last century, a decreased importance of this species 
as a staple food and a progressive depopulation of rural areas 
has caused the abandonment of chestnut agriculture (Zlatanov et 
al., 2013), an abandonment which has been accelerated due to 
pathogens (Baser and Bozoglu, 2020) and invasive species 
(Battisti et al., 2014). However, in recent decades chestnut tree 
management has once again become viable and shows great 
potential as a source of income thanks to research in biological 
control and genetics (Acquadro et al., 2019; Trapiello et al., 
2017). Galician chestnut forests (Northwestern Spain) have 
been managed for chestnut production for centuries (Fernández 
et al., 1998). The result is forests with important ecological, 
ecosystem and cultural values. In recent years, rural 
abandonment has led to stand degradation and to a loss of 
knowledge of their distribution. However these stands still have 
the potential to become an important source of income for rural 
areas and to keep providing ecosystem, recreational and cultural 
services (Roces-Díaz et al., 2018). In order to recover the 
ecosystem, knowledge of its current expanse and stage is 
needed. The current official source of forest location, 
distribution, expanse and classification in Spain is the Spanish 
Forest Map (MFE). The Spanish cartographic official source 
(MFE) is elaborated through photointerpretation and field work 
on a 1:25000 scale (Miteco, 2014). It consists of a set of 

polygons where the type of forest, along with its principal and 
secondary species composition are indicated. Chestnut forest 
pure stands are classified as a “castañar” type of forest. 
However, when mapping chestnut forest stands, the method and 
resolution used can become a problem leading to surface 
overestimation or underestimation. This compromises decision 
making when it comes to chestnut production or conservation 
measures.  

Nowadays, tree species distribution can be acquired using 
remote sensing techniques. Medium spatial resolution satellites 
(especially Landsat 8 and Sentinel 2) are the most cost-efficient 
tool and the current trend in tree-species-classification-related 
studies (Fassnacht et al., 2016). Of the open-data satellites, 
Sentinel 2 is the one which obtains images with the highest 
spatial resolution (10 m to 20 m) and the highest spectral 
resolution (up to 13 bands). Three of the 13 bands are red edge 
bands, which are not available from satellites like Landsat, and 
have been shown to be important in tree species classification 
(Immitzer et al., 2016). The free availability and the high revisit 
time (5 days) of these satellites, which allow for the acquisition 
of multiple images corresponding to different vegetation stages 
at the same area, has recently led to the incorporation of multi-
temporal analysis to vegetation classification related studies 
(Fassnacht et al., 2016). These analyses are especially suitable 
for boreal and temperate climates where changes in plant 
phenology throughout the year can help to discriminate between 
different species.  

In addition to satellite images, LiDAR sensors play an 
important role in land cover classification as well. Thanks to 
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their ability to estimate vegetation height they are a tool that 
efficiently discriminates classes with spectral similitudes (Sothe 
et al., 2018). Recently available LiDAR data on National 
Geographic databases have led to the incorporation of this 
technology in vegetation studies (Barrett et al., 2016). 
 
This study aims to classify areas covered by chestnut forests and 
to analyze the potential of using multi-temporal information for 
this purpose. It also intends to provide a tool which can be used 
to improve the accuracy of the official cartography based on 
open-access data. Therefore, comparisons between the official 
maps and the results obtained from this study will be performed.  
 
 

2. MAIN BODY 

The study area is in Galicia (Northwestern Spain). Although 
knowledge of chestnut location and expanse is relevant in the 
whole Galician region, a small study area was selected to 
develop the method and study its potential. The selected area 
was the municipality of Folgoso do Courel, due to its 
abundance of chestnut managed forests. The municipality 
covers an area of 193 km2 and is a mountainous area with small, 
steep valleys with different aspects. (See Figure 1)  

 
 

Figure 1. Study area. Background image hillshade and slope 
obtained from the Spanish Cartographical Institute (IGN, 2019). 
 
The area is covered fundamentally by temperate mixed forest 
including 237 different species of dicotyleoneous plants 
(Quercus pyrenaica, Betula alba, Quercus suber, Quercus 
robur, Fagus sylvatica, Alnus glutinosa, Corylus avellana, Ilex 
acquifolium, Juglans regia, Prunus avium, Salix sp., Fraxinus 
sp.,...).The region's climate has a mediterranean influence, 
therefore species such as Quercus ilex can be found as well. 
However, Castanea sativa pure stands, due to management, 
cover an important part of the area. There are plantations of 
coniferous trees as well, mainly of: Pinus pinaster, Pinus 
radiata and Pinus sylvestris. (Xunta de Galicia/USC, 2005.) 
 
Chestnut phenology in the study area is not homogeneous due 
to differences in height and aspect. These variations are 
increased due to the presence of different chestnut cultivars 
(Pereira-Lorenzo et al., 2001). However, as a general guideline 
senescence occurs in November (assessed through field work), 
sprouting from mid to late May according to local forest 
technicians and blooming from mid-June to late July 
(Fernández-López et al., 2013). 
 
2.1 Data acquisition and analysis 

Sentinel 2 is one of the ESA's (European Space Agency) 
satellites constellations equipped with a multispectral camera. It 
samples 13 spectral bands, which range from a 10 m to a 60 m 
spatial resolution. The temporal resolution is up to 5 days. 
Table 1 shows the Spectral bands specifications. Sentinel 2 

images were selected in order to perform the study. Images 
corresponding to the 2A product were used (European Space 
Agency (ESA), 2015).  
 

Band 
Central 
wavelength 
(nm) 

Bandwidth (nm) 
Spatial 
resolutio
n (m) 

Band 1 443 20 60 
Band 2  490 65 10 
Band 3 560 35 10 
Band 4 665 30 10 
Band 5  705 15 20 
Band 6 740 15 20 
Band 7 783 20 20 
Band 8  842 115 10 

Band 8A  865 20 20 
Band 9 945 20 60 

Band 10 1375 30 60 
Band 11  1610 90 20 
Band 12  2190 180 20 

 
Table 1. Specifications of Sentinel 2 bands provided by ESA 

(European Space Agency (ESA), 2015) 
 

Images covering different phenological stages of the vegetation 
were used. Initially images from every season and every month 
were evaluated in order to optimize the multi-temporal analysis. 
However several months were finally discarded due to the 
presence of too much clouds, snow and shadows. The selected 
images for the analysis dated from March, May, July and 
September. The specific dates were: 26/03/2019, 05/05/2019, 
19/07/2019 and 12/09/2019. Bands with 20 m and 10 m of 
spatial resolution were selected from all of the images obtained. 
Resampling on 10 m bands was performed in order to have a 
common resolution of 20 m across all bands.  
 
LiDAR data were obtained from the Spanish Geographical 
Information System (IGN). Data is freely available. LiDAR 
point clouds were acquired in 2016 using an airborne laser 
scanner (ALS). The sensor was a LEICA ALS80 which allowed 
for a nominal point density of 0.5 points/m2. Georeferecing was 
executed on the ETRS89 georeference system with a Root 
Mean Square Error (RMSE) of 0.3 m in the horizontal 
directions and 0.2 m in the vertical directions (Miteco, 2019).  
 

2.2 Methodology 

The present study methodology is based on an image 
classification process. However, as the study area has other land 
covers besides forest, a study area filtering step was performed 
using LiDAR data. Only areas with a height tall enough to be a 
forest were selected. The selected height threshold was 10 m, 
based on analyses of the heights of chestnut areas. This step was 
performed using a calculated CHM (Canopy height model). To 
obtain the CHM, ground points were identified on the LiDAR 
point cloud and for the rest of the points the height above the 
ground was computed. This allowed for the generation of a 
normalized point cloud from which the CHM was created. 
CHM resolution was selected accordingly to match one of the 
Sentinel images (20 m). Pixels with a height value below 10 m 
were erased from the study area. 
 
Different Sentinel 2 band combinations were created and 
visually analyzed to assess differences between seasons. Figure 
2 shows the combination of bands 11/8A/4 for the selected 
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months where it is possible to see the variations in radiometry 
over the course of the seasons, especially between March-May 
and July-September.  
 
(a) (b) 

(c) (d) 

 
Figure 2. Sentinel band combination (11/8A/4) for images 

obtained in different months in the Municipality of Folgoso do 
Courel. (a) March (b) May (c) July (d) September 

 
A multi-temporal classification approach was chosen as it has 
been shown that there is a potential for differences in 
radiometry due to phenology. The algorithm employed was 
Breiman’s Random Forest (Breiman, 2001). The Random 
Forest is an algorithm that is extensively and successfully 
employed in other multi-temporal vegetation-classification-
related studies such as (Hościło and Lewandowska, 2019) and 
(Persson et al., 2018a). To carry out the multi-temporal study 
several models based on the different month combinations were 
created. In order to acquire information about the relevance of 
including several months in the classification, four models were 
also created using just one month for contrast.  
 
The Random forest algorithm was provided for training areas. 
There were two classes of training areas: chestnut and others. 
Others included the rest of forested areas present in the study 
area area such as other broadleaf forests and coniferous forests. 
Training areas were created through field work. Random 
transects were created on the road-accessible parts of the study 
area in order to look for pure stands that would be suitable 
training areas. Care was taken to ensure the transects covered 
different aspects, heights and slopes. Training area locations 
were marked with a GPS with centimeter accuracy (GEOMAX 
Zenith15). Finally, a set of 73 polygons were marked: 48 
corresponding to other tree covers (Pine sp., Quercus ilex, 
Quercus pyrenaica, Betula alba, Alnus glutinosa,…) and 25 
corresponding to chestnut forests (Castanea sativa). Bands 
combinations on different months were created to asses 
differences on radiometric answer between species and months. 
Figure 3 is an example of this step results. There it is possible to 
see band combination 11/8A/4 result on different forests for 
March image. Colorations result allow to see that there are 
differences between species radiometric behaviour. 
 
 
 
 

Castanea sativa Quercus pyrenaica 
  

Mixed forest Quercus ilex 
  

Pinus sp. 
 
 

 
Figure 3. Sentinel 2 bands combination 11/8A/4 for March 

images. 
 

Random forest models were applied to the whole study area. A 
cross-validation was performed in order to explore multi-
temporal results and to select the most efficient model. For this 
purpose, 100 random points were selected within the study area. 
Random points ground truth was obtained from 
photointerpretation of the PNOA image (PNOA, 2019). 
 
Once the most accurate model was selected, results were cross-
referenced with the official cartography of the study area in 
order to assess the differences.  
 
2.3 Results and discussion 

Cross-validation of the results acquired by random forest 
modelling reveals differences between the results obtained 
when using different months as predictive variables. These 
results are presented in Table 3. A higher overall accuracy 
(76%) was obtained when using a combination of three months 
to create the model. The effectiveness of Sentinel 2 time series 
has been noted previously in multiple projects (Grabska et al., 
2019; Hościło and Lewandowska, 2019; Persson et al., 2018). 
Previously mentioned studies classified forest stands according 
to all of the species present in an area using multi-temporal 
images and they obtained accuracies close to 85% when using 
the best month combinations. Accuracies obtained in this case 
study are lower (around 10%). However, it was difficult to find 
pure stands of other broadleaves in order to have enough 
training areas. Future studies should focus on increasing field 
work efforts for this purpose.  
 
Comparing cases where higher and lower Overall Accuracies 
were obtained, differences accounted for less than a 10%. 
Larger differences exist in Users and Producers Accuracy. 
Several of the models do not allow an excess of 50% for these 
values, which could result in a random prediction of a class. 
Single month models for July and September periods are the 
least accurate. However, these months combined with March 
(Model 5) provide the best result. According to results, March 
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and May are important months for the prediction of chestnut 
presence, revealing the importance of including images from 
senescence periods. Persson et al. (Persson et al., 2018) also 
note the importance of the leaf-off period, however they 
attribute it to images from early senesce which couldn't be 
included in this study due to cloud and shadow problems. They 
confirm that adding leaf-on periods helps to improve these 
results as well. However, in order to perform a better 
interpretation of the results it would be necessary to obtain 
phenology information about the rest of the broadleaves present 
in the study area.  
 
ID Months OA 

(%) 
UA 
(%) 
other 

UA 
(%) 
cast 

PA 
(%) 
other 

PA 
(%) 
cast 

1 MA+MR+J+S 75 79 60 87 53 
2 MA+MR+J 70 75 50 70 67 
3 MA+ MR+S 74 79 58 86 46 
4 MA+ J+ S 76 78 65 90 43 
5 MR+ J+ S 76 83 59 81 63 
6 MA+ MR 74 78 59 87 43 
7 MA+J 71 76 52 85 50 
8 MA+ S 72 76 55 88 67 
9 MR+ J 74 83 55 78 63 
10 MR+ S 73 84 54 75 67 
11 J+S 71 84 51 73 67 
12 MA 75 75 72 95 26 
13 MR 74 84 56 77 67 
14 J 68 82 47 70 63 
15 S 67 81 46 69 63 
 
Table 3. Random forest models performance. MR (March), MA 

(May), J (July), S (September), OA (Overall Accuracy), UA 
(Users Accuracy), PA (Producers Accuracy), cast (chestnut 

class), other (other class). 
 
Model 5 revealed that chestnut cover in the Municipality of 
Folgoso do Courel amounts to 2,677 ha. Figure 4 shows the 
results obtained. 
 

 
 

Figure 4. Chestnut mapping results obtained with Model 5. 
Background image: DTM (Digital Terrain Model) 5 m obtained 

from the Spanish Cartographical Institute (IGN, 2019). 
 
The MFE chestnut area estimation greatly differs from the 
results presented in this study. The MFE polygons of chestnut 
pure stands cover an area of 3,208 ha. When overlapped, the 
MFE and Model 5 only match on 42% of the area (1,359 ha). 
The remaining 58% (916 ha) are classified as other tree species. 
On the other hand, there are 402 ha of chestnut according to the 
MFE that are in fact not covered by forest. According to Model 
5, 1,318 ha of chestnut forest are not currently classified by the 
official cartography. The results of these comparisons were 
evaluated through field work and photointerpretation. Figure 5 

shows an example of an area that is not covered by trees that is 
included in the MFE chestnut polygons. Figure 6 shows an 
example of other tree covers that are included in the MFE 
chestnut polygons. Figure 7 shows an example of an area 
classified as a chestnut area by Model 5 but that is not included 
in the MFE chestnut polygons. 
 

 
 

Figure 5. Model 5 classification results overlapped with the 
MFE. The figure shows how the MFE polygons cover non-
forested areas. Red lines represent the MFE polygons. Pink-

colored areas are areas classified as chestnut while green-
colored areas are classified as others. PNOA Reference image 

(PNOA, 2016) 
 

 
 

Figure 6. Left: Model 5 classification results overlapped with 
the MFE. Right: Field work picture. The figure shows an 

example of forest areas wrongly classified as chestnut forest by 
the MFE. Red lines represent the MFE polygons. Pink-colored 
areas are areas classified as chestnut while green-colored areas 
are classified as others. PNOA Reference image (PNOA, 2016) 

 

 
 

Figure 7. Left: Model 5 classification results overlapped with 
the MFE. Right: Field work picture. The figure shows an 
example of chestnut forest areas not included in the MFE 

chestnut polygons. Pink-colored areas are areas classified as 
chestnut while green-colored areas are classified as others. 

PNOA Reference image (PNOA, 2016). 
 
The comparisons performed suggest that the present 
methodology based on remote sensing techniques can improve 
the Spanish official cartography. The potential of remote 
sensing to improve the currently-available information about 
Spanish forests has been claimed before by (Gómez et al., 
2019), therefore the present is a case study which supports this 
statement. The methodology appears to be replicable in other 
study areas, however the presence of different tree species could 
affect the results. 
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3. CONCLUSIONS 

Sentinel 2 multi-temporal analysis through random forest 
algorithms linked with LiDAR data has been shown to be an 
efficient tool for performing chestnut forest cartography. The 
main advantages of the proposed methodology are the use of 
open-access data and the use of an automatic process. However, 
in some situations dependence on training areas could be an 
issue.  
The inclusion of months with different phenological stages 
helps to increase mapping accuracy, as previous studies have 
indicated. However, the acquisition of data for the wide range 
of months needed to carry out a complete analysis of the 
potential of multi-temporal approach for the detection of 
chestnut plantations was hindered by the presence of shadows 
due to the topography and climatic conditions of the study area. 
Further studies should try to record a wide range of months. 
Additionally, they should focus on links between the results 
obtained and the different species phenology in order to draw 
conclusions about which are the most critical phenological 
stages to include. 
On the other hand, chestnut forests in the municipality of 
Folgoso do Courel were detected and more accurately estimated 
using new methodologies than by using the official cartography 
sources, showing that new methods are available that could 
improve the official cartography. At the same time, a ready-to-
use product was obtained which can be used as a decision-
making tool when it comes to chestnut forest management.   
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