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Values and coalition configurations

M. Josune Albizuri∗ Juan Vidal-Puga†‡

Published in Mathematical Methods of Operations Research§

Abstract

In this paper we consider coalition configurations (Albizuri et al., 2006), that

is, families of coalitions not necessarily disjoint whose union is the grand coalition,

and give a generalization of the Shapley value (1953) and the Owen value (1977)

when coalition configurations form. This will be an alternative definition to the

one given by Albizuri et al. (2006).
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1 Introduction

There are negotiation situations in which some agents prefer to cooperate together than

with others. There is a tool which has been employed to study these kind of negotiations:

that of a coalition structure, that is, a partition of the set of agents into disjoint coalitions.

Aumann and Dreze (1974) propose and study a value when agents form a coalition

structure, and later on, Owen (1977) proposes and characterizes another modification of

the Shapley (1953) value also when coalition structures are formed (see also Hart and

Kurz, 1983). Even though other coalitional values have been studied (see Albizuri and

Aurrekoetxea, 2006, Casajus, 2009, Gómez-Rúa and Vidal-Puga 2010, and references
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herein), the most widely used (see Gómez-Rúa and Vidal-Puga, 2013, and references

herein) is the Owen (1977) value.

In Owen’s (1977) approach, each member of the coalition structure bargains against

the others to allocate the worth available to the grand coalition. Albizuri et al. (2006)

consider the more general concept of coalition configuration to model negotiations in

which players form coalitions not necessarily disjoint. A coalition configuration is defined

as a family of coalitions not necessarily disjoint, whose union is the grand coalition. They

generalize the Owen value (1977) (and therefore the Shapley value, 1953) with reference

to coalition configurations. In fact they obtain two generalizations of the Owen value.

The configuration value and the dual configuration value. Both values are dual each of

the other. Let us present the second one by means of an example. The first one could be

presented similarly.

Let N = {1, 2, 3} be the set of players and consider the transferable utility game v

on N which satisfies v (1) = 0 = v (2) = v (3) , v (12) = 3, v (13) = 0, v (23) = 1 and

v (123) = 5. The dual configuration value φ associates a vector of outcomes with each

coalition configuration. These outcomes can be calculated by means of orderings.

Suppose for example that players form coalition configuration B1 = {{1, 2} , {2, 3}}.
Then we have to consider all the orderings of the elements which form the two coalitions

of B1, in such a way that the elements of the same coalition keep together. So we consider

1223, 1232, 2123, 2132, 2312, 2321, 3212 and 3221. We interpret these orderings as follows.

Suppose that each player in each coalition of B1 has a representative associated with

that coalition, and that these four representatives form a queue outside a room in such

a way that all the representatives associated with a coalition are together. Then, these

representatives enter in the room and form an ordering. We have in this way the orderings

above. When a representative of a player enters in the room a coalition forms if all the

representatives of that player are in the room, being that coalition the one formed by the

players whose representatives are all in the room. For example, given 1232, player 1 is

given v (1) = 0 for when 1 enters coalition {1} forms and 1 is given her contribution to the

singleton coalition. When the first representative of player 2 enters in the room neither

coalition forms for all the representatives of 2 are not yet in the room. Therefore, 2 is

not given anything. Then 3 comes and coalition {1, 3} forms, and 3 is given her marginal

contribution to this coalition: v (13) − v (1) = 0. When the second representative of

player 2 enters {1, 2, 3} forms and 2 is given v (123) − v (13) = 5. If we suppose that

all the orderings are equally likely, the expected marginal contribution of a player is her

dual configuration value associated with B1. The value is φ (v,B1) =
(
1, 31

2
, 1
2

)
.
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Consider now the unanimity game uN on N given by uN (N) = 1 and uN (S) = 0

otherwise. Then, an analogous reasoning as before leads to φ (uN ,B1) =
(
1
4
, 1
2
, 1
4

)
.

If B2 = {{1, 2} , {2, 3} , {2}} is formed we can calculate the dual configuration value

as before. Now we have to consider the orderings 12232, 12322, 23122, ... In this case

φ (v,B2) =
(
2
3
, 4, 1

3

)
and φ (uN ,B2) =

(
1
6
, 4
6
, 1
6

)
.

Notice that in both cases player 2 has three representatives in B2 since she belongs

to three coalitions. If player 2 were in four coalitions she would have four representatives

and so on. So the more coalitions a player belongs to the more effort or weight she has.

In this work we do not allow any player (as player 2 here) to increase her weight by

belonging to more and more coalitions. Each player will have a fix weight and this weight

will be spread among the coalitions she belongs to. Think for example of agents that

have a certain amount of time they share among the coalitions they belong to, the worth

of these coalitions depending on the time spent by the agents inside the coalitions.

The weight of a player will be represented by a positive real number and we will

consider all the possible weights for a player. So we have a family of alternative values.

They will be called weighted bounded configuration values. The definition will be made

also by means of orderings, as in Albizuri et al. (2006).

The paper is structured as follows. Section 2 is a preliminary one, in Section 3 we

define the weighted bounded configuration values and in Section 4 we give an axiomatic

characterization which gives all the weighted bounded configuration values. In Section 5

we focus on a specific weighted bounded configuration value. As a first approach we can

say that we suppose that the weights of all the players in a fixed set U are equal to one

and that these players spread equally their weight among the coalitions of the coalition

configuration they belong to. Finally, in Section 6 we explain how to obtain the dual

family corresponding to the weighted bounded configuration values.

2 Preliminaries

Given a finite set of players N , we denote by GN the set formed by the cooperative

transferable utility games with player set N , that is by the mappings v : 2N → R such

that v (∅) = 0. A coalition is a subset S ⊆ N, S 6= ∅. Given i ∈ S ⊆ N and T ⊆ N\S,

let S−i,T denote the set (S\ {i}) ∪ T . Given v ∈ GN and T ⊆ N , T 6= ∅, we denote by

vT ∈ GT the game on T such that vT (S) = v (S) for all S ⊂ T . A game v ∈ GN is

monotonic if v (S) ≤ v (T ) whenever S ⊆ T . A coalition T is a partnership in v ∈ GN if

v (C ∪ S) = v (S) whenever C $ T and S ⊆ N\T . For every coalition T we denote by
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uT the unanimity game defined by

uT (S) =

{
1 if S ⊇ T

0 otherwise.

A coalition structure of N is a family B = {B1, ..., Bm} of coalitions of N such that⋃m
q=1Bq = N , and Bp ∩ Bq = ∅ if Bp, Bq ∈ B with p 6= q. We denote by BN

0 the set of

coalition structures of N and BGN
0 = BN

0 ×GN .

If we fix B ∈ BN
0 , a solution ψ on GN is a function from GN into RN . Vector ψ (v)

represents the expectations of players in v when they form coalition structure B.

Let us present the weighted coalition structure values with intercoalitional symmetry

defined by Levy and McLean (1989). We present a formalization which fits with the

definition for the weighted bounded configuration values that we provide in Section 3.

First we need some notation. Let B = {B1, ..., Bm} be a coalition structure of N . For

Bq ∈ B, denote by Σ (Bq) the set of permutations of Bq and let RB (N) be the set of

tuples (σ1, ..., σm) such that for every l = 1, ...,m it holds that

(1) σl ∈ Σ (Bq) for some q = 1, ...,m, and

(2) l′ 6= l and σl′ ∈ Σ (Bq) implies σl /∈ Σ (Bq) .

Each element α ∈ RB (N) naturally induces a permutation Rα of N in which players

in every Bq ∈ B appear successively. We denote by R
Bq
α the permutation σl ∈ Σ (Bq).

Let (v,B) ∈ BGN
0 and ω ∈ RN+ .1 Assume that players in N form a queue outside

a room according to the following procedure. Players in every Bq are together, all the

orderings of coalitions Bq ∈ B are equally likely and players in every Bq are ordered as

follows. One player in Bq is picked up at a time and she is placed in the front of the

queue which is partially formed. Once a player is picked up she is not picked up any

more and the probability of picking up player i is given by her weight ωi divided by

the weights of the players in Bq who are not yet in the queue. Then players proceed to

enter in the room. When player i enters in the room a coalition S forms and player i is

given her marginal contribution to this coalition, that is, v (S)−v (S\{i}). The expected

marginal contribution of player i is by definition the weighted coalition structure value

with intercoalitional symmetry of player i in v associated with ω and B.

This definition is due to Levy and McLean (1989). Let us formalize it. For every

α ∈ RB (N) and i ∈ N , let Rα [i] denote the set of players which are before player i in

order Rα, including player i.

Let (v,B) ∈ BGN
0 and ω ∈ RN+ . For every α ∈ RB (N) and i ∈ N the marginal

1Given N ⊆ U we denote by RN
+ the set of |N | -tuples with strictly positive components.
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contribution of player i in order Rα is

Ci (v,Rα) = v (Rα [i])− v (Rα [i] \ {i}) .

Consider the probability distribution Q(ω,B) on RB (N) such that

Q(ω,B) (α) =
1

|B|!
·
∏
Bq∈B

Qω
Bq

(
RBq
α

)
,

where Qω
Bq

is the probability distribution on Σ (Bq) such that Qω
Bq

(σl) =
|Bq |∏
t=1

ωit
t∑

s=1
ωis

for

σl =
(
i1...i|Bq |

)
∈ Σ (Bq) .

The weighted coalition structure value with intercoalitional symmetry of player i in v

associated with ω and B is defined by

η
(ω,B)
i (v) =

∑
α∈RB(N)

Q(ω,B) (α) · Ci (v,Rα) .

These solutions are characterized by Levy and McLean (1989) by means of the fol-

lowing axioms. Let B ∈ BN
0 be fixed and let ψ denote a solution on GN .

Linearity. For every v1, v2 ∈ GN and λ, µ ∈ R it holds that

ψ (λv1 + µv2) = λψ (v1) + µψ (v2) .

Efficiency. For every v ∈ GN it holds that∑
i∈N

ψi (v) = v (N) .

B-Positivity. If v ∈ GN is monotonic and Ci (v,Rα) > 0 for some α ∈ RB (N), then

ψi (v) > 0.

Intercoalitional Symmetry. Let v ∈ GN . If Bp, Bq ∈ B are such that for every

C ⊆ B\ {Bp, Bq} it holds v
(
Bp ∪

⋃
Br∈C Br

)
= v

(
Bq ∪

⋃
Br∈C Br

)
, then∑

i∈Bp

ψi (v) =
∑
i∈Bq

ψi (v) .

Intracoalitional Partnership. If T ⊆ N is a partnership in v, then for every Bq

such that Bq ∩ T 6= ∅ and every i ∈ Bq ∩ T it holds that

ψi (uT )
∑

j∈Bq∩T

ψj (v) = ψi (v)
∑

j∈Bq∩T

ψj (uT ) .

Null Player Axiom. Let v ∈ GN . If i ∈ N is a null player in v (i.e., if v (S ∪ {i}) =

v (S) for all S ⊆ N), then

ψi (v) = 0.
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Theorem 2.1 (Levy and McLean, 1989) Let B ∈ BN
0 . A function ψ : GN → RN satisfies

Linearity, Efficiency, the Null Player Axiom, B-Positivity, Intercoalitional Symmetry

and Intracoalitional Partnership if and only if there exists a vector ω ∈ RN+ such that

ψ = η(ω,B).

And finally, Levy and McLean (1989) proved that

η
(ω,B)
i (uT ) =

1

|Bp ∈ B : Bp ∩ T 6= ∅|
· ωi∑

j∈Bq∩T ωj
if i ∈ Bq ∩ T. (1)

3 The weighted bounded configuration values

In this section we propose an alternative solution to the ones given in Albizuri et al.

(2006). Again, players form coalitions and can be in more than one. In addition, we

suppose that when a player is in more than one coalition, several players can represent

her in the coalitions she belongs to.

To formalize this, we consider two disjoint sets of players, U and U ′, where players in

U ′ represent players in U . We suppose that these auxiliary players do not belong at once

to more than one coalition.

Let U and U ′ be, respectively, a finite and an infinite set of players with |U | ≥ 2

and U ∩ U ′ = ∅. We can always find a function F : U ×
{

2, ..., 2|U |−1
}
→ 2U

′
such that

|F (i, k)| = k for all k ∈
{

2, ..., 2|U |−1
}
, and F (i, k) ∩ F (j, k′) = ∅ if i 6= j or k 6= k′.

The interpretation of F (i, k) is as follows: F (i, k) is the set of representatives of player

i when player i belongs to exactly k different coalitions.

Let A = U ∪ F
(
U ×

{
2, ..., 2|U |−1

})
⊂ U ∪ U ′ be the set of all possible players and

representatives. A coalition configuration of N ⊆ A is a family B = {B1, ..., Bm} of

different coalitions of N such that
⋃m
q=1Bq = N , |Bi| = 1 when i ∈ N ∩U ′ and it satisfies∣∣Bi∣∣ > 1 =⇒ F

(
i,
∣∣Bi∣∣) ∩N = ∅

for all i ∈ N , where Bi = {Bq ∈ B : i ∈ Bq}.
The interpretation is as follows. There are two types of players, players in U and

players in F
(
U ×

{
2, ..., 2|U |−1

})
, where players in F

(
U ×

{
2, ..., 2|U |−1

})
can represent

players in U . The admissible set of players are the subsets of A. Each player i ∈ U

can be represented by the players in F (i, k) when player i joins k different coalitions.

Players in F (i, k) can be seen as split players of player i, and they cannot split (this is

the meaning of |Bi| = 1 when i ∈ N ∩U ′). So, players in F (i, k) cannot be in more than

one coalition. Furthermore, player i ∈ U cannot be with players that represent her (this

is the last requirement).
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The set of coalition configurations of N is denoted by BN . Moreover, we write BGN =

BN ×GN and BG =
⋃
N⊆A BGN .

Given B ∈ BN , for every Bq ∈ B we denote by Σ (Bq), as in the previous section, the

set of permutations of Bq and by RB (N) the set of tuples (σ1, ..., σm) such that for every

l = 1, ...,m it holds that

(1) σl ∈ Σ (Bq) for some Bq ∈ B, and

(2) l′ 6= l and σl′ ∈ Σ (Bq) implies σl /∈ Σ (Bq) .

Now, every element α ∈ RB (N) induces a permutation with repetition of order∑
Bq∈B |Bq| of N in which players in every Bq ∈ B appear successively. We denote

this permutation with repetition by Rα and by R
Bq
α the permutation σl ∈ Σ (Bq).

A solution on BG is a function ψ from BG into
⋃
N⊆ARN such that ψ (v,B) ∈ RN

whenever (v,B) ∈ BGN . Vector ψ (v,B) can be interpreted as the expected value of

players in v when players in the game form coalition configuration B.

We define our solution by means of orderings. Suppose that there exists a vector

ω ∈ RA+ such that for each i ∈ U and k ∈
{

2, ..., 2|U |−1
}

∑
j∈F (i,k)

ωj = ωi. (2)

That is, every player belonging to an admissible set of players has a weight ωi and the

weight of every player i ∈ U is the sum of the weights of the split players associated with

her.

Example 3.1 Take ωi = 1 for all i ∈ U and ωi = 1
k

for all i ∈ F (j, k) with j ∈ U

and k ∈
{

2, ..., 2|U |−1
}

. It is straightforward to check that such ω is well-defined and it

satisfies (2).

Example 3.2 Let µ ∈ RA+. Take ωi = µi for all i ∈ U and ωi = µi∑
l∈F (j,k) µl

µj for all

i ∈ F (j, k) with j ∈ U and k ∈
{

2, ..., 2|U |−1
}

. Again, it is straightforward to check that

such ω is well-defined and it satisfies (2).

For each N ⊆ A, i ∈ N ∩ U and B ∈ BN such that |Bi| > 1 there exists some

one-to-one function πiB : Bi → F (i, |Bi|). This function tells us which player in F (i, |Bi|)
can represent player i in each coalition of Bi. If |Bi| = 1 then player i belongs to a

unique coalition and therefore player i can be represented by herself. So, we also define

πiB (B) = i for all i ∈ N such that |Bi| = 1.

Moreover, these mappings should be consistent in the sense that the representatives of

some player j do not change if some other player i is replaced by her own representatives.
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Namely, let N ⊆ A, i ∈ N ∩ U and B ∈ BN such that |Bi| > 1, and consider

B−i,F(i,|Bi|) =
(
B\Bi

)
∪
{
B
−i,{πiB(Bq)}
q

}
Bq∈Bi

.

If i, j ∈ Bq ∈ B, then we require

πj
B−i,F(i,|Bi|)

(
(Bq\{i}) ∪

{
πiB (Bq)

})
= πjB (Bq) . (3)

We denote by π such a family of mappings {πiB}i,B.

Let us fix B ∈ BN and π. Every player i ∈ N has a representative in each coalition

Bq ∈ Bi, given by π. Suppose that these representatives form a queue outside a room in

such a way that all representatives associated with every Bq are together. These queues

can be represented by the members α ∈ RB (N). We suppose that all the orderings of

coalitions Bq ∈ B are equally likely and that players in every Bq are ordered as follows.

One player in Bq is picked up at a time and she is placed in the front of the queue

which is partially formed. Once a player is picked up she is not picked up any more

and the probability of picking up a player i ∈ Bq is given by the split weight ωπiB(Bq)

divided by the weights ωπkB(Bq) associated with the players k ∈ Bq who are not yet in the

queue. After forming the queue the representatives proceed to enter in the room. When

a representative of a player enters in the room a coalition forms if all the representatives

of that player have entered in the room. Moreover this coalition, say S, is formed by the

players whose representatives are all in the room. When the last representative of player

i enters in the room she will be given her marginal contribution to the coalition S, that

is, v (S)− v (S\{i}). The expected marginal contribution of player i will be by definition

her weighted bounded configuration value associated with (ω,π) . It will be denoted by

φω,πi (v,B).

Let us formalize this definition.

Consider the probability distribution Q(ω,B,π) on RB (N) such that

Q(ω,B,π) (α) =
1

|B|!
·
∏
Bq∈B

Q
(ω,π)
Bq

(
RBq
α

)
,

where Q
(ω,π)
Bq

is the probability distribution on Σ (Bq) such that Q
(ω,π)
Bq

(σl) =
|Bq |∏
t=1

ω
π
it
B (Bq)

t∑
s=1

ω
π
is
B (Bq)

for σl =
(
i1...i|Bq |

)
∈ Σ (Bq) .

Given α ∈ RB (N) and i ∈ N denote by Rα [i] the set of players whose last position

in Rα is before the last position of player i, including player i. Notice that this definition

generalizes that of RB (N) defined in the previous section, so it share the same name.
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Given (v,B) ∈ BGN , for every α ∈ RB (N) and i ∈ N, the marginal contribution of

player i in order Rα is defined by Ci (v,Rα) = v (Rα [i])− v (Rα [i] \ {i}) .
The weighted bounded configuration value of player i in (v,B) ∈ BGN associated with

ω is by definition

φω,πi (v,B) =
∑

α∈RB(N)

Q(ω,B) (α) · Ci (v,Rα) .

The weighted bounded configuration value φω is the corresponding solution on BG.

Next we give a relation between the weighted bounded configuration values and the

weighted coalition structure values with intercoalitional symmetry defined by Levy and

McLean (1989). It follows that the weighted bounded configuration value of a player is

the sum of the Levy and McLean values of the split players associated with that player

in an associated game with the natural associated coalition structure.

In this Proposition and in the following, given ω ∈ RA+ satisfying (2) and S ⊆ U , we

denote by ωS the vector ω restricted to S.

Proposition 3.1 Let φω be a weighted bounded configuration value. Then for every

v ∈ GN and i ∈ N ⊆ A it holds that

φωi (v,B) =
∑
Bq∈Bi

η
(ωN̂ ,B̂)
πiB(Bq)

(v̂) ,

where N̂ =
⋃
Bq∈B

⋃
j∈Bq

{
πjB (Bq)

}
, v̂ ∈ GN̂ is such that

v̂ (T ) = v

(
j ∈ N :

⋃
Bq∈Bj

{
πjB (Bq)

}
⊆ T

)
,

and B̂ =
{
B̂q

}
Bq∈B

, where B̂q =
⋃
j∈Bq

{
πjB (Bq)

}
.

Proof. Let φω and (v,B) ∈ BGN . There is a natural bijection between RB (N) and

RB̂
(
N̂
)

that associates each α = (σ1, ..., σm) ∈ RB (N) with α̂ ∈ RB̂
(
N̂
)

just replacing

player i ∈ σl ∈ Σ (Bq) by πiB (Bq). Furthermore, for every i ∈ N it holds that Ci (v,Rα) =∑
Bq∈Bi CπiB(Bq) (v̂, Rα̂) and Q(ω,B) (α) = Q(ωN̂ ,B̂) (α̂). Therefore, we obtain the required

result.

Notice that all the sets
⋃
Bq∈Bi {π

i
B (Bq)} are partnerships in v̂ and that the worth of⋃

Bq∈Bi {π
i
B (Bq)} is just the worth of i in v. Observe also that B̂ is the natural coalition

structure induced by B on N̂ , when every i ∈ N is replaced in each Bq ∈ Bi by her

associated split player πiB (Bq).

Remark 3.1 When the weights are natural numbers then the weighted bounded config-

uration value can also be calculated as follows. The weights can be seen as the number
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of representatives that players have in the coalitions they belong to. Suppose for example

that {1, 2, 3} = N ⊂ A, ω1 = 1, ω2 = 3, ω3 = 1, F (2, 2) = {4, 5} , and ω4 = 2, ω5 = 1.

Let B1 = {{1, 2} , {2, 3}} , and suppose that 4 and 5 represent player 2, respectively, in

{1, 2} and in {2, 3}, i.e. π2
B1 ({1, 2}) = 4 and π2

B1 ({2, 3}) = 5. So players 1, 2 and 3 have,

respectively, ω1, ω2 and ω3 representatives in the coalitions they belong to, and ω4 and

ω5 tell us how ω2 is divided in the two coalitions player 2 belongs to. Therefore, player 1

has one representative in coalition {1, 2}, player 3 has one representative in {2, 3}, and

player 2 has two representatives in {1, 2} and one in {2, 3}. We denote by 2, 2′ the two

representatives of player 2 in {1, 2} and maintain the denomination of the player for the

other representatives. If we consider the orderings of all the representatives in such a

way that those associated with the same coalition are together, that is, 122′23, 12′223,

122′32, ..., if we suppose that these orderings are equally likely and that the sets form

as explained in the Introduction for the dual configuration value, the expected marginal

contribution of a player i ∈ {1, 2, 3} is her value according to φω,π. For the first game

v presented in the Introduction, φω (v,B1) =
(
2
3
, 35

6
, 1
2

)
. For the unanimity game uN ,

φω (uN ,B1) =
(
1
6
, 7
12
, 1
4

)
.

These results can be proved as in Kalai and Samet’s Theorem 9 (1987), taking into

account Proposition 3.1.

4 Characterization of the weighted bounded config-

uration values

In this section we characterize the family formed by the values φω by means of the

following axioms. We denote by ψ a solution on BG and N ⊆ A.

The first five axioms are adaptations to this framework of the axioms that character-

ize the weighted coalition values with intercoalitional symmetry, except the Null Player

Property.

Linearity. For every (v1,B) , (v2,B) ∈ BGN and λ, µ ∈ R it holds that

ψ (λv1 + µv2,B) = λψ (v1,B) + µψ (v2,B) .

Efficiency. For every (v,B) ∈ BGN it holds that∑
i∈N

ψi (v,B) = v (N) .

B-Positivity. If v ∈ GN is monotonic and Ci (v,Rα) > 0 for some α ∈ RB (N) then

ψi (v,B) > 0.
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Intercoalitional Symmetry. Let (v,B) ∈ BGN
0 . If Bp, Bq ∈ B are such that for

every C ⊆ B\ {Bp, Bq} it holds v
(
Bp ∪

⋃
Br∈C Br

)
= v

(
Bq ∪

⋃
Br∈C Br

)
, then∑

i∈Bp

ψi (v,B) =
∑
i∈Bq

ψi (v,B) .

Intracoalitional Partnership. Let (v,B) ∈ BGN . If T ⊆ N is a partnership in v

and Bq ∈ B is such that Bq ∩ T 6= ∅ and |Bi| = 1 for every i ∈ Bq ∩ T , then for every

i ∈ Bq ∩ T it holds that

ψi (uT ,B)
∑

j∈Bq∩T

ψj (v,B) = ψi (v,B)
∑

j∈Bq∩T

ψj (uT ,B) .

The following axiom requires the solution to be independent of the null players with no

relevant role in a coalition structure.

Null Players Out. Let (v,B) ∈ BGN
0 . If i ∈ N is a null player in v, then

ψj
(
vN\{i},B−i

)
= ψj (v,B)

for every j ∈ N\ {i}.
For the next axiom we need two notations.

Given v ∈ GN , i ∈ N ∩ U and k ∈
{

2, ..., 2|N |−1
}

, the game v−i,F (i,k) ∈ GN−i,F (i,k)
is

defined by

v−i,F (i,k) (T ) =

{
v (T ∩N) if F (i, k) * T

v ((T ∩N) ∪ {i}) if F (i, k) ⊆ T.

In this game player i has been substituted by F (i, k), being the proper subsets of F (i, k)

powerless, that is, being F (i, k) a partnership.

Given B ∈ BN and i ∈ N , we write

B−i,F(i,|Bi|) =
(
B\Bi

)
∪
{
B
−i,{πiB(Bq)}
q

}
Bq∈Bi

.

That is, player i is substituted by her representatives in the coalitions (of the coalition

configuration) she belongs to.

The next axiom states that if a player belongs to several coalitions of a coalition

configuration, then she can be substituted by her representatives associated with this

coalition configuration without changing the value of the other players.

Merger. Let B ∈ BN and i ∈ N such that |Bi| > 1. Then,

ψj (v,B) = ψj

(
v−i,F(i,|Bi|),B−i,F(i,|Bi|)

)
for every j ∈ N\ {i} and v ∈ GN .
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The dual configuration value (Albizuri et al., 2006) satisfies all the above properties2.

Moreover, the weighted bounded configuration value also satisfies them (see Proposition

4.1 below). Hence, we need an additional axiom to decide which of these two values is

more suitable in a given situation.

Example 4.1 Let N = {1, 2, 3, 4, 5} with 2 ∈ U and {4, 5} = F (2, 2) ⊂ U ′. So, players 4

and 5 are the representatives of player 2 when player 2 belongs to exactly two coalitions,

as for example in B′ = {{1, 2} , {2, 3}} ∈ B{1,2,3}. Let uN be the unanimity game on

N , so that {2, 4, 5} is a partnership in (N, uN). Let B = {{1} , {2, 3, 4, 5}}. The dual

configuration value (Albizuri et al., 2006) assigns:

φ2 (uN ,B) =
1

8
6= 1

4
= φ4 (uN ,B) + φ5 (uN ,B) .

On the other hand, a weighted bounded configuration value assigns

φω2 (uN ,B) =
1

2

ω2

ω2 + ω3 + ω4 + ω5

=
1

2

ω4 + ω5

ω2 + ω3 + ω4 + ω5

= φω4 (uN ,B) + φω5 (uN ,B) .

We consider that φω2 (uN ,B) = φω4 (uN ,B) + φω5 (uN ,B) is a natural requirement for a

coalition configuration value, since players 4 and 5 are representatives of player 2, and

they belong to a common partnership, being therefore indistinguishable in this game.

In the following axiom we formalize the general situation described in Example 4.1.

Consider a player and the players who represent her (with respect to some other coalition

configuration) all of them forming a partnership in a game, and therefore being indistin-

guishable in this game. If we take a coalition configuration in which such a player and

her representatives belong to the same coalition, the axiom requires the solution to give

the same value to the player and such representatives.

F-Partnership Additivity. Let B ∈ BN , B′ ∈ BN ′ , and i ∈ N ∩N ′ ∩ U such that∣∣∣(B′)i∣∣∣ > 1, F
(
i,
∣∣∣(B′)i∣∣∣) ⊂ N , Bi = Bj for all j ∈ F

(
i,
∣∣∣(B′)i∣∣∣), and v ∈ GN such that

F
(
i,
∣∣∣(B′)i∣∣∣) ∪ {i} is a partnership in v. Then

ψi (v,B) =
∑

j∈F(i,|(B′)i|)
ψj (v,B) .

2See Theorem 5.1 in Albizuri et al. (2006) for Efficiency, Linearity and Intercoalitional Symmetry

(called Coalitional Symmetry). B-Positivity, Intracoalitional Parnership, Null Players Out and Merger

follow easily from the definition.
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Recall that |Bj| = 1 for all j ∈ F
(
i,
∣∣∣(B′)i∣∣∣) since j ∈ U ′. Hence, players i and j

belong to a unique coalition in B, that is, there exists Bq ⊂ N such that Bi = Bj = {Bq}.

Proposition 4.1 The weighted bounded configuration value φω satisfies Linearity, Effi-

ciency, B-Positivity, Intercoalitional Symmetry, Intracoalitional Partnership, Null Play-

ers Out, Merger and F -Partnership Additivity.

Proof. By definition, it is clear that φω satisfies Linearity, Efficiency and B-Positivity.

If B is a coalition structure then the mapping ψ (v) = φω (v,B) is a weighted coalition

structure value and therefore ψ satisfies Intercoalitional Symmetry and Null Players Out.

Let us prove that φω satisfies Intracoalitional Partnership. Let (v,B) ∈ BGN , T ⊆ N

be a partnership in v, Bq ∈ B such that Bq ∩ T 6= ∅ and |Bi| = 1 for every i ∈ Bq ∩ T .

Let i, j ∈ Bq ∩ T . By Proposition 2 it holds that

φωj (v,B) = φωj

(
v̂, B̂

)
, (4)

where
(
v̂, B̂

)
∈ BGN̂ is defined as in Proposition 2. Since B̂ is a coalition structure,

the solution ψ̂ on GN̂ defined by ψ̂ (w) = φω
(
w, B̂

)
is a weighted coalition structure

value with intercoalitional symmetry (the one associated with ωN̂ and B̂), and therefore ψ̂

satisfies Intracoalitional Partnership. Notice also that the set T̂ =
⋃
t∈T
⋃
Bp∈Bt {π

t
B (Bp)}

is a partnership in v̂. Therefore,

ψ̂i
(
uT̂
) ∑
j∈B̂q∩T̂

ψ̂j (v̂) = ψ̂i (v̂)
∑

j∈B̂q∩T̂

ψ̂j
(
uT̂
)
.

And taking into account that B̂q ∩ T̂ = Bq ∩ T , uT̂ = ûT and the equality (4), we have

that

φωi (uT ,B)
∑

j∈Bq∩T

φωj (v,B) = φωi (v,B)
∑

j∈Bq∩T

φωj (uT ,B) ,

that is, φω satisfies Intracoalitional Partnership.

We prove now that φω satisfies Merger. Let B ∈ BN and i ∈ N such that |Bi| > 1,

j ∈ N\ {i} and v ∈ GN . It is clear that

̂B−i,F (i,|Bi|) = B̂

and
̂v−i,F (i,|Bi|) = v̂.

Moreover, by (3),

πj
B−i,F(i,|Bi|)

(
(Bq\ {i}) ∪

{
πiB (Bq)

})
= πjB (Bq)
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for all Bq ∈ Bj.
By Proposition 3.1,

φωj (v,B) =
∑
Bq∈Bj

η
(ωN ,B̂)
πjB(Bq)

(v̂)

and

φωj

(
v−i,F(i,|Bi|),B−i,F(i,|Bi|)

)
=

∑
B′q∈

(
B−i,F(i,|Bi|)

)j η
(ωN ,B̂)
πjB(B′q)

(v̂) .

It is clear that there exists a one-to-one correspondence between Bj and
(
B−i,F(i,|Bi|)

)j
,

given by B′q = (Bq\ {i}) ∪ {πiB (Bq)}, so that the two above expressions coincide.

Finally, we prove that φω satisfies F -Partnership Additivity. Let B ∈ BN , B′ ∈ BN ′ ,

i ∈ N ∩ N ′ ∩ U such that
∣∣∣(B′)i∣∣∣ > 1, F

(
i,
∣∣∣(B′)i∣∣∣) ⊂ N, Bi = Bj = {Bq} for all

j ∈ F
(
i,
∣∣∣(B′)i∣∣∣), and v ∈ GN such that T = F

(
i,
∣∣∣(B′)i∣∣∣) ∪ {i} is a partnership in v.

By the Intracoalitional Partnership Axiom it holds that

φωi (v,B) =
φωi (uT ,B)∑

j∈Bq∩T
φωj (uT ,B)

∑
j∈Bq∩T

φωj (v,B) ,

where the denominator is not zero by B-Positivity. Moreover, Bq ∩ T = T and hence

φωi (v,B) =
φωi (uT ,B)∑

j∈T
φωj (uT ,B)

∑
j∈T

φωj (v,B) .

Taking into account Proposition 3.1 and (1) we obtain

φωi (v,B) =
ωi∑

j∈T
ωj

∑
j∈T

φωj (v,B) . (5)

Analogously, for every k ∈ F (i, |Bi|) it holds that

φωk (v,B) =
ωk∑

j∈T
ωj

∑
j∈T

φωj (v,B) . (6)

By (2) we know that ωi =
∑

k∈T\{i} ωk, which, joint with (5) and (6), implies

φωi (v,B) =
∑

k∈T\{i}

φωk (v,B) =
∑

k∈F(i,|(B′)i|)
φωk (v,B) ,

that is, φω satisfies F -Partnership Additivity.

Theorem 4.1 A solution ψ on BG satisfies Linearity, Efficiency, B-Positivity, Inter-

coalitional Symmetry, Intracoalitional Partnership, Null Players Out, Merger and F -

Partnership Additivity if and only if there exist ω such that ψ = φω.
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Proof. Proposition 4.1 is the if part of this Theorem. So it remains to prove that if a

solution ψ on BG satisfies the above axioms then there exist ω and π such that ψ = φω.

Let B ∈ BN
0 be a coalition structure on N ⊆ A. The mapping ψR (v) = ψ (v,B) satis-

fies Linearity, Efficiency, the Null Player Axiom, B-Positivity, Intercoalitional Symmetry

and Intracoalitional Partnership. Therefore, by Theorem 2.1 there exists λN (B) ∈ RN+
such that

ψR (v) = ψ (v,B) = η(λN (B),B) (v) . (7)

Moreover, Levy and McLean (1989) prove that λ (B)Ni = ψi (uN ,B) for every i ∈ N .

Let Bq ∈ B and i, j ∈ Bq ∩N . By Intracoalitional Partnership,

ψi
(
uBq∩N ,B

) ∑
k∈Bq∩N

ψk (uN ,B) = ψi (uN ,B)
∑

k∈Bq∩N

ψk
(
uBq∩N ,B

)
.

Under B-Positivity, we can rewrite the above equality as

ψi
(
uBq∩N ,B

)
ψi (uN ,B)

=

∑
k∈Bq∩N

ψk
(
uBq∩N ,B

)
∑

k∈Bq∩N
ψk (uN ,B)

.

Since we have the same equality for player j, it follows that

ψi
(
uBq∩N ,B

)
ψi (uN ,B)

=
ψj
(
uBq∩N ,B

)
ψj (uN ,B)

,

that is,
ψi (uN ,B)

ψj (uN ,B)
=
ψi
(
uBq∩N ,B

)
ψj
(
uBq∩N ,B

) =
ψi
(
uBq∩N , {Bq ∩N}

)
ψj
(
uBq∩N , {Bq ∩N}

) , (8)

where we have taken into account Null Players Out in the second equality.

Now, we take into account again the Intracoalitional Partnership axiom, but now with

(uA, {A}) ∈ BGA, coalition A ∈ {A} and T = Bq ∩N . Then

ψi
(
uBq∩N , {A}

) ∑
k∈Bq∩N

ψk (uA, {A}) = ψi (uA, {A})
∑

k∈Bq∩N

ψk
(
uBq∩N , {A}

)
.

Since we have the same equality for player j, reasoning as above we have that

ψi (uA, {A})
ψj (uA, {A})

=
ψi
(
uBq∩N , {A}

)
ψj
(
uBq∩N , {A}

) =
ψi
(
uBq∩N , {Bq ∩N}

)
ψj
(
uBq∩N , {Bq ∩N}

) . (9)

Equalities (8) and (9) imply that

ψi (uN ,B)

ψi (uA, {A})
=

ψj (uN ,B)

ψj (uA, {A})
.
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If we denote by cBq ,B this ratio, we have that ψi (uN ,B) = cBq ,B ·ψi (uA, {A}) for every

i ∈ Bq. Let ωk = ψk (uA, {A}) for every k ∈ A. Hence, λN (B)i = cBq ,B · ωi for every

i ∈ Bq. Taking into account (1) and (7) we obtain

ψ (v,B) = η(ωN ,B) (v) (10)

for every v ∈ GN .

Now let (v,B) ∈ BGN . By Merger and Efficiency, for every i ∈ N with |Bi| > 1,

ψi (v,B) =
∑
Bq∈Bi

ψπiB(Bq)

(
v̂, B̂

)
,

where N̂ , B̂ =
{
B̂q

}
Bq∈Bi

and v̂ ∈ GN̂ are defined as in Proposition 3.1. For i ∈ N with

|Bi| = 1, we have πiB (Bq) = i and, under Merger and Efficiency, the above equality also

holds. By (10) we have that ψ
(
v̂, B̂

)
= η(ωN̂ ,B̂) (v̂), and therefore

ψi (v,B) =
∑
Bq∈Bi

η
(ωN̂ ,B̂)
πiB(Bq)

(v̂) .

We still need to prove that ω satisfies (2) so that the above equality implies ψ = φω.

Equality (2) is satisfied since by F -Partnership Additivity it follows that

ωi = ψi (uA, {A}) =
∑

j∈F (i,k)

ψj (uA, {A}) =
∑

j∈F (i,k)

ωj.

for all k ∈
{

2, ..., 2|U |−1
}

.

The eight axioms used in Theorem 4.1 are independent. We describe eight reasonable

values. Each of them satisfies all the axioms but one. Fix ω as in the definition of some

φω .

• For any v ∈ GN let C (v) denote the carrier of v, i.e. the set of non-null players.

Then, the value p0,ω defined as p0,ωi (v,B) = 0 for all i ∈ N\C (v) and

p0,ωi (v,B) =
v (N)

|{Br ∈ B : Br ∩ C (v) 6= ∅}|
∑

Bq∈Bi:Bq∩C(v)6=∅

ωπiB(Bq)∑
j∈Bq ωπjB(Bq)

for all i ∈ C (v), satisfies all the axioms but Linearity.

• For any δ ∈ (0, 1), the value φδ,ω defined as φδ,ω (v,B) = δφω (v,B) satisfies all the

axioms but Efficiency. Notice that these values are reasonable expected payoff measures

when there is a fixed discounting factor δ due to some unavoidable process of bargaining.

• Let ω (µ) ∈ RA+ be defined as in Example 3.2 for some µ ∈ RA+. For each α ∈ R, let

µα be defined as µαi = (µi)
α (µi raised to the power of α) for all i ∈ A. When µi 6= µj for

some i, j ∈ U , the value φ∞,µ defined as

φ∞,µ (v,B) = lim
α→∞

φω(µ
α) (v,B)
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satisfies all the axioms but B-Positivity. These values are priority rules where the highest

priority goes to those players with the highest coefficient µ.

• Given B ∈ BN , let ωB ∈ RN+ be defined as ωBi = |Bi| for all i ∈ N ∩U and ωBi = 1
k

for

all i ∈ F (j, k). The value She (v,B) = Shω
B

(v), where Shω
B

is the weighted Shapley

value (Kalai and Samet, 1987), satisfies all the axioms but Intercoalitional Symmetry.

• For each (v,B) ∈ BGN , let µ(v,B) ∈ RA+ satisfying µ
(v,B)
i =

∑
j∈F (i,k) µ

(v,B)
j for

all (i, k) ∈ U ×
{

2, ..., 2|U |−1
}

, µ
(v,B)
i = µ

(v,B′)
i when i ∈ B′ and B is finer3 than B′,

and µ(v,B) = µ

(
v
−i,F(i,|Bi|),B−i,F(i,|Bi|)

)
for all (v,B) ∈ BGN and i ∈ N ∩ U . When

µ(v,B) 6= µ(uT ,B) for some (v,B) ∈ BGN and T satisfying the conditions stated in the

definition of Intracoalitional Partnership, the value fµ defined as

fµi (v,B) =
∑
Bq∈Bi

η

(
µ
(v,B)
N̂

,B̂
)

πiB(Bq)
(v̂)

for all i ∈ N , satisfies all the axioms but Intracoalitional Partnership.

• The value p defined as

pi (v,B) =
v (N)

|B|
∑
Bq∈Bi

ωπiB(Bq)∑
j∈Bq ωπjB(Bq)

for all i ∈ N , satisfies all the axioms but Null Players Out.

• For each B ∈ B, let µB ∈ RA+ satisfying µBi =
∑

j∈F (i,k) µ
B
j for all (i, k) ∈ U ×{

2, ..., 2|U |−1
}

and µBi = µB
′

i when i ∈ B′ and B is finer than B′. When µB 6= µ
B
−i,F(i,|Bi|)
πiB

for some B ∈ BN and i ∈ N , the value gµ defined as

gµi (v,B) =
∑
Bq∈Bi

η
(µB
N̂
,B̂)

πiB(Bq)
(v̂)

for all i ∈ N , satisfies all the axioms but Merger.

• The dual configuration value (Albizuri et al., 2006) satisfies all the axioms but

F -Partnership Additivity.

5 The symmetric bounded equally split value

In this section we focus on a specific weighted bounded configuration value. It is the value

obtained when the weights are given as in Example 3.1, i.e. all the players in U have

3We say that B ∈ BN is finer than B′ ∈ BN ′
when N ⊇ N ′ and there exists a one-to-one function f

from B to B′ such that f (Bq) ⊂ Bq for all Bq ∈ B.
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weight 1 and they spread equally their weight over the coalitions they belong to. That

is, ωi = 1 for all i ∈ U and ωi = 1
k

for all i ∈ F (j, k) with j ∈ U and k ∈
{

2, ..., 2|U |−1
}

.

We denote this value by φe and we call it the symmetric bounded equally split value.

This value satisfies intracoalitional anonymity when a coalition structure with sets of

players contained in U is formed. Formally this property is stated as follows.

U -Intracoalitional Anonymity. Let (v,B) ∈ BGN
0 with N ⊆ U . If π is a per-

mutation of N such that π (Bq) = Bq for every Bq ∈ B, then for every i ∈ N it holds

that

ψi (πv,B) = ψπi (v,B) ,

where πv ∈ GN is defined as (πv) (S) = v (πS) for all S ⊆ N .

The symmetric bounded equally split value also satisfies the following variation of

F -Partnership Additivity.

F-Equally Partnership Additivity. Let B ∈ BN , B′ ∈ BN ′ and i ∈ N ∩ N ′ ∩ U
such that

∣∣∣(B′)i∣∣∣ > 1, F
(
i,
∣∣∣(B′)i∣∣∣) ⊂ N , Bi = Bj for all j ∈ F

(
i,
∣∣∣(B′)i∣∣∣), and v ∈ GN

such that F
(
i,
∣∣∣(B′)i∣∣∣) ∪ {i} is a partnership in v. Then

ψi (v,B) =
∑

j∈F(i,|(B′)i|)
ψj (v,B)

and

ψj (v,B) = ψk (v,B) if j, k ∈ F
(
i,
∣∣∣(B′)i∣∣∣) .

This axiom not only requires i and F
(
i,
∣∣∣(B′)i∣∣∣) to obtain the same value according to

ψ, but also all players in F
(
i,
∣∣∣(B′)i∣∣∣) to obtain the same value. Observe that F -Equally

Partnership Additivity implies F -Partnership Additivity.

If we add U -Intracoalitional Anonymity in the axiom system considered in the previous

Section and substitute F -Partnership Additivity by F -Equally Partnership Additivity,

we obtain a characterization of φe.

Theorem 5.1 A solution ψ on BG satisfies Linearity, Efficiency, B-Positivity, Inter-

coalitional Symmetry, Intracoalitional Partnership, Null Players Out, Merger, F -Equally

Partnership Additivity, and U-Intracoalitional Anonymity if and only if ψ is the symmet-

ric bounded equally split value.

Proof. It is straightforward to prove that if ψ is the symmetric bounded equally split

value then it satisfies the above axioms.
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Conversely, if a solution ψ on BG satisfies Linearity, Efficiency, B-Positivity, Inter-

coalitional Symmetry, Intracoalitional Partnership, Null Players Out, Merger, and F -

Equally Partnership Additivity, have that ψ = φω with ωi = ψi (uA, {A}) for every i ∈ A.

Since ψ satisfies U -Intracoalitional Anonymity there exists ω0 ∈ R+ such that ω0 = ωi =

ωj for every i, j ∈ U . Fix i ∈ U , k ∈
{

2, ..., 2|U |−1
}

and j0 ∈ F
(
U ×

{
2, ..., 2|U |−1

})
.

F -Equally Partnership Additivity implies

ω0 =
∑

j∈F (i,k)

ψj (uA, {A}) = kψj0 (uA, {A}) .

Therefore

ψj0 (uA, {A}) =
ω0

k
,

and ψ = φe.

6 The dual case

Throughout this work we could have defined and studied the dual values of the weighted

bounded configuration values. The dual value φ∗ω can be defined by φ∗ω (v,B) = φω
(
vd,B

)
,

(v,B) ∈ BGN , where vd ∈ GN is the dual game defined by

vd (S) = v (N)− v (N\S)

for all S ⊂ N .

For the dual case we would have to make the following changes. In the Introduction,

when considering the orderings of the examples, a set would be formed when the first

representative of the player entered in the room (instead of the last representative) and

the player would be given then the corresponding marginal contribution.

In Section 3 the same would happen when the first representative of the player entered

in the room. And the probability of α ∈ RB (N) would be

(Q∗)(ω,B) (α) = Q(ω,B) (α∗) ,

where α∗ is the reverse tuple of α. As for Proposition 3.1, though Levy and McLean did

not define the dual value (η∗)(ω,B) of η(ω,B), it can be defined as

(η∗)(ω,B) (u∗T ) = η(ω,B) (uT ) ,

where u∗T is defined by

u∗T (S) =

{
1 if S ∩ T 6= ∅
0 otherwise.
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and v̂ would be defined by v̂ (T ) = v
(
j ∈ N :

⋃
Bq∈Bj

{
πjB (Bq)

}
∩ T 6= ∅

)
. In this case,⋃

Bq∈Bj
{
πjB (Bq)

}
would be a p∗-type coalition in v̂. A coalition S is a p∗-type coalition

(Kalai and Samet, 1987) if for each R ⊇ S and T  S then v (R\T ) = v (R). That is,

any proper subset of S has the same effect as S.

In Section 4 we would consider p∗-type coalitions instead of partnership sets in all the

axioms, and in Intercoalitional Partnership we would take u∗T instead of uT . Moreover,

in Merger we would define

v−i,F (i,k) (T ) =

{
v (T ∩N) if F (i, k) ∩ T = ∅

v ((T ∩N) ∪ {i}) if F (i, k) ∩ T 6= ∅.
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