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A B S T R A C T   

Nitrogen doping carbon nanotubes can enhance their beneficial physical and chemical properties, rendering 
them more desirable for various applications, e.g., in electronics. In this study, we used catalytic chemical vapor 
deposition to synthesize carbon na-no-tube forests on different substrates. The samples were prepared in the 
presence of compounds containing nitrogen (ammonia, acetonitrile, tripropylamine, and their mixture with 
acetone) that were introduced into the reactor by bubbling or injection. Of the two different nitrogen intro
duction methods, the direct injection of a liquid nitrogen precursor promoted the synthesis of bamboo-structured 
carbon nanotube forests more efficiently. It was found in the injection experiments that the amount of precursor 
affected the extent of nitrogen incorporation. The presence of various nitrogen species in CNTs was also iden
tified, and the manner in which temperature and the presence of hydrogen both influence nitrogen incorporation 
into the carbon na-no-tubes was observed.   

1. Introduction 

Nowadays, carbon nanotubes (CNTs) play an important role due to 
their prominent chemical and physical properties. The vertical align
ment of CNTs into so-called “CNT forests” results in a three-dimensional 
structure and enhanced properties [1]. This way their conductivity can 
be improved, which is beneficial in e.g., microelectromechanical ap
pliances [2]. This structure was first produced by a team of researchers 
in Beijing in 1996, who used catalytic chemical vapor deposition 
(CCVD) for the synthesis [3]. To synthesize CNT forests a catalyst is 
required that is prepared most often as a thin film either by 
spray-coating [4], dip-coating [5], spin-coating [6], or pulsed laser 
deposition (PLD) [7]. Popular catalyst precursors include different salts 
of iron [8], cobalt [9], and nickel [10]. Before thin film construction, it is 
important to choose the optimal (often conductive) substrate based on 
the experimental needs, such as titanium [11], aluminum [12], stainless 
steel [13], and copper [14], but silicon has also been used [15] due to its 

abundance and resistance to temperature in a wide range. 
In order to enhance the electrochemical properties of CNTs, they are 

often doped with nitrogen atoms, thus exhibiting an n-type behavior 
[16]. Nitrogen doping (N-doping) adds extra electrons to the carbon 
lattice increasing the electron density in the conduction and valence 
bands, which plays an important role in their application. Several 
methods are available to synthesize N-doped CNT forests, such as in
jection [17,18], dosing [19], pyrolysis [20], nitrogen plasma generation 
[21], plasma-assisted N-doping [22], electron cyclotron resonance [23], 
or bubbling [24]. These often result in a modified CNT structure, such as 
bamboo-like nanotubes. Different nitrogen compounds can be used to 
dope CNTs, e.g., acetonitrile [19], ethylenediamine [25], 4‑tert-bu
tylpyridine [26], palm oil [27], tripropylamine [24,28,29] and, most 
commonly, ammonia [30–32]. Based on current knowledge, when CNT 
forests are formed on a conductive substrate, the conductive properties 
can be increased; however, there are only a few examples in the litera
ture of this, such as N-doped CNT forests produced on stainless steel [33, 
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34]. During synthesis, many parameters affect the incorporation of ni
trogen into the carbon lattice of CNT forests. For example, hydrogen has 
been shown to have an inhibitory effect on nitrogen incorporation [17]. 
N-doped CNTs are used in various applications, such as fuel cells [35], 
sensors [36], hydrogen storage [37], Li-ion batteries [38], and CO2 
adsorption [39], as well as in organic pollutant removal [40]. 

This work aims to observe the effect of different nitrogen compounds 
that were used as nitrogen precursors for the synthesis of N-doped CNT 
forests. Moreover, the influence of other experimental parameters on the 
structure of CNT forests and the incorporation of nitrogen into CNTs 
were also investigated. Since N-doped CNT forests have mostly been 
produced on silicon substrates, our goal was to synthesize vertically 
aligned N-doped CNTs on metallic substrates, too. For this purpose, ti
tanium and aluminum substrates were used to diversify the conductive 
properties of the products for a wide range of possible applications. The 
parameters used in the syntheses were based on previous results [5,11], 
so that only the N-doping parameters could be analyzed in the research. 

2. Experimental 

2.1. Materials 

Three different substrates were used for the syntheses: aluminum 
(99.99%, VWR), silicon (<100>, P-type, Sigma), and titanium (99%, 
VWR). Cobalt (cobalt(II) nitrate hexahydrate, 99% (Sigma-Aldrich)), 
cobalt(II) oxide (99.99%, Sigma-Aldrich), iron (iron(III) nitrate non
ahydrate, 99.9%, Sigma-Aldrich), iron(III) oxide (99.998%, Sigma- 
Aldrich), ethanol (99.8%, VWR), and aluminum oxide (≥98.5%, WRS 
Materials Company) were used to prepare the catalyst. Nitrogen doping 
experiments were performed using three different nitrogen precursors: 
tripropylamine (TPA; ≥98%, Sigma-Aldrich), ammonia (NH3; 25% so
lution, VWR), and acetonitrile (ACN; a.r., J.T. Baker). Acetone (Ac; a.r., 
Molar Chemicals Kft.) was used together with the nitrogen compounds 
to increase volatility. During the syntheses, nitrogen (99.995%, Messer) 
was used as the carrier gas, hydrogen (99.5%, Messer) as the reducing 
agent, and ethylene (>99.9%, Messer) as the carbon source. 

2.2. Catalyst preparation 

Two different methods were used to prepare the catalyst layers: dip- 
coating, which is a simple approach, and PLD, which yields a more 

homogeneous catalytic surface. The substrates were prepared identi
cally in both catalyst layer deposition approaches: the three different 
substrates (aluminum, silicon, and titanium) were cut to size (2 × 2 cm), 
then rinsed with ethanol, acetone, and Milli-Q water to remove surface 
contaminants. 

For dip-coating, the catalyst solution was prepared by dissolving Fe 
(NO3)3  × 9H2O and Co(NO3)2  × 6H2O in ethanol at a concentration of 
0.11 M, respectively. The catalyst ink was prepared by mixing these 
solutions at an Fe:Co ratio of 2:3. The catalyst solutions were always 
prepared fresh to avoid decomposition and undesirable product forma
tion. The clean substrates were heat-treated at 400 ◦C for 1 h in a static 
oven to form a surface layer of native oxide, which was followed by 
catalyst deposition on the surface. Then, the substrates with the catalysts 
were heat-treated once more at 400 ◦C for 1 h to stabilize the catalyst 
layer on the substrate. 

In the first step of PLD, catalyst pastilles were prepared using Fe2O3 
and CoO with an Fe:Co ratio of 1:1. 1 g of catalyst precursor was 
weighed, then compressed into pellets with a diameter of 1 cm. This was 
followed by heat-treatment at 400 ◦C for 1 h to stabilize the catalysts. 
The Al2O3 pellet for the support layer formation was also prepared by 
the process described above. The support and the catalyst layers were 
then built by placing the substrate in the vacuum chamber. After that, 
the support and catalyst layers were deposited from the pastilles by 
using an LLG TWINAMP KrF excimer laser (λ = 248 nm, pulse length: 18 
ns, repetition rate: 10 Hz) operated at an average fluence of 20 J/cm2. 
The catalyst with the support layer present on the substrate was 
analyzed by ellipsometry (Fig. S1). Ellipsometric analysis showed that 
both the support and the catalyst layer had a thickness of 5 nm. The 
change in the Fe:Co ratio in the catalysts prepared by two different 
techniques is rationalized by our previous works [5,11]. 

2.3. CCVD synthesis 

The same steps were taken in the case of the different substrates, only 
the reaction time, temperature, and gas flow were varied based on the 
ideal parameters determined in our earlier works [5,11,15]. In the first 
step, a 0.4 × 0.4 cm piece of the catalyst-coated substrate was placed in 
an open quartz boat, then put in a tubular quartz reactor. The reactor 
was then purged in a preheated tube furnace under nitrogen. During this 
process, the temperature was set to 640 ◦C for the aluminum substrate 
(due to its low melting point), 700 ◦C for the titanium substrate, and 

Fig. 1. Schematic image of the dip-coating, PLD method [41] and the CCVD system.  
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700–820 ◦C for the silicon substrate. Hydrogen was then introduced to 
provide a reductive atmosphere in the system. During the syntheses 
studying the effect of hydrogen, this step was varied, and during the 
injection experiments, it was completely omitted. After 5 min, ethylene 
and the nitrogen precursor (with or without acetone) were introduced. 
The introduction of the nitrogen precursors was done using two different 
methods. When it was carried out by bubbling (further referred to as 
“bubbling experiments”), the nitrogen gas flowed through the liquid 
nitrogen precursor, bringing the vapor and small droplets of the pre
cursor into the reactor. When it was carried out by injection, the nitro
gen precursor was introduced directly into the system as a continuous 
flow of liquid (also referred to as “injection experiments”). The synthesis 
time was 15 min for the aluminum substrate, 30 min for the titanium 
substrate, and 20 min for the silicon substrate. At the end of the syn
thesis, the quartz reactor was removed from the tube furnace, all the gas 
flows were shut off except for nitrogen. After the reactor cooled down, 
the samples were collected and characterized. The flow rate during 
bubbling was 45 cm3/min for each substrate, and the flow of the directly 
injected nitrogen precursor in the injection experiments was set to 3, 6, 
or 9 mL within 30 min (this experiment was only performed for the 
titanium-based catalyst). A schematic illustration of the catalyst prepa
ration and the equipment used for the CCVD synthesis is presented in 
Fig. 1. 

2.4. Characterization of samples 

The samples were characterized with a Hitachi S-4700 Type II 
FESEM (5–15 keV) scanning electron microscope (SEM) to obtain in
formation on the structure and height of CNT forests. During these 
measurements, the samples were characterized also by energy- 
dispersive X-ray spectroscopy (EDX) with a Röntec XFlash Detector 
3001 to obtain information on the presence of nitrogen in the CNTs. 
Transmission electron microscopy (TEM) experiments were performed 
with a FEI Tecnai G2 20 X-TWIN microscope (200 keV) to gain infor
mation on the structure of CNTs complementary to the SEM measure
ments. The Raman spectra of the samples were recorded with a Thermo 
Scientific DXR Raman microscope (λexcitation = 532 nm, spectrum 
acquisition time = 2 min/spectrum) to collect information on the 
graphitization of the samples. The spectra of each sample were recorded 
at three different positions, which were then averaged prior to 

calculating the ID/IG band intensity ratios. X-ray photoelectron spec
troscopy (XPS) analysis was performed with an XR-50 dual anode X-ray 
source and a Phoibos 150 energy analyzer to obtain information about 
the C–N bonds in the N-doped CNTs. The instrument was operated at 
150 W (14 kV) to obtain Al Kα radiation as the X-ray source. 

3. Results and discussion 

3.1. Effect of different nitrogen compounds on CNT forest growth 

First, the syntheses were performed on aluminum substrates with 
three different nitrogen precursors that were introduced by bubbling. 
The goal of these experiments was to investigate the effects of using 
different nitrogen precursors and the incorporation of nitrogen atoms on 
the characteristic structure of CNT forests. The aluminum-supported 
catalyst was chosen for these experiments to provide an alternative, 
potentially more cost-effective option for the synthesis of CNT forests on 
a conductive substrate. This has already been shown to be suitable for 
the production of CNT forests based on previous results [5]. The three 
nitrogen precursor compounds were NH3, ACN, and TPA, as these are 
abundantly used in the literature for nitrogen doping due to their high 
volatility [24,32,42]. The samples were subjected to SEM and EDX 
measurements and the results are shown in Fig. 2 and Table 1. The green 
frame around a micrograph indicates that the sample possesses desirable 
characteristics for further testing, while the red frame indicates the 
opposite. 

Based on the SEM images it was ascertained that CNT forests did not 
form under the experimental conditions used, only CNTs with common 
structural features (Fig. 2). In the sample prepared with NH3, mostly 
catalyst particles could be found. The absence of CNT forest structure 
can be explained by the fact that NH3 is prone to poison Co-based cat
alysts [43]. Another explanation might be that the nitrogen resulting 
from the decomposition of NH3 was adsorbed on the surface of iron 
particles, preventing the surface diffusion of carbon [17] and thus the 
growth of CNTs. In both cases, the high N/C ratio shown in Table 1 is 
evident. In the samples prepared with ACN and TPA, CNTs could be 
observed on the substrate, but they were not aligned vertically. This may 
be due to the absence of a somewhat oxidative atmosphere, such as 
water vapor. Its beneficial effect on the formation of CNT forests has 
already been discussed in the literature, i.e., that it activates the catalyst 
and contributes to the alignment of CNTs into CNT forests [44]. 

3.2. Effect of acetone on the structure of CNT forests on aluminum 
substrate 

The effect of acetone was studied in bubbling experiments to inves
tigate its possible assistance in the introduction of the nitrogen com
pounds into the system, and its possible oxidative effects on the CNT 
forest structures. As it is known from the literature acetone is an 
accompanying component in acetylene gas cylinders, and as an oxigen- 

Fig. 2. SEM images of carbon deposit synthesized in the presence of NH3 (left), ACN (middle), and TPA (right) on aluminum substrate.  

Table 1 
N/C atomic ratios determined based on 
the EDX results in the CNT forests 
using different nitrogen compounds.   

N/C 

NH3 2.05 
ACN 0.26 
TPA 0.14  
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containing carbon source it has been proved to promote the growth of 
CNTs [45]. In these experiments, the three nitrogen compounds were 
respectively mixed with 30% acetone and the nitrogen 
compound-acetone mixture flow rate was set to 45 cm3/min. The cata
lysts on aluminum substrate were used in these experiments to directly 
compare these results with those obtained without using acetone. For 
these syntheses, the reaction time was set to 15 min and the temperature 
to 640 ◦C. The samples were analyzed by SEM, EDX, and Raman spec
troscopy, and the results are shown in Fig. 3 and Table 2. 

Based on the SEM images, it can be observed that the presence of TPA 
(together with acetone) promoted the formation of CNT forests. How
ever, for NH3 and ACN, CNT forests could not be observed. Compared to 
the bubbling experiments without acetone, more CNTs were synthesized 
in the presence of acetone due to its oxidative properties. These prop
erties are expected to contribute to the degradation of amorphous car
bon, thus regenerating the catalyst particles, which contributes to the 
growth of CNT forests [44]. Furthermore, due to its high volatility, 
acetone also facilitated the introduction of the nitrogen compounds used 
into the quartz reactor. 

Based on the EDX results (Table 2), nitrogen was successfully 
incorporated. This is further supported by the results of Raman spec
troscopic measurements (Fig. S2), where the ID/IG ratio was 1.27, sug
gesting a relatively high number of defect sites, which has already been 
proposed in our previous work as a sign of nitrogen incorporation [24]. 
Due to the results obtained in the presence or absence of acetone, the 

TPA-acetone mixture was used in further experiments. 

3.3. Effect of acetone on the structure of CNT forests on titanium 
substrate 

The focus of these experiments was to assess the effect of the sub
strate on the incorporation of nitrogen. Using titanium as a substrate 
also allowed us to apply higher synthesis temperatures that are more 
common in the literature, and whose effect on the formation of CNT 
forests has already been investigated in previous studies [46]. The pa
rameters used in these syntheses were the same as those described in the 
experimental section, except for the synthesis temperature that was set 
to 700 ◦C. SEM, EDX, and Raman spectroscopy measurements of the 
samples were performed and summarized in Fig. 4 and Table 3. 

In the SEM images (Fig. 4), it can be observed that only CNTs were 
formed on the substrate when NH3 and ACN were used as nitrogen 
precursors. On one hand, this could be caused by the ability of NH3 to 
poison the catalyst as discussed above. On the other hand, this could be 
due to the high vapor pressure of ACN. As a result, it can easily over
saturate the system and potentially block certain properties of the 
catalyst that contribute to the vertical alignment of CNTs. At the same 
time, CNTs (with a height of 10.2 ± 2.2 µm) grew in the presence of TPA- 
acetone, exhibiting structural traits characteristic of CNT forests. EDX 
measurements were carried out to investigate if nitrogen was incorpo
rated into the CNTs (Table 3). Surprisingly, no nitrogen incorporation 

Fig. 3. SEM images of CNTs synthesized in the presence of NH3 (left), ACN (middle), and TPA (right) mixed with 30% acetone on aluminum substrate.  

Table 2 
Height of the CNT forests (h), N/C atomic ratios determined based on EDX re
sults, and ID/IG band intensity ratios obtained from Raman spectra for CNT 
forests on aluminum substrate.   

h (µm) N/C ID/IG 

NH3 + acetone – 0.12 1.15 
ACN + acetone – 0.28 1.07 
TPA + acetone 11.1 ± 1.10 0.23 1.27  

Fig. 4. SEM images of CNTs synthesized in the presence of NH3 (left), ACN (middle), and TPA (right) mixed with 30% acetone on titanium substrate.  

Table 3 
Height of the CNT forests (h), N/C atomic ratios determined based on EDX re
sults, and ID/IG band intensity ratios obtained from Raman spectra for CNT 
forests on titanium substrate.   

h (µm) N/C ID/IG 

NH3 + acetone – 0.0 0.92 
ACN + acetone – 0.0 0.9 
TPA + acetone 10.2 ± 2.2 0.0 1.1  

A. Szabó et al.                                                                                                                                                                                                                                   



Materials Research Bulletin 148 (2022) 111676

5

was observed, which could be due to the titanium substrate, as the 
chemisorption of nitrogen atoms on it is a well-known undesirable 
process in materials science [47,48]. This may have occurred before 
nitrogen could incorporate into the CNT lattice. Based on the Raman 
spectroscopy measurements (Table 3, Fig. S2), the ID/IG ratio for 
TPA-acetone was 1.1, suggesting the presence of defect sites in the 
structure. This can originate from the incorporation of nitrogen in such a 

small amount that is below the detection limit of EDX. When NH3 and 
ACN were used, the as-obtained CNTs could be described as graphitic; 
however, in these cases, the structure typical of CNT forests was not 
formed. Based on these results, aluminum-supported catalyst layers are 
more suitable for the synthesis of nitrogen-doped CNT forests than 
dip-coated titanium-supported catalysts. Although, we have shown 
previously that such structures can be synthesized on titanium sub
strates as well by using PLD for the preparation [29]. 

3.4. Effect of temperature on the properties of CNT forest 

The effects of temperature on the incorporation of nitrogen into the 
CNTs as well as on their growth were systematically studied using the 
TPA-acetone mixture. Higher temperatures have been shown to increase 
the graphitization of CNTs [49], while they may also facilitate the quick 
evaporation and decomposition of TPA, thus helping the incorporation 
of nitrogen atoms into the forest structures. In the experiments per
formed in a wide temperature range, that is, at 640–820 ◦C, catalysts on 
silicon wafers were used due to the durability of silicon at higher tem
peratures [50]. The synthesis parameters were identical to those 
described above, only the reaction time was changed to 20 min, which is 
the optimal reaction time on silicon substrates [7,15]. While the SEM 
and TEM images of the samples synthesized at 700–820 ◦C are shown in 
Fig. 5, the Raman spectroscopy and EDX results are summarized in 
Table 4. 

It can be observed in the SEM images (Fig. 5) that the height of the 
CNT forests (Table 4) produced at 740 ◦C and 780 ◦C was almost the 
same. This is because 740–780 ◦C is the most ideal temperature range for 
their synthesis [15]. At 700 ◦C, which was the lowest temperature used, 
slightly lower CNT forests were obtained, which may be due to the 
sub-optimal temperature, resulting in slower growth on the substrate. At 
820 ◦C, remarkably lower CNT forests were obtained (Fig. 5, rightmost 
column), possibly due to the oxidative effect of acetone present in the 
system. At this temperature it presumably began to decompose the CNT 
forests [51]. Based on the EDX and Raman results (Table 4, Fig. S2), the 
nitrogen content in the CNTs increased with increasing temperature, 
while the graphitic structure also increased. This is in agreement with 
previous observations, specifically that the graphiticity of the samples 
increases with increasing temperature up to a certain threshold, above 
which a thin amorphous layer is deposited [52,53]. The XPS results 
(Table 5, Fig. S3) suggest that as the temperature increased in the 
optimal temperature range, the incorporation of nitrogen into the CNTs 
increased as well, which is consistent with the EDX results. Comparing 

Fig. 5. SEM and TEM images of CNT forests synthesized at 700 ◦C, 740 ◦C, 780 ◦C, and 820 ◦C.  

Table 4 
Height of the synthesized CNT forests (h), N/C atomic ratios obtained from EDX 
experiments, diameter of the synthesized CNTs based on TEM micrographs, and 
ID/IG band ratios calculated from Raman spectra at different synthesis 
temperatures.   

h (µm) N/C Diameter of CNT (nm) ID/IG 

700 ◦C 49.30±1.68 0.02 13.75±2.02 1.27 
740 ◦C 63.42±1.60 0.18 7.31±1.83 1.11 
780 ◦C 64.22±1.40 0.20 8.59±2.53 0.94 
820 ◦C 13.24±1.34 0.23 14.00±2.93 0.85  

Table 5 
Relative atomic composition of CNT forests from XPS experiments at different 
synthesis temperatures.  

At%  

sp2 C C–C C–N C–O C = O O–C = O π–π* 

700 ◦C 93.99 – 0.53 – – 1.94 3.54 
740 ◦C 86.66 2.45 0.61 2.53 0.8 2.78 4.16 
780 ◦C 66.62 19.43 0.97 3.83 1.5 5.06 2.6 
820 ◦C 72.08 11.97 1.86 6.47 1.75 3.42 2.46  

Table 6 
Relative atomic composition of CNT forests for various N species from XPS ex
periments at different synthesis temperatures.  

At%  

C = N–C 
(Pyridinic) 

C-NH–C 
(Pyrrolic) 

C=(NH+)–C 
(Graphitic) 

NOx 

(Oxidized) 
Higher 
NOx +

satellite 

700 ◦C – 4.47 59.74 3.69 32.09 
740 ◦C 6.22 12.55 36.9 15.53 28.8 
780 ◦C 10.92 12.68 26.88 9.83 39.7 
820 ◦C 5.19 6.04 88.77 – –  
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the results of these two methods, it can be observed that the numbers are 
rather different from each other, with the XPS generally under
estimating the numbers obtained with EDX. This originates from the fact 
that for such samples the sensitivity of XPS is lower than that of EDX. 
Based on the literature, the graphitic structure becomes more prevalent 
with increasing temperature [54], which is consistent with our results. 
Even though defect sites are often introduced via nitrogen incorpora
tion, the XPS results (Table 6) suggest that this process can also result in 
the formation of a graphitic structure. At 820 ◦C, the percentage of the 
graphitic structure among C–N bonds is the highest, thus nitrogen 
incorporation could indeed increase the overall graphitic structure of 

the CNT forest. Furthermore, the graphitic structure also increases with 
the synthesis temperature, which can eventually compensate for the 
defects introduced by the nitrogen atoms [55]. In the TEM micrographs 
(Fig. 5, bottom row), possible defect sites can be observed in all the CNTs 
investigated. These defect sites include the separation of CNT walls, and 
the turns along the CNT main axis. Such structural changes have already 
been observed in our previous work as signs of nitrogen incorporation 
[24]. 

The experiments were also performed at 640 ◦C to compare the re
sults with those obtained for the aluminum-supported catalyst; however, 
the resulting CNTs were randomly aligned (Fig. S5). Since CNT forests 
were successfully produced on aluminum substrate at this temperature, 
these results prove that it is crucial what kind of substrate is chosen for 
the given reaction conditions. Moreover, it can be concluded that 
aluminum is a potentially suitable substrate, due to its physical prop
erties, price, and relatively low temperature requirements. It also pro
vides an optimal low-cost alternative for the synthesis of vertically 
aligned N-doped CNT forests on a conducting substrate. 

3.5. Effect of hydrogen on the properties of CNT forests 

We studied the influence of hydrogen flow on the structure of the 
CNT forest as well as on the incorporation of nitrogen atoms. The 

Fig. 6. SEM and TEM images of CNTs synthesized in the absence of hydrogen (left column), under hydrogen flow for 5 min (middle column), and under continuous 
hydrogen flow (right column). 

Table 7 
Heights (h), N/C atomic ratios, diameters of the synthesized CNTs, and ID/IG 
band intensity ratios obtained from Raman experiments. Standard errors of 
forest heights and CNT diameters were calculated from approximately 30 and 
100 measurements, respectively, in different hydrogen presence.   

h (µm) N/C Diameter of CNT (nm) ID/IG 

øH2 11.32±1.31 0.05 6.69±1.60 0.93 
5 min H2 17.12±1.38 0.31 15.02±4.64 0.93 
H2 15.70±7.80 0.17 9.35±2.90 1.13  

Fig. 7. SEM images of CNT forests synthesized by the introduction of varying amounts of TPA via injection.  
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rationale behind these experiments was that hydrogen presumably in
hibits the incorporation of nitrogen into CNTs [56]. However, hydrogen 
can reduce the catalyst [57], which plays an important role in the pro
duction of CNT forests. The titanium-supported catalysts were prepared 
with PLD as its ability to strongly promote the formation of 
nitrogen-doped CNT forests has been shown before [11]. The SEM and 
TEM images of the samples are shown in Fig. 6, while Raman spectro
scopic and EDX results are summarized in Table 7. Three cases were 
investigated as follows: in the first case, hydrogen was not present in the 
system during the synthesis (Fig. 6, left column); in the second case, it 
was present for the first 5 min until it reduced the catalyst particles 
(Fig. 6, middle column); in the third case, it was present in the reactor 
throughout the synthesis (Fig. 6, right column). TPA with 30% acetone 
was used as the nitrogen source, their flow rate was 45 cm3/min, and the 

reaction time was 30 min. 
In the SEM images, it can be observed that CNT forests were formed 

on the titanium substrate even without hydrogen. Although, their 
quality was different from those grown in the presence of hydrogen. This 
could be because ethylene reduces the catalyst particles at the beginning 
of the reaction. However, since hydrogen is not present in the system, 
only catalyst particles of a lower oxidation state can be formed. This may 
affect the height of the CNT forests as well as the incorporation of ni
trogen. Based on these results, it can be concluded that the reduction 
step indeed plays an important role in the syntheses. The amount of 
nitrogen built into the CNT structures was measured by EDX and the 
results are summarized in Table 7. It was concluded that using 5 min 
hydrogen flow during the synthesis resulted in the highest nitrogen 
content in the CNTs. The average height of the CNT forests was also the 
highest in this sample. These may be because hydrogen is important to 
reduce the catalyst at the beginning of the synthesis, but after the initial 
5 min, it did not counteract the oxidative atmosphere necessary for the 
growth of CNTs. As a result, the catalyst particles may have been in a 
more reduced state. The samples were also subjected to Raman spec
troscopic studies (Fig. S2), and the results are shown in Table 7. Based on 
the measurements, a high ratio of defect sites was present in the CNT 
forests. This could be due to the incorporation of nitrogen, and that in 
our previous study the CNT forests prepared on a titanium substrate 
have also exhibited a large number of defect sites [11]. In the TEM 
micrographs, it can be observed that when hydrogen was introduced, 
new structural features and defects appeared. This may be due to the 
increased incorporation of nitrogen into the CNTs or the saturation of 
carbon atoms with hydrogen before they could arrange into a graphitic 
lattice. The largest CNT diameters were observed in the sample that was 
prepared under hydrogen for 5 min, which could also result from the 
higher amount of incorporated nitrogen [32]. The CNTs were composed 
of 7–8 walls in general. Based on these results, it can be concluded that 
even without hydrogen it is possible to synthesize CNT forests. Intro
ducing hydrogen into the reactor for the first 5 min provides a reductive 
environment that later promotes the incorporation of nitrogen into 
CNTs. 

Fig. 8. TEM images of individual CNTs synthesized by the introduction of varying amounts of TPA via injection.  

Table 8 
Height of CNT forests (h), N/C atomic ratios obtained from EDX, diameters of 
CNTs based on TEM micrographs, and ID/IG band intensity ratios calculated from 
the Raman spectra of samples synthesized by the injection of varying amounts of 
TPA.  

Injected TPA amount h (µm) N/C Diameter of CNT (nm) ID/IG 

3 mL 1.38±0.11 3.60 26.59±2.11 0.83 
6 mL 1.57±0.28 2.59 11.40±3.03 0.82 
9 mL – 4.10 – 0.86  

Table 9 
Relative atomic composition of CNT forests from XPS experiments of samples 
synthesized by the injection of varying amounts of TPA.  

At%  

sp2 C C–C C–N C–O C = O O–C = O π-π* 

3 mL 68.88 16.19 1.76 5.58 1.69 3.28 2.63 
6 mL 76.27 14.1 2.68 1.86 0.51 1.7 2.88 
9 mL 75.86 14.17 2.51 3.23 0.95 0.86 2.42  

Table 10 
Relative atomic composition of CNT forests for various N species from XPS experiments of samples synthesized by the injection of varying amounts of TPA.  

At%  

C = N–C (Pyridinic) C–NH–C(Pyrrolic) –– NOx (Oxidized) Higher NOx + satellite 

3 mL 21.65 4.26 70.8 3.29 – 
6 mL 17.06 18.55 44.19 20.19 – 
9 mL 20.08 15.14 47.15 17.62 –  
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3.6. Effect of varying amounts of TPA on the structure of CNTs prepared 
by injection 

Alternatively, TPA was introduced also via direct injection into the 
reactor, and its effects on the structure of CNT forests were studied. 
Injection is often used in the literature [24,56,58,59], as it makes it 
possible to introduce high amounts of nitrogen compounds into the 
reactor in a more controlled manner. With these experiments the effect 
of the flow of nitrogen precursors was studied on the structure of CNT 
forests. Accordingly, 3, 6, and 9 mL TPA were injected into the reactor 
during the syntheses. The catalyst supported by a titanium substrate was 
used in these syntheses, and hydrogen was not introduced into the 
reactor, based on our observations in previous experiments [46]. The 
corresponding SEM and TEM images of the samples are shown in 
Figs. 7–8, and the Raman spectroscopic and EDX results are summarized 
in Table 8. 

Based on the SEM images (Fig. 7), injecting 3 mL and 6 mL TPA 
resulted in the formation of CNT forest structures on the substrates. The 
height of the CNT forests was very low compared to that of the other 
CNT forests shown Fig. 6. Based on the literature this can be quite 
beneficial. It has become increasingly important to produce CNT forests 
that are as short as possible [60–62] to make them easier to use, for 
example in solar collectors [63]. When 9 mL of TPA feed was used, no 
structure resembling a CNT forest could be observed. This may be 
because if too much TPA feed is used, it overloads the catalyst when it 
comes to the formation of an arranged nanotube array. This overload 
results in the precursor no longer decomposing catalytically. Thus, 
thermal homogeneous decomposition is inevitable due to the applied 
temperature, resulting in the formation of a thick amorphous carbon 
layer on the surface of the substrate. Due to the introduction of high 
volumes of TPA (relative to the volumes introduced by bubbling), it is 
possible that the trapped TPA molecules between the CNTs account for a 
significant portion of the N/C atomic ratios calculated from the EDX 
results (Table 8). Therefore, XPS experiments were performed to learn 
about the relative number of nitrogen atoms incorporated into the CNT 
lattice. Based on the XPS results (Table 9, Fig. S4), it can be concluded 
that injecting 6 mL of TPA resulted in the highest N/C atomic ratio. 
During nitrogen incorporation, most of the nitrogen was incorporated as 
a graphitic structure (Table 10). Combining this result with the lowest 
ID/IG ratio, this sample may possess more desirable conductive proper
ties overall. When observing the individual CNTs in the TEM images 
(Fig. 8), bamboo-like structures could be identified, which is a known 
structural change caused by the incorporation of nitrogen into the CNT 
walls [24,64]. The EDX results indicate higher N/C ratios than those 
calculated after carrying out any of the experiments in which TPA was 
introduced via bubbling. The Raman results (Fig. S2) suggest an 
increased graphitic structure in all the samples obtained from these 
experiments, which is probably the result of the high temperature 
applied during the syntheses. 

4. Conclusions 

It was concluded that CNT forest structure can be successfully syn
thesized using a mixture of TPA-acetone on aluminum and titanium 
substrates. Nitrogen was incorporated only for the aluminum substrate 
but not for the titanium substrate. CNT forest structure did not form 
when pure nitrogen compounds were used. The graphitization in the 
samples was enhanced at high temperature; however, high temperature 
was also favorable for nitrogen incorporation into the lattice of CNTs. 
Therefore, it was ascertained that the properties of the substrate affect 
the incorporation of nitrogen. The effects of hydrogen on the growth of 
CNTs and incorporation of nitrogen were also studied. Hydrogen was 
only required in the reduction phase, but not during the growth phase, in 
order to the hydrogen not to exert an inhibitory effect. This resulted in 
higher CNT forests and increased nitrogen incorporation into the CNTs. 
It was found that the injection method was more efficient for the 

preparation of short, nitrogen-doped CNT forests, which yielded 
bamboo-like structures. The optimal injection volume in the 30-min 
syntheses was 6 mL, resulting in a flow rate of 0.3 mL/min. Using the 
injection method and a TPA-acetone mixture did not result in the for
mation of CNT forest structure on the substrate due to the high volatility 
of the solvent. These experiments showed that there is a plethora of 
parameters in the synthesis of nitrogen-doped CNT forests that influence 
the height, structure, and nitrogen content of the samples. Therefore, 
they provide possibilities for fine-tuning and may have implications in 
the future in producing cost-efficient, high-quality materials. 
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