Multi-scale analysis of apparent diffusion coefficient (ADC) predicts cervical nodal status in patients with head and neck squamous cell carcinoma Shonit Punwani¹, Pierpaolo Purpura¹, Nikolaos Dikaios¹, Heather Fitzke¹, Alan Bainbridge², David Price², Scott Rice¹, Simon Morley³, Timothy Beale³, Ruheena Mendes⁴, Martin Forster⁴, Dawn Carnell⁴, Thayalini Vaitilingam³, Nina Newton¹, David Atkinson¹, Steve Halligan¹, and Stuart Taylor¹ ¹Centre for Medical Imaging, University College London, London, UK, United Kingdom, ²Medical Physics and Bioengineering, University College London Hospital, London, United Kingdom, ³Radiology, University College London Hospital, London, United Kingdom, ⁴Head and Neck Oncology, University College London Hospital, London, United Kingdom The study assess multi-scale diffusion parameters (median volumetric nodal region of interest values, inter-voxel histogram distributions, and intra-voxel diffusion heterogeneity as assessed by the stretched exponential model) as classifiers of nodal status in patients with head and neck squamous cell carcinoma (SCC). Low b value (0, 50, 100) derived nodal ADC (perfusion sensitive) was the key parameter facilitating discrimination of metastatic from benign nodes in patients with head and neck SCC. The stretched exponential derived a value together with histogram features of ADC provide an accurate decision tree model for classification of nodal disease.