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Abstract: African swine fever (ASF), caused by the African swine fever virus (ASFV), is 21 

highly virulent in domestic pigs and wild boar (Sus scrofa), causing up to 100% mortality. 22 

The recent epidemic of ASF in Europe has had a serious economic impact and poses a 23 

threat to global food security. Unfortunately, there is no effective treatment or vaccine 24 

against ASFV, limiting the available disease management strategies. Mathematical models 25 

allow us to further our understanding of infectious disease dynamics and evaluate the 26 

efficacy of disease management strategies. The ASF Challenge, organised by the French 27 

National Research Institute for Agriculture, Food, and the Environment, aimed to expand the 28 

development of ASF transmission models to inform policy makers in a timely manner. Here, 29 

we present the model and associated projections produced by our team during the 30 

challenge. We developed a stochastic model combining transmission between wild boar and 31 

domestic pigs, which was calibrated to synthetic data corresponding to different phases 32 

describing the epidemic progression. The model was then used to produce forward 33 

projections describing the likely temporal evolution of the epidemic under various disease 34 

management scenarios. Despite the interventions implemented, long-term projections 35 

forecasted persistence of ASFV in wild boar, and hence repeated outbreaks in domestic 36 

pigs. A key finding was that it is important to consider the timescale over which different 37 

measures are evaluated: interventions that have only limited effectiveness in the short term 38 

may yield substantial long-term benefits. Our model has several limitations, partly because it 39 

was developed in real-time. Nonetheless, it can inform understanding of the likely 40 

development of ASF epidemics and the efficacy of disease management strategies, should 41 

the virus continue its spread in Europe. 42 

 43 

Keywords (5 max.): mathematical modelling; African swine fever virus; wildlife-livestock 44 

interface; spatial model; real-time analysis  45 
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1 Introduction 46 

1.1 Background to African Swine Fever 47 

African swine fever (ASF) is a highly contagious viral disease capable of infecting all swine. It 48 

is caused by the African swine fever virus (ASFV), a double-stranded DNA virus that is the 49 

sole member of the Asfarviridae family. ASFV is endemic across much of sub-Saharan Africa 50 

(Penrith et al., 2019). An ancient sylvatic cycle involving warthogs (Phacochoerus africanus) 51 

and soft ticks of the species Ornithodoros exists in eastern and southern Africa (Chenais et 52 

al., 2018; Costard et al., 2013; Dixon et al., 2019; Penrith et al., 2019). Juvenile warthogs are 53 

infected with the virus within the first few weeks of their lives when they are bitten by ticks 54 

living within their burrows. They develop a transient viraemia and remain infected for life but 55 

do not show any clinical signs of disease (Jori et al., 2013). The situation is very different in 56 

domestic pigs and wild boar (Sus scrofa) in which ASFV causes a range of clinical signs 57 

including sudden death, haemorrhage, lethargy, high fever and inapparent infection (Blome et 58 

al., 2020, 2013). Mortality rates range between 0-100% depending on the strain of the virus, 59 

the host, the viral dose, and the route of exposure (Blome et al., 2013, 2012; Costard et al., 60 

2013). The existence of a carrier state following recovery from lower virulence strains has 61 

been suggested (Dixon et al., 2019). 62 

Transmission routes for ASFV include direct contact between swine, contact with infected 63 

carcasses, meat products, fomites, the environment, and tick vectors (Costard et al., 2013; 64 

Guinat et al., 2016a; Pepin et al., 2020). A transmission cycle involving haematophagous flies 65 

has been suggested to occur in Europe, but its importance is still uncertain (Mellor et al., 1987; 66 

Olesen et al., 2018; Vergne et al., 2021). Transmission between wild boar and domestic pigs 67 

has been demonstrated (Dixon et al., 2019; Guinat et al., 2016a) and is thought to play an 68 

important role in the spread of ASFV. In high-biosecurity commercial pig farms where contact 69 

with wild boar has been excluded as a means of transmission, indirect transmission mediated 70 

by humans is usually considered the most likely route of introduction (Guinat et al., 2016a; 71 

Olesen et al., 2018). Infected animal carcasses have also been identified as a potential route 72 

of transmission and under certain conditions could pose a risk of infection for several months 73 



 

4 
 

(Fischer et al., 2020). Wild boar have been shown to have frequent contact with conspecific 74 

carcasses (Probst et al., 2017) and carcass-based transmission may be especially important 75 

in locations with low host density (Pepin et al., 2020). 76 

The strains currently circulating in Europe have shown high virulence during experimental 77 

infection of domestic pigs and wild boar (Blome et al., 2020). Typically, death occurs within 7-78 

10 days post-infection, but survival up to 36 days post-infection has been reported (Blome et 79 

al., 2020; Pietschmann et al., 2015). There is currently no approved treatment or vaccine 80 

against ASFV. Instead, disease management measures include culling on infected pig farms, 81 

disinfecting farm equipment, imposing restrictions on pork trade, conducting epidemiological 82 

surveillance of domestic pig and wild boar populations and managing wild boar populations 83 

(World Organisation for Animal Health, 2021). 84 

 85 

1.2 Current situation in Europe 86 

Although ASFV was eradicated from most of Europe in the 1990s (with the exclusion of 87 

Sardinia, where ASFV genotype I remains endemic to date), it was reintroduced to the 88 

continent via Georgia in 2007, most likely by importation of infected pork products (Beltrán-89 

Alcrudo et al., 2008; Rowlands et al., 2008). Following its introduction, ASFV became 90 

established in the local wild boar population leading to further outbreaks in domestic pigs, with 91 

transmission between infected wild boar and domestic pigs thought to play an important role 92 

in the spread of the disease (Dixon et al., 2019; Gogin et al., 2013; Oganesyan et al., 2013). 93 

In 2014, the first cases were reported in the European Union (EU) (European Food Safety 94 

Authority, 2015). Since then, a series of outbreaks have been recorded resulting in major 95 

economic losses for the European pig industry (Danzetta et al., 2020; Guinat et al., 2016a). 96 

EU countries that have been affected by the current ASFV strain (genotype II) include Belgium, 97 

Bulgaria, Czech Republic, Estonia, Germany, Greece, Hungary, mainland Italy, Latvia, 98 

Lithuania, Poland, Romania, Serbia, and Slovakia (Blome et al., 2020). The first ASFV cases 99 

in Germany were reported in wild boar in September 2020 (Sauter-Louis et al., 2021a). Then, 100 

in July 2021, ASFV was confirmed in two domestic pig herds in the Brandenburg region 101 
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bordering Poland (International Society for Infectious Diseases, 2021). Most recently, in 102 

January 2022, ASFV genotype II was confirmed in wild boar in mainland Italy (International 103 

Society for Infectious Diseases, 2022). Belgium and the Czech Republic are the only EU 104 

countries that have successfully eradicated ASFV following its introduction during the current 105 

epidemic. Outbreaks in these two countries were geographically localised and confined to the 106 

wild boar population. Disease management measures implemented included fencing off high-107 

risk areas to limit movement of wild boar, active search and removal of wild boar carcasses 108 

and alterations to hunting patterns (Dellicour et al., 2020; Marcon et al., 2020). Whilst ASFV 109 

was eradicated from most of Europe in the 1990s, it has remained endemic in Sardinia since 110 

its introduction in 1978. The epidemiology of ASFV in Sardinia is complicated by the presence 111 

of free-roaming domestic pigs (FRPs) which have hindered previous eradication efforts. 112 

However, recent evidence highlighting the central role that FRPs play in maintaining ASFV 113 

and the implementation of a new eradication programme have led to marked reductions in the 114 

levels of ASFV in Sardinia and eradication appears achievable if the controls are maintained 115 

(Viltrop et al., 2021). 116 

Whilst we focus on the situation in Europe here, it is worth noting that ASFV continues to 117 

circulate across sub-Saharan Africa (Mulumba-Mfumu et al., 2019; World Organisation for 118 

Animal Health, 2020) and, since its introduction to Asia in 2018, ASFV has spread to many 119 

Asian countries causing substantial economic impacts and posing a threat to vulnerable and 120 

endangered wild pig species (Luskin et al., 2020; Mighell and Ward, 2021; Tian and von 121 

Cramon-Taubadel, 2020). In 2021, ASFV was reported in the Americas for the first time in 122 

almost 40 years when the disease was reported in the Dominican Republic in July 2021 and 123 

then in Haiti in September 2021 (Gonzales et al., 2021; U.S. Department of Agriculture, 2021; 124 

World Organisation for Animal Health, 2022). 125 

 126 
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1.3 Mathematical models 127 

The first mathematical models of ASFV were published in 2011 following introduction of the 128 

virus to Europe (Hayes et al., 2021). Since then, mathematical models have been widely 129 

utilised to further our understanding of the transmission dynamics of ASFV (see Hayes et al. 130 

(2021) for a recent review). Examples of the uses of modelling studies of ASFV include 131 

estimation of epidemiological parameters (Barongo et al., 2015; de Carvalho Ferreira et al., 132 

2013; Guinat et al., 2018, 2016b; Gulenkin et al., 2011; Hu et al., 2017; Lange and Thulke, 133 

2017; Loi et al., 2020; Nielsen et al., 2017; Pietschmann et al., 2015; Shi et al., 2020), 134 

investigation of transmission dynamics in particular species (Halasa et al., 2019, 2016a; Mur 135 

et al., 2018; O’Neill et al., 2020; Pepin et al., 2021, 2020; Taylor et al., 2021), exploration of 136 

the role of vectors in transmission (Vergne et al., 2021) and assessment of the potential 137 

impacts of interventions (Barongo et al., 2016; Croft et al., 2020; Gervasi et al., 2020; Halasa 138 

et al., 2016b; Lange, 2015; Lange et al., 2018; Lange and Thulke, 2015; Lee et al., 2021; 139 

Taylor et al., 2021; Thulke and Lange, 2017). 140 

Single-species models are used most frequently, despite the important role of between-141 

species transmission of ASFV (Taylor et al., 2021). Domestic pig models may incorporate 142 

within-herd and/or between-herd transmission whilst wild boar models are frequently 143 

individual-based spatially structured models that incorporate existing knowledge of wild boar 144 

demography. Many models of ASFV transmission use the classic Susceptible-Exposed-145 

Infectious-Removed (SEIR) structure (Guinat et al., 2018; Halasa et al., 2019), with some 146 

including an extra class for infectious/non-infectious carcasses (Pepin et al., 2021). Other 147 

variations include using a Susceptible-Latent-Subclinical-Clinical-Removed structure (Halasa 148 

et al., 2016a), in which the infectious stage is split into sub-clinical and clinical stages, and a 149 

Susceptible-Infectious-Carrier-Removed structure (O’Neill et al., 2020) which incorporates the 150 

possibility that pigs that have recovered from lower virulence strains continue to carry the 151 

virus. 152 

 153 
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1.4 Challenge overview and objectives 154 

Motivated by the ongoing global spread of ASFV, the French National Research Institute for 155 

Agriculture, Food and the Environment (INRAE) organised the ASF Challenge to expand the 156 

development and application of mathematical methods for ASF epidemic forecasting and to 157 

better understand the strengths and limitations of different modelling approaches (Picault et 158 

al., 2021). An additional goal was to improve the readiness of modelling teams and hence 159 

their ability to advise policy makers in a timely manner when faced with emerging epidemic 160 

threats such as ASF (https://www6.inrae.fr/asfchallenge/). Similar events in the past have led 161 

to important statistical and computational innovations for epidemic forecasting and have 162 

fostered fruitful collaborations between research teams and policy makers (Johansson et al., 163 

2019; McGowan et al., 2019; Viboud et al., 2018).  164 

The challenge took place from August 2020 to January 2021. It was comprised of three 165 

phases, describing different stages of a simulated ASF epidemic on a fictional island (Merry 166 

Island). In each phase, simulated data regarding the number and location of reported infected 167 

pig herds and wild boar – as well as simulated data describing movements of pigs exchanged 168 

or traded between herds – were provided. Modelling teams were then asked to provide 169 

projections, informed by their own analyses, of the course of the epidemic over a specified 170 

future time period (generally 30 days) incorporating specified disease management measures 171 

where indicated. Day 0 represented the date of the first reported case of ASF on Merry Island. 172 

In phase 1, simulated data from days 0 to 50 (period 1) were provided, with projections 173 

requested for days 51 to 80 (period 2). In phase 2, simulated data from periods 1 and 2 were 174 

provided to underpin projections for days 81 to 110 (period 3). Finally, in phase 3, simulated 175 

data were provided from days 0 to 110 with two sets of projections requested: one short-term 176 

set for days 111 to 140 and one longer-term set for days 111 to 230. 177 

Here we provide details of the model and the associated projections that were produced by 178 

our team in each phase of the challenge. To facilitate reproducibility, we have made all code 179 

and relevant data files used for this analysis freely available on GitHub: 180 

https://github.com/emmanuelle-dankwa/ASF_model. 181 

https://www6.inrae.fr/asfchallenge/
https://github.com/emmanuelle-dankwa/ASF_model


 

8 
 

2 Materials and methods 182 

2.1 Synthetic data provided by the challenge coordinators 183 

2.1.1 Demographic data 184 

In the challenge, a simulated ASF epidemic on Merry Island – a fictional island located in the 185 

North Atlantic Ocean with area 144,208 km2 divided into 25 administrative units – was 186 

considered. There were 4,532 registered pig farms on the island. Farms were classified as 187 

either backyard or commercial, and either outdoor or indoor. For each farm, additional 188 

information provided included the size of the pig herd, its geographical coordinates, its 189 

production type (farrow-to-wean, farrow-to-finish or finishing), and whether it belonged to the 190 

same producer as other farms (i.e., “multisite farms” comprising several geographically distinct 191 

farms). Farms belonging to the same producer were expected to be more epidemiologically 192 

connected to each other than to any other farm. Outdoor herds were assumed to be in contact 193 

with the wild boar population (see Model section). There were 1069 registered outdoor herds 194 

(23.6%), scattered throughout the Island (see Figure A1, Appendix A). 195 

In addition to these registered farms, there was an unknown number of small, unregistered 196 

farms. Eight unregistered farms were identified in total from period 1 to 3 and were added to 197 

the 4,532 registered farms: two farms were identified because they became infected, four 198 

farms were identified because they became part of a surveillance zone, and two others were 199 

identified because they were culled preventively. 200 

Registered movements of pigs in the trade network were provided for the two months before 201 

the first detected infected pig herd (suspected on 8th July 2020, referred to as “day 0” during 202 

the challenge, and confirmed three days later), with the day at which each movement 203 

occurred, the source and destination herds, and the number of pigs traded. 204 

Finally, data on the hunting bag (number of boar hunted during a hunting season) in each 205 

administrative unit in 2019 (the calendar year before the detection of ASFV) were also 206 

provided (260,675 hunted wild boar in total). It was estimated by the ASF Challenge 207 

coordinators that around 50% of wild boar are shot during a hunting season, giving a rough 208 

wild boar population size estimate of 521,350 for Merry Island. 209 
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2.1.2 Epidemiological data 210 

In each of the three phases of the challenge, incidence data for both pigs and wild boar were 211 

provided. This synthetic epidemiological data originated from an epidemiological model 212 

developed by the challenge coordinators, which remained unknown to the participating teams 213 

at the time of the challenge. Briefly, the model used to produce synthetic epidemiological data 214 

was a discrete-time, stochastic, spatially explicit and agent-based model. Agents were pig 215 

herds and individual wild boar, each with their specific location. Transmission pathways 216 

included transmission between wild boar, transmission between pig herds (via introduction of 217 

infected pigs through trade movements or indirect contact with infectious farms), and 218 

transmission from wild boar to pig herds and vice versa. Trade movements were determined 219 

based on a temporal directed graph between farms. All other transmission pathways were 220 

modelled based on an exponential transmission kernel, assuming that the contribution of 221 

infected pig farms was proportional to their within-herd prevalence (modelled using a within-222 

herd compartmental SEIRD – Susceptible, Exposed, Infectious, Recovered, Deceased – 223 

model). The synthetic data corresponded to one stochastic simulation of the model. Further 224 

details on the original model and data generation can be found in the first article in this special 225 

issue (Picault et al., 2021). 226 

For pig herds, the data provided included the identity of each herd in which infection was 227 

detected, with the mode of detection as well as the dates of suspicion, confirmation, and 228 

culling. The first reported infected herd was herd 3594, and two other infected herds were 229 

detected during period 1 (days 0 to 50). Nine new infected herds were confirmed during period 230 

2 (days 51 to 80), followed by 14 others during period 3 (days 81 to 110), resulting in a total 231 

of 26 detected infected pig herds from period 1 to period 3 (days 0 to 110). For wild boar, the 232 

locations of tested wild boar found each day through passive surveillance, active surveillance 233 

and hunting were provided, as well as the date of confirmation and the test results (positive or 234 

negative). A total of 2,984 detected infected wild boar were reported from period 1 to period 3 235 

(days 0 to 110). Although the epidemiological data provided were synthetic, we later refer to 236 
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them as “observed data” to clearly distinguish the results of our model from the data to which 237 

they were compared. 238 

Contextual information on disease management measures in both pig herds and wild boar 239 

was also provided by the challenge coordinators in each phase (see details in Model section 240 

below). 241 

 242 

2.2 Model 243 

We modelled ASFV transmission on Merry Island using a model combining a stochastic, 244 

spatial Susceptible-Infectious-Post-infectious (SIP) model for transmission across the island 245 

via wild boar and a stochastic, metapopulation Susceptible-Exposed-Infectious-Recovered-246 

Deceased (SEIRD) model for pig herds. The model included transmission from wild boar to 247 

pig herds but did not account for transmission from pig herds to wild boar since we saw no 248 

evidence, based on the synthetic data provided by the challenge coordinators, of such 249 

transmission. All simulations and analyses were performed with R version 4.0.5 (R Core 250 

Team, 2022). 251 

 252 

2.2.1 Transmission 253 

2.2.1.1 Wild boar 254 

Transmission via wild boar was modelled using a stochastic SIP model with an exponential 255 

spatial dispersal kernel. Due to the large number of wild boar on the island and for 256 

computational efficiency, only wild boar within a defined area around the initial detected cases 257 

in wild boar and pig herds were considered (see Appendix A for details). Wild boar live in 258 

matrilineal groups, with reported mean group sizes of 4-8 individuals (Maselli et al., 2014; 259 

Pepin et al., 2020; Podgórski et al., 2014). These groups are typically composed of adult and 260 

subadult females and their offspring (Pepin et al., 2020). Reports of home range sizes vary 261 

but are typically estimated as between 2–10 km2 (Janeau et al., 1995; Keuling et al., 2008; 262 

Podgórski et al., 2013). To represent this social structure, we divided the area into 2500 263 

rectangular patches and assumed that the infectious pressure on every susceptible wild boar 264 
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within a specific patch was identical. Thus, patches were treated as model units. The area per 265 

patch was 16 km2 in phase 1, and 7.5 km2 in phases 2 and 3. Patch dimensions were reduced 266 

in the latter phases to enable a finer-grained resolution for more accurate results. 267 

In addition to tracking the health states of patches, we also tracked the health state of each 268 

wild boar in a patch. Each day, a patch was either susceptible �, infectious �, or post-infectious 269 

�: a patch was considered infectious if at least one boar within the patch was infectious; a 270 

patch was considered susceptible if there were no infectious boar within the patch; and a patch 271 

was considered post-infectious if all boar in the patch were carcasses that were no longer 272 

infectious (see Appendix A, Table A1). We assumed that infected wild boar were infectious 273 

immediately after infection. As we assumed 100% mortality in wild boar for this strain of ASFV 274 

(Blome et al., 2013, 2012), the infectious wild boar transitioned to become a carcass after a 275 

fixed period of 14 days after infection (ASF modelling challenge coordinators, 2020; Hayes et 276 

al., 2021; Pietschmann et al., 2015) if it had not been removed (by hunting) before then. 277 

Although the period from infection to end of infectiousness (latent period) was set to 14 days, 278 

based on the upper limits of estimates for infection to infectiousness (4-5 days) and the 279 

duration of infectiousness (2-9 days), we also conducted a sensitivity analysis in which we 280 

explored different lengths of the latent period. Carcasses remained infectious for 90 days after 281 

death (ASF modelling challenge coordinators, 2020; Fischer et al., 2020) if not removed by 282 

surveillance before then. Thus, a carcass could either be in the I or P state, depending on 283 

whether the boar died less than/more than 90 days ago. Carcasses could not be re-infected. 284 

For each patch, the number of new infections at each daily time step was chosen stochastically 285 

assuming a Poisson distribution with rate equal to the total “infectious pressure” being exerted 286 

on the patch. The infectious pressure on a patch j (accounting for the number of susceptible 287 

boar in patch j that are available for infection) exerted by an infected patch i at day t was given 288 

by 289 

β��(�) = βexp�
−���

α
� ��(�)��(�) (21)

 290 
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where β > 0 determines the overall infection rate, α > 0 is the scale parameter of the 291 

exponential dispersal kernel, exp( . ), ��� is the Euclidean distance between the midpoints of 292 

patches i and j (measured in km), ��(�)is the number of infected wild boar in patch i on day t 293 

and ��(�) is the number of susceptible wild boar in patch j on day t. The total infectious 294 

pressure on patch j at day t, ω�(�), was computed as the sum of the infectious pressures 295 

exerted on j: 296 

ω�(�) = �β��(�)

�

 (22)

The number of new infections in boar in each patch was determined by treating the infectious 297 

pressures as Poisson rates: 298 

��~Pois�ω�� 
(23)

where ��  is the number of new infections in patch j. The specific wild boar infected in each 299 

patch on any day were randomly selected from the remaining susceptible boar in the patch. If 300 

�� was greater than the number of susceptible wild boar remaining in the patch, all susceptible 301 

boar in the patch became infected. 302 

 303 

2.2.1.2 Pig herds 304 

The transmission model for pig herds considered individual pigs by describing the numbers of 305 

animals in each compartment within a herd, and the flows between the different 306 

compartments. Each herd was considered as a homogeneous, random-mixing population, not 307 

accounting for any within-herd structure (Guinat et al., 2018; Halasa et al., 2016a). Health 308 

statuses were susceptible �, exposed and pre-infectious �, infectious �, and immune 309 

(recovered) �. In addition, we distinguished infectious animals into subclinical (���) and clinical 310 

stages (��) (Halasa et al., 2016a). 311 

The force of infection λ� (equation (24)) exerted on susceptible pigs in herd i at time t was 312 

calculated based on: (1) the proportion of infectious pigs and of infectious residues from dead 313 

pigs within herd i (Fischer et al., 2020; Halasa et al., 2016a); (2) the local spread due, for 314 
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example, to shared material and fomites from neighbouring infected herds within a 2 km radius 315 

(Andraud et al., 2019; Halasa et al., 2016c); and (3) for outdoor herds, the number of infectious 316 

wild boar (alive and carcasses) in each infected patch and the distance between the herd and 317 

each infected patch using an exponential kernel: 318 

λ�(�) = 1 − exp�−β�� ∗
��(�) + ��(�)

��(�)
−��

ρ

���
∗
��(�) + ��(�)

��(�)
�

�

− Ω�(�)� (24) 

where β�� > 0 is the transmission rate within pig herds (Table 51), ��(�) is the total number of 319 

infectious pigs in herd i (subclinical and clinical cases), ��(�) is the contribution of residues 320 

from dead pigs in herd i to transmission, ��(�) is the total number of live pigs in herd i, ρ > 0 321 

is the transmission rate by local spread (Table 51), ��� is the distance between herds i and j, 322 

and Ω� ≥ 0 is the infectious pressure exerted by wild boar on outdoor herd i (Ω� = 0 for indoor 323 

herds). 324 

Susceptible pigs � that acquired infection moved to the exposed pre-infectious compartment 325 

�, where they stayed during the pre-infectious period (with average duration δ), and then 326 

moved into the infectious compartment �, where they stayed during the infectious period (with 327 

average duration γ). Infectious pigs were first subclinical (���) during the subclinical period 328 

(average duration ϕ), and then became clinical (��) for the rest of the duration of the infectious 329 

period. Infectious pigs either survived and became immune and moved into the recovered 330 

compartment �, or died with probability μ (Halasa et al., 2016a). Although dead pig carcasses 331 

were assumed to be removed, dead pigs entered the compartment � to represent residues 332 

from dead animals contributing to transmission. These residues stayed in the environment 333 

during the mean lifetime of the virus in residues (with average duration τ). We assumed 334 

lifelong immunity in the � compartment. Parameter values are given in Table 51. 335 

In addition to transmission by local spread, between-herd transmission was explicitly driven 336 

by the modelling of animal movements in the trade network (Brooks-Pollock et al., 2014), 337 

where animals in each compartment could enter or leave a herd, representing opportunities 338 
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of contacts and transmission between individuals from different herds (see “Movements” 339 

(Section 2.2.3) and Appendix A for details). 340 

For outdoor herds, the total infectious pressure exerted by wild boar on herd i at time t was 341 

given by: 342 

Ω�(�) = �β exp �−
���
α
� ��(�)

�

 (25)

where β > 0 and α > 0 are the same parameters as in the wild boar model (equation (21) and 343 

Table 51), ��� is the Euclidean distance between herd i and the centre of infected wild boar 344 

patch k, and �� is the number of infectious boar (alive and carcasses) in patch k. 345 

 346 

2.2.2 Population dynamics 347 

2.2.2.1 Wild boar 348 

We assumed a constant population size among wild boar in the absence of hunting, carcass 349 

removal and ASFV-related mortality. Across Europe, wild boar breeding is typically seasonal, 350 

commencing in late autumn/early winter with peaks in November/December. Following a 351 

gestation period of 115 days, peak birthing of piglets occurs between February and April (Alves 352 

da Silva et al., 2004; Podgórski and Śmietanka, 2018; Rosell et al., 2012; Sabrina et al., 2009). 353 

Therefore, we did not account for births since the period over which projections were required 354 

(27th August 2020 until 23rd February 2021, corresponding to days 51-230) was not within 355 

the known peak birthing period for wild boar. We also did not account for natural mortality due 356 

to the short duration of the projection period relative to the average lifespan of wild boar 357 

(Herrero et al., 2008; Jezierski, 1977) and given that the predominant causes of mortality over 358 

the projection period were likely to be hunting and ASFV, both of which our model accounted 359 

for. Thus, the population of wild boar, both dead and alive, remaining in the landscape at any 360 

time could only be decreased through removal by hunting (all hunted boar were removed from 361 

the landscape) or via surveillance. For wild boar, two main types of surveillance were carried 362 

out in the island: (1) passive surveillance, which involved the removal and reporting of found 363 

wild boar carcasses, and (2) active surveillance, which involved active search for wild boar 364 
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carcasses around already detected infected carcasses. Details on the implementation of 365 

surveillance are provided in Section 2.2.5.1.4. 366 

2.2.2.2 Pig herds 367 

We assumed a constant population size in each herd in the absence of ASFV-related mortality, 368 

with two population dynamics processes depending on the production type of the herds: birth 369 

of susceptible pigs in farrow-to-wean and farrow-to-finish herds, and animals sent to the 370 

abattoir in finishing and farrow-to-finish herds. Natural mortality was not accounted for. 371 

Thus, in farrow-to-wean and farrow-to-finish herds, the number of pigs leaving the herd 372 

(outgoing movements) was compensated by the entry of the same number of pigs (susceptible 373 

only). On the other hand, in finishing and farrow-to-finish herds, the number of pigs entering 374 

the herd (ingoing movements) was compensated by the same number of pigs leaving to the 375 

abattoir. Such processes were considered an acceptable approximation of the population 376 

dynamics of the pig herds given the batch system used in swine production and the timescale 377 

of the simulations. 378 

 379 

2.2.3 Movements 380 

2.2.3.1 Wild boar 381 

In phase 3, to make the model more representative of wild boar movement dynamics, we 382 

implemented a threshold – the maximum infection range (MIR). This was chosen to be 8 km 383 

to reflect reports of the maximum distance travelled and the estimated home range of wild 384 

boar (Janeau et al., 1995; Podgórski et al., 2013). Consequently, an infectious wild boar in a 385 

patch A could infect other susceptible wild boar in the same patch or in another patch B if the 386 

centre of B was situated less than 8 km from the centre of A (see Figure A2, Appendix A). 387 

Similarly, a pig herd i could only be infected by infectious wild boar in a patch k whose centre 388 

was located less than 8 km from herd i (i.e., k such that ��� ≤ MIR in equation (25)). In phases 389 

1 and 2, no threshold was set for this maximum distance (Table 52). 390 

 391 
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2.2.3.2 Pig herds 392 

Data on pig movements up to day 50, 80 and 110 (for phases 1, 2 and 3, respectively) were 393 

provided by the challenge coordinators and therefore these pig shipments between herds 394 

were considered as deterministic (day of the shipment, source and destination herds, number 395 

of pigs shipped). Pig movements from day 51, 81 or 111 onwards (for phases 1, 2 and 3, 396 

respectively) were projected using Exponential Random Graph Models (ERGMs) to determine 397 

a pair between a source herd and a destination herd (Relun et al., 2017), and using 398 

Generalized Linear Models (GLMs) with zero-truncated negative binomial distribution to 399 

determine the number of pigs exchanged (more details are provided in Appendix A). 400 

 401 

2.2.4 Initial conditions 402 

2.2.4.1 Wild boar 403 

The initial size and spatial distribution of the wild boar population in each patch was estimated 404 

using the hunting bag data and hunting rate estimates for 2019. At each phase, the model 405 

was seeded with some ASFV infections among wild boar, as observed in the synthetic data. 406 

See Appendix A for details. 407 

 408 

2.2.4.2 Pig herds 409 

Pig herds were distributed according to the coordinates provided. We considered all known 410 

herds in the island. The number of known pig herds changed at each phase as the number of 411 

unregistered farms identified increased (see details in section 2.1 above): 4533 for phase 1, 412 

4537 for phase 2 and 4540 for phase 3. Each herd was initialized with susceptible pigs based 413 

on its size provided by the challenge coordinators. In all analyses, ASFV was introduced in 414 

pig herd 3594 (the first detected infected pig herd) by replacing a susceptible pig (S) by an 415 

exposed pre-infectious pig (E) at day -31, giving a median suspicion date in the model at day 416 

0 and a median detection date at day 3, as observed in the synthetic data. 417 
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2.2.5 Disease management measures and model implementation 418 

2.2.5.1 Wild boar 419 

2.2.5.1.1 Fence 420 

As part of the measures to curb the spread of the virus out of the forest area, a 300 km 421 

rectangular fence was set up around the area where ASFV had been initially detected in wild 422 

boar (ASF Challenge coordinators). The fence was operational from day 60 and was assumed 423 

to have no impact on transmission before this date. In the models we presented for phases 1 424 

and 2, the fence was assumed to be 100% effective from day 60. However, by phase 3, the 425 

locations of some newly detected infections in the synthetic data suggested that the fence was 426 

not fully effective. Thus, we allowed for a “leaky” fence in all directions, such that ASFV could 427 

be transmitted between two patches on opposite sides of the fence if the distance between 428 

their centres was less than or equal to half the MIR (Table 52 and Appendix A). This also 429 

applied to transmission from wild boar to pig herds: in phase 3, only wild boar patches situated 430 

on the same side of the fence as outdoor herd i and satisfying ��� ≤ MIR and wild boar patches 431 

situated on the other side of the fence and satisfying ��� ≤ MIR/2 were considered in the 432 

computation of the infectious pressure (equation (25)). In phases 1 and 2, only wild boar 433 

patches situated on the same side of the fence as herd i were considered. 434 

 435 

2.2.5.1.2 Normal hunting pressure  436 

The “normal hunting pressure” scenario involved hunting according to the usual hunting rates 437 

for a typical hunting season, which corresponds to a hunting rate of 50% of the wild boar 438 

population from day -36 to day 204 (8 months) and at a uniform rate over the period. This 439 

measure was maintained outside the fence and a 15 km-buffer zone around the fence for the 440 

entire duration of the projection period. Under this scenario, both active and passive 441 

surveillance were possible and 20% of all hunted wild boar were tested. 442 

 443 
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2.2.5.1.3 Increased hunting pressure 444 

Within the fenced area and the buffer zone, an “increased hunting pressure” management 445 

strategy was implemented, beginning at day 60. This involved applying a hunting rate of 90% 446 

of the wild boar population (much higher than that observed in a typical hunting season) from 447 

day 60 to day 120 (2 months), at a uniform rate, to decrease wild boar density and thus slow 448 

the spread of ASFV (ASF Challenge coordinators). Under this measure, active surveillance 449 

ceased within the fence and the buffer zone, given “the potential risks posed by hunts” (ASF 450 

Challenge coordinators). However, passive surveillance was still possible. Moreover, 100% of 451 

all hunted wild boar were tested. 452 

 453 

2.2.5.1.4 Surveillance 454 

For model fitting, the number of boar hunted daily was estimated based on the data provided 455 

on the number of hunted boar tested daily. The proportion of hunted boar tested was 20% 456 

under normal hunting pressure and 100% under increased hunting pressure. Thus, under 457 

normal hunting pressure, the number of boar hunted daily was equal to five times the number 458 

of tested boar, whereas under increased hunting pressure, the number of boar hunted daily 459 

was equal to the number of tested boar. The number of boar carcasses found daily (by passive 460 

or active surveillance) was solely determined based on the synthetic data provided, since all 461 

found boar carcasses were tested and hence reported. According to the synthetic data 462 

provided, carcasses may persist in the island for more than one day; i.e., not all carcasses are 463 

removed via surveillance on a given day. As participating teams were blind to the synthetic 464 

data-generating process, we are unable to provide details such as the parameterization of the 465 

boar removal data provided. For details on the synthetic data-generating process, see Picault 466 

et al. (2021). 467 

For the projection periods, no data were provided on the daily number of hunted boar and 468 

found carcasses. For these periods, we estimated the daily number of hunted boar and found 469 

carcasses based on the fractions of removed boar in the synthetic data provided; i.e., the data 470 

provided on the observed periods. Refer to Tables A9, A10, and A12 in Appendix A for detailed 471 
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descriptions on the estimation of the number of wild boar removed during the projection 472 

periods in phase 1, phase 2 and phase 3, respectively. 473 

For both model fitting and model projections, after the number of boar to be removed had been 474 

determined, we determined the particular boar to be removed by randomly sampling from the 475 

remaining boar within a specific area of focus. Within the projection periods for phases 2 and 476 

3, and for boar located within the fence and buffer zone, we defined the probability of removal 477 

by hunting to be dependent on a boar’s infection status (this was not the case for phase 1). 478 

We assigned a higher removal probability to infected boar than to susceptible boar, such that 479 

infected boar were more likely to be hunted or found as carcasses or found as carcasses, as, 480 

we thought it reasonable to assume that infected boar were less likely to escape a hunt due 481 

to reduced activity as a result of lethargy, given the symptoms of ASF. The absolute difference 482 

in hunting probabilities for live infected boar and live susceptible boar was 0.6 in phase 2 and 483 

0.1 in phase 3: these were chosen to ensure a high agreement between the synthetic data 484 

and simulated dynamics. 485 

2.2.5.2 Pig herds 486 

2.2.5.2.1 Baseline regulatory interventions 487 

According to the challenge coordinators, disease management measures defined by 488 

European regulations were immediately implemented in Merry Island in response to the 489 

epidemic, when the first detected infected pig herd was confirmed (day 3). These regulations 490 

were originally established by the European Union (European Commission, 2002) and are 491 

now described in the new “Animal Health Law” (European Commission, 2016) and its 492 

supplement as regards rules for the prevention and management of diseases such as ASF 493 

(European Commission, 2020a). 494 

Based on the description of the disease management measures provided by the challenge 495 

coordinators, the following measures were implemented in our model: (1) suspected pig herds 496 

were confirmed infected three days after suspicion, assuming perfect ASFV detection tests; 497 

(2) all herds with confirmed infection were culled the day after confirmation (four days after 498 
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suspicion), implemented in our model by setting all compartments to zero (including residues 499 

from dead pigs, i.e., assuming cleaning and disinfection were effective immediately); (3) after 500 

a herd was confirmed infected, a protection zone (3 km radius for 40 days) and a surveillance 501 

zone (10 km radius for 30 days) were defined, and at-risk herds that traded pigs with infected 502 

herds (ingoing or outgoing movements) within the previous three weeks were traced; (4) all 503 

movements of pigs (ingoing or outgoing) were banned for 40 days in protection zones and at-504 

risk herds, and for 30 days in surveillance zones; (5) awareness of farmers about ASF was 505 

improved in surveillance and protection zones, as well as for at-risk herds; (6) repopulation of 506 

a culled herd was allowed 50 days after culling (except if the herd was still in a protection or 507 

surveillance zone), assuming that all pigs used for repopulation were susceptible. 508 

In our model, suspicion of a herd was assumed to occur when two conditions were met: 509 

(1) when the mortality rate caused by ASFV during the previous 14 days in the herd was more 510 

than 6% (Andraud et al., 2019); and (2) the number of clinical or dead animals in the herd 511 

reached a minimum value of five during the previous 14 days (Halasa et al., 2016a). The 512 

minimum number of clinical or dead animals was introduced to represent more accurately the 513 

probability of detecting abnormal events, especially in small herds, where only one death could 514 

make the mortality rate exceed the threshold (Halasa et al., 2016a). Increased awareness of 515 

farmers in protection and surveillance zones and in at-risk herds was represented in our model 516 

by reducing the minimum number of clinical or dead animals required for detection to one 517 

(Halasa et al., 2016a). 518 

 519 

2.2.5.2.2 Additional interventions (phases 2 and 3) 520 

During phase 2, additional disease management strategies in pig herds were incorporated 521 

into the model as asked by the challenge coordinators (see Appendix A for more details): 522 

(1) preventive culling of all herds in a protection zone (“cullPZ”); (2) increasing the size of the 523 

surveillance zone from 10 km (the standard radius used) to 15 km (“incrSZ”); (3) preventive 524 

culling of all pig herds located at less than 3 km from positive wild boar carcasses (“cullWB”); 525 

and (4) preventive culling of all at-risk herds (“cullTR”). Those additional interventions were 526 



 

21 
 

implemented in forward projections during phase 2, i.e., from day 81 to day 110. During phase 527 

2, pig herds preventively culled before detection in scenarios cullPZ, cullWB and cullTR were 528 

not tested (Table 52). Culling was assumed to take place 24 hours after the event triggering 529 

the intervention, as for confirmed herds in baseline interventions. 530 

During phase 3, cullWB was implemented starting day 90 according to the challenge 531 

coordinators. Preventive culling happened 5-7 days after a wild boar case was confirmed, and 532 

tests were performed rapidly in all culled herds, providing results the day after (Table 52). 533 

 534 

2.3 Analyses 535 

2.3.1 Comparison of scenarios 536 

Using model simulations, we compared epidemic outcomes (number and locations of cases) 537 

under the range of scenarios discussed, to determine the effectiveness of each at limiting the 538 

epidemic. 539 

2.3.2 Probability of epidemic fade out by day 230 540 

A key question of interest posed by the challenge coordinators in phase 3 was how likely the 541 

epidemic was to fade out by day 230 given the following conditions: (1) a cessation in 542 

increased hunting pressure at day 120 (due to a reduction in reported incidence), (2) end of 543 

the hunting at day 204 (usual last day of hunting on the island), and (3) possibility of passive 544 

discovery of wild boar carcasses beyond day 204. To estimate the probability of fade-out, we 545 

simulated from our model under these conditions and computed the proportion of simulations 546 

having at least one case by day 230. This was done for both wild boar and pig herd 547 

populations. 548 

 549 

2.3.3 Parameter estimation 550 

The wild boar model was calibrated using Approximate Bayesian Computation (ABC) 551 

(Beaumont et al., 2002). In phase 1, the type of ABC algorithm employed was ABC-Sequential 552 

Monte Carlo with M-nearest neighbours (Minter and Retkute, 2019; Toni et al., 2009) while in 553 

phases 2 and 3, the ABC rejection algorithm (see Toni et al. (2009)) was employed. 554 
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In all phases, the transmission parameter β was estimated. In phases 2 and 3, to improve the 555 

runtime of the estimation algorithm, the scale parameter α of the dispersal kernel was fixed 556 

based on its estimated value at Phase 1 and results from some trial runs of the model. 557 

The wild boar summary statistics used in the ABC estimation were: (1) the daily number of 558 

detected infected wild boar, and (2) the area of the minimum convex polygon enclosing the 559 

locations of infected patches. By choosing these summary statistics, we sought to make our 560 

model fit reflect well both the size and spatial extent of the epidemic in wild boar, as in the 561 

synthetic data. The parameter values producing simulated summary statistics closest to the 562 

summary statistics as computed from the synthetic data provided were retained for model 563 

predictions. The tolerances used in the ABC were chosen based on an iterative sequence of 564 

trial runs which compared simulated model outputs to the synthetic data. 565 

Parameters exclusively associated with the pig herd model were derived from published 566 

estimates (Table 51). After a graphical comparison between the synthetic data provided and 567 

the simulated daily and cumulative numbers of detected infected pig herds over time at each 568 

phase, the same transmission parameter values for transmission from wild boar to pigs in 569 

outdoor herds were used as those calibrated for wild boar-to-wild boar transmission (α and β). 570 

 571 

2.3.4 Simulations and outputs 572 

During the challenge, the number of stochastic repetitions decreased from 500 for phase 1, to 573 

72 for phase 2 and 32 for phase 3 because of constraints imposed by real-time analysis. 574 

However, the results presented in this paper were expanded to include 500 stochastic 575 

repetitions for each phase. 576 

For the wild boar model, the simulated period was from day 1 in phases 1 and 2, but from day 577 

60 in phase 3, due to computational constraints. For the pig herd model, the simulated period 578 

was from day –59 (when data on pig movements started) in all phases. Each repetition 579 

corresponded to a given set of parameter values retained by ABC (� and � in phase 1, only � 580 

in phases 2 and 3). In addition, model stochasticity was driven by drawing events randomly 581 

from probability distributions. 582 
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For wild boar, model outputs across all phases were the daily number of detected/infected 583 

wild boar and the locations of infected wild boar patches. In phases 2 and 3, additional outputs 584 

were infected wild boar locations. For pig herds, model outputs were the daily number of 585 

suspected/confirmed/infected herds, and the probability of suspicion/detection/infection for 586 

each herd (expressed as the proportion of simulations where a given herd was 587 

suspected/detected/infected). Model outputs were expressed as the median of the simulations 588 

and the associated 95% equal-tailed credible interval (CrI), using the 2.5% and the 97.5% 589 

percentiles of the simulations as lower and upper bounds of the 95% CrI, respectively. 590 

Additional details on model outputs are provided in Table A8, Appendix A. 591 

 592 

2.3.5 Sensitivity analyses 593 

To assess the sensitivity of our model to changes in parameter values and assumptions, we 594 

conducted two sensitivity analyses. 595 

First, we assessed the influence of the MIR, the scale parameter of the dispersal kernel α, the 596 

duration of infectiousness in wild boar carcasses, and the duration of infectiousness in live 597 

boar on the daily number of infections and detected cases in wild boar and pig herds. For this 598 

analysis, we focused on phase 3, from day 60 to 110, corresponding to the period over which 599 

the phase 3 model was fitted. We chose to use the phase 3 model since it is the only model 600 

which incorporates the MIR. We considered values ranging from 2 km to 20 km for the MIR; 601 

from 0.6 km to 1.2 km for α; from 10 days to 130 days for the duration of infectiousness of wild 602 

boar carcasses (Fischer et al., 2020; Mazur-Panasiuk and Woźniakowski, 2020); and from 5 603 

days to 14 days for the infectious period in live boar (Gervasi et al., 2020; Gervasi and Guberti, 604 

2021; Halasa et al., 2019; Hayes et al., 2021; O’Neill et al., 2020; Pepin et al., 2020).  605 

Second, we assessed the sensitivity of projections for the number of detected infections in 606 

wild boar and pig herds by day 140 to the level of efficacy of three interventions: (1) fencing; 607 

(2) testing of hunted or found wild boar post-removal; and (3) culling of pig herds located less 608 

than 3 km away from positive wild boar. For each of these interventions, we assessed the 609 

changes in the number of detected infected animals if the parameters associated with these 610 
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interventions were reduced to 75% and 50% of their baseline values. This analysis was 611 

performed using a full factorial design (Saltelli et al., 2008) in which there were three factors 612 

(the interventions parameters) and three levels for each factor (100%, 75%, and 50%). Thus, 613 

27 (=33) combinations of intervention efficacies were assessed. For testing of wild boar and 614 

culling of pig herds, the parameters controlling efficacy were the proportion of tested wild boar 615 

and the proportion of culled pig herds, respectively. For fencing, the parameter controlling 616 

efficacy was the permeability of the fence. During phase 3, ASFV could be transmitted 617 

between patches i and j on opposite sides of the fence if ��� ≤ MIR/2 = 4 km. Here, we 618 

decreased the efficacy of the fence by increasing its permeability, using ��� ≤619 

MIR/(2 × 0.75) = 5.3 km and ��� ≤ MIR/(2 × 0.5) = 8 km instead. 620 

For each parameter � assessed, we compared model outcomes under different values of �, 621 

including the baseline value employed in our model. For each value of � studied, the sensitivity 622 

analyses involved running 100 stochastic repetitions of the model. In these model simulations, 623 

all other parameters and all model assumptions, including control measures, were as in the 624 

baseline model. We then computed the median and 95% CrIs for each outcome across the 625 

100 stochastic repetitions. 626 

 627 

3 Results 628 

3.1 Parameter estimation and model fit 629 

Parameter estimates at each phase are provided in Table 51. Our model fitted well to the 630 

temporal and spatial dynamics of the epidemic (Figure 51 and Table 53; Figure B1, 631 

Appendix B). To evaluate the ability of our model projections to capture the dynamics of the 632 

epidemic, we also compared model projections for the detected number of cases in wild boar 633 

and pig herds during phase 1 (up to day 78) and phase 2 (up to day 110) to the synthetic data 634 

provided by the challenge coordinators after these two phases were completed. We were not 635 

provided with synthetic data corresponding to the projection period for phase 3 (beyond day 636 

110), thus precluding comparison of our projections in that phase with synthetic data. The 637 



 

25 
 

95% CrIs for the number of detected infected pig herds and wild boar captured the synthetic 638 

observations in phase 1 (Table 54). In phase 2, the 95% CrIs for the number of detected 639 

infected pig herds captured the number observed in the synthetic data, although the 640 

corresponding statistic for the number of detected infected wild boar did not; the median 641 

estimate for wild boar overestimated the number observed in the synthetic data by 7.7% 642 

(Table 54). 643 

Although ASFV was seeded in both wild boar and pig herds, pig herd incidence was driven by 644 

the wild boar epidemic, as illustrated in Figure B2, Appendix B. Indeed, in the absence of 645 

ASFV transmission from wild boar to pig herds, the cumulative number of detected infected 646 

pig herds up to day 230 remained very low (median: 2, 95% CrI: (2-7)). 647 

 648 

3.2 ASF management strategies 649 

3.2.1 Fencing and increased hunting pressure 650 

The challenge coordinators were interested in the difference in effectiveness between the 651 

scenario involving the implementation of the fence alone and that involving the implementation 652 

of the fence combined with increased hunting pressure within the fence (and from phase 2 653 

also in the buffer zone; see Table 52). For all phases, we report model projections of the daily 654 

number of detected infected wild boar and the daily number of detected infected pig herds 655 

under the increased hunting pressure and normal hunting pressure scenarios (Figure 52). In 656 

general, our model projections showed a better efficacy of the combination of fence with 657 

increased hunting pressure in comparison with fence and normal hunting pressure (Figure 52, 658 

Table 53). 659 

In wild boar, for phase 1, there were 90% more detected cases under increased hunting 660 

pressure compared to normal hunting pressure (Table 53). However, for phases 2 and 3, there 661 

were more cases under normal hunting pressure than under increased hunting pressure: the 662 

projected median estimates for normal hunting pressure were 1.8% and 131% higher than 663 

corresponding estimates for increased hunting pressure, for phases 2 and 3, respectively 664 

(Table 53). The projected number of detected infected pig herds was very similar for both 665 
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scenarios in phase 1 (Figure 52, Table 53). In phase 2, the projected median number of 666 

detected infected pig herds was 7% lower for increased hunting pressure than for normal 667 

hunting pressure (Figure 52, Table 53). It was only in phase 3 that increasing hunting pressure 668 

had a strong impact, with a 56% lower median estimate of detected infected pig herds 669 

compared to the normal hunting pressure scenario (Figure 52, Table 53). 670 

 671 

3.2.2 Additional interventions in pig herds 672 

The model projections showed that culling all pig herds in protection zones (“cullPZ”), culling 673 

all herds that have traded pigs with an infected farm less than three weeks before detection 674 

(“cullTR”), or increasing the size of the surveillance zone from 10 km to 15 km (“incrSZ”) all 675 

had a negligible impact on the number of infected herds and detected infected herds compared 676 

to the baseline management strategies in pig herds (Figure 53; Figure B3, Appendix B). 677 

However, culling of all pig herds located less than 3 km from positive wild boar carcasses 678 

(“cullWB”) led to 4 fewer infected herds on average, compared to the baseline management 679 

strategies, a 18.5% reduction over a 30-day period (Figure 53). This reduced number of 680 

infected herds was obtained by culling 65 more herds on average compared to the baseline 681 

management strategies, a 422% increase over a 30-day period. 682 

 683 

3.3 Probability of epidemic fade-out by day 230 684 

Our model simulations showed the persistence of the virus within the population by day 230 685 

in all projections (Figure 54), given the new disease management measures introduced at day 686 

120. The estimated daily numbers of detected cases beyond day 120 were generally lower 687 

than had been observed in the synthetic data at the start of the increased hunting pressure 688 

activities (day 60) and followed a steady trend up to day 204, after which even fewer cases 689 

were detected daily, given the end of the hunting season. The probability of fade-out in pig 690 

herds depended on the probability of fade-out in wild boar (Figure B2, Appendix B). Indeed, 691 

as long as the virus persists within the wild boar population, further infections of pig herds are 692 

to be expected. 693 
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 694 

3.4 Sensitivity analyses 695 

3.4.1 Sensitivity analysis to spatial parameters and durations of infectious periods 696 

There was no substantial difference between the trajectories for the daily number of detected 697 

infected boar corresponding to MIR values of 8 km, 14 km and 20 km, although there was a 698 

marked difference between these trajectories and that corresponding to a MIR of 2 km 699 

(Figure 55A). Increasing the MIR from 2 km to 8 km resulted in a 187% (95% CrI: 160%-206%) 700 

increase in the number of detected infected boar within the period considered (days 60-110), 701 

whereas increasing from 8 km to 14 km resulted in only a 2.02% (95% CrI: -5.4%-12%) 702 

increase (Table 55). Similarly, the number of detected infected pig herds increased by 100% 703 

(95% CrI: 61%-152%) when increasing the MIR from 2 km to 8 km but did not change further 704 

for values above 8 km. Similar results as for detected infected boar and pig herds were 705 

obtained when considering the number of infections (detected or not: Figure C1A, 706 

Appendix C). 707 

For the duration of infectiousness in boar carcasses, we observed a similar trend where the 708 

results changed only for the smallest parameter value. Indeed, there was no notable difference 709 

between the median trajectories corresponding to the 50-day, 90-day and 130-day durations, 710 

but the trajectory corresponding to a 10-day duration was slightly lower starting from day 70 711 

(Figure 55C). However, CrIs corresponding to estimates for all parameter values were largely 712 

overlapping (Figure 55C, Table 55). Similar results were observed for the number of infections 713 

and the number of detected infected pig herds (Table 55 and Figure C1C, Appendix C). 714 

The trend was however different for the scale parameter of the dispersal kernel, α 715 

(Figure 55B), and the duration of infectiousness in live boar (Figure 55D). For these 716 

parameters, larger parameter values resulted in larger values of the daily number of detected 717 

infected wild boar. This was especially true for the scale parameter α, for which the number of 718 

detected infected wild boar increased by 190% (95% CrI: 169%-212%) from 0.6 km to 1.2 km, 719 

and the number of detected infected pig herds increased by 140% (95% CrI: 82%-204%) from 720 
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0.6 km to 1.2 km (Table 55). A similar trend was observed for the number of infected wild boar 721 

(Figure C1B, Appendix C). 722 

Decreasing the infectious period of live boar in the baseline model (14 days) by 4 days, 7 723 

days, and 9 days resulted in a decrease of 16% (95% CrI: 10%-23%), 30% (95% CrI: 24%-724 

37%) and 40% (95% CrI: 35%-45%), respectively, in the number of infected detected boar, 725 

compared to baseline (Figure 55D, Table 55). However, decreasing the infectious period in 726 

live boar led to no substantial changes in the number of infected wild boar (Figure C1D, 727 

Appendix C) nor in the number of detected infected pig herds (Table 55). See Section 4.2 of 728 

the “Discussion” for an interpretation of these results. 729 

 730 

3.4.2 Sensitivity analysis to efficacy of management interventions 731 

Results on the sensitivity of the number of detected infections to the level of intervention 732 

efficacy are presented in Table 6. For any fixed fence efficacy level, decreasing the testing 733 

fraction led to fewer detected infections in wild boar. On the other hand, for a fixed testing 734 

fraction for wild boar, the number of detected boar and pig herds did not vary substantially 735 

with varying fence efficacy – credible intervals for estimates were largely overlapping. Given 736 

any fixed combination of intervention efficacy levels in wild boar (e.g., fence efficacy as 100% 737 

and testing efficacy as 75%), varying the fraction of pig herds culled if found less than 3 km 738 

away from positive wild boar (cullWB) led to only negligible changes in the median estimates 739 

of the number of detected pig herds. Across levels of cullWB, the credible intervals of 740 

estimates were largely overlapping for all combinations of fence and testing efficacies 741 

considered.  742 

 743 

4 Discussion 744 

We have developed a stochastic spatiotemporal model describing the transmission dynamics 745 

of ASF in a multispecies context involving wild boar and domestic pigs. Our model captured 746 

the shape of the epidemic trajectory, as reflected in the synthetic data, as well as its spatial 747 

characteristics (Figure 51; Table 53; Table 54; Figure B1, Appendix B). Furthermore, the 748 
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model was complex enough to allow for the incorporation of a range of disease management 749 

measures and for the estimation of their respective effects on the epidemic trend (Figure 52 750 

and Figure 53, Table 53). 751 

 752 

4.1 What do our results show and what do they mean? 753 

4.1.1 Key point 1: Increased hunting pressure effective, long-term evaluation more 754 

beneficial 755 

To inform recommendations for ASF management measures in the wild boar population – 756 

assumed to be the reservoir for ASFV in the island we considered – we evaluated the 757 

effectiveness of an increased hunting pressure scenario and a normal hunting pressure 758 

scenario, both including a fenced area to restrict wild boar movement beyond an identified 759 

epicentre. Our model results showed a superior efficacy associated with the increased hunting 760 

pressure scenario (Figure 52, Table 53). It is worthy of note that the benefits (reduction in the 761 

number of infected boar removed) realized under the increased hunting pressure scenario 762 

were more apparent in the longer term, in both the wild boar and pig herd populations 763 

(Figure 52). For wild boar, the benefit of increased hunting pressure could only be seen in 764 

phases 2 and 3 (Figure 52B-C), where the number of detected infected boar decreased 765 

despite testing more (as 100% of hunted boar within the fence and buffer zones were tested 766 

in the increased hunting pressure scenario, compared to only 20% in the normal hunting 767 

pressure scenario). For pig herds, increased benefit in the longer term can be visually 768 

observed in the cumulative curves in Figure 52G-I, where the divergence between the 769 

scenario curves is seen to increase as the epidemic progresses. In the face of emerging 770 

threats such as ASF, where there is typically a haste to suppress disease spread, mechanisms 771 

which do not prove highly effective in the short term might be quickly abandoned or less 772 

favoured. These results suggest that the timescale over which different interventions are 773 

evaluated may influence the evaluation outcomes. In particular, the difference in efficacy 774 

between two interventions may be negligible when the interventions are evaluated over a short 775 

time window, but this difference may become considerably larger when the interventions are 776 
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evaluated over a longer window. Consequently, we recommend that rather than comparing 777 

interventions over a fixed time window (e.g., 30 days, as in phase 1), which may not be enough 778 

to see an effect, interventions are compared based on the time it takes these interventions to 779 

reach a certain level of efficacy as defined by example, the public health manager.  780 

 781 

4.1.2 Key point 2: Preventive culling around positive wild boar was effective in pig 782 

herds 783 

As done for wild boar, we compared various ASF management measures in pig herds, that 784 

could complement the baseline interventions defined by the EU and that were implemented in 785 

Merry Island. These additional measures included increasing the size of the surveillance zone 786 

from 10 km (the standard radius used) to 15 km, or the preventive culling of herds either in a 787 

protection zone, defined as being at-risk (based on previous trade with infected herds), or 788 

located at less than 3 km from positive wild boar (Table A11, Appendix A). These measures 789 

were evaluated and compared during phase 2 of the challenge. 790 

Increasing the size of the surveillance zone by 5 km was not effective in reducing the number 791 

of infected or detected pig herds (Figure 53; Figure B3, Appendix B). We also found that 792 

preventive culling of herds connected to detected infected herds had a negligible impact on 793 

the number of infected and detected pig herds (Figure 53; Figure B3, Appendix B). Similar to 794 

our results, increasing the size of the surveillance zone or pre-emptive culling around infected 795 

herds were not predicted to improve the management of a hypothetical ASFV epidemic in 796 

Denmark (Halasa et al., 2018, 2016c). In our case, these results can be explained by the fact 797 

that incidence in pig herds was largely driven by transmission from wild boar (Figure B2, 798 

Appendix B). Therefore, these scenarios strictly relating to pig-to-pig transmission had only 799 

limited impact. 800 

In contrast, culling pig herds located less than 3 km away from positive wild boar decreased 801 

the number of infected pig herds by 18.5% in one month (Figure 53). This type of preventive 802 

culling was more effective as it prevented boar-to-pig transmission, by depleting pig herds 803 

before they were exposed to transmission from wild boar. However, this scenario required the 804 
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culling of 65 additional herds in a month compared to the baseline scenario. Although the 805 

costs of disease management interventions were not directly evaluated in our model, the costs 806 

associated with this scenario would probably be substantial. The cost-benefit ratio of this 807 

strategy should therefore be evaluated by comparing the costs of culling additional herds with 808 

the benefits of preventing ASF in a few herds. 809 

One possible refinement of this scenario would be to preventively cull the herds most at-risk 810 

of transmission from wild boar, i.e., outdoor herds. Here, all herds (indoor and outdoor) were 811 

indiscriminately culled, whereas only outdoor herds were assumed to be exposed to 812 

transmission from wild boar. By culling only outdoor herds close to positive wild boar, this 813 

scenario would be expected to produce similar benefits while decreasing the number of 814 

preventively culled herds, hence reducing the costs and potentially reducing delays required 815 

to implement such culling. Double fencing of outdoor pig herds as an alternative to keeping 816 

FRPs has been implemented as part of the recent eradication programme in Sardinia (Viltrop 817 

et al., 2021). Whilst the epidemiology of ASFV in Sardinia is different to that of Merry Island 818 

as FRPs rather than wild boar are considered the main drivers of transmission, double fencing 819 

of outdoor pig farms could also be considered as an alternative or addition to culling as a 820 

means of reducing transmission between wild boar and outdoor pig herds. Scenarios such as 821 

these could have been evaluated using our model; however, given the time restrictions 822 

imposed in the challenge to mimic real-time analysis and decision making, we restricted our 823 

analyses to the scenarios asked by the challenge coordinators. 824 

 825 

4.1.3 Key point 3: ASFV persistence beyond day 230 and what this means for 826 

disease control 827 

Concerning the probability of epidemic fade-out, our model estimates suggest the strong 828 

likelihood of the persistence of ASFV in the landscape by day 230 (Figure 54), translating to 829 

a probability of incidence among pig herds, since the epidemic in pig herds is sustained by 830 

that in wild boar (Figure B2, Appendix B). The fact that our simulations stopped at the 831 

beginning of the peak birthing season (February – April (Alves da Silva et al., 2004; Podgórski 832 
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and Śmietanka, 2018; Rosell et al., 2012; Sabrina et al., 2009)), also suggests a potential for 833 

endemicity of the virus in the landscape with seasonal epidemics, since the peak of 834 

introduction of new susceptible individuals into the population represents increased 835 

opportunities for transmission (Altizer et al., 2006). In addition, boar piglets have been seen 836 

to survive for longer periods after infection compared to adult boars (Sánchez-Cordón et al., 837 

2019), meaning an increased potential for effective contacts per infected individual and hence 838 

a higher chance of epidemic take-off. 839 

However, the simulated epidemic which was used to provide the data used in the challenge 840 

showed a decline in real incidence in wild boar from around day 35, down to almost no new 841 

cases by day 230 (ASF Challenge coordinators). This discrepancy between our results and 842 

the original model could have originated from the differences in assumptions. For instance, 843 

ASFV was introduced into a single wild boar in the original model 112 days before the first 844 

detected case (ASF Challenge coordinators). In our model, ASFV infections were seeded in 845 

wild boar at day 1 for phases 1 and 2 or at day 60 for phase 3, based on the number of infected 846 

boar in the synthetic data provided (Appendix A). As the number of seeded infections was 847 

assumed based on the number of infected boar as observed in the synthetic data and not 848 

estimated, this number could have been underestimated. This could have resulted in a 849 

temporal shift of the epidemic according to our model, whereby day 230 would be in earlier 850 

stages of the epidemic than observed in the “real” trajectory, thus overestimating virus 851 

persistence. Estimating the number of infections at the beginning of the simulations or the 852 

date of introduction of the virus could represent possible refinements to avoid this issue. 853 

Another possible explanation could be the spatial spread of the virus. Spatial diffusion is 854 

dependent on the probability of the virus reaching new areas with susceptible individuals. 855 

Differences in parameter estimates or in spatial structure (patches in our model versus 856 

individual boar in the original model) could explain a faster diffusion in our model compared to 857 

the original one, increasing the chances of reaching new areas with susceptible boar and 858 

therefore increasing virus persistence. 859 
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However, virus persistence, as predicted by our model, is more reflective of the current 860 

situation and challenges being faced by many countries within Europe. Wild boar play an 861 

important role in the epidemiology of ASFV in Europe with current evidence suggesting that 862 

ASFV is maintained at low prevalence in the wild boar population with the persistence of ASFV 863 

within wild boar carcasses and the associated environmental contamination contributing to the 864 

maintenance and spread of disease (Chenais et al., 2019). In areas where ASFV is present 865 

in local wild boar populations, transmission to pig herds may occur via direct contact between 866 

wild boar and outdoor pig herds or may occur via human-mediated introduction from the 867 

contaminated local environment (Chenais et al., 2019). Since its re-introduction to Europe in 868 

2007, only two countries – the Czech Republic and Belgium – have managed to eradicate 869 

ASFV when it has been present in wild boar (European Food Safety Authority et al., 2021; 870 

Miteva et al., 2020; Sauter-Louis et al., 2021a). In both countries, ASFV was restricted solely 871 

to wild boar following a focal human-mediated introduction. In the Czech Republic the closest 872 

infected wild boar to the first confirmed wild boar case was over 300km away, whilst in Belgium 873 

the distance was over 800km (Sauter-Louis et al., 2021b). This focal introduction is considered 874 

an important factor in the success of interventions within both the Czech Republic and Belgium 875 

(Sauter-Louis et al., 2021b). In contrast, ASFV is endemic within the resident wild boar 876 

population in some eastern European countries, which hampers control efforts (Chenais et 877 

al., 2019). The control measures utilised in the Czech Republic and Belgium reflect measures 878 

currently recommended by the EU when a focal introduction within wild boar has occurred in 879 

a previously disease-free area (European Commission, 2020b; Miteva et al., 2020). Three 880 

separate zones are demarcated – a core zone, a buffer zone and an intensive hunting zone 881 

(European Food Safety Authority et al., 2018; Miteva et al., 2020). The core zone is the area 882 

within which ASFV-positive boar have been identified. This area is fenced to control the 883 

movement of the wild boar with the goal of reducing disturbance and avoiding dispersal of 884 

infected animals over a wider area. Mortality associated with ASFV is allowed to occur and 885 

carcasses promptly removed. During the period of active ASFV transmission, it is 886 

recommended that boar are undisturbed within both the core and buffer zones. Once the 887 
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epidemic starts to decline, active population management is recommended under strict 888 

biosecurity. Within the intensive hunting zone (which is the outermost of the three zones), the 889 

goal is to reduce the population of wild boar to below a level at which transmission of ASFV 890 

cannot be sustained. In Belgium, in addition to measures targeted at wild boar, domestic pigs 891 

within the infected area were also culled at the start of the outbreak (Global Framework for the 892 

Progressive Control of Transboundary Animal Diseases, 2020; Mauroy et al., 2021). Following 893 

the success of these strategies in Europe, a similar approach has been adopted in South 894 

Korea but has met with variable success. Differences between counties in the speed and 895 

method of implementation of control measures such as fencing and culling of wild boar are 896 

considered likely to have contributed to this variation in success (Jo and Gortázar, 2021). 897 

Breaches in biosecurity are also suggested to have contributed to both local spread and long-898 

distance translocations of the disease (Jo and Gortázar, 2021). The challenge presented by 899 

ASF management highlights the importance of developing accurate mathematical models of 900 

ASFV transmission in wild boar and domestic pigs, to improve our understanding of ASFV 901 

transmission dynamics and to evaluate potential disease management strategies in various 902 

situations and locations. 903 

 904 

4.2 What factors influenced model dynamics? 905 

The sensitivity analysis allowed to gain insights on the impact of a few selected key 906 

parameters and assumptions on the infection and detection dynamics, namely (1) the limit in 907 

wild boar movements introduced during phase 3 (MIR), (2) the value of the scale parameter 908 

(α) of the transmission kernel, which was fixed in phases 2 and 3, and (3) the duration of 909 

infectiousness in live and dead boar. 910 

We found that the detected incidence was largely unaffected by changing MIR values when 911 

MIR ≥ 8 km (Figure 55A). To understand this, it is helpful to consider the value of the dispersal 912 

kernel (where α = 1 km as in the baseline model): both the value of the dispersal kernel and, 913 

consequently, the infectious pressure exerted on a susceptible patch j by an infectious patch 914 

i, decreases with increasing distance between patches (equation (21)). Thus, although the 915 
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MIR increases, resulting in an increase in the number of possible patches j that could be 916 

infected by i, the infectious pressure exerted by i on patches located at least 8 km away is 917 

negligible (value of dispersal kernel for ��� =  8 km is 3.3 × 10��), hence such long-distance 918 

infection events are unlikely in the model. Consequently, increasing the MIR beyond 8 km 919 

does not contribute substantially to the number of new infections, as observed in Figure 55A. 920 

Hence, fixing the MIR at 8 km did not artificially restrict the dynamics. 921 

Larger values of α led to larger estimates for the detected incidence (Figure 55B and 922 

Table 55). Indeed, given constant β, ���, and the prevalence in patches i and j, larger values 923 

of α will result in higher infectious pressures on a susceptible patch j (equation (21)) and hence 924 

more infections (Figure C1B, Appendix C), and consequently, detections, than would be 925 

realized with a smaller value of α. 926 

When the duration of infectiousness in carcasses was 50 days or more, there was almost no 927 

sensitivity of either infection or detection dynamics to changes in the values of this parameter 928 

(Figure 55C; Figure C1C, Appendix C). This is due to the fact that once boar became 929 

carcasses, they persisted in the landscape no more than 43 days on average (by day 110), a 930 

consequence of model assumptions and the removal dynamics as explained in Section 931 

2.2.5.1.4. That is, an average boar carcass gets removed from the landscape before the end 932 

of its 90-day infectious period. Thus, values larger than 43 days will be expected to produce 933 

similar dynamics. However, values smaller than 43 days will be expected to produce different 934 

dynamics; in particular, the number of daily infections and consequently, detections will be 935 

generally lower, as infectious carcasses spend less time in the landscape.  936 

Finally, we found that when the length of the infectious period in live boar was assumed to be 937 

shorter than 14 days (as in the baseline model), the detected incidence was generally lower 938 

than realized with the baseline model (Figure 55D). Indeed, the more days infectious boar 939 

spend alive, the higher the proportion of infected boar among all hunted boar, given that within 940 

the period considered (day 60-day 110), the major mode of detection of infected boar was 941 

hunting. The graph of the corresponding dynamics for all infections (i.e., including undetected 942 
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infected boar; Figure C1C, Appendix C) reveals that compared to the detection dynamics, 943 

infection dynamics were less sensitive to changing values of this parameter. The number of 944 

days an infected boar spends alive (14 days in the baseline model) is expected to influence 945 

detection dynamics more than it does the infection dynamics because: (1) the bulk of 946 

detections targeted live boar; hence, increasing the lifespan of infected boar means a higher 947 

probability of detecting an infected boar; and (2) shortening the duration of infectiousness as 948 

a live boar only has a small impact on the overall duration of infectiousness (because the 949 

duration of infectiousness in carcasses is much higher: 90 days in the baseline model), and 950 

hence on the overall contribution of wild boar (alive and dead) to transmission.  951 

The sensitivity analysis also allowed us to assess the influence of efficacy of interventions on 952 

model projections. Interventions assessed were the fence, wild boar testing and culling of pig 953 

herds located less than 3 km away from positive wild boar. The analyses showed that 954 

decreased testing resulted in fewer infected detected boar (Table 6), as expected, and 955 

increased permeability of the fence did not appear to result in an increase in the number of 956 

detected infections in boar (Table 6). 957 

 958 

4.3 What challenges did we face? 959 

The main challenge faced in model implementation concerned computation time. The 960 

complexity of the models, coupled with the increasing amounts of data as the modelling 961 

challenge progressed, made simulations and parameter estimation slow. This efficiency 962 

drawback was even more evident during the early stages of phases 2 and 3 for two reasons: 963 

(1) in these phases, we included information on individual boars and locations because this 964 

level of granularity was needed for the implementation of pig management strategies, such as 965 

the culling of pig herds less than 3 km away from an infected wild boar, and (2) candidate 966 

models had to be iteratively tested prior to parameter estimation. To mitigate this issue, we 967 

employed three approaches. First, algorithms were parallelized where possible and useful, 968 

taking advantage of high-performance computing clusters. Second, cross-language 969 

programming was utilised where needed. Although the main programming language was R, 970 
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some sections of the model were written in the faster C++ language to improve the overall 971 

speed. Third, the final model (at phase 3) was fitted to data from day 60, rather than from day 972 

1. (This choice likely contributed to the accuracy of the phase 3 projections: in a previous 973 

epidemic modelling challenge, it was observed that models fitted to more recent data 974 

performed better than those fitted to data over the entire observed period (Viboud et al., 975 

2018)). Still, the computational resources required were substantial (see Table A7, Appendix 976 

A for algorithm runtimes). It is crucial, particularly in real-time analysis of epidemics, for 977 

modellers to have efficient tools in order to provide timely evidence-based recommendations 978 

for disease management. Therefore, more work is required on the efficient design of epidemic 979 

models to minimize computational burden upon implementation. Also, work to develop highly 980 

efficient parameter estimation methods which have the potential to scale with large datasets 981 

and complex models will be useful for real-time epidemic response. 982 

 983 

4.4 How could the modelling approach/choices be improved? 984 

Since we constructed the model rapidly during a hypothetical animal health emergency, the 985 

modelling approach presented here can be improved in a number of ways. First, the 986 

component of the model describing transmission dynamics in wild boar could be made more 987 

realistic by including a latent compartment, as in the pig herd model. The sensitivity analysis 988 

on the duration of infectiousness in live boar may be considered an approximate test on the 989 

length of a latent period on infection dynamics: one may think of the baseline model as 990 

allowing for no latent period and of the alternative models as allowing for a latent period of 991 

D days, where D is the decrease in infectious period between the baseline and the alternative 992 

model. The difference in the number of infected detected boar between the baseline model 993 

and the alternative models (decrease in infectious period by 4, 7 and 9 days) was notable – 994 

the lower the infectious period, the lower the number of infected detected boar relative to the 995 

baseline (Figure 55, Table 55). The absence of a latent period in the wild boar model may 996 

therefore explain the overestimation in the number of infected detected cases in phase 2 997 

(Table 54 and Table 55). 998 
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Second, our model could be fitted to pig herd incidence, to better characterize infection 999 

dynamics between herds. We were not able to fit our model to pig herd data because the data 1000 

were restricted to the number of detected infected pig herds, which was very low especially 1001 

during the early phases of the challenge. Incorporating the analysis of data on pig herds could 1002 

have allowed the separate estimation of α and β parameters for boar-to-boar and boar-to-pig 1003 

transmission. However, the close similarity between model projections and data for pig herds 1004 

(Table 53; Figure B1, Appendix B; Table 54) show that the use of common parameters for 1005 

boar-to-boar and boar-to-pig transmission was sufficient for the purposes of our model. In 1006 

addition, this avoided the need to perform ABC for both components of the model, which would 1007 

have increased an already long computation time. Parameters for within- and between-herd 1008 

transmission were based on experimental infections (Gallardo et al., 2017; Guinat et al., 1009 

2016b), previous modelling work (Halasa et al., 2016c, 2016a) or adapted from knowledge 1010 

from classical swine fever virus. More detailed data, for instance on the number of infected or 1011 

dead pigs in each herd, could have been useful to estimate within-herd parameters (Guinat et 1012 

al., 2018). This kind of data could be collected when facing a real ASF epidemic to better 1013 

inform mathematical models used. 1014 

 1015 

4.5 How can the projections be improved? 1016 

Our projections could be improved by utilising multi-model ensembles as these have 1017 

consistently demonstrated superior prediction abilities and lower variance, on average, 1018 

compared to single models for epidemic forecasts (Johansson et al., 2019; McGowan et al., 1019 

2019; Reich et al., 2019; Viboud et al., 2018), deriving advantage from their ability to 1020 

incorporate various signals from their constituent models, each of which may capture a distinct 1021 

combination of system characteristics (McGowan et al., 2019). In the context of modelling 1022 

challenges or real-time analysis of epidemics, the limited time available for analysis may make 1023 

it challenging to develop multiple, diverse models needed for a good ensemble. For some 1024 

modelling challenges, an ensemble based on the presented models have been developed (for 1025 
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example, (McGowan et al., 2019; Viboud et al., 2018)) and such ensembles could serve as 1026 

useful tools for informing disease management in the event of a real epidemic. 1027 

 1028 

4.6 Comparison to previously published modelling studies 1029 

The pig herd model used within this study was broadly based on the models reported by 1030 

Halasa et al. (2016c, 2016a). For within-herd transmission, the main modification that was 1031 

implemented within our model related to the duration of the latent and infectious periods. We 1032 

based these on experimental data reported by Guinat et al. (2016b) rather than on expert 1033 

knowledge and we incorporated uncertainty in these parameter values as in Vergne et al. 1034 

(2021). As in previous studies (Guinat et al., 2018; Halasa et al., 2016a), we assumed 1035 

homogeneous mixing within herd, i.e., ignoring the impact of herd structure on ASF 1036 

transmission. Although this may not represent adequately the reality for some highly-1037 

structured pig herds, this assumption was mainly the result of an absence of within-herd 1038 

epidemiological data and a lack of information on how pig herds were structured. The impact 1039 

of this assumption on within- and between-herd transmission remains to be assessed, but 1040 

would require detailed epidemiological data to allow the estimation of multiple within-herd 1041 

transmission parameters (Guinat et al., 2018, 2016b). 1042 

For between-herd transmission, a number of modifications were implemented. We only 1043 

considered disease spread via animal movements and via local transmission, as these were 1044 

the main drivers of between-herd transmission in Halasa et al. (2016c) and Andraud et al. 1045 

(2019). We therefore assumed transmission by indirect contacts (e.g. via people visiting the 1046 

farm, trucks moving animals to abattoirs, or feed trucks) to be negligible, except for local 1047 

spread within a 2-km radius (e.g. via shared material). For spread via animal movements, 1048 

instead of computing probabilities of virus transmission via movements (Halasa et al., 2016c), 1049 

we explicitly modelled animal movements as a potential source of introduction (e.g., as in 1050 

Brooks-Pollock et al. (2014)), using the synthetic movement data provided and projected 1051 

movements using ERGMs. For local transmission, we used a continuous function of distance 1052 
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to represent the decreasing probability of transmission with increasing distance, instead of 1053 

using discrete values for certain distance ranges as in Halasa et al. (2016c). 1054 

The wild boar model was developed independently and was not based on any previously 1055 

published modelling studies. As noted in Hayes et al. (2021), until 2020 the majority of the 1056 

published ASFV transmission models for wild boar were based on Lange and Thulke’s ASF 1057 

model (Halasa et al., 2019; Lange, 2015; Lange et al., 2018; Lange and Thulke, 2017, 2015; 1058 

Thulke and Lange, 2017) or parameterized as per that model (Croft et al., 2020). Our model 1059 

is similar to that by Lange and Thulke (2017) in that it is a spatially explicit model. However, 1060 

whilst many of the published wild boar ASF modelling studies include detailed demographic 1061 

information (age and sex of individual boar, births, sub-adult dispersal, annual reproduction, 1062 

litter sizes and mortality) (Croft et al., 2020; Gervasi and Guberti, 2021; Halasa et al., 2019; 1063 

Lange, 2015; Lange et al., 2018; Lange and Thulke, 2017, 2015; O’Neill et al., 2020; Pepin et 1064 

al., 2020; Thulke and Lange, 2017) we chose to simplify the demographic processes included 1065 

within our model due to the short time-frame modelled within the ASF Challenge.  1066 

The average duration of infectiousness for live infected wild boar used in published models is 1067 

typically 5-7 days (Croft et al., 2020; Gervasi et al., 2020; Gervasi and Guberti, 2021; Halasa 1068 

et al., 2019; Lange, 2015; Lange and Thulke, 2017, 2015; O’Neill et al., 2020; Pepin et al., 1069 

2020; Thulke and Lange, 2017), a considerably shorter period than that used within our model 1070 

(14 days) and this may have contributed to our overestimation of the number of cases in wild 1071 

boar. 1072 

The duration of infectiousness of carcasses is variable across studies and varies from 4 weeks 1073 

(Lange and Thulke, 2017) to 12 weeks (Gervasi and Guberti, 2021). The 90-day period used 1074 

in our model would thus be at the upper end of this range. More recently, studies have varied 1075 

the rate of carcass decomposition by season to reflect different seasonal rates of carcass 1076 

decomposition (Gervasi and Guberti, 2021; Pepin et al., 2020; Thulke and Lange, 2017). 1077 

Another study has demonstrated the influence of temperature and environmental conditions 1078 

on ASFV persistence in carcasses (Fischer et al., 2020; Mazur-Panasiuk and Woźniakowski, 1079 

2020). The projection periods for the ASF modelling Challenge ran from August to February 1080 
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and thus these seasonal and temperature variations in the duration of infectiousness of 1081 

carcasses could have been considered in our model. 1082 

Prior to 2020 (when the ASF Challenge started), there had been a lack of diversity among 1083 

ASFV models in both domestic pigs and wild boar although the situation has been improving 1084 

(Hayes et al., 2021). Our model, alongside the other models produced in the ASF Challenge, 1085 

provides a valuable contribution to increasing the diversity in the ASFV modelling literature. 1086 

The number of studies modelling transmission between wild and domestic hosts remains small 1087 

(Pietschmann et al., 2015; Pollock et al., 2021; Taylor et al., 2021; Yoo et al., 2021). Given 1088 

the importance of wild boar in the transmission of ASFV in Europe, the multi-host nature of 1089 

our model is one of the major strengths of our study. 1090 

 1091 

5 Conclusions 1092 

In summary, we have developed a framework for modelling ASFV transmission during 1093 

outbreaks. The model can be parameterized in real-time during outbreaks and refined as 1094 

additional outbreak data become available. The model can be used to generate forward 1095 

projections and to predict the effectiveness of different proposed disease management 1096 

strategies. 1097 

For the simulated epidemic on Merry Island, our model indicated that transmission between 1098 

wild boar (and from wild boar to pig herds) was the main driver of epidemic dynamics. Effective 1099 

control measures included the construction of a fence around the main area of the island with 1100 

high prevalence, following by increased hunting of wild boar both within and near the fenced 1101 

region. Culling of pig herds was generally not an effective control strategy, except in regions 1102 

with substantial numbers of infections in wild boar. This is because there was only a low risk 1103 

of transmission through the pig trade network. Our model predicted that the virus is likely to 1104 

persist in future on Merry Island, at least in the short to medium term. 1105 

An important general finding is that it is important to consider the timescale over which different 1106 

control strategies are evaluated: in particular, the difference in efficacy between two 1107 

interventions may be negligible when the interventions are evaluated over a short time window 1108 
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but this difference may become considerably larger when evaluated over a longer time 1109 

window. 1110 

Further refinement of our modelling framework is necessary going forwards. Nonetheless, we 1111 

have demonstrated the potential for this approach to be used to generate projections and 1112 

assess different possible control measures during future African swine fever virus outbreaks. 1113 

This will help animal health policy makers optimise disease management decisions during 1114 

future outbreaks. 1115 

 1116 

 1117 

 1118 

Acknowledgments 1119 

The authors would like to acknowledge the coordinators of the African swine fever modelling 1120 

challenge for developing this interesting modelling problem and for the opportunity to 1121 

participate in the challenge. 1122 

 1123 

Funding 1124 

This research did not receive any specific grant from funding agencies in the public, 1125 

commercial, or not-for-profit sectors. E.A.D was funded by a Rhodes Scholarship and a 1126 

studentship at the Department of Statistics, University of Oxford. S.L. was funded by the 1127 

EDCTP program supported by the European Union (FibroScHot ref: RIA2017NIM-1842). S.H. 1128 

was funded by the Engineering and Physical Sciences Research Council. C.A.D. was 1129 

supported by joint Centre funding from the UK Medical Research Council and the UK Foreign, 1130 

Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement 1131 

and is also part of the EDCTP2 programme supported by the European Union. C.A.D. was 1132 

funded on grants from the UK National Institute for Health Research (NIHR) [Vaccine Efficacy 1133 

Evaluation for Priority Emerging Diseases: PR-OD-1017-20007 and HPRU in Emerging and 1134 

Zoonotic Infections: NIHR200907]. The views expressed in this publication are those of the 1135 

authors and not necessarily those of their funding institutions.  1136 

 1137 

Declarations of interest: none 1138 



 

43 
 

 1139 

CRediT author statement 1140 

 1141 

Emmanuelle A. Dankwa: Conceptualization, Methodology, Formal analysis, Data Curation, 1142 

Writing – Original Draft, Writing – Review & Editing, Visualization. Sébastien Lambert: 1143 

Conceptualization, Methodology, Formal analysis, Data Curation, Writing – Original Draft, 1144 

Writing – Review & Editing, Visualization. Sarah Hayes: Conceptualization, Methodology, 1145 

Data Curation, Writing – Original Draft, Writing – Review & Editing. Robin Thompson: 1146 

Conceptualization, Methodology, Writing – Original Draft, Writing – Review & Editing, 1147 

Supervision. Christl A. Donnelly: Conceptualization, Methodology, Writing – Original Draft, 1148 

Writing – Review & Editing, Supervision. 1149 

 1150 

References 1151 

 1152 

Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P., 2006. Seasonality 1153 
and the dynamics of infectious diseases. Ecol Lett 9, 467–484. 1154 
https://doi.org/10.1111/j.1461-0248.2005.00879.x 1155 

Alves da Silva, A., Santos, P., Bento, P., Alves, J., Soares, A., Fonseca, C., Petrucci-Fonseca, 1156 
F., Monzón, A., Silvério, A., 2004. Reproduction in the wild boar (Sus scrofa Linnaeus, 1157 
1758) populations of Portugal. Galemys 16, 53–65. 1158 

Andraud, M., Halasa, T., Boklund, A., Rose, N., 2019. Threat to the French swine industry of 1159 
African swine fever: surveillance, spread, and control perspectives. Front Vet Sci 6, 1160 
248. https://doi.org/10.3389/fvets.2019.00248 1161 

Barongo, M.B., Bishop, R.P., Fèvre, E.M., Knobel, D.L., Ssematimba, A., 2016. A 1162 
mathematical model that simulates control options for African swine fever virus 1163 
(ASFV). PLoS One 11, e0158658. https://doi.org/10.1371/journal.pone.0158658 1164 

Barongo, M.B., Ståhl, K., Bett, B., Bishop, R.P., Fèvre, E.M., Aliro, T., Okoth, E., Masembe, 1165 
C., Knobel, D., Ssematimba, A., 2015. Estimating the basic reproductive number (R0) 1166 
for African Swine Fever Virus (ASFV) transmission between pig herds in Uganda. 1167 
PLoS One 10, e0125842. https://doi.org/10.1371/journal.pone.0125842 1168 

Beaumont, M.A., Zhang, W., Balding, D.J., 2002. Approximate Bayesian computation in 1169 
population genetics. Genetics 162, 2025–2035. 1170 

Beltrán-Alcrudo, D., Lubroth, J., Depner, K., De La Rocque, S., 2008. African swine fever in 1171 
the Caucasus. FAO Empres Watch 1, 1–8. 1172 

Blome, S., Franzke, K., Beer, M., 2020. African swine fever – A review of current knowledge. 1173 
Virus Res 287, 198099. https://doi.org/10.1016/j.virusres.2020.198099 1174 

Blome, S., Gabriel, C., Beer, M., 2013. Pathogenesis of African swine fever in domestic pigs 1175 
and European wild boar. Virus Res 173, 122–130. 1176 
https://doi.org/10.1016/j.virusres.2012.10.026 1177 

Blome, S., Gabriel, C., Dietze, K., Breithaupt, A., Beer, M., 2012. High virulence of African 1178 
swine fever virus caucasus isolate in European wild boars of all ages. Emerg Infect 1179 
Dis 18, 708. https://doi.org/10.3201/eid1804.111813 1180 

Brooks-Pollock, E., Roberts, G.O., Keeling, M.J., 2014. A dynamic model of bovine 1181 
tuberculosis spread and control in Great Britain. Nature 511, 228–231. 1182 
https://doi.org/10.1038/nature13529 1183 



 

44 
 

Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., Ståhl, K., 2019. Epidemiological 1184 
considerations on African swine fever in Europe 2014–2018. Porc. Health Manag. 5, 1185 
1–10. 1186 

Chenais, E., Ståhl, K., Guberti, V., Depner, K., 2018. Identification of wild boar-habitat 1187 
epidemiologic cycle in African swine fever epizootic. Emerg Infect Dis 24, 810–812. 1188 
https://doi.org/10.3201/eid2404.172127 1189 

Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J.M., Pfeiffer, D.U., 2013. Epidemiology 1190 
of African swine fever virus. Virus Res 173, 191–197. 1191 
https://doi.org/10.1016/j.virusres.2012.10.030 1192 

Croft, S., Massei, G., Smith, G.C., Fouracre, D., Aegerter, J.N., 2020. Modelling spatial and 1193 
temporal patterns of African swine fever in an isolated wild boar population to support 1194 
decision-making. Front Vet Sci 7, 154. https://doi.org/10.3389/fvets.2020.00154 1195 

Danzetta, M.L., Marenzoni, M.L., Iannetti, S., Tizzani, P., Calistri, P., Feliziani, F., 2020. 1196 
African swine fever: Lessons to learn from past eradication experiences. A systematic 1197 
review. Front Vet Sci 7, 296. https://doi.org/10.3389/fvets.2020.00296 1198 

de Carvalho Ferreira, H.C., Backer, J.A., Weesendorp, E., Klinkenberg, D., Stegeman, J.A., 1199 
Loeffen, W.L.A., 2013. Transmission rate of African swine fever virus under 1200 
experimental conditions. Vet Microbiol 165, 296–304. 1201 
https://doi.org/10.1016/j.vetmic.2013.03.026 1202 

Dellicour, S., Desmecht, D., Paternostre, J., Malengreaux, C., Licoppe, A., Gilbert, M., Linden, 1203 
A., 2020. Unravelling the dispersal dynamics and ecological drivers of the African 1204 
swine fever outbreak in Belgium. J Appl Ecol 57, 1619–1629. 1205 
https://doi.org/10.1111/1365-2664.13649 1206 

Dixon, L.K., Sun, H., Roberts, H., 2019. African swine fever. Antivir. Res 165, 34–41. 1207 
https://doi.org/10.1016/j.antiviral.2019.02.018 1208 

European Commission, 2020a. Commission Delegated Regulation (EU) 2020/687 of 17 1209 
December 2019 supplementing Regulation (EU) 2016/429 of the European Parliament 1210 
and the Council, as regards rules for the prevention and control of certain listed 1211 
diseases. J Eur Union L 174, 64–139. 1212 

European Commission, 2020b. Strategic approach to the management of African Swine Fever 1213 
for the EU (Working Document No. SANTE/7113/2015 – Rev 12), Directorate G - Crisis 1214 
management in food, animals and plants Unit G3 – Official controls and eradication of 1215 
diseases in animals. Brussels. 1216 

European Commission, 2016. Regulation on transmissible animal diseases and amending 1217 
and repealing certain acts in the area of animal health ('Animal Health Law’). J Eur 1218 
Union L 84, 1–208. 1219 

European Commission, 2002. Proposal for a Council Directive laying down specific provisions 1220 
for the control of African swine fever and amending Directive 92/119/EEC as regards 1221 
Teschen disease and African swine fever (COM(2002)51 final). J Eur Union 181 E, 1222 
0142—0159. 1223 

European Food Safety Authority, 2015. Scientific opinion on African swine fever. EFSA J 13, 1224 
4163. https://doi.org/10.2903/j.efsa.2015.4163 1225 

European Food Safety Authority, Boklund, A., Cay, B., Depner, K., Földi, Z., Guberti, V., 1226 
Masiulis, M., Miteva, A., More, S., Olsevskis, E., others, 2018. Epidemiological 1227 
analyses of African swine fever in the European Union (November 2017 until 1228 
November 2018). EFSA J 16, 5494. https://doi.org/10.2903/j.efsa.2018.5494 1229 

European Food Safety Authority, Desmecht, D., Gerbier, G., Gortázar Schmidt, C., 1230 
Grigaliuniene, V., Helyes, G., Kantere, M., Korytarova, D., Linden, A., Miteva, A., 1231 
others, 2021. Epidemiological analysis of African swine fever in the European Union 1232 
(September 2019 to August 2020). EFSA J 19, 6572. 1233 
https://doi.org/10.2903/j.efsa.2021.6572 1234 

Fischer, M., Hühr, J., Blome, S., Conraths, F.J., Probst, C., 2020. Stability of African swine 1235 
fever virus in carcasses of domestic pigs and wild boar experimentally infected with 1236 
the ASFV “Estonia 2014” isolate. Viruses 12, 1118. https://doi.org/10.3390/V12101118 1237 



 

45 
 

Gallardo, C., Soler, A., Nieto, R., Cano, C., Pelayo, V., Sánchez, M.A., Pridotkas, G., 1238 
Fernandez-Pinero, J., Briones, V., Arias, M., 2017. Experimental infection of domestic 1239 
pigs with African swine fever virus Lithuania 2014 genotype II field isolate. Transbound 1240 
Emerg Dis 64, 300–304. https://doi.org/10.1111/tbed.12346 1241 

Gervasi, V., Guberti, V., 2021. African swine fever endemic persistence in wild boar 1242 
populations: Key mechanisms explored through modelling. Transbound Emerg Dis 68, 1243 
2812–2825. https://doi.org/10.1111/tbed.14194 1244 

Gervasi, V., Marcon, A., Bellini, S., Guberti, V., 2020. Evaluation of the efficiency of active and 1245 
passive surveillance in the detection of African swine fever in wild boar. Vet Sci 7, 5. 1246 
https://doi.org/10.3390/vetsci7010005 1247 

Global Framework for the Progressive Control of Transboundary Animal Diseases, 2020. 1248 
Expert mission on African Swine Fever in Belgium Report. 1249 

Gogin, A., Gerasimov, V., Malogolovkin, A., Kolbasov, D., 2013. African swine fever in the 1250 
North Caucasus region and the Russian Federation in years 2007-2012. Virus Res 1251 
173, 198–203. https://doi.org/10.1016/j.virusres.2012.12.007 1252 

Gonzales, W., Moreno, C., Duran, U., Henao, N., Bencosme, M., Lora, P., Reyes, R., Núñez, 1253 
R., De Gracia, A., Perez, A.M., 2021. African swine fever in the Dominican Republic. 1254 
Transbound. Emerg. Dis. 68, 3018–3019. 1255 

Guinat, C., Gogin, A., Blome, S., Keil, G., Pollin, R., Pfeiffer, D.U., Dixon, L., 2016a. 1256 
Transmission routes of African swine fever virus to domestic pigs: Current knowledge 1257 
and future research directions. Vet Rec. https://doi.org/10.1136/vr.103593 1258 

Guinat, C., Gubbins, S., Vergne, T., Gonzales, J.L., Dixon, L., Pfeiffer, D.U., 2016b. 1259 
Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 1260 
2007/1 strain. Epidemiol Infect 144, 25–34. 1261 
https://doi.org/10.1017/S0950268815000862 1262 

Guinat, C., Porphyre, T., Gogin, A., Dixon, L., Pfeiffer, D.U., Gubbins, S., 2018. Inferring 1263 
within-herd transmission parameters for African swine fever virus using mortality data 1264 
from outbreaks in the Russian Federation. Transbound Emerg Dis 65, e264–e271. 1265 
https://doi.org/10.1111/tbed.12748 1266 

Gulenkin, V.M., Korennoy, F.I., Karaulov, A.K., Dudnikov, S.A., 2011. Cartographical analysis 1267 
of African swine fever outbreaks in the territory of the Russian Federation and 1268 
computer modeling of the basic reproduction ratio. Prev Vet Med 102, 167–174. 1269 
https://doi.org/10.1016/j.prevetmed.2011.07.004 1270 

Halasa, T., Boklund, A., Bøtner, A., Mortensen, S., Kjær, L.J., 2019. Simulation of 1271 
transmission and persistence of African swine fever in wild boar in Denmark. Prev Vet 1272 
Med 167, 68–79. https://doi.org/10.1016/j.prevetmed.2019.03.028 1273 

Halasa, T., Boklund, A., Bøtner, A., Toft, N., Thulke, H.-H., 2016a. Simulation of spread of 1274 
African swine fever, including the effects of residues from dead animals. Front Vet Sci 1275 
3, 6. https://doi.org/10.3389/fvets.2016.00006 1276 

Halasa, T., Bøtner, A., Mortensen, S., Christensen, H., Toft, N., Boklund, A., 2016b. Control 1277 
of African swine fever epidemics in industrialized swine populations. Vet Microbiol 197, 1278 
142–150. https://doi.org/10.1016/j.vetmic.2016.11.023 1279 

Halasa, T., Bøtner, A., Mortensen, S., Christensen, H., Toft, N., Boklund, A., 2016c. Simulating 1280 
the epidemiological and economic effects of an African swine fever epidemic in 1281 
industrialized swine populations. Vet Microbiol 193, 7–16. 1282 
https://doi.org/10.1016/j.vetmic.2016.08.004 1283 

Halasa, T., Bøtner, A., Mortensen, S., Christensen, H., Wulff, S.B., Boklund, A., 2018. 1284 
Modeling the effects of duration and size of the control zones on the consequences of 1285 
a hypothetical African swine fever epidemic in Denmark. Front Vet Sci 5, 49. 1286 
https://doi.org/10.3389/fvets.2018.00049 1287 

Hayes, B.H., Andraud, M., Salazar, L.G., Rose, N., Vergne, T., 2021. Mechanistic modelling 1288 
of African swine fever: A systematic review. Prev. Vet. Med. 191, 105358. 1289 

Herrero, J., García-Serrano, A., García-González, R., 2008. Reproductive and demographic 1290 
parameters in two Iberian wild boar Sus scrofa populations. Mammal Res 53, 355–1291 
364. https://doi.org/10.1007/BF03195196 1292 



 

46 
 

Hu, B., Gonzales, J.L., Gubbins, S., 2017. Bayesian inference of epidemiological parameters 1293 
from transmission experiments. Sci Rep 7, 1–13. https://doi.org/10.1038/s41598-017-1294 
17174-8 1295 

International Society for Infectious Diseases, 2022. African swine fever - Europe (02): Italy 1296 
(Piedmont) wild boar. ProMED-Mail Post Arch Number 202201108700778. 1297 

International Society for Infectious Diseases, 2021. African swine fever - Europe (15): 1298 
Germany (BB) 1st report in domestic pig. ProMED-Mail Post Arch Number 1299 
202107168522973. 1300 

Janeau, G., Cargnelutti, B., Cousse, S., Hewison, M., Spitz, F., 1995. Daily movement pattern 1301 
variations in wild boar (Sus scrofa L.). Ibex JME 3, 98–101. 1302 

Jezierski, W., 1977. Longevity and mortality rate in a population of wild boar. Acta Theriol. 1303 
(Warsz.) 22, 337–348. 1304 

Jo, Y.-S., Gortázar, C., 2021. African swine fever in wild boar: Assessing interventions in South 1305 
Korea. Transbound Emerg Dis 68, 2878–2889. https://doi.org/10.1111/TBED.14106 1306 

Johansson, M.A., Apfeldorf, K.M., Dobson, S., Devita, J., Buczak, A.L., Baugher, B., Moniz, 1307 
L.J., Bagley, T., Babin, S.M., Guven, E., others, 2019. An open challenge to advance 1308 
probabilistic forecasting for dengue epidemics. Proc Natl Acad Sci U A 116, 24268–1309 
24274. 1310 

Jori, F., Vial, L., Penrith, M.L., Pérez-Sánchez, R., Etter, E., Albina, E., Michaud, V., Roger, 1311 
F., 2013. Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and 1312 
the Indian ocean. Virus Res 173, 212–227. 1313 
https://doi.org/10.1016/j.virusres.2012.10.005 1314 

Keuling, O., Stier, N., Roth, M., 2008. Annual and seasonal space use of different age classes 1315 
of female wild boar Sus scrofa L. Eur J Wildl Res 54, 403–412. 1316 
https://doi.org/10.1007/s10344-007-0157-4 1317 

Lange, M., 2015. Alternative control strategies against ASF in wild boar populations. EFSA 1318 
Support. Publ. 12, 843E. 1319 

Lange, M., Guberti, V., Thulke, H.-H., 2018. Understanding ASF spread and emergency 1320 
control concepts in wild boar populations using individual‐based modelling and spatio‐1321 
temporal surveillance data. EFSA Support Publ 15, 1521E. 1322 
https://doi.org/10.2903/sp.efsa.2018.en-1521 1323 

Lange, M., Thulke, H.-H., 2017. Elucidating transmission parameters of African swine fever 1324 
through wild boar carcasses by combining spatio-temporal notification data and agent-1325 
based modelling. Stoch Env. Res Risk Assess 31, 379–391. 1326 
https://doi.org/10.1007/s00477-016-1358-8 1327 

Lange, M., Thulke, H.-H., 2015. Mobile barriers as emergency measure to control outbreaks 1328 
of African Swine Fever in wild boar, in: Proc. Annu. Meet. Soc. Vet. Epidemiol. Prev. 1329 
Med. pp. 122–132. 1330 

Lee, H.S., Thakur, K.K., Bui, V.N., Pham, T.L., Bui, A.N., Dao, T.D., Thanh, V.T., Wieland, B., 1331 
2021. A stochastic simulation model of African swine fever transmission in domestic 1332 
pig farms in the Red River Delta region in Vietnam. Transbound Emerg Dis 68, 1384–1333 
1391. https://doi.org/10.1111/tbed.13802 1334 

Loi, F., Cappai, S., Laddomada, A., Feliziani, F., Oggiano, A., Franzoni, G., Rolesu, S., 1335 
Guberti, V., 2020. Mathematical approach to estimating the main epidemiological 1336 
parameters of African swine fever in wild boar. Vaccines 8, 1–20. 1337 
https://doi.org/10.3390/vaccines8030521 1338 

Luskin, M.S., Meijaard, E., Surya, S., Sheherazade, Walzer, C., Linkie, M., 2020. African 1339 
swine fever threatens Southeast Asia’s 11 endemic wild pig species. Conserv Lett 14, 1340 
e12784. https://doi.org/10.1111/conl.12784 1341 

Marcon, A., Linden, A., Satran, P., Gervasi, V., Licoppe, A., Guberti, V., 2020. R0 estimation 1342 
for the African swine fever epidemics in wild boar of Czech Republic and Belgium. Vet 1343 
Sci 7, 2. https://doi.org/10.3390/vetsci7010002 1344 

Maselli, V., Rippa, D., Russo, G., Ligrone, R., Soppelsa, O., D’Aniello, B., Raia, P., Fulgione, 1345 
D., 2014. Wild boars’ social structure in the Mediterranean habitat. Ital J Zool 81, 610–1346 
617. https://doi.org/10.1080/11250003.2014.953220 1347 



 

47 
 

Mauroy, A., Depoorter, P., Saegerman, C., Cay, B., De Regge, N., Filippitzi, M.-E., Fischer, 1348 
C., Laitat, M., Maes, D., Morelle, K., others, 2021. Semi-quantitative risk assessment 1349 
by expert elicitation of potential introduction routes of African swine fever from wild 1350 
reservoir to domestic pig industry and subsequent spread during the Belgian outbreak 1351 
(2018–2019). Transbound. Emerg. Dis. 68, 2761–2773. 1352 

Mazur-Panasiuk, N., Woźniakowski, G., 2020. Natural inactivation of African swine fever virus 1353 
in tissues: Influence of temperature and environmental conditions on virus survival. Vet 1354 
Microbiol 242, 108609. https://doi.org/10.1016/j.vetmic.2020.108609 1355 

McGowan, C.J., Biggerstaff, M., Johansson, M., Apfeldorf, K.M., Ben-Nun, M., Brooks, L., 1356 
Convertino, M., Erraguntla, M., Farrow, D.C., Freeze, J., others, 2019. Collaborative 1357 
efforts to forecast seasonal influenza in the United States, 2015–2016. Sci Rep 9, 1–1358 
13. https://doi.org/10.1038/s41598-018-36361-9 1359 

Mellor, P.S., Kitching, R.P., Wilkinson, P.J., 1987. Mechanical transmission of capripox virus 1360 
and African swine fever virus by Stomoxys calcitrans. Res Vet Sci 43, 109–112. 1361 
https://doi.org/10.1016/s0034-5288(18)30753-7 1362 

Mighell, E., Ward, M.P., 2021. African swine fever spread across Asia, 2018–2019. 1363 
Transbound Emerg Dis 68, 2722–2732. https://doi.org/10.1111/tbed.14039 1364 

Minter, A., Retkute, R., 2019. Approximate Bayesian computation for infectious disease 1365 
modelling. Epidemics 29, 100368. https://doi.org/10.1016/j.epidem.2019.100368 1366 

Miteva, A., Papanikolaou, A., Gogin, A., Boklund, A., Bøtner, A., Linden, A., Viltrop, A., 1367 
Schmidt, C.G., Ivanciu, C., Desmecht, D., Korytarova, D., Olsevskis, E., Helyes, G., 1368 
Wozniakowski, G., Thulke, H.H., Roberts, H., Abrahantes, J.C., Ståhl, K., Depner, K., 1369 
González Villeta, L.C., Spiridon, M., Ostojic, S., More, S., Vasile, T.C., Grigaliuniene, 1370 
V., Guberti, V., Wallo, R., 2020. Epidemiological analyses of African swine fever in the 1371 
European Union (November 2018 to October 2019). EFSA J 18, 5996. 1372 
https://doi.org/10.2903/j.efsa.2020.5996 1373 

Mulumba-Mfumu, L.K., Saegerman, C., Dixon, L.K., Madimba, K.C., Kazadi, E., Mukalakata, 1374 
N.T., Oura, C.A.L., Chenais, E., Masembe, C., Ståhl, K., Thiry, E., Penrith, M.L., 2019. 1375 
African swine fever: Update on Eastern, Central and Southern Africa. Transbound 1376 
Emerg Dis. https://doi.org/10.1111/tbed.13187 1377 

Mur, L., Sánchez-Vizcaíno, J.M., Fernández-Carrión, E., Jurado, C., Rolesu, S., Feliziani, F., 1378 
Laddomada, A., Martínez-López, B., 2018. Understanding African swine fever 1379 
infection dynamics in Sardinia using a spatially explicit transmission model in domestic 1380 
pig farms. Transbound Emerg Dis 65, 123–134. https://doi.org/10.1111/tbed.12636 1381 

Nielsen, J.P., Larsen, T.S., Halasa, T., Christiansen, L.E., 2017. Estimation of the 1382 
transmission dynamics of African swine fever virus within a swine house. Epidemiol 1383 
Infect 145, 2787–2796. https://doi.org/10.1017/S0950268817001613 1384 

Oganesyan, A.S., Petrova, O.N., Korennoy, F.I., Bardina, N.S., Gogin, A.E., Dudnikov, S.A., 1385 
2013. African swine fever in the Russian Federation: spatio-temporal analysis and 1386 
epidemiological overview. Virus Res 173, 204–211. 1387 
https://doi.org/10.1016/j.virusres.2012.12.009 1388 

Olesen, A.S., Lohse, L., Hansen, M.F., Boklund, A., Halasa, T., Belsham, G.J., Rasmussen, 1389 
T.B., Bøtner, A., Bødker, R., 2018. Infection of pigs with African swine fever virus via 1390 
ingestion of stable flies (Stomoxys calcitrans). Transbound Emerg Dis 65, 1152–1157. 1391 
https://doi.org/10.1111/tbed.12918 1392 

O’Neill, X., White, A., Ruiz-Fons, F., Gortázar, C., 2020. Modelling the transmission and 1393 
persistence of African swine fever in wild boar in contrasting European scenarios. Sci 1394 
Rep. 2020 101 10, 1–10. https://doi.org/10.1038/s41598-020-62736-y 1395 

Penrith, M.L., Bastos, A.D., Etter, E.M.C., Beltrán-Alcrudo, D., 2019. Epidemiology of African 1396 
swine fever in Africa today: Sylvatic cycle versus socio-economic imperatives. 1397 
Transbound Emerg Dis 66, 672–686. https://doi.org/10.1111/tbed.13117 1398 

Pepin, K.M., Golnar, A., Podgórski, T., 2021. Social structure defines spatial transmission of 1399 
African swine fever in wild boar. J R Soc Interface 18, 20200761. 1400 
https://doi.org/10.1098/RSIF.2020.0761 1401 



 

48 
 

Pepin, K.M., Golnar, A.J., Abdo, Z., Podgórski, T., 2020. Ecological drivers of African swine 1402 
fever virus persistence in wild boar populations: Insight for control. Ecol Evol 10, 2846–1403 
2859. https://doi.org/10.1002/ece3.6100 1404 

Picault, S., Vergne, T., Mancini, M., Bareille, S., Ezanno, P., 2021. The African swine fever 1405 
modelling challenge: objectives, model description and synthetic data generation. 1406 
bioRxiv 2021.12.20.473417. https://doi.org/10.1101/2021.12.20.473417 1407 

Pietschmann, J., Guinat, C., Beer, M., Pronin, V., Tauscher, K., Petrov, A., Keil, G., Blome, 1408 
S., 2015. Course and transmission characteristics of oral low-dose infection of 1409 
domestic pigs and European wild boar with a Caucasian African swine fever virus 1410 
isolate. Arch Virol 160, 1657–1667. https://doi.org/10.1007/s00705-015-2430-2 1411 

Podgórski, T., Baś, G., Jędrzejewska, B., Sönnichsen, L., Śnieżko, S., Jędrzejewski, W., 1412 
Okarma, H., 2013. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under 1413 
contrasting conditions of human pressure: primeval forest and metropolitan area. J. 1414 
Mammal. 94, 109–119. 1415 

Podgórski, T., Lusseau, D., Scandura, M., Sönnichsen, L., Jędrzejewska, B., 2014. Long-1416 
lasting, kin-directed female interactions in a spatially structured wild boar social 1417 
network. PLoS One 9, e99875. 1418 

Podgórski, T., Śmietanka, K., 2018. Do wild boar movements drive the spread of African swine 1419 
fever? Transbound Emerg Dis 65, 1588–1596. https://doi.org/10.1111/tbed.12910 1420 

Pollock, L.A., Newton, E.J., Koen, E.L., 2021. Predicting high-risk areas for African swine fever 1421 
spread at the wild-domestic pig interface in Ontario. Prev. Vet. Med. 191, 105341. 1422 

Probst, C., Globig, A., Knoll, B., Conraths, F.J., Depner, K., 2017. Behaviour of free ranging 1423 
wild boar towards their dead fellows: Potential implications for the transmission of 1424 
African swine fever. R Soc Open Sci 4. https://doi.org/10.1098/rsos.170054 1425 

R Core Team, 2022. R: A language and environment for statistical computing. R Foundation 1426 
for Statistical Computing, Vienna, Austria. 1427 

Reich, N.G., McGowan, C., Yamana, T., Tushar, A., Ray, E., Osthus, D., Kandula, S., Brooks, 1428 
L.C., Crawford-Crudell, W., Gibson, G.C., others, 2019. Accuracy of real-time multi-1429 
model ensemble forecasts for seasonal influenza in the U.S. PLoS Comput Biol 15, 1430 
e1007486. https://doi.org/10.1371/JOURNAL.PCBI.1007486 1431 

Relun, A., Grosbois, V., Alexandrov, T., Sánchez-Vizcaíno, J.M., Waret-Szkuta, A., Molia, S., 1432 
Charles Etter, E.M., Martínez-López, B., 2017. Prediction of pig trade movements in 1433 
different European production systems using exponential random graph models. Front 1434 
Vet Sci 4, 27. https://doi.org/10.3389/fvets.2017.00027 1435 

Rosell, C., Navàs, F., Romero, S., 2012. Reproduction of wild boar in a cropland and coastal 1436 
wetland area: implications for management. Anim Biodivers Conserv 35, 209–217. 1437 
https://doi.org/10.32800/abc.2012.35.0209 1438 

Rowlands, R.J., Michaud, V., Heath, L., Hutchings, G., Oura, C., Vosloo, W., Dwarka, R., 1439 
Onashvili, T., Albina, E., Dixon, L.K., 2008. African swine fever virus isolate, Georgia, 1440 
2007. Emerg Infect Dis 14, 1870–1874. https://doi.org/10.3201/eid1412.080591 1441 

Sabrina, S., Jean-Michel, G., Carole, T., Serge, B., Eric, B., 2009. Pulsed resources and 1442 
climate-induced variation in the reproductive traits of wild boar under high hunting 1443 
pressure. J Anim Ecol 78, 1278–1290. https://doi.org/10.1111/j.1365-1444 
2656.2009.01579.x 1445 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., 1446 
Tarantola, S., 2008. Global sensitivity analysis. The primer. John Wiley & Sons. 1447 

Sánchez-Cordón, P.J., Nunez, A., Neimanis, A., Wikström-Lassa, E., Montoya, M., Crooke, 1448 
H., Gavier-Widén, D., 2019. African swine fever: Disease dynamics in wild boar 1449 
experimentally infected with ASFV isolates belonging to genotype I and II. Viruses 11, 1450 
852. https://doi.org/10.3390/v11090852 1451 

Sauter-Louis, C., Forth, J.H., Probst, C., Staubach, C., Hlinak, A., Rudovsky, A., Holland, D., 1452 
Schlieben, P., Göldner, M., Schatz, J., others, 2021a. Joining the club: First detection 1453 
of African swine fever in wild boar in Germany. Transbound Emerg Dis 68, 1744–1752. 1454 
https://doi.org/10.1111/tbed.13890 1455 



 

49 
 

Sauter-Louis, C., Schulz, K., Richter, M., Staubach, C., Mettenleiter, T.C., Conraths, F.J., 1456 
2021b. African swine fever: Why the situation in Germany is not comparable to that in 1457 
the Czech Republic or Belgium. Transbound. Emerg. Dis. 1458 

Shi, R., Li, Y., Wang, C., 2020. Stability analysis and optimal control of a fractional-order model 1459 
for African swine fever. Virus Res 288, 198111. 1460 
https://doi.org/10.1016/j.virusres.2020.198111 1461 

Taylor, R.A., Podgórski, T., Simons, R.R., Ip, S., Gale, P., Kelly, L.A., Snary, E.L., 2021. 1462 
Predicting spread and effective control measures for African swine fever—Should we 1463 
blame the boars? Transbound. Emerg. Dis. 68, 397–416. 1464 

Thulke, H.-H., Lange, M., 2017. Simulation‐based investigation of ASF spread and control in 1465 
wildlife without consideration of human non‐compliance to biosecurity. EFSA Support 1466 
Publ 14, 1312E. https://doi.org/10.2903/sp.efsa.2017.en-1312 1467 

Tian, X., von Cramon-Taubadel, S., 2020. Economic consequences of African swine fever. 1468 
Nat Food 1, 196–197. https://doi.org/10.1038/s43016-020-0061-6 1469 

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P., 2009. Approximate Bayesian 1470 
computation scheme for parameter inference and model selection in dynamical 1471 
systems. J R Soc Interface 6, 187–202. 1472 

U.S. Department of Agriculture, 2021. USDA Statement on Confirmation of African Swine 1473 
Fever in Haiti [WWW Document]. URL 1474 
https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-1475 
2021/sa-09/asf-haiti (accessed 6.23.22). 1476 

Vergne, T., Andraud, M., Bonnet, S., De Regge, N., Desquesnes, M., Fite, J., Etore, F., 1477 
Garigliany, M.M., Jori, F., Lempereur, L., others, 2021. Mechanical transmission of 1478 
African swine fever virus by Stomoxys calcitrans: Insights from a mechanistic model. 1479 
Transbound Emerg Dis 68, 1541–1549. https://doi.org/10.1111/tbed.13824 1480 

Viboud, C., Sun, K., Gaffey, R., Ajelli, M., Fumanelli, L., Merler, S., Zhang, Q., Chowell, G., 1481 
Simonsen, L., Vespignani, A., others, 2018. The RAPIDD Ebola forecasting challenge: 1482 
Synthesis and lessons learnt. Epidemics 22, 13–21. 1483 

Viltrop, A., Boinas, F., Depner, K., Jori, F., Kolbasov, D., Laddomada, A., Ståhl, K., Chenais, 1484 
E., 2021. African swine fever epidemiology, surveillance and control, in: Underst. 1485 
Combat. African Swine Fever A Eur. Perspect. Wageningen Academic Publishers, pp. 1486 
229–261. https://doi.org/10.3920/978-90-8686-910-7_9 1487 

World Organisation for Animal Health, 2022. African Swine Fever (ASF) – Situation report 10 1488 
(No. 10). 1489 

World Organisation for Animal Health, 2021. African swine fever [WWW Document]. URL 1490 
https://www.oie.int/en/disease/african-swine-fever/ (accessed 7.16.21). 1491 

World Organisation for Animal Health, 2020. African Swine Fever (ASF). 1492 
Yoo, D.S., Kim, Y., Lee, E.S., Lim, J.S., Hong, S.K., Lee, I.S., Jung, C.S., Yoon, H.C., Wee, 1493 

S.H., Pfeiffer, D.U., Fournié, G., 2021. Transmission dynamics of African swine fever 1494 
virus, South Korea, 2019. Emerg. Infect. Dis. 27, 1909. 1495 

 1496 

 1497 

  1498 



 

50 
 

Tables 1499 

Table 51: Epidemiological parameters. For estimated parameters, mean values along with 1500 

95% credible intervals (CrI; in parentheses) are reported.  1501 

 Description Mean value(s) 
(95% CrI) 

Source(s) 

Wild boar 

� Scale parameter of dispersal 
kernel 

Phase 1: 0.8225 km 
(0.8006-0.8800) 
Phase 2: 0.87 km 
Phase 3: 1 km 

Estimated at phase 1 
 
Fixed at phases 2 & 3  

� Overall infection rate Phase 1: 0.0018 day-1 

(0.0011-0.0028) 
Phase 2: 0.0077 day-1 

(0.0069-0.0084) 
Phase 3: 0.0035 day-1 
(0.0034-0.0036) 

Estimated 

 Time from infection to death 14 days (Blome et al., 2012; 
Pietschmann et al., 2015) 

 Infectious period for carcasses 90 days (Fischer et al., 2020) 

 ASFV-related mortality rate  100% (Blome et al., 2013, 2012) 

Additional parameters for phase 1 model 

�� Fraction of positive boar in a 
patch when day <28, averaged 
over all patches 

0.16 (0.09-0.20) Estimated* 

�� Fraction of positive boar in a 
patch when day ≥38, averaged 
over all patches 

0.25 (0.20-0.38) Estimated* 

d Detection rate for positive boar 0.10 Assumed 

Domestic pig herds 

β�� Transmission rate 0.60 day-1  (Guinat et al., 2016b) 

τ Mean lifetime of ASF virus 
in residues from dead pigs 

1
log(2)�  days Adapted from: 

(Halasa et al., 2016a) 

δ Average duration of the 
pre-infectious period 

PERT(3; 4; 5) days† (Guinat et al., 2016b; Vergne 
et al., 2021) 

ϕ Average duration of the 
subclinical period 

2 days ASF Challenge coordinators 

γ Average duration of the 
infectious period 

PERT(3; 7; 14) days† (Guinat et al., 2016b; Vergne 
et al., 2021) 

μ Probability of pigs dying 
following infection 

0.95 (Gallardo et al., 2017; Halasa 
et al., 2016a)  

ρ Transmission rate by local 
spread 

0.005 km.day-1 Adapted from: 
(Halasa et al., 2016c)  

* This parameter was defined to be time-varying to reflect the spread of the infection (in the absence of disease 1502 
management measures) as time progressed. For day ∈  [28, 37], the fraction of positive boar in a patch was given 1503 
by: �� +

�����

�����
× (day − 28) 1504 

† PERT distribution of parameters (minimum; mode; maximum)  1505 
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Table 52: Differences between models across the three phases of the challenge. As the 1506 

challenge progressed, the models had to be slightly adapted to account for new data and 1507 

information provided by the challenge coordinators and/or to answer new questions. 1508 

 Phase 1 Phase 2 Phase 3 

Explicit modelling of 
individual infected boar 
in a patch (and their 
locations) 

No Yes Yes 

Detection of infected 
wild boar 

Yes 
(fixed rate) 

Yes (through 
testing of hunted 
boar and active 
surveillance of 
boar carcasses) 

Yes (through testing of 
hunted boar and active 
surveillance of boar 
carcasses) 

Increased hunting 
pressure in fence and 
buffer zone 

Yes 
(no buffer zone) 

Yes Yes 

Permeability 
of the fence 

No No Yes 

Maximum infection 
range (MIR) 

No No Yes (8 km) 

Test of preventively 
culled pig herds 

Not applicable No Yes 

Delay before preventive 
culling  

Not applicable Yes (24 hours) Yes (5-7 days) 

 1509 
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Table 53: Model fit and projections for the cumulative number of detected infections under the two main disease management scenarios 1510 

considered in wild boar: increased hunting pressure and normal hunting pressure. The model fits are median model estimates for the observed 1511 

period (days 1-50 for phase 1, days 1-80 for phase 2 and days 1-110 for phase 3) while the model projections are median model estimates for 1512 

the unobserved periods over which projections were computed (days 51-78 for phase 1, days 81-110 for phase 2, days 111-230 for phase 3). 1513 

Model estimates are medians of 500 simulations along with 95% credible intervals (CrI) in parentheses. 1514 

Phase 
By 
day 

Disease 
management 
scenario* 

  Wild boar   Pig herd 

  Observed 
Model fit 
(95% CrI) 

Model projections 
(95% CrI) 

  Observed 
Model fit 
(95% CrI) 

Model projections 
(95% CrI) 

1 

50    397 
396 

(358-435) 
   3 

4 
(2-6) 

 

78 

Increased 
hunting pressure 

    
1770 

(1445-2503) 
    

8 
(5-14) 

Normal 
hunting pressure 

    
933 

(751-1289) 
    

8 
(5-14) 

2 

80    2007 
2009 

(1912-2102) 
   12 

12 
(8-17) 

 

110 
Increased 
hunting pressure 

    
3214 

(3112-3378) 
    

28 
(22-35) 

 
Normal 
hunting pressure 

    
3272 

(2973-3868) 
    

30 
(23-38) 

3 

110    2984 
2994 

(2897-3077) 
   26 

25 
(21-31) 

 

140 

Increased 
hunting pressure 

    
3442 

(3372-3514) 
    

38 
(32-48) 

Normal 
hunting pressure 

    
7954 

(6891-8827) 
   

87 
(67-100) 

230 
Increased 
hunting pressure 

    
4599 

(4480-4711) 
   

113 
(99-129) 

* For all phases, scenarios are only indicated for projected periods and not for observed periods. For the observed periods, the scenario for phase 1 is normal hunting pressure 1515 
with no fence whereas the scenario for phases 2 and 3 is increased hunting pressure.1516 
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Table 54: Comparison of model projections and observed (synthetic) data on the cumulative 1517 

number of detected infected wild boar and pig herds up to days 78 and 110. For both wild boar 1518 

and pig herds, model projections shown here assumed disease management measures as 1519 

implemented during the indicated periods. Model estimates are medians of 500 simulations 1520 

along with 95% credible intervals in parentheses. 1521 

Population Category 
 

Cumulative number of detected infections up to: 

   Day 78 Day 110 

Wild boar 
Model  1770 (1445-2503) 3214 (3112-3378) 

Observed  1903 2984 

Pig herds 
Model  8 (5-14) 31 (23-39)1 

Observed  10 26 

1 To adequately compare the results of the model with the synthetic data, the projections for pig herds up to day 1522 
110 (phase 2 model) were simulated using disease management measures as implemented during the indicated 1523 
period, i.e., incorporating preventive culling of all pig herds located at less than 3 km from positive wild boar 1524 
carcasses from day 90, with a delay of 5-7 days between the confirmation of a wild boar case and pig herd culling, 1525 
and performing tests in all culled herds which provided results the day after. 1526 

1527 
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Table 55: Number of detected infections in wild boar and pig herds by day 110 under 1528 

alternative parameter values tested in the sensitivity analysis. Estimates presented are 1529 

medians and 95% credible intervals (CrI) of 100 stochastic repetitions of the model. Parameter 1530 

values as used in the baseline model (maximum infection range = 8 km, α = 1 km, duration of 1531 

infectiousness in carcasses = 90 days; and duration of infectiousness in live boar = 14 days) 1532 

and corresponding outcomes are in bold. 1533 

Parameter Values Median number of detected infections by day 110 (95% CrI) 

Wild boar Pig herds 

Maximum 
infection 
range (km) 

2 1435 (1395-1476) 12 (10-16) 

8 2991 (2856-3125) 24 (20-29) 

14 3043 (2891-3199) 24 (21-31) 

20 3061 (2924-3189) 24 (20-30) 

Scale 
parameter of 
dispersal 
kernel, α (km) 

0.6 1804 (1736-1861) 14 (11-19) 

0.8 2282 (2202-2361) 17 (14-21) 

1.0 2991 (2856-3125) 24 (20-29) 

1.2 4094 (3945-4279) 33 (28-40) 

Duration of 
infectiousness 
in carcass (in 
days) 

10 2756 (2639-2890) 23 (19-28) 

50 2995 (2868-3106) 24 (20-30) 

90 2991 (2856-3125) 24 (20-29) 

130 2982 (2835-3103) 24 (20-30) 

Duration of 
infectiousness 
in live boar (in 
days) 

5 2071 (1986-2138) 24 (20-29) 

7 2308 (2224-2434) 24 (20-29) 

10 2638 (2501-2774) 24 (20-28) 

14 2991 (2856-3125) 24 (20-29) 

  1534 
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Table 6: Number of detected infections in wild boar and pig herds by day 140 under alternative 1535 
intervention efficacies between day 111 and 140. Estimates presented are medians and 95% 1536 
credible intervals (CrI) of 100 stochastic repetitions of the model. 1537 

Parameter value relative to 
baseline 

Median number of detected infections by day 
140 (95% CrI) 

Fence1 
Wild boar 
testing2 

cullWB3 Wild boar Pig herds 

100% 

100% 

100% 

3443 (3323-3547) 

38 (31-45) 

75% 37 (30-45) 

50% 37 (30-45) 

75% 

100% 

3407 (3297-3507) 

39 (31-45) 

75% 38 (31-45) 

50% 37 (32-45) 

50% 

100% 

3361 (3252-3456) 

38 (32-47) 

75% 37 (31-45) 

50% 37 (31-45) 

75% 

100% 

100% 

3443 (3338-3550) 

38 (31-47) 

75% 38 (31-44) 

50% 38 (31-44) 

75% 

100% 

3400 (3299-3501) 

39 (32-46) 

75% 37 (31-46) 

50% 37 (32-46) 

50% 

100% 

3369 (3278-3479) 

39 (32-46) 

75% 38 (31-44) 

50% 38 (31-43) 

50% 

100% 

100% 

3444 (3344-3561) 

39 (32-47) 

75% 38 (31-46) 

50% 38 (31-46) 

75% 

100% 

3408 (3312-3517) 

39 (32-45) 

75% 38 (31-46) 

50% 38 (31-46) 

50% 

100% 

3372 (3273-3471) 

39 (33-47) 

75% 38 (31-45) 

50% 39 (31-45) 
1 During phase 3, we allowed for a “leaky” fence in all directions, such that ASFV could be 1538 
transmitted between two patches on opposite sides of the fence depending on the distance 1539 
between their centres. Here, we tested different values of the efficacy of the fence when the 1540 
maximum transmission distance for two patches i and j on opposite sides of the fence is equal 1541 

to: 4 km = MIR/2 (baseline; 100%), 5.3 km = MIR/(2 × 0.75) (75%), or 8 km = MIR/(2 × 0.5) 1542 

(50%). 1543 

2 We evaluated three scenarios where a smaller fraction (compared to our baseline scenario) 1544 
of wild boar were tested post-removal: 100% (baseline), 75% or 50%. 1545 

3 Similarly, we evaluated three scenarios where only a fraction of pig herds located less than 1546 
3 km away from positive wild boar were culled: 100% (baseline), 75% or 50%.  1547 
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Figures 1548 

 1549 

 1550 

Figure 51: Distribution of detected infected pig herds on Merry Island: comparison between 1551 

data (top panels showing only detected infected pig herds) and model simulations (bottom 1552 

panels showing all pig herds that were detected as positive in at least one simulation) for each 1553 

phase. Top panels (A-C): detected herds by (A) day 50, (B) day 80 and (C) day 110 (for 1554 

phase 1, 2 and 3 respectively) in the data provided by the challenge coordinators. Detected 1555 

herds are indicated by red dots, while the fence and buffer zones (implemented during phases 1556 

2 and 3) are indicated by thick and thin rectangles, respectively. Bottom panels (D-F): 1557 

detected herds by (D) day 50, (E) day 80 and (F) day 110 in the model simulations run with 1558 

estimated parameter values. Dots indicate herds that were detected in at least one simulation, 1559 

with colours indicating the proportion of simulations in which a given herd was detected 1560 

(among 500 simulations). 1561 

  1562 



 

57 
 

 1563 

Figure 52: Comparison of disease management scenarios for wild boar (increased hunting 1564 

pressure and normal hunting pressure) across all phases. Top panels (A-C): Observed (black 1565 

dots) and projected daily number of detected infected wild boar under the increased hunting 1566 

pressure (blue) and normal hunting pressure (light orange) scenarios. In panel C, the drop at 1567 

day 120 is due to a cessation in increased hunting pressure activities. Middle panels (D-F): 1568 

Observed (black dots) and projected daily number of detected infected pig herds under the 1569 

increased hunting pressure (blue) and normal hunting pressure (light orange) scenarios. 1570 

Bottom panels (G-I): Observed (black dots) and resulting cumulative numbers of detected 1571 

infected pig herds from the daily projections (D-F), under the increased hunting pressure (blue) 1572 

and normal hunting pressure (light orange) scenarios. All panels: Median model projections 1573 

are shown along with 95% credible intervals (shaded areas with corresponding colours). 1574 

Projections were obtained using the model calibrated to data up to days 50, 80 and 110 for 1575 

the increased hunting pressure scenario in Phase 1 (A, D, G), phase 2 (B, E, H) and phase 3 1576 

(C, F, I) respectively. For the normal hunting pressure scenario, the model was calibrated 1577 

using data up to day 50 for phase 1 and up to day 59 for phases 2 and 3. [Note: the observed 1578 

data in all cases arose in the challenge scenario in which hunting pressure increased 1579 

from day 60, making these data not directly comparable with the normal-hunting-1580 

pressure-throughout projections (light orange) in the middle and right-hand columns.] 1581 

  1582 
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 1583 

Figure 53: Comparison of the impact of additional disease management measures on the 1584 

number of detected infected pig herds (phase 2). Median model projections are shown along 1585 

with 95% credible intervals (shaded areas with corresponding colours), for a baseline scenario 1586 

and four additional disease management measures implemented in pig herds. The baseline 1587 

scenario (“Baseline”) involved regulatory interventions in pig herds and the implementation of 1588 

fencing and increased hunting pressure in wild boar. The four disease management measures 1589 

implemented in addition to the baseline scenario are: (1) “cullPZ”: culling of all pig herds in 1590 

protection zones; (2) “incrSZ”: increasing the size of the surveillance zone from 10 km (the 1591 

standard surveillance radius used) to 15 km; (3) “cullWB”: culling of all pig herds located at 1592 

less than 3 km from positive wild boar; (4) “cullTR”: culling of all herds that have traded pigs 1593 

with an infected farm less than three weeks before detection. 1594 

  1595 
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 1596 

Figure 54: Model projections from day 111 to day 230 under the increased hunting pressure 1597 

scenario. A. Observed and projected daily numbers of detected infected wild boar. Projections 1598 

were obtained using the disease management measures as implemented over the indicated 1599 

period: (1) increased hunting pressure from day 111 to day 120, (2) normal hunting pressure 1600 

from day 121 to day 203 and (3) cessation in hunting activities (end of the hunting season) 1601 

from day 204 onwards but permitting passive discovery of wild boar carcasses. The drop at 1602 

day 204 is due to the cessation in hunting activities. B. Observed and projected daily numbers 1603 

of detected infected pig herds. C. Observed and projected cumulative numbers of detected 1604 

infected pig herds. All: Black dots, blue line and shaded areas represent the observed data, 1605 

median model projections and 95% credible intervals, respectively. Projections were obtained 1606 

using the model fitted to data up to day 110. 1607 

  1608 
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 1609 

Figure 55: Sensitivity of the daily number of detected infected wild boar (from day 60 to day 1610 

110) to A: the maximum infection range (values: 2 km, 8 km, 14 km, 20 km); B: the scale 1611 

parameter α of the dispersal kernel (values: 0.6 km, 0.8 km, 1 km, 1.2 km); C: the duration of 1612 

infectiousness in carcasses (values: 10 days, 50 days, 90 days, 130 days); and D: the duration 1613 

of infectiousness in live boar (values: 5 days, 7 days, 10 days, 14 days). Trajectories are 1614 

medians computed from 100 stochastic repetitions of the model. Shaded regions are 1615 

corresponding 95% credible intervals. Simulations corresponding to baseline parameter 1616 

values (maximum infection range = 8 km, α = 1 km, duration of infectiousness in carcasses = 1617 

90 days; and duration of infectiousness in live boar = 14 days) are the same across panels. 1618 
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