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Abstract
We report on experimental investigations of plasma wave structures in a plasma wakefield
acceleration (PWFA) stage which is driven by electron beams from a preceding laser plasma
accelerator. Femtosecond optical probing is utilized to allow for direct visualization of the plasma
dynamics inside the target. We compare two regimes in which the driver propagates either through
an initially neutral gas, or a preformed plasma. In the first case, plasma waves are observed that
quickly damp after a few oscillations and are located within a narrow plasma channel ionized by
the driver, having about the same transverse size as the plasma wakefield cavities. In contrast, for
the latter robust cavities are recorded sustained over many periods. Furthermore, here an
elongation of the first cavity is measured, which becomes stronger with increasing driver beam
charge. Since the cavity length is linked to the maximum accelerating field strength, this elongation
implies an increased field strength. This observation is supported by 3D particle-in-cell
simulations performed with PIConGPU. This work can be extended for the investigation of driver
depletion by probing at different propagation distances inside the plasma, which is essential for the
development of high energy efficiency PWFAs.

1. Introduction

Beam-driven plasma wakefield acceleration (PWFA) is among the most promising concepts to overcome the
acceleration gradient limit of state-of-the-art radio-frequency (RF) accelerators. Driven by a relativistic
charged particle beam [1, 2], a trailing plasma-density wave with strong accelerating fields is excited, which
is suitable for the acceleration of a witness electron bunch to relativistic energies. In recent years, PWFA
research has shown great progress culminating in the demonstration of energy doubling of a 42 GeV
electron beam [2], an increased energy transfer efficiency from the wakefield to the witness bunch of up to
30% [3], high-energy positron acceleration [4] and the recent GeV electron acceleration by proton-driven
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plasma wakefields [5]. Furthermore, preservation [6] and minimization [7] of the energy spread of an
externally injected witness bunch have been demonstrated. However, there are only a handful of
conventional accelerators worldwide that have been used to produce driver electron beams for PWFA
[7–11]. This is related to the challenge of the production of suitable electron beams with multi-kA currents,
which are desirable to drive strong beam–plasma interaction and plasma wave amplitudes.

Studies of the short and long term plasma wave dynamics, driver beam evolution and depletion during
propagation through such plasma accelerators still remain challenging. Here, we address these problems by
utilizing an ultrafast optical probing for direct visualization of plasma dynamics in a PWFA stage, which is
driven by high peak-current electron beams from a preceding laser-driven wakefield accelerator (LWFA).
This allows us to study the differences in the morphology of the plasma waves excited when either ionized
by the space-charge field of the electron driver (self-ionized regime) or pre-ionized by an auxiliary laser, as
well as the influence of the driver beam charge on the shape of the first cavity. These were found to be
elongated with respect to the nominal plasma wavelength, depending on the initial driver beam charge and
the propagation distance through the target.

Recently, LWFAs have shown their capability to deliver electron beams suitable as an alternative driver of
PWFA. After the first observation of plasma waves driven by LWFA accelerated beam in a PWFA [12], the
first acceleration of witness bunches in this setup, the so-called LPWFA platform, has been achieved [13].
This was shortly followed by the demonstration of shock-front injection using gas-hydrodynamic shock
[14], which represents an important step toward controlled injection inside PWFAs. Typical electron beams
from LWFA have a duration in the femtosecond range [15] and a charge of a few hundred picocoulomb
[16, 17], the correspondingly achieved peak currents surpass tens of kiloamperes and, thus, are far above
those from existing RF accelerator machines. The transverse size of the beam σr is in the range of a few
micrometers [18] and thus, bunch densities nb in the range of 1018 cm−3 up to 1020 cm−3 can be achieved.
This allows for accessing the strong-beam regime [19], where the condition of nb/ne > 1, with ne being the
background plasma density respectively, needs to be fulfilled. In this regime, the electron driver beam is
matched to the resonant condition for wakefield excitation, i.e. narrow-beam σr � k−1

p and short-bunch
σz ≈ λp/2, where kp = 2π/λp and λp denotes the plasma wavelength. During propagation, the
space-charge field of the driver expels all plasma electrons from its vicinity, thereby creating a nearly
spherical electron sheath surrounding a uniform ion cavity, the so-called blowout cavity [20]. As the driver
peak-current increases, plasma electrons receive larger outward-directed transverse momentum, altering
their trajectories. This leads to an increase of both, the cavity radius and length [21]. This results in an
increase of the accelerating field strength at the cavity rear side. However, the strength of the decelerating
field, where the driver is located, also increases, leading to a faster driver degradation, i.e. quicker loss of
energy. As a result, some driver electrons lose so much energy that after a certain propagation distance they
are left behind and thus no longer contribute to the wakefield excitation. Even though a higher accelerating
field strength can be achieved this way, it may not be maintained for long distances because the driver
depletes quickly. How fast this happens exactly in experiment is difficult to predict as it depends on many
parameters such as driver length, plasma density, peak-current and potentially also on substructures or
chirp of the driver beam.

For this reason, it is important to study the influence of the driver beam parameters on the shape of the
excited wakefields, which affects the field strengths inside the cavity. One typical experimental challenge in a
PWFA is the fact that the driver beam cannot be simultaneously characterized before and after the PWFA
stage at each shot. Thus, initial driver beam parameters are taken from reference sets without the PWFA,
providing average values and their shot to shot jitter. Of course it is possible to measure what remains from
the driver after the PWFA module. However, these parameters are difficult to interpret as it is not known
how strong the driver–plasma interaction has changed the initial parameters. Therefore optical probing
techniques offer the possibility to directly look at the transient evolution of the plasma wave throughout its
propagation [12, 22, 23]. Typically an ultrashort (≈10 fs) low intensity laser pulse is sent through the PWFA
stage, perpendicular to the driver beam propagation axis. During the transit, the probe laser phase is
modulated by the change of refractive index induced by the plasma density variations. This results to
intensity modulations at the imaging plane, where the so-called shadowgrams are recorded.

This paper, reporting on the results of optical probing of the beam-driven plasma waves, is structured as
follows: in section 2 we describe our setup. Section 3 presents the experimental results where we first
provide typical parameters of the electron beams generated in the LWFA in section 3.1 and discuss the
differences of the self- and the pre-ionized regime in section 3.2. It is followed by the observation of the
correlation of the length of the first cavity and the driver beam charge in section 3.3. These findings are
supported by 3D-simulations performed with PIConGPU which are shown in section 3.4. Finally, we
provide an outlook how this correlation can be exploited to study the driver depletion further and conclude
the paper in section 4.
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Figure 1. Schematic overview of the experimental setup. From left to right, a high intensity DRACO laser pulse drives an LWFA
in the first stage, generating a high peak-current electron beam. While the spent laser is reflected by a thin foil, the electron beam
passes through, entering the second stage to generate a beam-driven wakefield. In addition, a counter-propagating low-power
laser pulse can be sent into the PWFA stage to produce a plasma environment prior to the arrival of the electron driver beam. The
beam-driven plasma wave can be visualized by shadowgraphy using a synchronized ultrafast probe laser pulse propagating
perpendicular to the driver propagation axis.

2. Experimental setup

The experiments were performed with the DRACO Ti:Sa laser system operated at Helmholtz-Zentrum
Dresden-Rossendorf [24]. As schematically shown in figure 1, the setup consists of two consecutive gas jets,
with the first jet as the LWFA stage producing electron beams to drive plasma wakefields in the second gas
jet. In order to generate high-peak current driver beams, as the key ingredient for this LPWFA approach,
the LWFA stage is operated in the self-truncated ionization-induced injection scheme [16]. Here, laser
pulses of 2.3 J energy and 30 fs full-width at half-maximum (FWHM) duration are focused by an F/20
off-axis parabolic mirror into a 3 mm-long helium gas jet doped with 3% nitrogen operating at a plasma
density of 3.5 × 1018 cm−3.

The PWFA stage, positioned 1 mm downstream of the first stage, is formed by a 3 mm-long hydrogen
gas jet from an identical nozzle geometry as in the LWFA stage. This stage is operated at a plasma density
within a range from 3.1 × 1018 –6.6 × 1018 cm−3. A kapton foil of 25 μm thickness is located between the
two gas jets, 500 μm before the PWFA stage. It reflects the spent LWFA driver laser pulse, while the LWFA
electron beam transits through the foil. This leads to an increase of the electron beam divergence due to
current filamentation instabilities created by high-intensity laser–foil interaction [25]. However, it does not
degrade the driver beam ability to excite a wakefield in the subsequent PWFA stage [13, 14]. An inherently
synchronized few-cycle laser pulse, generated from the main pulse, is applied perpendicular to the
corresponding plasma wave and analyzed with an imaging system at high spatial resolution. It provides
shadowgraphic images with a resolution of 0.31 μm per pixel on a 14 bit CCD camera. This probe pulse is
generated from about 1.5 mJ of energy, spectrally broadened within a 1.0 m long hollow core fiber filled
with 2.0 bar of neon [26] and temporally compressed by a set of chirped mirrors to a pulse length of 9.2 fs
measured by a SPIDER-A.P.E [27]. In order to improve the visibility of plasma wave shadowgrams, the
recorded raw images are post-processed following a protocol described in supplementary chapter 1
(https://stacks.iop.org/NJP/24/083034/mmedia). Finally, a continuous wavelet transformation (CWT)
analysis using a Morlet-type function is applied to this profile to deduce the wavelength of the plasma wave
along the propagation axis.

A dedicated nearly counter-propagating laser pulse (under an angle of 1.7◦) can optionally pre-ionize
the gas in the PWFA stage prior to the driver beam arrival. This pre-ionization laser pulse, also inherently
synchronized with the main laser pulse, contains an energy of about 20 mJ and is focused by a spherical
mirror with a focal length of 1 m to a spot size of about 100 μm, yielding a peak intensity of
4 × 1015 W cm−2 which is well above the ionization threshold for hydrogen gas. The arrival time of the
pre-ionization laser pulse is adjusted by an optical delay line such that the plasma is created about 1 ps
before the arrival of the driver beam.

3. Results and analysis

3.1. LWFA electron beams
Figure 2(a) illustrates typical electron spectra, sorted by peak energy, recorded with LWFA stage in
operation and laser blocker foil in position, but the second gas jet turned off. These beams have a mean
energy of 328 ± 29 MeV and an FWHM-energy bandwidth of 44 ± 18 MeV and the integrated charge
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Figure 2. Characteristics of LWFA only shots. (a) Reference shots with the laser blocker foil in place, sorted by peak energy. The
vertical axis has a total width of 27 mrad for every shot. (b) Correlation of the beam charge (FWHM) to the peak energy for these
reference shots. The beam loading effect is clearly visible here, the result of the linear fit is used to calculate the estimated charge
from the measured remaining peak energy (see section 3.3). The lightgreen area represents the standard deviation of the shots
around the fit.

within this bandwidth is 318 ± 71 pC. Here, the values of uncertainty are given as the standard deviation of
the whole set of reference shots, i.e. these values represent the shot-to-shot jitter. The power spectrum of
transition radiation, emitted as the beam passes through a thin metal foil, was measured by a multi-octave
broadband spectrometer and allows for reconstruction of the temporal profile of the electron bunch
[15, 28]. This results in a FWHM-bunch duration of about 14.8 ± 1.6 fs, corresponding to an estimated
peak-current of about 22.6 kA. Furthermore, the electron beam size at the exit of LWFA stage is inferred
from the betatron x-ray spectral-shape, yielding a root-means-square (rms) beam size of about 1 μm [18].

Small variations of the laser and plasma parameters lead to a shot-to-shot jitter of the electron beam
properties. Especially the charge and the energy of LWFA accelerated beams are coupled due to the beam
loading effect [16, 17, 29], i.e. electron beams of higher charge strongly flatten the accelerating field which
results in a reduction of the beam energy. By plotting the beam charge as a function of the peak energy as
depicted in figure 2(b), the charge–energy correlation can be extracted and is linearly fitted to
Q(Epeak) ≈ (−2.02 ± 0.24) pC MeV−1 · Epeak + (981 ± 80) pC. As the energy and charge can also be
influenced by other parameters, the data points are scattered around the fit. For the whole experimental
run, the nominal parameters of the laser and plasma for the LWFA stage are kept fixed.

3.2. Structure of plasma waves in the self- and pre-ionized regime
The driver beam interaction and plasma dynamics within the PWFA stage differ depending on whether the
electron beam enters a plasma environment, generated by the pre-ionization laser, or a neutral gas, which
will be ionized by the space charge field of the driver beam itself (self-ionized regime). Both cases were
investigated during the experiment and the resulting plasma waves, profiles along the axis of the waves and
the CWT analysis, are shown in figures 3(a)–(c) for the self-ionized case and in (e)–(g) for the pre-ionized
case. Both are recorded at the center of the PWFA stage (1.5 mm after the driver beam enters the PWFA
stage), operated at a plasma density of np = 4.5 × 1018 cm−3.

Here, a distinct difference on the wakefield structure is observed between the two cases. In the
self-ionized regime, a narrow plasma channel inside the neutral gas background along the driver beam
propagation axis is seen, in which a few clear periods of plasma wave oscillation located at the channel front
side are visible (see figure 3(a)). Such a plasma wave, however, quickly damps out and vanishes to below the
detection limit, at the latest after the ninth cavity. In contrast, in the pre-ionized regime, the associated
shadowgram exemplified in figure 3(e) exhibits a pronounced plasma wakefield structure that extends
significantly further out and can have up to 25 subsequent, well-pronounced cavities. Additionally, a cone
like feature trailing the plasma wave after 1 ps can be identified, which is attributed to the transverse ion
motion induced by the wakefield, as also reported in [12]. Furthermore, the wavelet analysis, presented in
figures 3(c) and (g), yields a plasma wavelength of about 15.8 μm, fairly constant along the wakefield and
almost identical for both cases. This value agrees well with the nominal plasma wavelength,
λp (μm) � 3.3 × 1010/

√
np (cm−3) � 15.6 μm [30], for the plasma density of 4.5 × 1018 cm−3,

independently measured using tomographic interferometry [31].
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Figure 3. Examples of measured plasma waves and their analysis, both at the same gas density providing a plasma density of
4.5 × 1018 cm−3: left column: self-ionized case, right column: pre-ionized gas. (a) and (e) Are showing the post processed picture
of the plasma wave (angle of the wave due to alignment precision of the camera), (b) and (f) show the profile through the middle
of the plasma wave and (c) and (g) show the wavelet analysis of this profile using a Morlet-typed test wavelet. The red line
represents the maximum of the wavelet analysis at the corresponding longitudinal position, i.e. the best fitting wavelength.
Results of simulations done with Osiris 3.0 are depicted in (d) and (h), where the gray scale represents the plasma density, the
color scale shows the driver density. In the bottom graph the longitudinal field strength and a line-out through the center
propagation axis is depicted. This simulation also shows a quick smearing out of the plasma wave in the self-ionized case
compared to the pre-ionized one.

Assuming a Gaussian beam distribution, the space-charge field of the driver reaches a maximum value
of Emax

r � −0.45 E0 (2Ib/IA)/kpσr , where Ib is the driver peak current and E0 the non-relativistic
wave-breaking field, at distance r � 1.585σr from the propagation axis [21]. There is no direct way to
extract the transverse size σr of the driver beam while propagating inside the PWFA stage, as the beam
refocusing dominates the dynamics. However, since the beam size [18] and the divergence at the exit from
the LWFA stage are measured, the beam size at the entrance of the PWFA can be estimated. The divergence
of the beam after the LWFA stage was measured at the electron spectrometer to be 1.81 ± 0.17 mrad.
However, before entering the PWFA stage, the beam has to pass through the laser blocker foil. While fully
reflecting the spent LWFA driver pulse, the high-intensity laser–foil interaction causes a current
filamentation instability within the foil, leading to a significant divergence increase to the beam upon foil
transition [25]. The divergence of the beam after the blocker foil increases to 4.2 ± 0.8 mrad. Accordingly
the transverse beam size at the entrance of the PWFA stage is estimated to be σr ≈ 3.3 μm representing
the upper limit of the size within the PWFA stage. Using this value, the space-charge field amounts to
186 GeV m−1 (considering Ib = 22.6 kA), far above the ionization threshold for hydrogen of about 33.8
GeV m−1 [21]. This implies that the peak current of the driver is sufficiently high to fully ionize the
hydrogen gas target even in the self-ionized regime, which is confirmed by consistent measurement of
plasma wavelengths between the two cases.

The structure of the observed plasma waves differ strongly between the self- and the pre-ionized regime,
which can be explained as a consequence of the limited size of the generated plasma column. Without
pre-ionization, a plasma channel with a narrow width of approximately the same order of magnitude as the
transverse diameter of the electron driver beam is produced, i.e. a radius of ∼7 μm from figure 3(a), and
sustained over ps time scale. Immediately after ionization, electrons are expelled from the beam
propagation path to reach a maximum distance from the axis which is given by the blowout radius of
rm ≈ 2

√
2 × Ib/IA/kp � 7 μm [21]. Therefore, some electrons can escape into the neutral gas region, such

that they no longer experience the attracting force from the ion channel and thus do not return to the axis
[32, 33]. Electrons within the reach of the ionic attracting force move back and cross the propagation axis at
various longitudinal positions, depending on their ionization location and thus with different oscillation
phase and frequency, as can be seen in simulation figure 3(d). As a consequence, a less narrow electron

5



New J. Phys. 24 (2022) 083034 S Schöbel et al

Figure 4. Shadowgrams (a) and corresponding electron spectrometer (b) data for three sample shots. Size of the first cavity
increases from top to bottom, cavities behind match to the expected linear plasma wavelength of 19.3 μm, electron peak energy is
decreasing from top to bottom, which is an indication of increasing charge. All shots are taken at a nominal plasma density of
np = 3.0 × 1018 cm−3 and in a pre-ionized condition. The white lines at roughly 90 MeV and 180 MeV is a blind area between
two screens and has no physical meaning.

sheath is formed which smears out after a few cavities. The strength of the accelerating field at the rear side
of the first cavity is weaker and it has been observed that this results in lower witness bunch energies
compared to the pre-ionized case [13]. That is because the pre-generated plasma channel is much wider as
determined by the width of the pre-ionization laser. Hence, the expelled plasma electrons, independently of
the initial location, oscillate collectively and, thus, return back to the beam propagation axis at a defined
longitudinal position, which leads to a sustainable plasma wave generation, as shown in figure 3(h).

3.3. Correlation of the first cavity size with the driver properties
The variations of driver beam properties as described in section 3.1 can be utilized to explore the impact of
the driver beam charge and energy on the generation of plasma wakefields. For this purpose, we compare
the shadowgraphy images, taken in the pre-ionized regime, for different spectral-charge distributions of the
remaining driver beam extracted from the electron spectrometer. Three sample shots are illustrated in
figure 4(a) for the shadowgrams and (b) for the associated remaining driver. All shots are taken using the
same nominal density of 3 × 1018 cm−3 for the PWFA stage which corresponds to a nominal plasma
wavelength λp ≈ 19.3 μm. In all three images, the trailing plasma cavities have approximately the expected
length while the first cavity is significantly elongated. This elongation gets stronger from top to bottom,
whereas the most obvious change in the corresponding electron spectra is a decrease in energy.

According to theoretical work [19], the elongation of the first cavity should mainly depend on the
charge density of the driver at the observation point. However, in experiment, the initial driver charge
cannot be directly measured as driver–plasma interaction in the PWFA stage leads to beam degradation.
This becomes visible in the energy spectra (see figure 4(b)), where the decelerated electrons redistribute
over a large energy range from the initial energy down to zero-MeV energy. As a result, the measured charge
within FWHM of the high energy distribution drops on average to 21% of the reference shots. This implies
that the initial charge reconstruction based on measured remaining charge is inaccurate. This is exacerbated
by the fact that drivers containing initially more charge generate more strongly fields within the plasma
cavity, causing them to decelerate stronger than less charged drivers.

Nevertheless, the initial charge of the driver beam is still encoded in the spent driver peak energy via the
beam loading effect described earlier above in section 3.1. This correlation allows us to estimate the initial
charge using the linear function presented in figure 2(b). Since the decelerating field in the PWFA is not
constant along the length of the driver bunch, the deceleration occurs at different rate, depending on where
the electrons are located with respect to the decelerating field. The front part of the beam can maintain its
energy until the end of the plasma, as confirmed by simulations presented in section 3.4.

Figure 5 shows the length of the first cavity normalized to the nominal plasma wavelength versus the
derived initial FWHM beam charge. Here, the elongation increases significantly with increasing driver
charge. The error in the estimated bunch charge represents the uncertainty of the indirect determination
method as illustrated by the light green band in figure 2(b). The uncertainty of the fit itself would lead to a
slightly different horizontal axis, but would not effect the relative correlation between the data points and is
therefore not shown. The vertical error is assumed to be two pixels for the measurement of the cavity sizes.
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Figure 5. Here the elongation normalized to the nominal plasma wavelength for different plasma densities is plotted versus the
calculated initial beam charge. This calculation is done using the linear correlation of energy and beam charge from the reference
shots (as in figure 2(b)), representing the beam loading effect in LWFA. The error in the bunch charge is dominated by the error
in the fit function in figure 2(b), the errors of the elongation are estimated to be two pixels for cavity length measurement.

Figure 6. PIC simulation results: (a) snapshot of generated plasma waves at the center of the PWFA stage for different initial
driver bunch charges at a plasma density of ne = 4.5 × 1018 cm−3. At the PWFA entrance, other parameters of the driver are
2.3 μm transverse beam size (rms), 4.17 mrad divergence (rms), 20 fs duration (FWHM). The white dashed line indicates the
border of each plasma period while the red solid line represents the accelerating field on axis. The cavity elongation is clearly
visible when the driver charge increases. The details of the simulation setup and the initialization procedure can be found in [36].
(b) Shows simulated electron spectrometer measurements before (top) and after (middle) interaction in the PWFA stage and the
energy distribution summed along the divergence axis (bottom). For a better visibility, this is divided by ten for the
before-PWFA-case. Note, that the peak position stays at approximately the same energy.

The correlation of cavity elongation and charge is valid for the full range of densities where data was
taken, so between 3.0 × 1018 cm−3 and 6.1 × 1018 cm−3, corresponding to linear plasma wavelengths of
19.3 μm down to 13.5 μm. As the duration, and thus longitudinal size (length) of a single bunch, is set
from the LWFA stage, the change in density also changes the ratio of bunch length relative to the plasma
wavelength. Because the values of elongation for a certain value of initial driver charge hardly differ at
different densities, this means the influence of this longitudinal ratio in this setup is much smaller
compared to that of charge. This clearly shows that nb

np
� 1 still holds for such high plasma densities.

Assuming a cylindrical bunch, the average density of a bunch nb with the properties described in section 3.1
is estimated to be nb = 1.2 × 1019 cm−3 and thus larger than the plasma densities used in experiment, as
required to enter the blowout regime.

3.4. Simulations
Experimental findings of a charge-dependent elongation are supported by three-dimensional particle-in-cell
(PIC) simulations performed with PIConGPU [34], starting right after the laser blocker foil. While most of
simulated driver and plasma parameters are deduced from the measured experimental quantities, the bunch
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Figure 7. Elongation of the first cavity versus estimated initial bunch charge using the charge–energy correlation in the beam
loading regime, for two different positions within the PWFA stage. Plasma density was at 4 × 1018 cm−3 in both cases. The dotted
lines represent a linear fit through each data set, just to guide the eye.

charge is stepwise increased to numerically access the strong-beam interaction regime. All other input
parameters such as transverse and longitudinal rms size, energy and energy spread are fixed and remain the
same for all three simulations. It is assumed that the driver bunch features an uncorrelated phase-space
when leaving the LWFA stage and enters the fully ionized second stage with a finite divergence, i.e.
defocused phase-space distribution. As the plasma cavity starts to develop in the density up-ramp, the
focusing field pinches most of the beam, resulting in a compact driver for the wakefield excitation
(see supplemental material). Figure 6(a) presents the simulated plasma waves excited by different
energy-FWHM-integrated driver bunch charges: 228 pC (top), 152 pC (middle) and 76 pC (bottom). One
can clearly see that for the lowest driver charge the plasma wave exhibits a regular structure from the head
to the trailing part with a wavelength matched to the linear theory, i.e. λp = 2πc

√
ε0me/e2ne with c

denoting the speed of light, ε0 the vacuum permittivity, me the electron mass and e the elementary charge.
When the driver charge increases, the first cavity elongates and simultaneously the accelerating field
strength at the cavity rear-side becomes stronger, exceeding 500 GV m−1 for the 228 pC driver. Due to the
stronger field induced by drivers of higher charge, the plasma electrons are pushed further out, resulting in
a larger radial and longitudinal size of the cavity as they need longer time for returning back to the axis.
This increased radius of the positively charged ion background of the cavity leads to a stronger electric field
inside the plasma cavity. This observation is consistent with previous theoretical predictions [19, 21, 35],
which all show an increase in field strength for increasing driver peak current. The simulations qualitatively
resemble the experimental findings, demonstrating that such a dense bunch is capable of driving the full
blowout and the first cavity length significantly increases for high charge driver beams.

Figure 6(b) shows the corresponding simulated electron spectrometer. Comparing the spectrum of the
initial bunch (top) and after the interaction (middle) a strong deceleration and charge loss as in experiment
was observed, which is consistent with the experimental observations discussed in section 3.3. Even though
these two effects become stronger for higher charge driver (see supplementary chapter 4), the high-energy
peak stays at approximately the same value, justifying our approach of reconstructing the initial charge via
the peak energy.

4. Outlook and conclusion

The elongation of the first plasma cavity turns out to be mainly caused by the charge of the driver.
Therefore, in principle, this work can be extended to investigate driver depletion. This can be done by
probing the scaling of the plasma waves at different positions along the driver propagation axis. An example
of this is shown in figure 7, where the cavity elongation was measured after 850 μm and 1350 μm of
propagation. The elongation achieved at the first position reaches higher values than for shots having about
the same estimated initial charge but were captured 500 μm further downstream. For our experimental
conditions, there is a clear difference in the measured elongations, which indicates ongoing charge loss
between the two observation positions. Up to now there was no data taken at additional positions but as the
changes are already visible here, this shows that the measurement of the elongation could be a powerful tool
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to further investigate the driver depletion and the evolution and stability of the excited wakefield during the
propagation.

In conclusion, the driver–plasma-interaction in the blowout regime is explored for the first time in a
PWFA module driven by intense laser-accelerated electron bunches. An ultrafast optical probing technique
provides a new insight revealing subtle details of the generated plasma wave structure and its dynamics.
Increases in the drive charge cause the first cavity to become longer than the trailing plasma waves,
consistent with PIC simulations. Here it is also shown, that the wakefield structure changes during the
propagation process, caused by driver deceleration leading to a decrease in the number of electrons,
contributing to the wakefield excitation. Successful operation in this regime will allow the implementation
of advanced electron injection schemes [37–39] directly inside the PWFA stage where electrons are injected
and accelerated near the optimal phase of the plasma wakefield for the generation of ultra high-brightness
beams. This hybrid LPWFA staging therefore can serve as a powerful platform to conduct fundamental
studies of PWFA concepts at widely accessible high-power laser facilities, complementary to RF-based
PWFA facilities.
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[31] Couperus J P, Köhler A, Wolterink T A W, Jochmann A, Zarini O, Bastiaens H M J, Boller K J, Irman A and Schramm U 2016

Nucl. Instrum. Methods Phys. Res. A 830 504–9
[32] Diederichs S, Mehrling T J, Benedetti C, Schroeder C B, Knetsch A, Esarey E and Osterhoff J 2019 Phys. Rev. Accel. Beams 22

081301
[33] Manahan G G et al 2016 Phys. Rev. Accel. Beams 19 011303
[34] Bussmann M et al 2013 Radiative signatures of the relativistic Kelvin–Helmholtz instability Proc. Int. Conf. High Perform.

Comput. Networking, Storage Anal. SC ’13 (New York: ACM Press) pp 1–12
[35] Lu W, Huang C, Zhou M, Tzoufras M, Tsung F S, Mori W B and Katsouleas T 2006 Phys. Plasmas 13 056709
[36] Pausch R, Debus A, Steiniger K and Widera R (2020) PIConGPU setup: PWFA simulations. This is a simulation setup

accompanying a experimental study https://doi.org/10.14278/rodare.580 (available at: https://rodare.hzdr.de/record/580)
[37] Hidding B, Pretzler G, Rosenzweig J B, Königstein T, Schiller D and Bruhwiler D L 2012 Phys. Rev. Lett. 108 035001
[38] Martinez de la Ossa A, Grebenyuk J, Mehrling T, Schaper L and Osterhoff J 2013 Phys. Rev. Lett. 111 245003
[39] Deng A et al 2019 Nat. Phys. 15 1156–60

10

https://doi.org/10.1038/s41586-018-0485-4
https://doi.org/10.1038/s41586-018-0485-4
https://doi.org/10.1038/s41586-018-0485-4
https://doi.org/10.1038/s41586-018-0485-4
https://doi.org/10.1103/physrevlett.126.014801
https://doi.org/10.1103/physrevlett.126.014801
https://doi.org/10.1038/s41567-020-01116-9
https://doi.org/10.1038/s41567-020-01116-9
https://doi.org/10.1038/s41567-020-01116-9
https://doi.org/10.1038/s41567-020-01116-9
https://doi.org/10.1088/1361-6587/aaa2e3
https://doi.org/10.1088/1361-6587/aaa2e3
https://doi.org/10.1016/j.nima.2015.10.005
https://doi.org/10.1016/j.nima.2015.10.005
https://doi.org/10.1016/j.nima.2015.10.005
https://doi.org/10.1016/j.nima.2015.10.005
https://doi.org/10.1103/physrevlett.100.074802
https://doi.org/10.1103/physrevlett.100.074802
https://doi.org/10.1103/physrevlett.124.044802
https://doi.org/10.1103/physrevlett.124.044802
https://doi.org/10.1103/physrevx.9.011046
https://doi.org/10.1103/physrevx.9.011046
https://doi.org/10.1038/s41467-021-23000-7
https://doi.org/10.1038/s41467-021-23000-7
https://doi.org/10.1103/PhysRevResearch.3.L042005
https://doi.org/10.1103/PhysRevResearch.3.L042005
https://doi.org/10.1103/physrevaccelbeams.25.012801
https://doi.org/10.1103/physrevaccelbeams.25.012801
https://doi.org/10.1038/s41467-017-00592-7
https://doi.org/10.1038/s41467-017-00592-7
https://doi.org/10.1103/physrevx.10.041015
https://doi.org/10.1103/physrevx.10.041015
https://doi.org/10.1103/physrevaccelbeams.24.091302
https://doi.org/10.1103/physrevaccelbeams.24.091302
https://doi.org/10.1103/physreve.69.046405
https://doi.org/10.1103/physreve.69.046405
https://doi.org/10.1103/physreva.44.r6189
https://doi.org/10.1103/physreva.44.r6189
https://doi.org/10.1103/physreva.44.r6189
https://doi.org/10.1103/physreva.44.r6189
https://doi.org/10.1063/1.4929921
https://doi.org/10.1063/1.4929921
https://doi.org/10.1038/s41467-020-18490-w
https://doi.org/10.1038/s41467-020-18490-w
https://doi.org/10.1103/physreve.101.023209
https://doi.org/10.1103/physreve.101.023209
https://doi.org/10.1088/1742-6596/874/1/012028
https://doi.org/10.1088/1742-6596/874/1/012028
https://doi.org/10.1103/physrevresearch.2.023123
https://doi.org/10.1103/physrevresearch.2.023123
https://doi.org/10.1007/s003400050263
https://doi.org/10.1007/s003400050263
https://doi.org/10.1007/s003400050263
https://doi.org/10.1007/s003400050263
https://doi.org/10.1109/3.753654
https://doi.org/10.1109/3.753654
https://doi.org/10.1109/3.753654
https://doi.org/10.1109/3.753654
https://doi.org/10.1103/physrevlett.126.174801
https://doi.org/10.1103/physrevlett.126.174801
https://doi.org/10.1103/revmodphys.81.1229
https://doi.org/10.1103/revmodphys.81.1229
https://doi.org/10.1103/revmodphys.81.1229
https://doi.org/10.1103/revmodphys.81.1229
https://doi.org/10.1016/j.nima.2016.02.099
https://doi.org/10.1016/j.nima.2016.02.099
https://doi.org/10.1016/j.nima.2016.02.099
https://doi.org/10.1016/j.nima.2016.02.099
https://doi.org/10.1103/physrevaccelbeams.22.081301
https://doi.org/10.1103/physrevaccelbeams.22.081301
https://doi.org/10.1103/physrevaccelbeams.19.011303
https://doi.org/10.1103/physrevaccelbeams.19.011303
https://doi.org/10.1063/1.2203364
https://doi.org/10.1063/1.2203364
https://doi.org/10.14278/rodare.580
https://rodare.hzdr.de/record/580
https://doi.org/10.1103/physrevlett.108.035001
https://doi.org/10.1103/physrevlett.108.035001
https://doi.org/10.1103/physrevlett.111.245003
https://doi.org/10.1103/physrevlett.111.245003
https://doi.org/10.1038/s41567-019-0610-9
https://doi.org/10.1038/s41567-019-0610-9
https://doi.org/10.1038/s41567-019-0610-9
https://doi.org/10.1038/s41567-019-0610-9

	Effect of driver charge on wakefield characteristics in a plasma accelerator probed by femtosecond shadowgraphy
	1.  Introduction
	2.  Experimental setup
	3.  Results and analysis
	3.1.  LWFA electron beams
	3.2.  Structure of plasma waves in the self- and pre-ionized regime
	3.3.  Correlation of the first cavity size with the driver properties
	3.4.  Simulations

	4.  Outlook and conclusion
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


