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Abstract 

Breast cancer, comprising of several sub-phenotypes, is a leading cause of female cancer-related mortality in the 
UK and accounts for 15% of all cancer cases. Chemoresistant sub phenotypes of breast cancer remain a particular 
challenge. However, the rapidly-growing availability of clinical datasets, presents the scope to underpin a data-driven 
precision medicine-based approach exploring new targets for diagnostic and therapeutic interventions.

We report the application of a bioinformatics-based approach probing the expression and prognostic role of Karyo-
pherin-2 alpha (KPNA2) in breast cancer prognosis. Aberrant KPNA2 overexpression is directly correlated with aggres-
sive tumour phenotypes and poor patient survival outcomes. We examined the existing clinical data available on a 
range of commonly occurring mutations of KPNA2 and their correlation with patient survival.

Our analysis of clinical gene expression datasets show that KPNA2 is frequently amplified in breast cancer, with differ-
ences in expression levels observed as a function of patient age and clinicopathologic parameters. We also found that 
aberrant KPNA2 overexpression is directly correlated with poor patient prognosis, warranting further investigation of 
KPNA2 as an actionable target for patient stratification or the design of novel chemotherapy agents.

In the era of big data, the wealth of datasets available in the public domain can be used to underpin proof of concept 
studies evaluating the biomolecular pathways implicated in chemotherapy resistance in breast cancer.
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Introduction
Breast cancer is the most commonly-diagnosed, and 
leading cause of cancer-related mortality worldwide 
among women with an estimate of 2.3 million new cases 
in 2020 [1, 2]. Breast cancer represents a heterogeneous 
group of diseases classified across several sub-pheno-
types according to their anatomical location and gene 
expression profile.

Despite significant advancements in developing new 
treatments for breast cancer, the incidence of breast 
cancer in women continues to rise proportionally with 
age, posing a significant global public health challenge 
[3]. Current standard of care in breast cancer treat-
ment involves surgery, radiotherapy, endocrine-based 
therapies, chemotherapies or biologicals, or a com-
bination of these therapeutic interventions. From a 
diagnostic perspective, mammography remains one of 
the main approaches for detecting breast cancer. How-
ever, patients are often diagnosed during later stages 
of breast cancer with the potential to adversely impact 
patient clinical prognosis and outcomes. Therefore, 
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the recent years have seen a significant growth in novel 
surrogate biomarker research for diagnostic, prog-
nostic and therapeutic interventions. Current routine 
stratification for breast cancer treatment is based on 
the hormonal status (oestrogen, progesterone and 
human epidermal growth receptor-2) or more recently, 
genetic biomolecular signatures classifying breast can-
cers according to intrinsic subtypes (e.g. basal, and 
luminal A and B) [4].

Karyopherin alpha 2 (KPNA2), a member of the 
Karyopherin family and an adaptor protein, is a com-
ponent of the nuclear import pathway machinery 
involved in the nucleocytoplasmic transport of mole-
cules involved in cell division, transcription, and DNA 
repair. Aberrant amplification of KPNA2 expression 
in cancer has been implicated in the pathogenic mis-
localization of substrate proteins, resulting in tumo-
rigenesis and conferring an aggressive sub-phenotype 
[5]. KPNA2 over-expression has been correlated with 
poor patient outcomes in a number of malignancies 
including glioblastoma [6], colon [7], hepatocellular 
carcinoma [8], ovarian [9] and breast [10–12] cancers. 
In breast cancer, KPNA2 expression is correlated with 
a lower abundance of DNA repair proteins including 
CHK1, UBC9, PIAS1, BRCA1, RAD51 and γH2AX in 
cell nuclei [12]. Moreover, the incidence of KPNA2 
overexpression has correlated with oestrogen recep-
tor-negative (ER-) status [12, 13] and rapidly prolifer-
ating subtypes, specifically basal-like tumours [14].

With increasing reports of KPNA2 involvement 
in several cancer types [6, 7, 9, 15] and significant 
advancements in precision medicine technologies, 
coupled to extensive biobanking and electronic cura-
tion of patient metadata, the scope exists to inter-
rogate the correlation between KPNA2 expression, 
breast cancer phenotype and patient prognosis.

Dysregulation of mRNA expression levels of KPNA2 
in human breast cancer and its association with breast 
cancer prognosis has not been further investigated. A 
cohort by AlShareeda et  al. correlated tumours over-
expressing KPNA2 with poor patient prognosis and 
a larger tumour size [12]. Other recent studies have 
evaluated significant KPNA2 expression in breast 
cancer compared to normal samples [16–18]. In this 
study, we extensively investigate the effect of KPNA2 
in breast cancer patients on specific prognosis out-
comes using a range of bioinformatics tools. We ana-
lyzed the mRNA expression patterns and mutations 
of KPNA2 in patients with breast cancer from the vast 
number of gene expression data available within the 
public domain, to identify expression patterns and the 
potential prognostic value of KPNA2 in human breast 
cancer.

Materials and methods
Data retrieval
cBioPortal (https://​www.​cbiop​ortal.​org/) is an open 
access resource for cancer genomics that was originally 
developed by Memorial Sloan Kettering Cancer Center 
[19]. In this study cBioPortal was used to query the 
incidence and types of KPNA2 mutations occurring in 
breast cancer as a function of tumour clinicopathologic 
parameters.

COSMIC (Catalogue of Somatic Mutations in Cancer 
(www.​sanger.​ac.​uk) is a tool for studying the influence 
of somatic mutations in all cancers and assessing drug-
gability of targets incorporation with chEMBL, which is 
maintained by the European Molecular Biology Labora-
tory. Using this resource, we identified over 500 KPNA2-
related mutations, specifying the amino acid point 
mutation position and mutation type, and their classifica-
tion as missense or insertion.

Oncomine (https://​www.​oncom​ine.​org/​resou​rce/​login.​
html) Analysis of KPNA2 mRNA expression patterns 
was conducted using the following parameter selections: 
Gene- KPNA2, differential analysis- cancer vs. normal 
analysis, cancer type-breast cancer; and data type- mRNA. 
A two-fold change, a P-value corresponding to 1E-4 
and a top 10% gene rank were selected as thresholds for 
this analysis. The same parameters were applied to the 
analysis of gene co-expression analyses. All statistical 
analyses and parameters were directly exported from 
Oncomine.

PrognoScan (http://​dna00.​bio.​kyute​ch.​ac.​jp/​Progn​
oScan/​index.​html) [20] is a resource for performing 
meta-analysis of the prognostic role of mutations occur-
ring in cancer through incorporating gene expression 
studies from multiple sources such as the Gene Expres-
sion Omnibus (GEO—www.​ncbi.​nlm.​nih.​gov/​gds) and 
reports from individual labs [21]. PrognoScan combines 
expression data with clinical outcomes, which enables 
the evaluation of potential biomarkers and their role in 
cancer prognosis. In this study PrognoScan was used to 
assess the correlation between KPNA2 mRNA expres-
sion levels and patient prognostic endpoints for breast 
cancer. Output generated and exported from PrognoS-
can include P-values (Cox), hazard ratios and confidence 
intervals across breast cancer datasets available. Data 
available for the 201088_at KPNA2 reporter was selected 
for the generation of Forest plots.

Kaplan–Meier Plotter (KMplot) (http://​kmplot.​com/​
analy​sis/​index.​php?P=​servi​ce) [22] uses gene expres-
sion data from GEO datasets and through integration 
will clinical data, generates Kaplan–Meier plots across 
multiple prognostic outcomes. Using this tool it is pos-
sible to restrict the selection to patients with specific 
breast cancer sub-phenotypes, enabling the selection of 

https://www.cbioportal.org/
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inclusion and exclusion criteria. For the purposes of this 
study, the prognostic value of KPNA2 was studied across 
all breast cancer types, and as a function of each intrinsic 
molecular subtype (St. Gallen definitions were used) [23]. 
For all survival analyses, the auto select best cut-off was 
used to display the P-value (log-rank) and false-discovery 
rate (FDR) for each plot and the probe ID (201088_at) of 
KPNA2 reporter was selected for all searches.

Breast Cancer Gene-Expression Miner v4.6 [24] 
(http://​bcgen​ex.​ico.​unica​ncer.​fr/​BC-​GEM/​GEM-​Accue​il.​
php?​js=1) is a breast cancer statistical mining tool pro-
viding information on gene expression and prognostic 
implications of gene expression profiles in breast cancer. 
Moreover, the correlation between multiple genes, and 
their association with breast cancer can be elucidated 
using this tool [25]. Briefly, KPNA2 expression patterns 
in all breast cancers were examined (RNA-seq, all plat-
forms) and endpoint events (overall survival, disease-free 
survival) classified according to sub-phenotypes. Gene 
ontology and exhaustive gene correlations were also stud-
ied across all breast cancer groups as a function of intrin-
sic molecular subtype and hormone receptor expression 
profile.

Statistical analysis
Comparisons of KPNA2 mRNA expression levels per-
formed between breast cancer and healthy breast tissue 
(fold-change) was performed in Oncomine using a t-test. 
For comparisons between breast cancer patient subsets 
in Geneminer, a Welch test was used to compare dif-
ferences in KPNA2 mRNA expression. To analyze the 
prognostic value of KPNA2 using Kaplan–Meier plot 
(KMPlot), P-values from log-rank analysis were used to 
compare prognostic endpoints between patient cohorts 
using in-built algorithms on the webpage. Prognostic 
data obtained from PrognoScan was selected accord-
ing to the calculated Cox P-values and corresponding 
Hazard ratios (95% confidence interval) for various end-
points (overall survival, disease-free survival, disease-free 
metastatic survival, and relapse-free survival) that were 

subsequently plotted and visualized with a Forest plot. 
Unless otherwise stated, a P < 0.05 was deemed as statisti-
cally significant for all comparisons.

Results
KPNA2 mutations in breast cancer
Genetic alterations impacting KPNA2 in breast cancer 
were analyzed using cBioPortal and COSMIC databases. 
Querying a combined total of 4,065 samples across five 
studies in cBioportal, the frequency of KPNA2 gene 
alterations differed across each study queried (Table  1). 
The percentage of samples with somatic mutations in 
KPNA2 were 0.2% of the KPNA2-related duplicate muta-
tions, corresponding to 8 missense substitutions and one 
in-frame deletion in patients with multiple samples (see 
supplementary information). Amplification of KPNA2 
expression was the most frequently observed alteration 
across all studies examined.

As a validation step, patterns of KPNA2 expression 
were studied across 39,619 cancer samples in COSMIC. 
These analyses revealed that 341 out of 2,612 breast can-
cer samples contained seven KPNA2 amino acid changes 
characterized as missense mutations. Six of the seven 
mutations identified in COSMIC were identical to those 
found in cBioPortal. In the case of COSMIC, no dele-
tion mutations were found in the KPNA2 sequence, but 
an additional missense mutation (A364V) was present 
(Table  2). Thus, cBioPortal is a useful  tool  for evaluat-
ing expression  patterns in breast cancer and verifying 
KPNA2-associated mutations.

After confirming identified mutations within BioMuta 
(NIH) (https://​hive.​bioch​emist​ry.​gwu.​edu/​biomu​ta/​prote​
inview/​P52292), results between all databases were uni-
fied using an international protein nomenclature based 
on the Human Genome Variation Society (HGVS). For 
descriptions of the  sequence variants, see Table  3. Mis-
sense, substitution or deletion protein mutations are for-
matted as described by HGVS to better communicate our 
results for future clinical findings [32].

Table 1  A summary of breast cancer studies located from cBioportal and corresponding frequency of mutations

Study Percent of total cases (Proportion of cases available 
in dataset)

Frequency

The Metastatic Breast Cancer Project [26] 15.6%(37/237) Mutation (1.27%, n = 3)
Amplification (14.4%, n = 34)

Metastatic Breast Cancer (INSERM) [27] 7.87%(17/216) Amplification (7.87%, n = 17)

Breast Cancer (Metabric) [28–30] 7.55%(164/2173) Amplification (7.5%, n = 163)
Deep Deletion (0.05%, n = 1)

TCGA Pan-cancer Atlas [31] 6.46%(70/1084) Mutation (0.55%, n = 6)
Amplification (5.9%, n = 64)

http://bcgenex.ico.unicancer.fr/BC-GEM/GEM-Accueil.php?js=1
http://bcgenex.ico.unicancer.fr/BC-GEM/GEM-Accueil.php?js=1
https://hive.biochemistry.gwu.edu/biomuta/proteinview/P52292
https://hive.biochemistry.gwu.edu/biomuta/proteinview/P52292
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Next, we assessed the correlation between the ampli-
fication of KPNA2 mRNA expression levels in breast 
cancer tumours compared to matched healthy breast tis-
sue using Oncomine. Findings from these comparisons 
across breast cancer  intrinsic molecular subtypes and 
corresponding fold-changes are presented in Table 4.

Our analysis of fold-change data show that within 
breast cancer datasets available on Oncomine, KPNA2 
frequently was ranked in the top 7% of genes altered in 
breast cancer with significant fold-changes observed 
across all studies relative to adjacent breast cancer tis-
sue. Across all breast cancer subtypes examined, at 

Table 2  Corresponding particulars of mutations occurring in KPNA2 and their frequency as located in cBioportal. TCGA​: The Cancer 
Genome Atlas Program Pan-Cancer Atlas [31] and the MBC: Metastatic Breast Cancer Project [26]

Protein change Mutation type No. of mutations Variant frequency Original study

R366H Missense 1250 0.23 TCGA​

N375S Missense 972 0.24 TCGA​

L382F Missense 832 0.07 TCGA​

S24N Missense 123 0.06 MBC

V507A Missense 30 0.28 MBC

D79N Missense 107 0.23 TCGA​

Q329del Deletion 36 0.30 TCGA​

R29C Missense 35 N/A TCGA​

Table 3  The standard sequence variants nomenclature of breast cancer related-KPNA2 unique mutations as recommended by HGVS 
on a protein level

KPNA2 Mutation HGVS Nomenclature Description of amino acid change Chromosome 
position 
(BioMuta)

R366H p.Arg366His Arginine at position 366 is changed to Histidine 66,040,114

N375S p.Asn375Ser Asparagine at position 375 is changed to Serine 66,040,147

L382F p.Leu382Phe Leucine at position 382 is changed to Phenylalanine 66,040,147

S24N p.Ser24Asn Serine at position 24 is changed to Asparagine N/A

V507A p.Val507Ala Valine at position 507 is changed to Alanine N/A

D79N p.Asp79Asn Aspartate at position 79 is changed to Asparagine 66,036,815

Q329del Gln329del Glutamine at position 329 is deleted N/A

R29C p.Arg29Cys Arginine at position 29 changed to Cystine 66,033,483

Table 4  KPNA2 expression is frequently amplified in breast cancer in comparison to healthy tissue. Breast cancer subtypes and 
corresponding fold-changes in KPNA2 expression relative to adjacent breast tissue for datasets located in Oncomine. P-values are 
directly exported from Oncomine and are obtained from a two-sample t-test

Breast Cancer Subtype Fold-change P-value Patient numbers Overexpression Gene 
Rank

Study Ref

Ductal Breast Carcinoma 5.3 6.62E-18 40 Top 1% Richardson [33]

Male Breast Carcinoma 4.7 1.84E-31 3 Top 1% TCGA [31]

Invasive Ductal Breast Carcinoma 3.2 5.54E-47 389 Top 1% TCGA [31]

Medullary Breast Carcinoma 2.6 1.23E-8 32 Top 7% Curtis [28]

Invasive Ductal Breast Carcinoma 2.2 9.54E-81 1,556 Top 3% Curtis [28]

Invasive Lobular Breast Carcinoma 2.1 1.58E-11 36 Top 4% TCGA [31]

Ductal Breast Carcinoma In Situ 2.1 8.67E-6 11 Top 1% Ma [10]

Breast Carcinoma 2.1 4.00E-5 14 Top 5% Curtis [28]

Invasive Breast Carcinoma 2.1 1.99E-5 21 Top 7% Curtis [28]



Page 5 of 11Alnoumas et al. BMC Cancer          (2022) 22:874 	

least a positive two-fold increase (with a corresponding 
P-value < 0.05) was observed in KPNA2 mRNA expres-
sion levels between healthy and breast cancer tissue, 
indicating KPNA2 overexpression across various breast 
cancer types.

Next, we performed a search of the patterns of KPNA2 
mRNA expression in breast cancer using Oncomine, cBi-
oPortal and Geneminer toolsets. Analysis of the datasets 
available on these resources indicated differential KPNA2 
expression levels as a function of clinicopathological 
parameters (Fig. 1).

Analysis of KPNA2 expression level patterns across 
multiple toolsets shows a varied KPNA2 expression 
and mutational profile as a function of clinicopatho-
logical parameters. The incidence of KPNA2 genetic 

alterations occurred more frequently in patients with 
positive ER status (Fig.  1D), whereas higher KPNA2 
mRNA levels appeared in patients with negative hor-
mone receptor status (Fig.  1 A and B). Relative to 
normal breast-like tissue, mRNA expression levels of 
KPNA2 are significantly elevated across all molecu-
lar subtypes. Across Geneminer and Oncomine data-
bases, KPNA2 amplification occurred most frequently 
in patients aged < 40  years in comparison to post-
menopausal patients (see supplementary information, 
Welch’s P < 0.0001, GeneMiner). We also compared 
KPNA2 expression profiles across different breast can-
cer subtypes that included carcinoma, invasive ductal 
carcinoma and adenocarcinoma. KPNA2 amplification 
occurred in patients with invasive ductal carcinoma 

Fig. 1  KPNA2 mRNA expression varies as a function of breast cancer clinicopathologic parameters. Bee swarm plots of KPNA2 mRNA expression 
levels as a function of combined oestrogen (ER) and progesterone (PR) receptor status (A) and HER2 receptor status (B) across breast cancer studies 
obtained from Geneminer. Boxplots of KPNA2 mRNA expression levels as a function of PAM50 molecular subtype status (C), oestrogen (D), HER2 (E), 
and progesterone (F) receptor status for data located on cBioPortal. Corresponding KPNA2 mRNA levels according to Sorlie’s (G), Hu’s (H), PAM50 (I), 
and RSPCC (J) intrinsic molecular subtypes located in Geneminer
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and was more frequently observed in patients with 
oestrogen-receptor negative breast cancer. Pairwise 
comparisons of the relative KPNA2 mRNA expres-
sion levels were performed in Geneminer according 
to tumour intrinsic molecular subtype. Correspond-
ing readout indicates differential KPNA2 expression 
patterns across the sub-phenotypic classifications, 
with normal breast-like tumours consistently exhibit-
ing (statistically significant, P < 0.0001) lower KPNA2 
expression levels in comparison to other molecular 
sub-phenotypes.

Aberrant KPNA2 expression is associated with poor breast 
cancer prognosis
The prognostic value of KPNA2 in breast cancer was 
examined using PrognoScan and KMPlot. In PrognoS-
can, 25 Gene Expression Omnibus (GEO) datasets were 
located in total, which were divided across five cat-
egories of 10 distant metastasis-free survival (DMFS), 2 
Disease-free survival (DFS), 2 Disease-specific survival 
(DSS), 8 Relapse-free survival (RFS), and 3 overall sur-
vival (OS). Data presented in the Forest plot consistently 
demonstrate a negative correlation between KPNA2 
overexpression and patient survival (Fig. 2).

The number of breast cancer dataset entries extracted 
from PrognoScan across all KPNA2 reporters were 56 
studies in total. These were further categorized into one 
of five categories including relapse-free survival (RFS- 
18), disease-free survival (DFS- 5), disease-specific 

survival (DSS- 6), overall survival (OS- 8), and distant 
metastasis-free survival (DMFS- 19). The forest plot 
(Fig. 2) demonstrates a direct correlation between ampli-
fication of KPNA2 expression and a poor prognosis 
across all endpoints.

The prognostic value of KPNA2 overexpression across 
various breast cancer intrinsic molecular subtypes was 
studied, that included basal-like, luminal A, luminal B 
and HER2+ malignancies. As shown in Fig.  3, elevated 
KPNA2 mRNA expression across all breast cancer 
types was associated with poorer OS (HR 1.68, CI 95% 
1.35–2.08-, P = 2.6E-6, Fig.  3A), RFS (HR 1.58, CI 95% 
1.42–1.76, P < 1E-16, Fig.  3B), DMFS (HR 1.73, CI 95% 
1.42–2.1, P = 3.9E-8, Fig.  3C) and had no statistically 
significant impact on PPS (HR 1.71, CI 95% 1.32–2.22, 
P = 3.8E-5, Fig. 3D).

Next, we examined the prognostic value of KPNA2 
mRNA expression across intrinsic molecular sub-phe-
notypes. From the datasets examined, elevated KPNA2 
mRNA levels had no significant overall prognostic impact 
on patients with basal carcinomas, Luminal B (except for 
RFS- HR 1.35, CI 95% 1.09–1.68, P = 0.0056, Fig. 3N) and 
HER2 + breast cancers. However, in the case of Luminal 
A subtype, elevated KPNA2 RNA levels were associated 
with poor overall survival (HR(2.03, CI 95%, 1.46–2.84, 
P = 2.2E-5, Fig.  3I), relapse-free survival (HR 1.73, CI 
95%, 1.46–2.04, P = 9.6E-11, Fig.  3J), disease-metastatic 
free progression survival (HR 1.96, CI 95%, 1.46–2.62, 
P = 4.1E-6, Fig.  3K), and post-progression survival (HR 

Fig. 2  KPNA2 overexpression is associated with poor prognostic outcomes. Forest plot representing the association between KPNA2 expression and 
prognostic outcomes for studies using the 201088_at KPNA2 reporter
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Fig. 3  The prognostic value of KPNA2 mRNA expression using Kaplan–Meier plotter (KMPlot) across all breast cancers (A-D) and intrinsic molecular 
subtypes (E-T). Corresponding HRs for OS, RFS, DMFS), and PPS survival endpoints are presented for each breast cancer subtype. HR: Hazard ratio, BC: Breast 
Cancer, OS: Overall Survival, RFS: Relapse-free Survival, DMFS: Disease-Metastatic Free Progression Survival, and PPS: Post-Progression Survival 
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2.18, CI 95%, 1.5–3.18, P = 3.3E-5, Fig. 3L). Overall, these 
findings show that KPNA2 overexpression in breast can-
cer leads to poor patient survival outcomes across mul-
tiple endpoints, demonstrating the prognostic value of 
KPNA2 as a potential biomarker and actionable target.

Co‑expression patterns of KPNA2 mRNA in breast cancer
To identify the pathways impacted by aberrant KPNA2 
activity, we examined the correlation in gene expres-
sion patterns between KPNA2 and other genes using 
Oncomine. The top positive and negatively correlated 
genes with KPNA2 are shown in Fig. 4. The Richardson 

Breast 2 study was selected to study gene co-expression 
patterns (P-value: 0.001, Fold change:2, Gene rank: 
10%), with 186 located genes upregulated genes in 
ductal breast carcinoma.

As shown in Fig.  4, genes most frequently co-
expressed with KPNA2 in ductal breast carcinoma were 
found to be least expressed in healthy breast tissue.

Taken together, our findings from analyses of KPNA2 
expression levels, mutational signature, impact on 
prognostic endpoints and co-expression patterns evi-
dence that KPNA2 is implicated in cancer progression 
and prognosis.

Fig. 4  Heatmap of genes co-expressed with KPNA2 in healthy breast tissue (0) and ductal breast carcinoma (1). Selected parameters from Oncomine 
included a fold-change of 3, a P-value of 0.001, and gene rank within the top 10%). (source: Richardson Breast Study 2, N = 47 samples, and 19,574 measured 
genes) [33]
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Discussion
In the present study we examined the expression pat-
terns of KPNA2 and its prognostic significance in breast 
cancer as a function of clinicopathologic parameters 
using online bioinformatics databases. To-date, datasets 
from the genomic and transcriptomic-based analyses of 
breast cancer tumour biopsies and their corresponding 
metadata have been curated and deposited across mul-
tiple databases for public access as a precision medicine 
tool [24, 34]. To our knowledge, a comprehensive analysis 
of clinical datasets interrogating the frequency and pat-
terns of KPNA2 gene alterations as a function of tumour 
clinicopathologic parameters has not previously been 
attempted.

The dysregulation and aberrant function of Karyo-
pherin activity has previously been correlated with 
tumour aggressiveness and poor patient prognosis across 
multiple cancer types. KPNA2, a member of the karyo-
pherin family, is involved in the nucleocytoplasmic trans-
port of a range of key cellular factors including DNA 
repair, transcription, and cell division factors [17]. Previ-
ous work has shown a direct correlation between KPNA2 
overexpression and poor patient prognosis across a 
range of cancer types, including glioblastoma, colorectal 
and ovarian cancer [6, 7, 9]. Despite the involvement of 
the Karyopherin family in breast cancer prognosis and 
tumorigenesis, the distinct role of KPNA2 in breast can-
cer outcomes and its expression patterns within breast 
tumour subtypes requires further investigation.

We used datasets available from online resources to 
analyse the frequency of genetic alterations occurring 
in KPNA2 mRNA expression levels across breast can-
cer intrinsic molecular subtypes (Geneminer, cBioPor-
tal, COSMIC and Oncomine), examined patterns of 
KPNA2 co-expression with other genes (Geneminer and 
Oncomine) and evaluated the prognostic implications of 
KPNA2 mRNA overexpression in patients with breast 
cancer (Prognoscan and Kaplan–Meier Plotter).

Our analysis of patterns of KPNA2 mutations in cBio-
Portal and COSMIC revealed that N375S is also present 
in the MET gene, occurs across a range of cancer types 
and is detected in 9% of advanced breast tumours. MET 
mutations indicate a tyrosine kinase mutation previ-
ously shown to be oncogenic and dysregulated in early-
stage lung cancers [35]. R366H mutations are common 
in colon cancer and involves a defective phosphoryla-
tion pathway of Long interspersed nuclear elements 
(LINE-1), activating inflammatory immune responses 
that drive tumour development [36]. Our searches of 
the Geneminer and cBioPortal repositories (Fig.  1) 
consistently show that the most frequently-occurring 
KPNA2 genetic alteration in breast cancer tumours is 
overexpression. Furthermore, our results demonstrate 

that patients with hormone receptor-negative (ER/PR) 
status are most likely to exhibit higher KPNA2 mRNA 
expression levels, in comparison to patients with hor-
mone receptor-positive breast cancers (P < 0.0001, 
Fig.  1). These data were further confirmed with the 
inverse correlation between KPNA2, and oestrogen 
and progesterone receptor mRNA levels (Geneminer, 
supplementary information). The incidence of KPNA2 
amplification was also found to be higher in younger 
patients with breast cancer (supplemental information), 
suggesting its role in breast cancer progression in this 
age group. Furthermore, KPNA2 mRNA expression lev-
els were found to be significantly amplified in patients 
with invasive ductal carcinoma (Fig. 1B).

Our search of the Oncomine database showed that 
at the transcriptional level relative to matched healthy 
breast tissue, the expression of KPNA2 was significantly 
upregulated in invasive lobular breast carcinoma, ductal 
breast carcinoma in situ, and invasive breast carcinoma. 
In all searches performed, KPNA2 was ranked in the top 
7% of genes dysregulated in cancer across breast cancer 
subtypes located.

Functional assessment of KPNA2 co-expression 
showed that KPNA2 mRNA overexpression is directly 
correlated with an enrichment in genes regulating the 
cell cycle. SCL-interrupting locus protein (STIL), pre-
viously identified in prostate cancer [37], is a G2 phase 
gene involved in cell growth and development. This 
oncogene also activates the cell cycle-dependent protein 
kinase 1 (CDK1) pathway. CDK1, also co-expressed with 
KPNA2, promotes G2/M cell cycle transition and has 
previously been reported in hepatocellular carcinomas 
[8]. Moreover, KPNA2 overexpression in ovarian can-
cer was recently linked to KIF4F signalling upregulation 
accelerating tumour progression [38, 39].

ZW10 interacting kinetochore protein (ZWINT) and 
Epithelial cell transforming 2 (ECT), both mitotic check-
point proteins, have been shown to contribute to poor 
prognosis across multiple cancer types including glio-
blastoma [40]. Though previous reports show an associa-
tion between ZWINT overexpression and triple-negative 
breast cancers, the functional role of ZWINT and ECT 
in breast cancer remains largely unexplored [41]. The 
ECT gene has been implicated in the protein assembly 
in cell division [42], and its dysregulation in breast can-
cer remains poorly understood. Another gene directly 
co-expressed with KPNA2 is the Cell division cycle 20 
(CDC20), a late mitosis checkpoint mediator that pre-
dominantly occurs in hormone positive (ER +) breast 
tumours (58% (N = 870), METABRIC study) [43]. Aber-
rant CDC20 overexpression has previously been impli-
cated in pan-cancer disease progression and poor patient 
prognosis.
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Our evaluation of the prognostic role of KPNA2, 
showed that across multiple prognostic endpoints (OS, 
RFS, DMFS and PPS) from PrognoScan and KMPlot 
(Fig. 3), KPNA2 overexpression was associated with poor 
survival outcomes. Our findings are in agreement with a 
previous report indicating that KPNA2 overexpression 
can serve as a prognostic marker across multiple cancer 
types and is associated with malignant transformation 
and poor patient survival [14, 44, 45].

To-date a limited number of reports have studied the 
functional role of KPNA2 in patient response to standard 
of care treatments and breast cancer outcomes. Our inves-
tigation primarily focused on using existing databases to 
inform the future rationale for exploring the biomolecular 
and phenotypic role of KPNA2 in breast cancer. Our inte-
grated analyses of existing datasets indicate that KPNA2 
can serve as a prognostic biomarker in breast cancer, war-
ranting further investigation of its biomolecular role in 
tumour aggressiveness. We identified the functional asso-
ciations and prognostic significance of KPNA2 in breast 
cancer, which warrants its further investigation as a prom-
ising prognostic biomarker or druggable target.

Conclusion
During the COVID-19 pandemic and with limitations in 
laboratory access clinical datasets freely available on data-
bases have provided a tool for data mining and scoping 
new projects. Open access databases provide a useful tool-
box for investigation the correlations between biomolecu-
lar drivers of cancer and prognostic outcomes. Here, we 
used outputs from such databases to explore the rationale 
for targeting KPNA2 as a novel druggable target. Our anal-
yses of existing clinical datasets for expression and survival 
outcomes show that KPNA2 over-expression contributes 
to poor patient survival outcomes, further necessitating its 
investigation in future studies to consider its clinical utility 
for triple negative breast cancer subtypes.
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