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Research Aims

• Research problem: Crystal shape is one of the key attributes affecting the bulk particle 
properties of a crystalline material as well as its downstream manufacturability1. However, the 
prediction of experimental crystal shapes remains very challenging.

• This research aims to explore the potential application of machine learning algorithms to solve 
this problem.

Figure 1. The expected outcome of the research

Research Methodology

Cooling crystallisation screening
• Sample solutions were prepared at different 

initial concentrations.
• The samples were heated on a hot plate to get 

clear solutions and then left in an incubator at 
25 ○C without disturbance until crystals occur.

• The crystal were observed under an optical 
microscope. 

• Crystal images from 261 samples were 
collected and classified into either polyhedral 
crystals, needles, or no crystals.

Solubility Test
• Using a multi-reactor crystallisation platform (Crystal16): Measure real-time turbidity of sample 

solutions at different concentrations and determine solubility from clear points (%transmission 
= 100%) at specific temperature.

Figure 2. Crystallisation conditions used in 
Crystal16 for solubility analysis 

Figure 3. Van’t Hoff plot of mefenamic acid 
in ethanol 

The solubility curves were then used to calculate the degree of supersaturation for subsequent 
crystallisation screening. 

Results & Discussions

Model Evaluation
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Figure 4. Polyhedral crystals

Figure 5. needle crystals 
(The right-hand side picture shows needle 

crystal agglomerates or spherulitic crystals)

Random Forest Classification Models
• 87 models were prepared differently.
• The first 3 models were evaluated by 4-fold 

cross-validation, while the others were 
evaluated by using the data in which the 
samples were crystallised from 1 specific 
solvent as the test data.

Figure 6. Diagram showing the dataset and variables used in each models

Model Model 1 
(3 classes)

Model 2 (2 classes 
w/ class-imbalance

Model 3 (2 classes 
w/o class-imbalance)

Accuracy by 4-fold 
cross validation

82.4%
(SD = 3.1%)

93.5%
(SD = 2.1%)

93.3%
(SD = 5.3%)

Model performance using crystal shape observations from all solvents in 
the training set

Prediction of crystal shape from solvents not included in the training set
• To determine the ability of the models to predict crystal shapes from solvents for which no

data was present in the training set, the observations for a single solvent were removed
from the training data of each model (Model 4 – 31).

• Feature selection: Model 32 – 59 and Model 60 – 87 (see details in Figure 6)
• The performance accuracy was then assessed using the crystal shapes for the observations

that were excluded from the training data.

Three random forest classification models were built initially to determine the efficacy of this
method and understand the extent to which the class imbalance present in the dataset would
affect prediction accuracies.

Table 1 Model evaluation by 4-fold cross-validation of Models 1, 2 and 3. 
(SD = standard deviation)

The result shows that Model 1, which predicts 3 crystal outcomes, has the lowest accuracy
compared to the models predicting 2 crystal outcomes. Considering Model 2 and Model 3, the
model accuracies indicate that the class imbalance observed in Model 2 did not noticeably
affect the model performance. Consequently, the dataset used in Model 2 will be used for the
further models discussed below.

Prediction 

accuracy

Numbers of models grouped by prediction accuracy

All solvent descriptors
Atom counts/bond counts + 

pharmacophore features

Physical 

properties

100% 10 10 12

Less than 50% 12 11 8

Table 2 Number of the models in which the prediction accuracy was 100% and less than 50%

In total, 32 out of 84 models predicted the shape of mefenamic acid crystals with 100%
accuracy, and the models using only physical property descriptors and supersaturations as the
model variables resulted in the best overall prediction accuracy across all solvents.

Characterisation of mefenamic acid crystals grown in triethylamine
Further crystal characterisation was done for the crystals grown in solvents with the models
showing low prediction accuracy. All samples were consistent with mefenamic acid form-I
except the sample crystallised from trimethylamine which exhibited a notably distinct XRPD
pattern (Figure 7a) and the crystals observed under a microscope also exhibit thinner flat
plates than the plate crystals of mefenamic acid form-I crystallised from the other solvents
(Figure 7b)

RF classification can be a useful tool to predict the experimental crystal shape of MFA. Our
two-class RF classification model resulted in 93% of prediction accuracy. For solvents that
were excluded from the training set, the model which expressed poor performance also
suggested the possibility to discover a new solid form of crystals.

Whilst demonstrated only for mefenamic acid it is expected that with the appropriate data, the
application of this tool can be broadened to cover a wider range of active ingredient molecular
and crystal attributes.

Conclusion

Traditionally, the mixing of solute,
solvent and antisolvent at the
microscale has been described
through Fick’s law of diffusion:

JA = −DAB · ∇xA
in which the concentration
gradient is the driving force for
mass transfer, instead of the more
physically accurate gradient in
chemical potential. Thus, it fails to
explain anomalous behaviours
such as uphill diffusion [3].

Antisolvent crystallisation relies on the difference in solubility of a solute
in the solvent and the antisolvent to create supersaturation [1]. The
mixing process greatly impacts final product properties such as the CSD
and the crystal polymorph obtained [2], as they are influenced by local
supersaturation values. However, this process is not well understood,
leading to unexpected and undesired phenomena such as oiling out or
the formation of unwanted crystal phases, as illustrated in Figure 1.

We will study diffusion in the microscale, comparing the performance of
the Cahn-Hilliard (2) model coupled with Fick’s law and with the Maxwell-
Stefan equation (3). The studied system, in which these unwanted
phenomena have been reported, is formed by water, ethanol and glycine.

The Maxwell-Stefan framework considers the chemical potential as the
driving force for diffusion, and thus better ability to predict non-idealities
is expected. However, it cannot simulate the oiling-out phenomenon, as it
does not account for the minimization of the interphase due to surface
tension. In contrast, in the Cahn-Hilliard model, the term ϵ2∇2ϕ is related
to the Korteweg stress and penalizes steep changes in composition.
Hence, this model could potentially simulate the oiling-out stage.

The simulation results will be compared to experimental diffusion
measurements obtained through Raman spectroscopy. The model
parameters will be tuned to replicate these results, acquiring more
physical significance.
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Objectives
• Simulate diffusive mixing in binary and ternary mixtures with Fick’s 

law, the Maxwell-Stefan model and the Cahn-Hilliard equation.
• Adjust of the computational model to experimental data.
• Identify and understand effect of key process parameters
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∇T,PμA
RT = xB

ÐAB
vB − vA

𝜕𝜕ϕ
𝜕𝜕𝜕 = ∇ · D∇ 𝜕𝜕𝜕

𝜕𝜕ϕ − ϵ2∇2ϕ ,

f = 0.5a2 · ϕ2 · 1 − ϕ 2
(2)

(3)

2D diffusion in ethanol/water mixtures has been simulated using Fick’s law.
Initial simulations are also shown for the Cahn-Hilliard model.

Both Fick’s diffusion law and the Cahn-Hilliard
model have been discretised through the finite
volume method, using the FiPy library in Python.
The boundary conditions correspond to zero
gradient, and the initial conditions resemble the
microscale shown in Figure 2: a layer of solvent
and a layer of antisolvent.

Preliminary results

Initial conditions

t = 18.75 min

t = 2.27 h

Conclusion

Cahn-Hilliard model

ϵij = 0.005, a = 0.1

The preliminary results obtained for the Cahn-Hilliard model allow to
simulate the oiling-out process, which occurrence depends on the value of
ϵ in relation to a. In comparison, in Fick’s law the system always results in
homogeneous mixing. Incorporating Maxwell-Stefan diffusion and
expanding the model to multicomponent mixtures will enable us to
accurately simulate the L-L separation phenomenon for realistic systems.

Figure 1. Ternary phase diagram illustrating
that the crystallisation path dictates which
outputs are obtained.

Macroscale

Antisolvent
Solvent

Microscale

Figure 2. Diagram illustrating the different
scales of mixing in a crystalliser.

ϵij = 0.05, a = 0.1D = 1.6 · 10−5 cm2/s
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