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Research Aims

+ Research problem: Crystal shape is one of the key attributes affecting the bulk particle
properties of a crystalline material as well as its downstream manufacturability’. However, the
prediction of experimental crystal shapes remains very challenging.

« This research aims to explore the potential application of machine learning algorithms to solve
this problem.
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Figure 1. The expected outcome of the research

Research Methodology

Solubility Test

+ Using a multi-reactor crystallisation platform (Crystal16): Measure real-time turbidity of sample
solutions at different concentrations and determine solubility from clear points (%transmission
= 100%) at specific temperature.
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Figure 3. Van't Hoff plot of mefenamic acid
in ethanol

Figure 2. Crystallisation conditions used in
Crystal16 for solubility analysis

The solubility curves were then used to calculate the degree of supersaturation for subsequent
crystallisation screening.

Cooling crystallisation screening

+ Sample solutions were prepared at different
initial concentrations.

The samples were heated on a hot plate to get
clear solutions and then left in an incubator at
25 °C without disturbance until crystals occur.
* The crystal were observed under an optical
microscope.

Crystal images from 261 samples were
collected and classified into either polyhedral
crystals, needles, or no crystals.

Random Forest Classification Models

+ 87 models were prepared differently.

« The first 3 models were evaluated by 4-fold
cross-validation, while the others were
evaluated by using the data in which the
samples were crystallised from 1 specific
solvent as the test data.

Figure 5. needle crystals
(The right-hand side picture shows needle
crystal agglomerates or spherulitic crystals)

Model 1

* 3-class prediction (134 polyhedral,
83 needle, 44 no crystal)

* Model's variables:
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Results & Discussions

Model Evaluation

Model performance using crystal shape observations from all solvents in

the training set

Three random forest classification models were built initially to determine the efficacy of this
method and understand the extent to which the class imbalance present in the dataset would
affect prediction accuracies.

Table 1 Model evaluation by 4-fold cross-validation of Models 1, 2 and 3.

(SD = standard deviation)
Model 1 Model 3 (2 classes
(3 classes) w/o class-imbalance)
Accuracy by 4-fold 82.4% 93.3%
cross validation (SD = 3.1%) (SD =5.3%)

Model 2 (2 classes
w/ class-imbalance

93.5%
(SD = 2.1%)

The result shows that Model 1, which predicts 3 crystal outcomes, has the lowest accuracy
compared to the models predicting 2 crystal outcomes. Considering Model 2 and Model 3, the
model accuracies indicate that the class imbalance observed in Model 2 did not noticeably
affect the model performance. Consequently, the dataset used in Model 2 will be used for the
further models discussed below.

Prediction of crystal shape from solvents not included in the training set

To determine the ability of the models to predict crystal shapes from solvents for which no
data was present in the training set, the observations for a single solvent were removed
from the training data of each model (Mode/ 4 — 31).

Feature selection: Mode/ 32 — 59 and Model 60 — 87 (see details in Figure 6)

The performance accuracy was then assessed using the crystal shapes for the observations
that were excluded from the training data.

Table 2 Number of the models in which the prediction accuracy was 100% and less than 50%

Numbers of models grouped by prediction accuracy

Prediction
Atom counts/bond counts + Physical
accuracy All solvent descriptors
pharmacophore features properties
100% 10 10 12
Less than 50% 12 11 8

In total, 32 out of 84 models predicted the shape of mefenamic acid crystals with 100%
accuracy, and the models using only physical property descriptors and supersaturations as the
model variables resulted in the best overall prediction accuracy across all solvents.

Characterisation of mefenamic acid crystals grown in triethylamine

Further crystal characterisation was done for the crystals grown in solvents with the models
showing low prediction accuracy. All samples were consistent with mefenamic acid form-I
except the sample crystallised from trimethylamine which exhibited a notably distinct XRPD
pattern (Figure 7a) and the crystals observed under a microscope also exhibit thinner flat
plates than the plate crystals of mefenamic acid form-I crystallised from the other solvents
(Figure 7b)

Conclusion
RF classification can be a useful tool to predict the experimental crystal shape of MFA. Our
two-class RF classification model resulted in 93% of prediction accuracy. For solvents that
were excluded from the training set, the model which expressed poor performance also

« All MOE molecular
descriptors of solvents

* Solvent’s boiling point /
melting point

« Solvent’s density

* Solubilty of MFA at 25 °C

« Supersaturation
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* 2:class prediction

* Training set: 27 solvents
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* Model's variables:
* Physical properties
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Figure 6. Diagram showing the dataset and variables used in each models
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