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Keywords: In critical infrastructure applications, timely and consistent fault detection and diagnosis is an increasingly
Condition monitoring important operational process, especially in the energy sector where safety is of the utmost importance. To
Expert systems realise this, engineers have to manually analyse data acquired from several assets using predefined diagnostic
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Automation

Signal to symbol transformation

processes, but this is a time-consuming process requiring significant amounts of specialist expert knowledge.
Data-driven approaches to support fault detection and diagnosis, and other similar problems, can produce
accurate results comparable to what the engineers can achieve in a fraction of the time. However, the majority
of these data-driven techniques are black box techniques and lack explainability which is often necessary for
explaining decisions about critical assets in the power generation industry. Knowledge-based systems, such as
rule-based expert systems have been shown to provide not only accurate decisions but also the explanation
and reasoning behind these decisions in some related applications. However, there is a significant time cost
associated with the development of knowledge-based systems, and in particular with the knowledge elicitation
process, where the domain expert’s knowledge is formalised and is encoded into the system. This challenge is
commonly referred to as the knowledge elicitation bottleneck.

In this paper, we present a novel approach to performing the knowledge elicitation using a set of symbolic
primitives (rise, fall, fluctuate, and stable) to parameterise typical time-series condition monitoring data. The
knowledge is represented by using a common language that can easily be communicated with (and from) the
domain experts. This allows for the quick and accurate elicitation of the domain experts knowledge, but also
the formalisation and implementation of the knowledge into a rapidly produced diagnostic system. Further to
this, due to the parametrisation of the knowledge, it is possible to iteratively improve the knowledge base by
updating these parameters based on new unseen data. This approach was applied to the Tennessee Eastman
dataset, which is simulated data of a real-world industrial process. It was found that by using this approach
it was possible to accurately and quickly capture the knowledge required to detect several faults within the
case study dataset, but also provided fully explained reasons why each fault was detected by relating the
explanations to the symbolic primitives previously defined.

1. Introduction Evaluation of faults is traditionally a time-consuming, manually in-
tensive process and automation of this process provides the opportunity

For many critical assets across the power generation sector, accurate to introduce efficiency savings. To ensure the adoption of any auto-
and efficient fault detection and diagnosis are extremely important. mated approach similar or improved accuracy must be achieved over

This is due to both the overriding need to ensure safe continued oper-
ation of the asset and the costs associated with downtime of the plant,
through reduced or zero power generation but also with potentially
expensive and time-consuming repairs or replacements, and also the
cost related to the time associated with diagnosing said fault.

what can already be achieved manually by the engineers. Two main
approaches to automating fault diagnosis are; data-driven approaches
and knowledge-based approaches. With the increases in computing
power available over the last two decades, it has been observed in Liu
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et al. (2018) that there has been a huge swing to more data-driven
approaches over the traditional knowledge-based approaches. How-
ever, for many critical assets in power generation there is often a
requirement to provide supporting evidence when making decisions
and before implementing related solutions, due to the costs associated
with reduced power generation, or expensive repairs or replacements.
Hence, the lack of explainability of many data-driven approaches is
currently a problem that is being extensively researched (Chakraborty,
Basagaoglu, and Winterle (2021) and Moradi and Samwald (2021)),
however, this is a problem that is yet to be solved. In addition to
this, due to many of these types of assets having conservative design
tolerances, to compensate for and avoid lost revenue during downtime,
there is frequently a lack of failure case studies to train data-driven
techniques and ensure their accuracy or effectiveness.

Knowledge-based techniques present an opportunity to address both
the lack of: explainability; and, training data by capturing and codifying
the domain expert’s knowledge and expertise. Expert knowledge is
a direct replacement for explainability as diagnostic results can be
traced back to the knowledge from which it was derived. Training
of models is not required as the model, in this case, is one of the
expert’s knowledge, which is assumed to contain years of experience
and training. This knowledge in many cases has already been recorded
through documented diagnostic procedures, however, this is not always
complete enough to be formalised into the rules for a knowledge-
based system. The main drawback of this type of approach is the time
taken to elicit this required knowledge from the engineers to enable
this approach. In Cullen and Bryman (1988) this has been coined the
“knowledge elicitation bottleneck”.

This paper presents a novel approach for tackling elements of
the knowledge elicitation bottleneck for fault diagnosis problems and
provides a case study of its use with a publicly available engineering
data set. The next section of this paper provides more details of the
various approaches to automated fault diagnosis, with an overview of
the trade-offs between data-driven and knowledge-based approaches.
This is important as most data driven approaches, by their nature
lack the explainability inherent in knowledge based approaches have.
Although, for knowledge-based approaches to become more viable the
time taken to develop these systems needs to be addressed. Section
three presents the various current approaches to perform knowledge
elicitation for the development of knowledge-based systems. A new
streamlined approach to performing knowledge elicitation using sym-
bolic primitives is presented in section four, along with a step by step
process for how to perform a knowledge elicitation session using this
approach. This looks to address the issue of the time taken in the
development of these systems, specifically in the knowledge elicitation
phase. Section five demonstrates the proposed approach for knowledge
elicitation and the development of a prototype expert system using a
condition monitoring case study dataset. Conclusions and future work
are presented in section six.

2. Background
2.1. Fault diagnosis

Fault diagnosis in many industrial applications involves engineers
following a predefined diagnostic procedure. These procedures have
typically developed over many years based on physical laws, industry
standards and the engineers understanding of the specific asset under
analysis and how the individual process variables, e.g. temperature,
vibration, pressure, flow, current, voltage, etc., change under different
fault conditions. Based on these factors, the engineers will look for
features, or trends in the specific process variable to determine if a
fault condition has been met, then by cross-referencing this with the
current operating conditions of the plant will determine if any actions
are required to be undertaken.
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Fig. 1 shows an example of an industrial fault detection (or trou-
bleshooting) procedure (Asturias & Gagen, 2007). This process involves
splitting the troubleshooting process into two stages, first identifying
the issue and secondly performing the actual repair. The seven steps
that must be taken to identify the fault are; gather information, verify
the issue, try quick fixes, use appropriate diagnostics, perform a split-
half search, use additional resources to research the issue, and escalate
the issue (if necessary). In this example diagnosis process, after gath-
ering the relevant data the system has to be assessed by an expert, as
referenced by “schedule service call”, to verify the problem, failing any
quick fixes resolving the issue, an extensive diagnostic procedure has
to be undertaken involving; running diagnostics, performing a split-
half search, and general research into the problem. Each of these steps
can be a very time-consuming process for the experts, therefore, it is
advantageous to automate as much of this process as possible.

The main parts in these types of processes that can be automated
relate specifically to the assessment of gathered information or data,
running diagnostics, assessing how the data changes over time, and
how the relationship between various datastreams change all under
different fault conditions.

The two approaches discussed in this paper to automate these
steps are categorised into data-driven approaches and knowledge-based
approaches.

2.2. Data-driven approaches

There are several data-driven approaches to automated fault diag-
nosis, however, the current state of the art is predominately Machine
Learning oriented.

A convolutional neural network-based approach to fault diagnosis
is proposed in Wen, Li, Gao, and Zhang (2018), the authors highlight
the limitation of the approach being able to classify common fault
conditions, i.e. those that have a large amount of labelled training
data available. Therefore, for faults that have not been learned the
technique would be unable to classify them. The authors of Guo, Lei,
Xing, Yan, and Li (2019) propose a deep convolutional transfer learning
network (DCTLN) method for fault diagnosis of unlabelled data. The
results show that the DCTLN trained on labelled data from one machine
could accurately classify unlabelled data acquired for a new machine.
As before, this approach requires labelled data to exist for a machine
similar to the machine currently being analysed. In Ding, Ma, Ma,
Wang, and Lu (2019) the authors propose a generative adversarial
network-based approach in an attempt to solve the “small sample size
problem”, by producing an augmented training dataset that was used
to accurately classify the given faults. Also in Meng, Guo, Pan, Sun,
and Liu (2019), the authors propose a new data augmentation by
segmenting the sample data and randomly recombining the segments
to artificially produce a larger amount of training data.

From the literature, for industrial fault diagnostics for a critical asset
where there is extremely limited labelled faulty training data (if any
at all) and supporting evidence is required when making diagnostic
conclusions; in general, machine learning or data-driven approaches
are unable to solve this type of problem. This is mainly due to the
large amount of training data required to learn the faults or the lack
of explainability due to the black-box nature of these techniques. In
addition to this, for these types of industrial problems, there is a signif-
icant amount of domain expert knowledge available due to the current
engineers having to perform this fault diagnosis process manually. The
process of incorporating the domain expert knowledge into data-driven
models is currently an active area of research but is far from a trivial
problem (Deng, Ji, Rainey, Zhang, & Lu, 2020).
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Fig. 1. General Troubleshooting Flowchart (Asturias & Gagen, 2007).

2.3. Knowledge-based approaches

An alternative class of methods to solve this problem involves
knowledge-based approaches. Unlike data-driven approaches,
knowledge-based approaches do not require a large amount of training
data to be available, but instead, encode a significant amount of
expert knowledge or human expertise into the system that can be
used to perform fault diagnosis. As the domain experts knowledge is
encoded into the system, they are not only able to produce diagnostic
conclusions but are also able to explain the reasoning behind why a
decision has been made.

In Qian, Li, Jiang, and Wen (2003) the authors present an expert
system for fault diagnosis of chemical processes, using a pre-existing
knowledge base. A Vibration-based expert system is presented in Yang,
Lim, and Tan (2005) and uses a decision tree style approach to perform
the analysis. This decision tree is generated from the cause-symptom
matrix presented in Jackson et al. (1978). Due to the nature of how the
rules are formalised and stored in a rule-based expert system, having
low generality and low expandability (Gao, Cecati, & Ding, 2015) a
task-based diagnostic expert system was proposed in Bo, Zhi-nong,
and Zhong-qing (2012). This allows for the rules to be customised for
specific assets and stored as more general rules, however, this also
requires a well-structured logic to exist and applies only to similar
assets.

As stated in Angeli (2010), Rafea, Hassen, and Hazman (2003),
and Shadbolt and Smart (2015) the main hurdle to overcome in the

development of knowledge-based systems is the knowledge elicitation,
or knowledge acquisition, bottleneck. Various research has been under-
taken in an attempt to solve this problem (Chen & Rao, 2008; Wagner,
Otto, & Chung, 2002; Xing, Huang, & Shi, 2003; Xiong, Litz, & Ressom,
2002), however, the majority of this research has focused on ways of
extending the current knowledge elicitation techniques by the inclusion
of more participants or additional data sources.

3. Knowledge elicitation

Knowledge elicitation is the process of attempting to elicit knowl-
edge from domain experts using various types of methods and tech-
niques. This information can be gathered from a variety of sources,
e.g. technical manual, case studies, textbooks, etc., however, this is
typically done by direct interaction with the domain expert. Generally,
this is because the knowledge is often derived through practical expe-
rience. This implies that there is often the requirement for the expert
to be involved in the knowledge elicitation process, representing the
main challenge for the knowledge engineer. The person conducting
the knowledge elicitation session is therefore required to determine
an appropriate way for the experts to communicate their knowledge.
The approach proposed in this paper aims to build on this premise
by developing an approach that is both familiar to the domain expert,
easy for them to communicate their understanding, and also easy to
codify this knowledge into a knowledge base. Additionally, issues arise
during knowledge elicitation, for example, due to the nature of the
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knowledge being acquired by the expert over several years and hence
becoming part of their routine, it can often, therefore, be difficult for
the experts to formalise their knowledge. Also, for larger organisations,
the knowledge can be distributed across a number of experts in various
geographical locations or with different management oversight.

Various approaches can be used to perform this knowledge elic-
itation. The main techniques have been categorised into five main
categories (Shadbolt & Smart, 2015); interviews, protocol analysis,
diagramming, sorting and rating, and constrained processing which are
shown below:

« Interviews
— Structured

* Fixed Probe (Shadbolt & Burton, 1990)
+ Focused Interviews (Hart, 1989)

* Forward Scenario Simulation (Grover, 1983)
% Critical Decision Method (Hoffman, 1998)

— Semi-Structured

x Knowledge Acquisition Grid (LaFrance, 1987)
x Teach Back (Johnson & Johnson, 1987)

— Unstructured (Weiss & Kulikowski, 1984)
» Protocol Analysis
— Verbal

* Online (Johnson, Zualkernan, & Garber, 1987)

x Offline (Elstein, Shulman, & Sprafka, 1978)

* Shadowing (Clarke, 1987)

x Collegial Verbalization (Erlandsson & Jansson, 2007)

— Behavioural (Ericsson & Simon, 1984)
+ Diagramming

— Laddered Grid (Corbridge, Rugg, Major, Shadbolt, & Burton,
1994)

— Concept Mapping (Novak & Canas, 2006)

— Process Mapping (Milton, 2012)

+ Sorting and Rating

— Concept Sorting (Gammack, 1987)
— Repertory Grid (Shaw & Gaines, 1987)
— Pathfinder (Schvaneveldt et al., 1985)

+ Constrained Processing

— Limited-Information Task (Hoffman, 1987)
— 20 Questions (Grover, 1983)

Each of these approaches has different positives and negatives, and a
full discussion of this is beyond the scope of this paper. However, the
main negative for all of these approaches is they are time-consuming for
both the knowledge engineer and the domain expert. They also either
require face to face meetings between both parties which takes time
away from the day job of the domain experts, or requires access for the
knowledge engineer to observe the domain expert performing the task,
which for certain industries may not be possible.

4. Methodology
4.1. Background

In the literature, it is agreed that the knowledge elicitation bot-
tleneck is a major problem to overcome before being able to rapidly

develop and deploy industrial fault diagnostic expert systems. The
novel approach proposed in this paper alters the typical expert system
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Fig. 4. Example signal to symbol transformation of two time series data sources.

architecture by the inclusion of a signal to symbol transformation
(SST) Costello, West, McArthur, and Campbell (2012) and Young, West,
Brown, Stephen, and McArthur (2019) step. Fig. 2 shows the updated
expert system architecture with the inclusion of an SST between the
real world view of data and the inference engine.

SST is used to transform time series data gathered from the asset
into a series of symbolic primitives that accurately represent the data.
This is achieved by segmenting the data into discrete time intervals,
then for each time segment a symbolic primitive is assigned, examples
of, these primitives are intentionally rationalised (to minimise com-
plexity) as: rising, falling, fluctuating or stable, see Fig. 3. However,
the symbolic primitives can be customised for the specific application.
An example of this applied to two-time series data sources is shown in
Fig. 4.

The asset-specific knowledge that needs to be elicited from the do-
main experts is the subtle difference for each symbolic primitives. Each
of the differences for each primitive has been assigned a parameter,
this is shown in Fig. 5. Fig. 3(a) shows an example of how the x and y
parameters are defined for a stable trend. Here the parameters define
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Table 1

Example format of pressure datastream specific rules. (- is Stable, F is Fluctuating, 1 is Rising and | is Falling).

Name D1 X y z D2 X y z D3 X y Z D4 X y z
Fault 1 1.5 2.0 N/A 1 600 2.0 0.25 1 600 1.5 0.5 F 600 10 N/A

(b) Rising

=
o

(c) Falling

(d) Fluctuating

Fig. 5. Definition of parameters for subtle difference in symbolic primitives. Where u
is the mean of the signal.

the maximum deviation from the mean of the signal, both in terms
of an increase and a decrease. Conversely, Fig. 3(d) gives an example
of a fluctuating trend, for the data samples that fall outside of the
stable regions, the number of fluctuations (mean crossings) is calculated
if this is above the threshold defined by y the signal is considered
fluctuating. For Fig. 3(b) and Fig. 3(c) the x, y and z parameters are
defined the same except where y defined an increase for a rising trend
and a decrease for a falling trend. The x parameter defines the time the
trend occurs over and the z parameter is the expected deviation in the
rise or fall of the trend.

By eliciting a combination of symbolic primitives for specific datas-
treams and eliciting for each of the x, y, and z parameters for each
primitive it will be possible to construct a rule that can be directly
interpreted by an expert system.

4.2. Knowledge elicitation session

In the previous subsection, an approach to alter the standard expert
system architecture was described to include a SST step that allows for
the parametrisation of the expert knowledge required to perform fault
diagnosis. In addition to this, four example symbolic primitives were
described and how each of these symbols were parametrised.

This section describes how framing the problem in this manner
allows for more efficient domain knowledge capture from engineers
in a knowledge elicitation session. In all of the knowledge elicitation
approaches mentioned in Section 3, the knowledge engineer has to
understand the process that the expert adopts when analysing their
problem. The proposed approach simplifies the explanation of this
process into several key questions; What datastreams are relevant to the
given fault?, What trends are associated with the relevant datastreams?,
What is the expected magnitude of these trends?, and How long will the
fault take to manifest?

Below, we provide a step by step description of how to perform a
knowledge elicitation session using the proposed approach.

0. Fault selection: The fault selection step, numbered step zero in the
process as it occurs before the knowledge elicitation session. In this
step, the domain experts must collate example case studies for each

Algorithm 1: Signal to symbol transformation. Where x, y and
z are defined in Fig. 5

if 50% of data (< x*mean(data) or > y*mean(data)) then
| Result: Stable

else if Number of mean crossings >y then
| Result: Fluctuating
else
Calculate average of first and last 10% of data for x period of
time;
if First < y*Last + z*Last then
| Result: Rising
else if First > y*Last + z*Last then
| Result: Falling

fault they want the system to be able to detect. Ideally, this should
be in a digital format (e.g. plots of process variables from a condition
monitoring system) to allow for ease of sharing, and accurately defining
of parameters in Step 4.

1. Datastream selection: The initial stage in the knowledge elicitation
session, is datastream selection. Based on the case study data under
investigation and supplied from the domain experts, all datastreams
except the specific datastreams they would use to determine the fault
are eliminated. In the case of the eliminated datastreams, these “Don’t
care” or “N/A” states are ignored and not referenced in the diagnostic
process.

2. Time Interval selection: The second stage involves exploration of
the case study data, to determine the approximate time frame/scale
during which the fault will present or develop. That is the time from
steady-state normal operation to a fault occurring, or being fully rep-
resented in the datastreams under analysis. Using the SST as described
above, this time is used to segment the data. While this time interval
does not need to be exact, and it is assumed that no two fault cases will
be the same, a relatively accurate time interval is necessary to produce
an accurate rule for the expert system.

3. Symbolic Primitive selection: For the next stage, each datastream
is required to be assigned a symbolic primitive. Fig. 5 shows an example
of four trends that can be used, however, additional primitives can be
added to this list assuming appropriate parameters are defined for each
new primitive.

4. Parameter Calculation: The final stage before a rule can be pro-
duced involves the setting of the individual parameters. Algorithm 1
shows pseudocode for how the symbolic primitive can be defined for
individual time segments using the four previously defined primitives.
As before this can be updated with the addition of new symbolic
primitives.

5. Diagnostic Rule Induction: Implementation of the pseudocode
shown in Algorithm 1, allows for the symbolic primitives to be calcu-
lated for any input datastream. A diagnostic rule can then be stored
in the knowledge base for any number of datastreams, as shown in
Table 1.

5. Case study: Tennessee eastman process simulation data
5.1. Background

The Tennessee Eastman process is a hypothetical set of intercon-
nected industrial processes based on the physical behaviours of actual

plant that was modelled computationally by Downs and Vogel (1993).
The process contains five major units: the condenser, compressor,
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Fig. 6. Schematic diagram for the Tennessee Eastman Process (Ragab, El-koujok, Amazouz, & Yacout, 2017).

reactor, vapour/liquid separator and the product stripper, as shown in
Fig. 6. This dataset has been used extensively in many areas including
fault detection, plant-wide control, and statistical process monitoring.
In Lomov, Lyubimov, Makarov, and Zhukov (2021) a temporal deep
learning model was proposed and in Krishnannair and Aldrich (2017)
the use of nonlinear singular spectrum analysis is proposed both for
the purposes of fault detection. The dataset used in this section is
the “TEP_Faulty Training” portion of the Tennessee Eastman Process
dataset (Averkiev, 2020). This contains 52 individual monitored pro-
cess variables, detailed in Table 7, and 8. This portion of the dataset
contains 500 simulations of 20 specific fault types each with 500 sam-
ples per fault. The sampling rate for the dataset was 3 min, therefore
giving approximately 40 years worth of condition monitoring data with
complete ground truth.

5.2. Knowledge capture

Using the process proposed in this paper the knowledge necessary
to capture each of the five faults in the dataset was captured. For the
application case study, as there were no domain experts involved in
the process, all 52 datastreams were assessed visually to determine
which datastreams were necessary to detect the given fault. To pro-
vide substantially different faults, fault numbers 1, 2, 5, 6, and 7 (as
defined in the dataset) were selected for analysis. For Fault 1, this was
assessed as xmeas_1, xmeas_4, xmeas_7, xmeas_13, xmeas_16, xmeas_19,
xmeas_22, xmeas_34, xmv_3, xmv_4, and xmv_9, the individual time
segments relating to fault 1 are shown in Fig. 7.

For each of the ten datastreams selected, three randomly selected
examples of fault 1 were selected. The signal to symbol transformation
was then performed. For the rising and falling trends the average rise
or fall was taken as the y parameters, and the max variation was taken
as the z parameter. Fluctuating trends are defined as the number of
mean crossing from the segment of data, therefore, the y was defined
as the max mean crossings out of the three examples. Finally, the stable
trends were defined as the range where less than 50% of the data was

Table 2
Extracted knowledge for fault 1 formulated into rules. U is a rising trend, D is a falling
trend, F is a fluctuating trend and S is stable.

Variable Fault 1 Variable Fault 1

xmeas_1 U, 500, 1.70 xmeas_19 U, 500, 0.05

xmeas_4 D, 500, 0.04 xmeas_34 U, 500, 0.01

xmeas_7 F, 500, 35 xmv_3 U, 500, 1.70

xmeas_13 F, 500, 35 xmv_4 D, 500, 0.03

xmeas_16 F, 500, 35 xmv_9 U, 500, 0.07
Table 3

Extracted knowledge for fault 2 formulated into rules. U is a rising trend, D is a falling
trend, F is a fluctuating trend and S is stable.

Variable Fault 2 Variable Fault 2
xmeas_3 U, 500, 0.02 xmeas_34 D, 500, 0.60
xmeas_4 U, 500, 0.01 xmeas_35 U, 500, 0.01
xmeas_10 U, 500, 0.98 xmeas_36 U, 500, 0.02
xmeas_16 F, 500, 32 xmeas_39 D, 500, 0.25
xmeas_18 D, 500, 0.02 xmv_2 U, 500, 0.02
xmeas_19 D, 500, 0.40 xmv_6 U, 500, 0.97
xmeas_22 U, 500, 0.02 xmv_9 D, 500, 0.45
xmeas_28 D, 500, 0.62
Table 4

Extracted knowledge for fault 5 formulated into rules. U is a rising trend, D is a falling
trend, F is a fluctuating trend and S is stable.

Variable Fault 5
xmeas_22 S, 500, 0.01
xmv_11 U, 500, 0.07

outside of the boundary. The extracted knowledge for Fault 1 is shown
in Table 2. As there are 500 samples per fault in the dataset the time
interval for each piece of knowledge was set to 500. This process was
then repeated for the remaining 4 faults, and the extracted knowledge
is shown in Tables 2 to 6.
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Fig. 7. Captures of knowledge for fault 1.

Table 5
Extracted knowledge for fault 6 formulated into rules. U is a rising trend, D is a falling
trend, F is a fluctuating trend and S is stable.

Variable Fault 6 Variable Fault 6

xmeas_3 D, 500, 0.03 xmeas_28 D, 500, 0.08
xmeas_7 U, 500, 0.10 xmeas_29 D, 500, 0.49
xmeas_10 D, 500, 0.34 xmeas_30 D, 500, 0.01
xmeas_11 D, 500, 0.08 xmeas_31 U, 500, 0.56
xmeas_13 U, 500, 0.10 xmeas_34 D, 500, 0.12
xmeas_16 U, 500, 0.10 xmeas_35 D, 500, 0.35
xmeas_18 U, 500, 0.02 xmeas_36 D, 500, 0.42
xmeas_19 U, 500, 0.96 xmeas_38 U, 500, 0.19
xmeas_20 D, 500, 0.09 xmv_2 D, 500, 0.01
xmeas_22 D, 500, 0.04 xmv_3 U, 500, 2.11
xmeas_23 D, 500, 0.28 xmv_4 U, 500, 0.21
xmeas_24 D, 500, 0.01 xmv_6 D, 500, 4.68
xmeas_25 U, 500, 0.32 xmv_9 U, 500, 1.06

The final step was to take all the data gathered in the above tables
and implement each of them into a separate rule. Any datastreams not
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Table 6
Extracted knowledge for fault 7 formulated into rules. U is a rising trend, D is a falling
trend, F is a fluctuating trend and S is stable.

Variable Fault 7
xmeas_22 S, 500, 0.01
xmv_4 U, 500, 0.19

mentioned in the tables were set as “don’t care” states. This produced
a knowledge-based expert system that contained 5 rules that were able
to accurately detect Faults 1, 2, 5, 6 and 7 from the Tennessee Eastman
Process dataset.

5.3. Results

Using this approach it was possible to produce a system that can
accurately detect specific types of faults in the condition monitoring
dataset. Out of the 10,000-time segments analysed only 8 (0.08%)
false positives were produced, these were 6 from fault class 1 and
2 from fault class 2. Slightly more false positives were produced, 55
(0.55%) fault class 5 and 7 faults class 7 were detected as no-fault.
However, as this system was being designed for fault diagnostics, more
false positives and fewer false negatives was preferred. There was
also 2 (0.02%) instances of fault class 1 that was detected as fault
class 5, however, upon further analysis, it was visually impossible to
differentiate these two instances for the general fault 5 class. Fig. 8
presents a confusion matrix for the full system.

6. Comparison with state-of-the-art

The methods highlighted in Section 3 are general approaches that
can be applied to the capture of a wide range of knowledge from a
broad range of domains. In this paper, we focus on the capture of a
specific class of knowledge, that is associated with the interpretation of
time series data. By constraining the type of knowledge being elicited
allows additional structure to be placed around the representation
of the captured knowledge, which in turn offers the opportunity to
streamline the process.

Comparing approaches for the capture of human expertise is chal-
lenging, not least in that no two subject matter experts will respond to
the interview process in the same manner, and attempting to elicit the
same knowledge from the same expert, using two different methods in
consecutive sessions is going to favour the latter method as the expert
will be re-running through the same material. To attempt to address
this issue a study was performed which compared the capture of a set
of condition assessment rules derived for the health of an industrial
asset through the examination of multiple streams of time series data.
A subset of the rules pertaining to a specific fault mode were captured
using a structured interview process, while a second subset of rules for
a different fault mode was captured using the proposed methodology.
In the former, 2 three hour knowledge elicitation sessions were held
with the domain experts and it was possible to understand the prob-
lem, capture the relevant datastreams, and capture the relevant rules,
however, within these two sessions it was not possible to parametrise
the rules. For the same problem, in 1 two hour knowledge elicitation
session it was possible to capture the relevant datastreams, capture
the relevant rules, and parametrise the faults detected in four different
case study datasets. While the specifics of the rules and parameters
captured in each of these approaches are different, it was felt that they
were suitably similar to permit valid comparisons in terms of the time
required to be drawn. In conclusion, comparing the proposed technique
with the standard structured interview, showed in this example a
twofold saving in time.
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Table 7 Table 8
Output variables of the Tennessee Eastman process. Input variables of the Tennessee Eastman process.
Variable Description Variable Description
Xmeas_1 A feed (stream 1) Xmv_1 D feed flow (stream 2)
Xmeas_2 D feed (stream 2) Xmv_2 E feed flow (stream 3)
Xmeas_3 E feed (stream 3) Xmv_3 A feed flow (stream 1)
Xmeas_4 Total feed (stream 4) Xmv_4 Total feed flow (stream 4)
Xmeas_5 Recycle flow (stream 8) Xmv_5 Compressor recycle valve
Xmeas_6 Reactor feed rate (stream 6) Xmv_6 Purge valve (stream 9)
Xmeas_7 Reactor pressure Xmv_7 Separator pot liquid flow (stream 10)
Xmeas_8 Reactor level Xmv_8 Stripper liquid product flow
Xmeas_9 Reactor temp Xmv_9 Stripper steam valve
Xmeas_10 Purge rate (stream 9) Xmv_10 Reactor cooling water flow
Xmeas_11 Separator temp Xmv_11 Condenser cooling water flow
Xmeas_12 Separator level Xmv_12 Agitator speed
Xmeas_13 Separator pressure
Xmeas_14 Separator underflow (stream 10)
Xmeas_15 Stripper level
Xmeas 16 Stripper pressure from purely data drive black-box approaches. As a result, the capture
Xmeas_17 Stripper underflow (stream 11) [P o qs . . .
) and codification of specialist knowledge relating to the interpretation

Xmeas_18 Stripper temperature o o . R X
Xmeas_19 Stripper steam flow of condition monitoring data is of importance, and the issue of the
Xmeas_20 Compressor work knowledge elicitation bottleneck still exists.
Xmeas 21 Reactor cooling water outlet temp This proposed approach has been shown to offer benefits in terms
Xi 22 d li t tlet t . . . . .

meas. Condenser cooling water outlet temp of time-saving. Historically, the main drawback to the development
Xmeas_23 to Composition of A to F . A ) )
Xmeas 28 (stream 6) of these types of systems was the time involved in the capturing
Xmeas_29 to Composition of A to H of domain expert knowledge from already time-poor engineers. The
Xmeas_36 (stream 9) reduction in time, specifically in the knowledge elicitation phase, from
Xmeas_37 to Composition of D to H a business perspective and the development of these types of systems
Xmeas_41 (stream 11)

7. Conclusion and future work

This paper has introduced a new approach to tackle the knowledge
elicitation process for a sub-set of problems, namely the codification
and capture of knowledge involved in the interpretation of time series
data. This type of problem is seen across many engineering domains
and is particularly prevalent in the development of expert systems for
supporting the health assessment of industrial assets. While knowledge-
driven approaches, such as expert systems were prominent in the
1980’s and 1990’s advances in neural networks, and in particular the
advent of deep neural networks have resulted in significant advances
in many Al applications. However, for many engineering applications
such as health monitoring and assessment of industrial assets, there
is still the need for the explainability that is currently unavailable

places much less of a time burden on the already busy engineers. Future
work will look at further reducing the time associated with capturing
the domain expert knowledge. This could be achieved through the
development of a learning algorithm that can process historical data
and automatically propose new rules based upon repeating patterns
that have been autonomously identified in historic data. This system
could be implemented in a human-in-the-loop fashion to allow for the
engineers to have the final say on what proposed rules are added to the
knowledge base.

This new approach to performing knowledge elicitation for
knowledge-based systems allows for the parameterisation of domain
expert knowledge and the rapid prototyping of an expert system. This
is important as there is an inherent brittleness in traditional expert
systems due to the formalisation of the knowledge, and the ease in
which the knowledge can be updated. It was demonstrated using a
case study that it was possible to produce a knowledge-based system
that can detect specific faults quickly and accurately. Also using this
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approach to formulate the knowledge in a symbolic manner results in
the explanation of the results in an accessible way that does not require
any specialist training. Due to the nature of how an expert system is
designed using this approach, updating specific parameters allows for
the iterative improvement of the knowledge base and hence the system
without the need to redesign the entire system. Future work will focus
on the development of an incremental learning algorithm to propose
improvements to existing domain knowledge based on user-defined
false positives and negatives.

This paper represents a step towards reducing the knowledge elic-
itation bottleneck, but there are limitations to the proposed approach.
It currently focuses only on the interpretation of time series data and
anticipates the captured knowledge will reason about trends in data.
Furthermore, temporal relationships between multiple data streams are
relatively common in condition monitoring data but have not been
fully addressed here. For example, seeing an increase in one parameter,
flow rate, for example, may result in a corresponding, but delayed
increase in value in another parameter, say temperature. Secondly, the
elicitation process is still predominantly a human to human process,
which is then transferred to the expert system. Significant research is
still required to enable the domain expert to directly interface with the
diagnostic system in a two-way manner, so that new knowledge can
be imparted into the system directly by the expert as new, previously
unseen faults arise. This data imbalance, where there are often large
volumes of normal operating data, and very few instances of failure
data is another common challenge, and capture and codification of
this diagnostic knowledge in a manner that they can be shared across
multiple instances of expert systems remains an open problem. Finally,
the other significant area of research in this field will be the integration
of the data-driven with knowledge-driven approaches, particularly if
large volumes of operating data can be leveraged to provide increased
confidence or evidence in the human-derived parametrised values.
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