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Machine Learning Workflows to Predict Crystallisability, Glass Forming Ability, mechanical properties of Small Organic Compounds.
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Crystallisability

Glass forming ability (GFA)

➢ Crystallisability: is the ability of a compound to nucleate fast/medium/slow. 
➢ Aim: To develop machine learning workflows to predict crystallisability.
➢ In order to predict the crystallization propensity, experimental screening and image data collection was 

performed using the workflow shown in figure 1. 
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Figure 2: Classification of images from experimental screening. 

Figure 1: Experimental screening workflow. 
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The images from screening were grouped into 6 different categories. 

➢ To  develop a predictive model for crystallisability, image analysis was performed on the time series images by following 
the sequence of steps as shown in figure 6. 

➢ The RF model developed for segmenting one image was used to perform automatic segmentation of time series images. 
➢ A plot of the decrease in mean background integrated intensity was used to classify datasets as fast, medium and slow 

nucleating.  
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Figure 5: Sequential steps to classify time series images

Figure 9: Confusion matrix of the data to predict crystallisability. 

➢ The results indicate a classification accuracy of ⁓73%.

➢ Glass forming ability (GFA)1: The GFA of a material is the ease of vitrification of liquid on cooling.

Based on the experimental DSC curves the compounds are divided into three classes.

Mechanical Properties

Aim: to develop ML based method to predict mechanical properties of small organic compounds.

What information do we need ?
1. A way to represent crystal structures for machine learning.
2. Mechanical properties dataset (calculated/ measured).

Crystal structures are represented as a set of barcodes.

• Each data point is represented as vertex (0-simplex)
• Every time two balls these balls intersect, you join an edge (1-simplex) between them.
• When three balls intersect then you draw a triangle (2-simplex).
• When 4 balls intersect, we draw a tetrahedron (3-simplex). 0-simplex 1-simplex 2-simplex

3-simplex

The simplicial complexes are generated using some simple rules where 

➢ The persistent barcodes capture all molecular and intermolecular distances in a crystal structure.

Workflow to calculate mechanical properties computationally.

➢Mechanical property calculations are using materials studio(CASTEP).
Geometry optimised, Constant strain method.
Functional: Generalized Gradient Approximation (GGA); Perdew, Becke and Ernzerhof (PBE) 

➢ The data from persistence homology + calculated mechanical properties were fed into ML workflow.

➢ Bulk modulus describes the response of the material 
to uniform pressure.

➢ The larger errors indicate we need more data points.
➢ The model was prepared using ~ 450 structures and 

their mechanical properties.

Using Bulk modulus as target

Summary

➢ML workflows are developed to predict crystallisability, glass forming ability , and mechanical properties of small organic 
compounds.

Training set

Test setRandom forest classification for GFA

Generic ML workflow

Many-objective process optimisation with constraints for 
continuous tableting lines: a case study in lovastatin
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Evolutionary algorithms for optimization analysis - PPS

• The optimal solutions are verified. 
• If the solution does not match the expectations, the models are re-trained and 

updated, and the process is repeated until satisfactory results are obtained.

Problem Definition

• Sample relevant data 
according to the design of the 
experiment, either from 
previous history or new 
experiments. 

• The data should be organized 
and pre-processed before 
modelling.

• Data types include input, 
output and constraints.

• The maximum and minimum 
values (box constraints) for 
each input value need to be 
determined.

Background: Digital design, assisted by data science, experienced significant progress over recent years 
within the continuous manufacturing in the pharmaceutical sector. 
Research Objective: The project focuses the fundamental research on robust numerical and visual 
performance indicators for assessing performance for many-objective optimisation algorithms under multiple 
constraints
Methods: A surrogate model-based machine learning algorithm is used, to train data-driven models that 
capture the manufacturing process behaviour. Then use optimisation algorithms to get optimal solutions.
Results: >75% dissolution release could be achieved in 45 minutes.
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Evaluatlon Results 

M.;iel AUC CA F1 Precision Recall 

SVM 0.609 0.600 0.593 0.588 0.600 

Random forest 0.873 0.739 0.741 0.747 0.739 

Neural Network 0.881 0.739 0.740 0.742 0.739 

Coolin 

~ Coolin 

j 
j I 

~ 
;: Secondheat 

j 
j 

Temperature re) 

-

~ 
~ 

Fast 

Fast 25 

Medium 

Slow 

38 

i! 

,.......,,,o 
Strathclyde 
Glasgow 

Vijay K Srirambhatla.*1 

-

Predicted 

Medium Slow 

30 :I 
30 

" 38 

Cooling 

Temperature("() 

~ Loughborough 
U University 

Od .. u 
o ust 
o u,1n 

lU obs . of 102 v.trblllu 
)Sobs. of 102 v.trt~\u 
SO obs. of 102 v1ri1bln 

int [l:lH) 12 1 2 2 112 11. 

,_o,on{...,..,l••<lou- ...... • .. • ••••"H•IOO, 
p, ........ ftl,t) 

ry,,oot•-·-·"···•""'••" ... 
No. of voruol n tc1M&t 0Kft1C1l1t : 10 

35 

40 

40 

115 

'k~' .. _...._._ ..... : .. : .. o• ... ·•: ,:":• • a , , • 

Crystal$trudure 

D 

/ · 
Ao::..--::.: 

AtomlccoordlllillH ~polnl d ., ... 

CCDC BOOTH WELSH 
Integrated Engineering Services 

> c..,,,.i .. ,...,i,<,,ui«(•f"•'•• uni, ,uucl&") 
""""'""" .... i . ...... .,;,.,., 

...,.,,1v1,, ............ 
K<O"'<dV>lu< ., ..... ,.., .. 
h1 >n<odA<<u•~• 

ti..., •<l>u: ,c1ou, C 
1.000 LOOOO 0.1141 
1,000 O,t116 ••-
1.<IOO O.llll 1.0000 , __ 1 .0000 0 .0600 

0. •11 . _, • ., . _. ,. , 
0.411 0.1<111 0. •161 
o. ,u o.Uo• O.HU 
1. 000 . _ .. ,. . _.,,, 

.. 
Simplici~complu 

~I MSE RMSE MAE R2 --~forflt 0.106 IH25 0.195 0995 

Neural Netwon( 0.&28 0 707 0.687 0.95-t 

G00..018oostmg 0.399 0.632 0.5-47 0.983 

10 IJ ,. LO,.,., U l4 .... .,., 

Bo.amodulus(Hil)(Ch) 

SIEMENS Q PERCEPTIVE 
---- ENGINEERING .. AA>llo<I--


