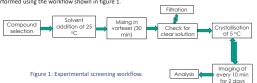
Machine Learning Workflows to Predict Crystallisability, Glass Forming Ability, mechanical properties of Small Organic Compounds.

Vijay K Srirambhatla, *1 Blair Johnston1,2, Alastair Florence1,2


¹EPSRC ARTICULAR, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK

²EPSRC CMAC Future Manufacturing Research Hub, University of Strathclyde, Glasgow, G1 1RD, U.K. E-mail: Vijay.Srirambhatla@strath.ac.uk

Crystallisability

Crystallisability: is the ability of a compound to nucleate fast/medium/slow

 ➤ Aim: To develop machine learning workflows to predict crystallisability.
 ➤ In order to predict the crystallization propensity, experimental screening and image data collection was performed using the workflow shown in figure 1.

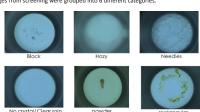
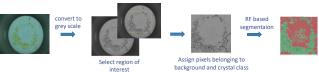
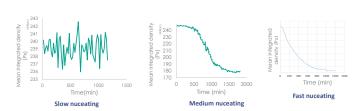
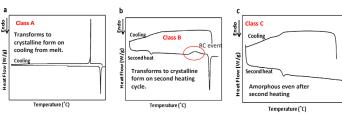




Figure 2: Classification of images from experimental screening.

> To develop a predictive model for crystallisability, image analysis was performed on the time series images by following

- > The RF model developed for segmenting one image was used to perform automatic segmentation of time series images
 > A plot of the decrease in mean background integrated intensity was used to classify datasets as fast, medium and slow nucleating.

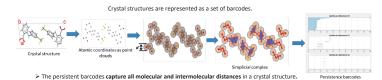


➤ The results indicate a classification accuracy of ~73%.

								Fast	Medium	Slow	Σ
Evaluation Results							Fast	25	6	4	35
Model	AUC	CA	F1	Precision	Recall	-	. Medium	6	30	4	40
SVM	0.809	0.600	0.593	0.588	0.600	ţ	5				
Random Forest	0.873	0.739	0.741	0.747	0.739	`	Slow	/	3	30	40
Neural Network	0.881	0.739	0.740	0.742	0.739		Σ	38	39	38	115
Figure 9: Confusion matrix of the data to predict crystall											rvstallisabilitv.

Glass forming ability (GFA)

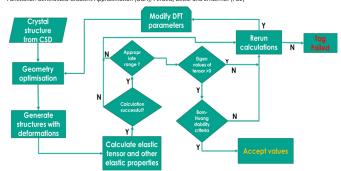
> Glass forming ability (GFA)1: The GFA of a material is the ease of vitrification of liquid on cooling.


Based on the experimental DSC curves the compounds are divided into three classes.

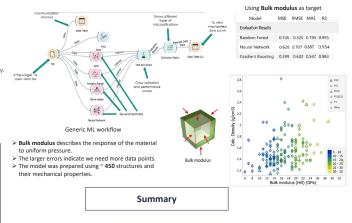
<u>Aim:</u> to develop ML based method to predict mechanical properties of small organic compounds.

What information do we need

- A way to represent crystal structures for machine learning.
 Mechanical properties dataset (calculated/ measured).



The simplicial complexes are generated using some simple rules where


- Each data point is represented as vertex (**0-simplex**)
 Every time two balls these balls intersect, you join an edge (**1-simplex**) between them.
 When three balls intersect then you draw a triangle (**2-simplex**).
 When 4 balls intersect, we draw a tetrahedron (**3-simplex**).
- Mechanical property calculations are using materials studio(CASTEP).

 Geometry optimised, Constant strain method.

 Functional: Generalized Gradient Approximation (GGA); Perdew, Becke and Ernzerhof (PBE)

> The data from persistence homology + calculated mechanical properties were fed into ML workflow

ML workflows are developed to predict crystallisability, glass forming ability , and mechanical properties of small organic

