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Machine Learning Workflows to Predict Crystallisability, Glass Forming Ability, mechanical properties of Small Organic Compounds.
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Random forest classification for GFA

‘ Crystallisability ‘ pata
odata
> Crystallisability: is the ability of a to nucleate fast/| ium/sl g:::"
> Aim: To develop machine learning to predict cr isabili T
» In order to predict the crystallization propensity, experimental screening and image data collection was ind
performed using the workflow shown in figure 1. .
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Figure 1: Experimental screening workflow. every 10 mi
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The images from screening were grouped into 6 different categories.
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Figure 2: Classification of images from experimental screening.

» To develop a predictive model for crystallisability, image analysis was performed on the time series images by following
the sequence of steps as shown in figure 6.

Select region of Assign pixels belonging to
interest background and crystal class
> The RF model developed for segmenting one image was used to perform automatic segmentation of time series images.
> A plot of the decrease in mean background integrated intensity was used to classify datasets as fast, medium and slow
nucleating.
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Figure 5: Sequential steps to classify time series images
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Mechanical Properties
Aim: to develop ML based method to predict mechanical properties of small organic compounds.

What information do we need ?

The simplicial complexes are generated using some simple rules where

1. A way to represent crystal structures for machine learning.
2. Mechanical properties dataset (calculated/ measured).

Crystal structures are represented as a set of barcodes.

Atomic coordinatesas point
Crystal structure clouds

Simplicial complex
Persistence barcodes

and il in a crystal structure.
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» The persistent barcodes capture all

Each data point is represented as vertex (0-simplex)
Every time two balls these balls intersect, you join an edge (1-simplex) between them.
When three balls intersect then you draw a triangle (2-simplex).
When 4 balls intersect, we draw a tetrahedron (3-simplex). .
2-simplex X
3-simplex

» Mechanical property calculations are using materials studio(CASTEP).
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» The results indicate a classification accuracy of ~73%. N
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Figure 9: Confusion matrix of the data to predict crystallisability.

Glass forming ability (GFA)

> Glass forming ability (GFA)1: The GFA of a material is the ease of vitrification of liquid on cooling.
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Based on the experimental DSC curves the compounds are divided into three classes.

Geometry optimised, Constant strain method.
Functional: Generalized Gradient Approximation (GGA); Perdew, Becke and Ernzerhof (PBE)
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Workflow to calculate properties

» The data from i + properties were fed into ML workflow.
Using Bulk modulus as target
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their mechanical properties.
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Summary

» ML workflows are developed to predict crystallisability, glass forming ability , and mechanical properties of small organic
compounds.
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