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Abstract Fractional hereditary materials are charac-
terized for the presence, in the stress-strain relations,
of fractional-order operators with order β ∈ [0,1].
In Di Paola and Zingales (J. Rheol. 56(5):983–1004,
2012) exact mechanical models of such materials have
been extensively discussed obtaining two intervals
for β: (i) Elasto-Viscous (EV) materials for 0 ≤ β ≤
1/2; (ii) Visco-Elastic (VE) materials for 1/2 ≤ β ≤ 1.
These two ranges correspond to different continuous
mechanical models.

In this paper a discretization scheme based upon
the continuous models proposed in Di Paola and Zin-
gales (J. Rheol. 56(5):983–1004, 2012) useful to ob-
tain a mechanical description of fractional derivative is
presented. It is shown that the discretized models are
ruled by a set of coupled first order differential equa-
tions involving symmetric and positive definite matri-
ces. Modal analysis shows that fractional order oper-
ators have a mechanical counterpart that is ruled by a
set of Kelvin-Voigt units and each of them provides
a proper contribution to the overall response. The ro-
bustness of the proposed discretization scheme is as-
sessed in the paper for different classes of external
loads and for different values of β ∈ [0, 1].
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1 Introduction

In recent years complex materials, often used in en-
gineering applications, have been obtained with the
aid of sophisticated industrial processes aiming to en-
hance stiffness and strength of materials. These fea-
tures may be easily measured by simple experimen-
tal tests (tensile test) that do not account for the past
stress/strain histories of materials.

As the hereditary properties of complex materials
are investigated with introducing time dependent mea-
sures of stress (relaxation test) and/or strain (creep
test), it may be observed that accurate description
of the results of experimental tests are well-fitted by
power-laws with real order exponent [2–4]. This ob-
servation yields a description of material properties
with the aid of fractional-order integro-differential op-
erators [5–7]. In this context fractional hereditary ma-
terials (FHM) have been introduced since the begin-
ning of the last century. Based on this observation in
the second part of the last century several research
works have been carried out to enforce knowledge of
fractional description of rheological stress-strain be-
havior in time domain [8–11] and in frequency domain
[12–14].
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Among the integration schemes of fractional oper-
ators to describe viscoelastic model several important
contributions have been provided by various authors.
In more details in [15, 16] the fractional operators have
been discretized by using the definition of Grünwald-
Letnikov (see Appendix). Furthermore, by using the
Euler Gamma function properties other method of dis-
cretization may be found in [17–19].

In this paper we propose a discretized mechani-
cal model for description of fractional order hereditary
materials based upon the exact mechanical models de-
scribed in [1]. FHM have been classified in two differ-
ent categories, according to its predominant behavior:
the Elasto-Viscous class and the Visco-Elastic class.

Materials belonging to Elasto-Viscous (EV) class
are characterized by a marked elastic behavior as com-
pared with viscous properties. This condition leads
to stress-strain relations involving fractional operators
with index β ∈ [0,1/2] (β = 0 represents a perfectly
elastic behavior).

Contrariwise Visco-Elastic (VE) materials are char-
acterized by a predominant viscous phase and this con-
dition leads to stress-strain relations with fractional
operator order β ∈ [1/2,1] (β = 1 represents the con-
dition of pure Newtonian fluid).

These two similar but different features possesses
different mechanical analogues. In particular EV ma-
terial (0 ≤ β ≤ 1/2) is described, mechanically, by an
indefinite column of fluid resting on a bed of inde-
pendent springs. The corresponding mechanical ana-
logues to VE material (1/2 ≤ β ≤ 1) is represented by
an indefinite shear type column resting on a bed of in-
dependent dashpots [1]. In all cases both stiffness and
coefficients of viscosity decay with a power-law as the
distance from the top of the columns increases.

In this paper a discretization of the aforementioned
continuous models is presented. To this aim the dis-
cretized mechanical models representing EV and VE
materials are investigated. In more details the mechan-
ical models of EV materials may be represented as
crushproof massless laminae interconnected by dash-
pots resting on a bed of independent springs. By con-
trast, in case of VE materials the crushproof laminae
are interconnected by springs (like a shear type frame)
resting on a bed of external viscous dashpots.

Since in both cases all mechanical characteristics
decay with power-law from the top floor the equilib-
rium equations matrices of the discretized model have
the same form for both EV and VE cases. It follows

that the eigenvectors of the discretized model do not
change. Decoupling of the differential equations, as
in classical modal analysis, leads to a set of differen-
tial equations correspondent to Kelvin-Voigt units with
different time scales.

Concepts exploited for the simpler case of frac-
tional constitutive law may be extended to the case in
which such a stress-strain relation is suited by a linear
combination of fractional operators like for biologi-
cal soft tissues and/or compact bones. Moreover cases
with order of fractional operators β does not belong
to interval [0, 1] may be dealt with the same concepts
although without immediate mechanical analogues for
β > 3/2. These issues will be addressed in future stud-
ies.

2 The mechanical description of FHM

In this section we introduce preliminarily some funda-
mental concepts about FHM.

The time-dependent behavior of FHM may be in-
troduced starting from the so-called relaxation func-
tion G(t) that represents the stress σ(t) for assigned
strain history γ (t) = U(t), being U(t) the unit step
function. In virtue of Boltzmann superposition princi-
ple the stress-strain constitutive law is given as:

σ(t) =
∫ t

0
G(t − τ) dγ (τ) =

∫ t

0
G(t − τ)γ̇ (τ ) dτ

(1)

Equation (1) is valid for γ (0) = 0. If γ (0) = γ0 �= 0
then the additional contribution given as G(t)γ0 has
to be added in Eq. (1). The stress-strain relation de-
scribed in Eq. (1) involves a convolution integral with
kernel G(t). In the context of FHM the functional class
of G(t) is of power-law type that reads:

G(t) = C(β)

Γ (1 − β)
t−β (2)

where Γ (·) is the Euler Gamma function,
C(β)/Γ (1 − β) and β are parameters that depend
of the materials at hand and may be evaluated by a
proper fit of experimental results. Introducing Eq. (2)
in Eq. (1) the stress-strain relation is obtained as:

σ(t) = C(β)
(

CDβ

0+γ
)
(t) (3)
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where
(

CDβ

0+γ
)
(t) is the Caputo’s fractional deriva-

tive of order β (see Appendix). Advanced engineering
materials such as biological polymer, foams and gels
show β ∈ ]0,1[ whereas β = 0 and β = 1 corresponds
to pure solid and pure fluid materials, respectively.

As a dual consideration the reciprocal stress-strain
relation may be obtained starting from the creep func-
tion J (t), that represents the strain γ (t) for the as-
signed stress history σ(t) = U(t). The use of Boltz-
mann superposition principle leads to the stress-strain
relation in the form:

γ (t) =
∫ t

0
J (t − τ) dσ (τ) =

∫ t

0
J (t − τ)σ̇ (τ ) dτ

(4)

that holds as the initial stress σ(0) = 0. If
σ(0) = σ0 �= 0 then the additional contribution J (t)σ0

has to be added in Eq. (4). Equation (4) is a convolu-
tion integral with kernel J (t) and in Laplace domain
an algebraic relation among the Laplace transform of
relaxation Ĝ(s) and the Laplace transform of creep
Ĵ (s) function exists as Ĝ(s)Ĵ (s) = 1/s2 [20, 21]. It
follows that as G(t) is assigned as in Eq. (2), the cor-
responding creep function J (t) may be easily obtained
in the form:

J (t) = t β

C(β)Γ (1 + β)
. (5)

Substitution of such an expression in Eq. (4) yields:

γ (t) = 1

C(β)

(
Iβ

0+σ
)
(t) (6)

where
(
Iβ0+σ

)
(t) (see Appendix) is the Riemann-

Liouville fractional integral of order β .
Inspection of Eqs. (3) and (6) reveals that, as soon

as we assume that J (t) (or G(t)) is of power-law type,
then the constitutive law of the materials is ruled by
fractional operators, so the name fractional hereditary
materials.

In a previous study [1] it has been shown that, from
a mechanical prospective, it must be distinguished
among values of order β = βE ∈ [0,1/2] and values
of order β = βV ∈ [1/2,1]. Such a difference is re-
flected into the different mechanical models beyond
βE and βV . In more details there are two different
mechanical models that exactly restitute the stress-
strain relation expressed in Eq. (3) or in Eq. (6). As

Fig. 1 Continuous fractional models

0 ≤ β = βE ≤ 1/2 the mechanical model is a mass-
less indefinite fluid column resting on a bed of in-
dependent springs as shown in Fig. 1(a) and in this
case is referred so elasto-viscous material. If, instead,
1/2 ≤ β = βV ≤ 1 the exact mechanical model is
represented by indefinite massless shear-type column
resting on a bed of independent dashpots as shown in
Fig. 1(b), this model is referred to visco-elastic mate-
rial.

The correspondence of these mechanical models
and fractional order operators has been proved by in-
troducing a z vertical axis as shown in Fig. 1 and
denoting σ(z, t) the shear stress (in the fluid or in
the cantilever beam) and γ (z, t) the normalized dis-
placement field [1]. Moreover let σ(0, t) = σ(t) and
γ (0, t) = γ (t) the stress applied on the top of the
model and the corresponding strain, respectively. The
stress-strain relation in Eq. (3) is captured by the stress
σ(t) on the upper lamina and its correspondent trans-
verse displacement γ (t) (normalized displacement at
the top). All the mechanical characteristics, viscos-
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ity of fluid cE(z) and external stiffness kE(z) for the
model in Fig. 1(a) (0 ≤ β ≤ 1/2) as well as shear
modulus kV (z) and external viscous coefficient of
external dashpots cV (z) for the model in Fig. 1(b)
(1/2 ≤ β ≤ 1), vary along the z axis with power-law.

In more details we define G0 and η0 the reference
values of the shear modulus and viscosity coefficient.
For the EV materials (β ∈ [0,1/2]) the stiffness and
the viscous coefficients decay as:

kE(z) = G0

Γ (1 + α)
z−α; cE(z) = η0

Γ (1 − α)
z−α

(7)

with 0 ≤ α ≤ 1, whereas the VE materials
(β ∈ [1/2,1]) the mechanical characteristics of the
model in Fig. 1(b) reads:

kV (z) = G0

Γ (1 − α)
z−α; cV (z) = η0

Γ (1 + α)
z−α.

(8)

The governing equation of the continuous model
depicted in Fig. 1(a) is written as:

∂

∂z

[
cE(z)

∂γ̇ (z, t)

∂z

]
= kE(z)γ (z, t) (9)

while the equilibrium equation of the continuous
model depicted in Fig. 1(b) is written as:

∂

∂z

[
kV (z)

∂γ (z, t)

∂z

]
= cV (z)γ̇ (z, t). (10)

The solution of the differential equations in (9) and
(10) can be solved by Laplace transform. In this way
the solution γ̂ (z, s) in Laplace domain involves the
modified first and second kind Bessel functions, de-
noted respectively with Yβ(·) and Kβ(·), in particular
we obtain for EV case:

γ̂ (z, s) = zβ
[
BE1Yβ

(
z√

τE(α)s

)
+ BE2Kβ

(
z√

τE(α)s

)]

(11)

with τE(α) = −η0Γ (α)/(Γ (−α)G0) and
β = (1 − α)/2; while for VE case we have:

γ̂ (z, s) = zβ
[
BV 1Yβ

(
z
√

τE(α)s
) + BV 2Kβ

(
z
√

τE(α)s
)]

(12)

with τV (α) = −η0Γ (−α)/(Γ (α)G0) and
β = (1 + α)/2. The constants of integration BEi and

BV i with i = 1,2 are obtained by imposing the fol-
lowing pairs of boundary conditions, for the EV and
VE case respectively:

(EV)

⎧⎪⎨
⎪⎩

lim
z→0

cE(z)
∂γ̇ (z, t)

∂z
= σ(0, t) = σ(t),

lim
z→∞γ (z, t) = 0

(13a)

(VE)

⎧⎪⎨
⎪⎩

lim
z→0

kV (z)
∂γ (z, t)

∂z
= σ(0, t) = σ(t),

lim
z→∞γ (z, t) = 0

(13b)

and by making the inverse Laplace transform we ob-
tain the fractional stress-strain relation in Eq. (6), that
is to say:

γ (t) = 1

CE(β)

(
Iβ0+σ

)
(t) (EV) (14a)

γ (t) = 1

CV (β)

(
Iβ0+σ

)
(t) (VE) (14b)

where the coefficients CE(β) and CV (β) are defined
as:

CE(β) = G0 Γ (β)22β−1

Γ (2 − 2β)Γ (1−β)

(
τE(α)

)β
, 0 ≤ β ≤ 1/2

(15a)

CV (β) = G0 Γ (1 − β)21−2β

Γ (2 − 2β)Γ (β)

(
τV (α)

)β
, 1/2 ≤ β ≤ 1.

(15b)

At this point we observe that, if the boundary con-
dition applied to the top layer of the model (see
Eqs. (13a) and (13b)), respectively, for EV and VE ma-
terials, involves Dirichlet specifics, as:

⎧⎨
⎩

lim
z→0

γ (z, t) = γ (t),

lim
z→∞γ (z, t) = 0.

(16)

The evaluation of the stress at the top lamina in
terms of the transverse displacement field yields:

σ(t) = CE(β)
(
CD

β

0+γ
)
(t) (EV)

σ (t) = CV (β)
(
CD

β

0+γ
)
(t) (VE)

(17)

as reported in [1].
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Fig. 2 Discretized counterpart of the continuous model
Fig. 1(a) EV case

3 Discretization of FHM

The mechanical representation of fractional order op-
erators discussed in previous section may be used to
introduce a discretization scheme that corresponds to
evaluate fractional derivative. The two cases corre-
sponding to β ∈ [0,1/2] and β ∈ [1/2,1] will be ana-
lyzed in this section.

3.1 The discretized model of EV material

By introducing a discretization of the z-axis as
zj = j�z into to the governing equation of the EV
material in Eq. (9) yields a finite difference equation
of the form:

�
�z

[
cE(zj )

�γ̇ (zj , t)

�z

]
= kE(zj )γ (zj , t) (18)

so that, denoting kEj = kE(zj )�z and cEj = cE(zj )/

�z the continuous model is discretized into a dynam-
ical model constituted by massless shear layers, with
horizontal degrees of freedom γ (zj , t) = γj (t), that
are mutually interconnected by linear dashpots with
viscosity coefficients cEj and resting on a bed of inde-
pendent linear springs kEj .

The stiffness coefficient kEj and the viscosity coef-
ficient cEj reads:

kEj = G0

Γ (1 + α)
z−α
j �z; cEj = η0

Γ (1 − α)

z−α
j

�z

(19)

with α = 1 − 2β .

The equilibrium equations of the generic shear
layer of the model read:

⎧⎪⎨
⎪⎩

kE0γ1(t) − cE0�γ̇1(t) = σ(t),

kEjγj (t) + cEj−1�γ̇j−1(t) − cEj�γ̇j (t) = 0,

j = 1,2, . . . ,∞
(20)

where γ1(t) = γ (t) and �γ̇j (t) = γ̇j+1(t) − γ̇j (t). By
inserting Eqs. (19) in Eqs. (20), at the limit as �z → 0,
the discrete model reverts to Eq. (9). That is the dis-
cretized model presented in Fig. 2 represents a proper
discretization of the continuous EV counterpart.

As soon as z increase γ (z, t) decay and
limz→∞ γ (z, t) = 0 it follows that only a certain num-
ber, say n, of equilibrium equation may be accounted
for the analysis. It follows that the system in Eqs. (20)
may be rewritten in the following compact form:

pEAγ̇ + qEBγ = vσ(t) (21)

where:

pE = η0

Γ (1 − α)
�z−(1+α);

qE = G0

Γ (1 + α)
�z1−α.

(22)

In Eq. (21):

γ T = [
γ1(t) γ2(t) . . . γn(t)

] ; vT = [
1 0 0 . . . 0

]
(23)

where the apex T means transpose. The coefficient
matrices A and B are given as:

A =

⎡
⎢⎢⎣

1−α −1−α . . . 0
−1−α 1−α + 2−α . . . 0

...
...

. . .
...

0 0 . . . (n − 1)−α + n−α

⎤
⎥⎥⎦

(24)

B =

⎡
⎢⎢⎢⎢⎢⎣

1−α 0 0 . . . 0
0 2−α 0 . . . 0
0 0 3−α . . . 0
...

...
...

. . .
...

0 0 0 . . . n−α

⎤
⎥⎥⎥⎥⎥⎦

. (25)
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Fig. 3 Discretized counterpart of the continuous model
Fig. 1(b) VE case

The matrices A and B are symmetric and positive def-
inite (in particular B is diagonal) and they may be eas-
ily constructed for an assigned value of α (depending
of the derivative order β) and for a fixed truncation or-
der n. Moreover Eq. (21) may now be easily integrated
by using standard tools of dynamic analysis how it will
be shown later on.

3.2 The discretized model of VE material

As the fractional order derivative is β = βV ∈ [1/2,1]
the mechanical description of the material is the repre-
sented by the continuous model depicted in Fig. 3 and
ruled by Eq. (10).

By introducing a discretization of the z-axis in in-
tervals �z in governing equation of the VE materials
in Eq. (10) yields a finite difference equation of the
form:

�
�z

[
kV (zj )

�γ (zj , t)

�z

]
= cV (zj )γ̇ (zj , t) (26)

that corresponds to a discretized mechanical repre-
sentation of fractional derivatives. The mechanical
model is represented by a set of massless shear lay-
ers with state variables γ (zj , t) = γj (t) that are mu-
tually interconnected by linear springs with stiffness
kVj = kV (zj , t)/�z resting on a bed of indepen-
dent linear dashpots with viscosity coefficient cVj =
cV (zj , t)�z. Springs and dashpots are given as:

kVj = G0

Γ (1 − α)

z−α
j

�z
; cVj = η0

Γ (1 + α)
z−α
j �z

(27)

with α = 2β − 1.
The set of equilibrium equations reads:

⎧⎪⎨
⎪⎩

cV 0γ̇1 − kV 0�γ1 = σ(t),

cVj γ̇j + kVj−1�γj−1 − kVj�γj = 0,

j = 1,2, . . . ,∞.

(28)

So that, accounting for the contribution of the first n

shear layers the differential equation system may be
written as:

pV Bγ̇ + qV Aγ = vσ(t) (29)

where:

pV = η0

Γ (1 + α)
�z1−α;

qV = G0

Γ (1 − α)
�z−(1+α)

(30)

while γ , v and the matrices A and B have already been
defined in Sect. 3.1.

Up to now we considered a shear stress and a sub-
sequent shear deformation as in the Couette problem,
but exact governing equations, and then exact mechan-
ical models, for the axial stress and axial deformation
are the same how is depicted in Fig. 4 for both EV
and VE case. Also in this case as 
z → 0 (continuous
problem) both the fractional EV and VE continuous
are restored.

In the next section the modal analysis of dynami-
cal system ruled by Eq. (21) and Eq. (29) will be per-
formed leading to a set of decoupled system of first
order differential equations.

4 Modal analysis of the discretized models

The observations reported in previous section lead to
conclude that, whatever class of FHM material is con-
sidered, the time-evolution of the material system may
be obtained by the introduction of a proper set of inner
state variables, collected in the vector γ (t) and ruled
by a set first-order linear differential equations. In this
perspective the mechanical response of the FHM may
be obtained in terms of the vector γ (t) by means of
the decoupling set of eigenmodes of the differential
equations system reported in Eq. (20) for EV materi-
als or in Eq. (28) for VE materials. Since the differ-
ent mechanical models correspond to Elasto-Viscous
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Fig. 4 Continuous and discretized fractional axial models

and Visco-Elastic materials, as discussed in previous
section, these two cases will be dealt separately in the
following.

4.1 The case of Elasto-Viscous (EV) materials

In this section the governing equation is reported in
Eq. (21). As customary we first solve the homoge-
neous case, that is as σ(t) = 0. We introduce a coordi-
nate transformation in the form:

B1/2γ = x (31)

and premultiplying by B−1/2 a differential equation
for the unknown vector x is obtained as:

pED ẋ + qEx = ṽσ(t) (32)

where ṽ = B−1/2v and D is the dynamical matrix
D = B−1/2A B−1/2 given as:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −( 2
1 )

α
2 0 . . . 0

−( 2
1 )

α
2 1 + ( 2

1 )α −( 3
2 )

α
2 . . . 0

0 −( 3
2 )

α
2 1 + ( 3

2 )α . . . 0

...
...

...
. . .

...

0 0 0 . . . 1 + ( n
n−1 )α

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(33)

that is D is symmetric and positive definite and it may
be obtained straightforwardly once n and α are fixed.
Let Φ be the modal matrix whose columns are the or-
thonormal eigenvectors of D that is:

ΦT DΦ = Λ; ΦT Φ = I (34)

where I is the identity matrix and Λ is the diagonal
matrix collecting the eigenvalues λj > 0 of D.

In the following we order λj in such a way that
λ1 < λ2 < · · · < λn. As we indicate y(t) the modal
coordinate vector, defined as:

x(t) = Φy(t); y(t) = ΦT x(t) (35)

and we substitute in Eq. (32) a decoupled set of differ-
ential equation is obtained in the form:

pEΛ ẏ + qEy = v̄σ(t) (36)

where v̄ = ΦT ṽ = ΦT B−1/2v = ΦT v. The j th equa-
tion of Eq. (36) reads:

ẏj + ρj yj = φ1,j

pEλj

σ (t); j = 1,2,3, . . . , n (37)

where ρj = qE/pEλj > 0 and φ1,j is the j th element
of the first row of the matrix Φ . Equations (37) repre-
sent a decoupled set of Kelvin-Voigt units, as is shown
in Fig. 5, and the solution of Eq. (37) is provided in
the form:

yj (t) = yj (0) e−ρj t + φ1,j

pEλj

∫ t

0
e−ρj (t−τ)σ (τ ) dτ

(38)

where yj (0) is the j th component of the vector y(0)

related to the vector of initial conditions γ (0) as:
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Fig. 5 Kelvin-Voigt elements in modal space (EV case)

y(0) = ΦT B1/2γ (0). (39)

Solution of the differential equation system in Eq. (21)
may be obtained as the modal vector y(t) has been
evaluated by solving Eq. (38) with the aid of Eqs. (31)
and (35) as:

γ (t) = B−1/2Φy(t). (40)

As we are interested to a relation among the shear
stress and the normalized transverse displacement of
the upper lamina we must evaluate the first element of
vector γ (t) that is obtained as:

γ (t) = vT γ (t). (41)

4.2 The case of Visco-Elastic (VE) materials

Modal analysis of the differential equations system
representing the behavior of VE material is quite sim-
ilar to previous section. In this case we substitute
Eq. (31) in Eq. (29) and we perform left premultipli-
cation by B−1/2 that reads:

pV ẋ + qV Dx = ṽσ(t) (42)

where D is the dynamical matrix defined in previous
section. The dynamical equilibrium equation in modal
coordinate reads:

pV ẏ + qV Λy = v̄σ(t) (43)

Fig. 6 Kelvin-Voigt elements in modal space (VE case)

so that equilibrium of j th Kelvin-Voigt represented by
Eq. (43) is given as:

δj ẏj + yj = φ1,j

qV λj

σ (t); j = 1,2,3, . . . n (44)

where δj = pv/qV λj > 0. In this case the problem
in the modal coordinates is decomposed in a set of
Kelvin-Voigt units as shown in Fig. 6.

The solution in terms of modal coordinates are ob-
tained in integral form as:

yj (t) = yj (0) e−t/δj + φ1,j

δj qV λj

∫ t

0
e−(t−τ)/δj σ (τ ) dτ.

(45)

The stress-strain relations between shear stress σ(t)

and normalized displacement γ (t) may be obtained as
in previous section (see Eqs. (38) and (41)).

The case of β = 1/2, that is common to both
EV and VE mechanical analogues, is a critical value
and some additional considerations may be withdrawn
from its analysis as it will be shown in the next section.

4.3 The critical value of β : β = 1/2

The case of β = 1/2 is of particular interest since
eigenvalues and eigenvectors are given in closed form.
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It follows that the role played by the truncation depth
of z and the number of laminae may be evidenced.

The case β = 1/2 may be treated in two different
ways, or by assuming β = 1/2 starting from the EV
case, or by assuming β = 1/2 starting from the VE
case. Starting from the EV-model we get:

kEj = G0�z; cEj = η0

�z
(46)

consequently the Eqs. (22) take the following form:

pE = η0

�z
; qE = G0�z (47)

and the equilibrium equation system in compact form,
similarly to the Eq. (21), reads:

η0

�z
Aγ̇ + G0�z Bγ = vσ(t) (48)

where the matrices A and B assume the following par-
ticular form:

A =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2

⎤
⎥⎥⎥⎥⎥⎦

(49)

and

B = I. (50)

The eigenvalues λj and the normalized eigenvec-
tors φj of particular tridiagonal matrix A may be
found in [22, 23] and they are reported below:

λj = 2 − 2 cos

(
2j − 1

2n + 1
π

)
, j = 1,2, . . . , n, (51)

φk, j =
√

4

2n + 1
cos

[
(2j − 1)(2k − 1)

2(2n + 1)
π

]
,

j, k = 1,2, . . . , n. (52)

Using the Eq. (52) can be easily calculate the modal
matrix Φ , obtaining the following equation in the
modal space:

η0

�z
Λẏ + G0�z y = v̄σ(t) (53)

where v̄ = ΦT v and the j th-equation of the sys-
tem (53), corresponding to the equilibrium equation

of the j th-Kelvin-Voigt unit in the modal space, reads:

ẏj + G0�z2

η0λj

yj = φ1,j�z

η0λj

σ (t), j = 1,2, . . . , n.

(54)

The solution of j th-equation in modal space of EV-
model is given as:

yj (t) = yj (0) e
− G0�z2

η0λj
t

+ φ1,j�z

η0λj

∫ t

0
e
− G0�z2

η0λj
(t−τ)

σ (τ ) dτ (55)

and the normalized transverse displacement of the
upper lamina is obtained as:

γ (t) = vT Φ y(t)

=
n∑

j=1

[
φ1,j yj (0) e

− G0�z2

η0λj
t

+ φ2
1,j�z

η0λj

∫ t

0
e
− G0�z2

η0λj
(t−τ)

σ (τ ) dτ

]
. (56)

Exactly the same result is achieved as we work out
on the governing equation of the VE material behavior
reported in Sect. 3.2.

5 Numerical examples

In this section two numerical applications will be pre-
sented for different load histories and different val-
ues of β: (i) A constant stress case σ(t) = σ0U(t);
(ii) A sinusoidal variation σ(t) = σ0 sin(ωt)U(t). For
both cases fractional integral in Eq. (6) may be eval-
uated in closed form and, for case (i), it returns the
creep function given in Eq. (5); for case (ii) the result
of fractional integral is:

γ (t) = σ0ωt1+β

C(β)Γ (2 + β)
1F2

×
[

1; 2 + β

2
,

3 + β

2
;−

(
ωt

2

)2]
(57)

where 1F2(·) is the hypergeometric function.
In Fig. 7 the results for σ(t) = σ0U(t) and different

values of β ∈ [0,1/2] (EV case) are contrasted with
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Fig. 7 Creep test of EV model with σ0 = 1: comparison between the exact and approximate solution

exact solution reported in Eq. (6). For this case we se-
lect �z = 0.001 and n = 1500, where �z is the dis-
cretization step and n is the number of layers consid-
ered (total truncation depth is h̄ = n�z = 1.5), more-
over it is assumed G0 = 1 and η0 = 1.

In Fig. 8 the results for σ(t) = σ0U(t) and differ-
ent values of β ∈ [1/2,1] (VE case) are contrasted
with exact solution in Eq. (6), the discretization step
selected is �z = 0.02, n = 1500 (total depth h̄ = 3).
It may be observed that exact solutions are matched
with that obtained by the discretization procedure for a
large time, moreover for β = 1/2 the solution obtained
with EV case exactly coalesces with that obtained for
VE case.

In order to investigate further the role played by
truncation depth h̄ = n�z and by the number of lami-
nae n, the critical case β = 1/2 is addressed. The creep
function obtained with the discretized model reads:

γ (t) =
n∑

j=1

[
φ2

1,j�zσ0

η0λj

∫ t

0
e
− G0�z2

η0λj
(t−τ)

U(τ)dτ

]

= σ0n

G0h̄

n∑
j=1

[
φ2

1,j

(
1 − e

G0 h̄2

η0λj n2 t)]
. (58)

Equation (58) shows that the discretized model pro-
vides a solution in terms of the sum of exponentials.
The sum, tends asymptotically, by increasing the ob-

servation time, to the following limit:

lim
t→∞γ (t) = σ0n

G0h̄

n∑
j=1

φ2
1,j = a(n, h̄) (59)

while the exact solution, given by Eq. (5) is the power-
law type solution:

γ (t) = σ0J (t) = σ0

G0 Γ (1.5)

(
G0

η0
t

)0.5

(60)

showing that Eq. (60) does not denote an asymptotic
behavior for t → ∞. It follows that Eq. (58) is able to
represent the exact solution only for a certain interval
of time t∗ that depends on the number of laminae as
well as on the depth h̄ selected for the analysis.

In order to predict a reference time t∗ such that the
solution obtained by the discretization model and the
exact one are nearly coincident, we may refer to Fig. 9
where the asymptotic value a(n, h̄), the discretized so-
lution and that obtained by creep function are reported.
We observe that at time t̄n,h̄ the exact solution reaches
the asymptotic one. In more details placing the equal-
ity of the Eq. (60) and the asymptotic value a(n,h) we
obtain the following limit time t̄n,h̄:

t̄n,h̄ =
(

Γ (1.5)a(n, h̄)

σ0

)2

η0G0. (61)

The solution obtained by discretization is always
smaller than its asymptotic value. It follows that the



Meccanica (2013) 48:1573–1586 1583

Fig. 8 Creep test of VE model with σ0 = 1: comparison between the exact and approximate solution

Fig. 9 Comparison between power-law function and summation of exponentials

reference time t∗, at which the response is well ap-
proximate, may be expressed in the form:

t∗ = νt̄n,h̄ (62)

with ν 
 1. From these observations follows that the
larger is the observation time the more the number of
layers n and the larger truncation depth h̄ will be.

The second considered case consists in forcing
the upper lamina with the stress history σ(t) =
σ0 sin(ωt)U(t). The time-variation of the transverse
displacement γ (t) has been contrasted in Fig. 10 and
Fig. 11, respectively for EV and VE case, with the ex-
act representation of fractional integral expressed in
Eq. (57).

The discretization of both models has been ob-
tained with �z = 0.01 and n = 1000.



1584 Meccanica (2013) 48:1573–1586

Fig. 10 Harmonic test of EV model with ω = 1 and σ0 = 1: comparison between the exact and approximate solution

Fig. 11 Harmonic test of VE model with ω = 1 and σ0 = 1: comparison between the exact and approximate solution

Also in this case exact solution obtained by Eq. (57)
and that obtained by the discretized model fit very well
each another for all value of β exponent.

6 Conclusions

Fractional hereditary constitutive laws are character-
ized by fractional operators of order β : 0 ≤ β ≤ 1.

The order β may be found by creep or relaxation test
that exhibit a power-law with exponent β . Two dif-
ferent continuous mechanical models leading to frac-
tional stress-strain relation have been found. For 0 ≤
β ≤ 1/2 the predominant behavior is the elastic one
as compared with the viscous behavior. Its mechanical
correspondent is a massless undefined column of New-
tonian fluid resting on a bed of independent springs.
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For 1/2 ≤ β ≤ 2 the viscous properties are predom-
inant with respect to the elastic ones. Its mechanical
correspondent is a massless undefined shear column
resting on a bed of independent dashpots. In both cases
the various coefficients decay with a power-law that is
related to the characteristic value of β .

Discretization leads to an infinite set of coupled dif-
ferential equations ruled by symmetric and positive
definite matrices. It has been shown that:

(i) The matrices ruling the evolution of the dis-
cretized systems have the same form for the two
models (EV and VE cases).

(ii) Truncation of the depth of the column leads to
a finite set of coupled differential equations for
which the modal analysis may be easily per-
formed.

(iii) The eigenvectors for a fixed value of β : 0 ≤ β ≤
1/2 and β̄ = β + 0.5 are the same as we assume
for the two models the same truncation depth and
the same discretization of the depth.

(iv) In both cases decoupled system are a set of
Kelvin-Voigt elements. It follows that truncation
leads to a finite asymptotic value for σ(t) =
σ0U(t).

(v) The case β = 1/2 may be obtained either from
the mechanical system with 0 ≤ β ≤ 1/2 or by
that for 1/2 ≤ β ≤ 1. For such a system the char-
acteristic coefficients like viscosity or stiffness
along the column remain constant. For such a par-
ticular case the eigenvectors and eigenvalues are
given in analytical form once the discretization
step along the column is fixed.

As a conclusion, truncation of the depth of the
columns and discretization lead always to a set of
Kelvin-Voigt elements. It follows that discretization
always corresponds to asymptotic value in contrast
with the power-law creep function of FHM. As a con-
sequence, discretized model produces accurate results
only for prescribed observation time. However numer-
ical examples performed for different values of β and
different forcing functions produce accurate results in
a reasonable long time and then the procedure outlined
in the paper may be used for fractional calculations.
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Appendix: Fractional calculus

In this appendix we introduce some fundamental con-
cepts on fractional calculus.

The fractional calculus is the natural extension of
ordinary differential calculus. In fact, it extends the
concepts of derivation and integration to non-integer
and complex order.

The fractional calculus was born in the 1695 when
G.W. Leibniz introduced the half derivate concept
in a note to G. de l’Hôpital [24]. Subsequent stud-
ies have focused by different mathematicians [25]:
J.B.J. Fourier, P.S. Laplace, L. Euler, S.F. Lacorix,
N.H. Abel, etc.

The first definition of fractional operator is proba-
bly attributable to J. Liouville, who in 1832 gave the
impulse to research by formulating the definition of
fractional derivative of exponential function. In 1847,
an important contribution was given by G.F.B. Rie-
mann, who introduced their own definition of frac-
tional integral. Following, N.Ya. Sonin unified for-
mulations of Liouville and Riemann from multiple
Cauchy integration formula [25], obtaining the follow-
ing expression of fractional integral:

(
Iβ
a+f

)
(t) = d−βf (t)

d(t − a)−β

= 1

Γ (β)

∫ t

a

(t − τ)β−1f (τ) dτ (A.1)

Equation (A.1) is known in literature as a fractional
integral of Riemann-Liouville, since �(β) > 0, and it
is valid for β ∈ C.

To obtain the Riemann-Liouville fractional deriva-
tive just think that the derivative of order n can be con-
sidered as the derivative of order n + m of the mth
primitive function, and then generalizing, we have:

(
Dβ

a+f
)
(t) = 1

Γ (n − β)

(
d

dt

)n ∫ t

a

f (τ )

(t − τ)β−n+1
dτ

(A.2)

valid for (n − 1) < �(β) < n.
Another definition of fractional integro-differential

operator was provided in 1967 by M. Caputo [26].
This definition is easier to handle for the solution of
physical problems. The Caputo fractional derivative
has the following expression:
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(
CDβ

a+f
)
(t) = 1

Γ (n − β)

∫ t

a

f (n)(τ )

(t − τ)β+1−n
dτ (A.3)

Equation (A.3) is valid for (n − 1) < β < n. The ex-
pression obtained is the result of an interpolation be-
tween the integer order derivatives, in fact, for β → n,
the expression becomes an nth derivative of f (t).

It can be observed that the expressions (A.3) and
(A.2) coincide if we start from initial conditions zero
(f (a) = 0).

Another definition of fractional operator, which is
suitable for the techniques of discretization, it’s known
as Grünwald-Letnikov differintegral [25] and is given
as

(
D β

a+f
)
(t) = lim

N→∞

{(
t − a

N

)−β 1

Γ (−β)

×
N−1∑
r=0

Γ (r − β)

Γ (r + 1)
f

[
t − r

(
t − a

N

)]}

(A.4)

Equation (A.4) defines in the same time two different
operators, fractional derivate (for β > 0) and fractional
integral (for β < 0).

Many definitions of fractional operators exist but
are not reported for brevity sake’s. For in-depth studies
look at previous citied books and [27–30].
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