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Abstract
Understanding what impacts the predictability of human movement is a key element
for the further improvement of mobility prediction models. Up to this day, such
analyses have been conducted using the upper bound of predictability of human
mobility. However, later works indicated discrepancies between the upper bound of
predictability and accuracy of actual predictions suggesting that the predictability
estimation is not accurate. In this work, we confirm these discrepancies and, instead
of predictability measure, we focus on explaining what impacts the actual accuracy of
human mobility predictions. We show that the accuracy of predictions is dependent
on the similarity of transitions observed in the training and test sets derived from the
mobility data. We propose and evaluate five pattern matching based-measures,
which allow us to quickly estimate the potential prediction accuracy of human
mobility. As a result, we find that our metrics can explain up to 90% of its variability.
We also find that measures that were proved to explain the variability of predictability
measure, fail to explain the variability of predictions accuracy. This suggests that
predictability measure and accuracy of predictions should not be compared. Our
metrics can be used to quickly assess how predictable the data will be for prediction
algorithms. We share developed metrics as a part of HuMobi, the open-source Python
library.

Keywords: Human mobility; Prediction; Predictability; Sequence alignment; Global
alignment; Sequence matching

1 Introduction
The possibility of gathering precise individual movement data in large populations re-
sulted in a plethora of studies explaining human movement and applying gathered knowl-
edge in many fields, such as traffic forecasting, urban planning, disease spread modelling
and disaster response [1–4]. For many of these applications, future locations of people
are essential information, enabling them to deliver accurate results. Hence, improving the
accuracy of human mobility predictions is a crucial challenge that has to be addressed to
develop yet better technologies. In this paper, we aim to improve our understanding of
human mobility predictability. For that, we deliver a set of novel metrics, which explain
what impacts the accuracy of human mobility predictions, which in turn can help design
better mobility prediction algorithms.
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Human mobility predictions are based on mobility sequences that correspond to a se-
ries of symbols, where each symbol represents a different location [5]. These sequences
are extracted from one person’s raw movement trajectory, which includes the positions of
individuals recorded over time. Locations that are included in the movement sequence are
determined as places where a person spends a significant amount of time. These places
are considered important in an individual’s daily mobility [6]. This approach enables treat-
ing human mobility prediction as any sequence prediction task. The general goal of these
predictions is to predict the next symbol or symbols in the sequence [7]. Despite some de-
gree of randomness and spontaneity, human mobility is predictable [8]. Regardless of that,
predicting human mobility is challenging and has resulted in many different algorithms,
including Markov-based, compression-based, time-series and machine learning methods
[9]. The accuracy of predictions is measured as the number of correctly predicted symbols
[7]. However, since prediction algorithms are tested on different datasets, their accuracy
cannot be directly compared.

Incomparability of prediction results has been addressed by Song et al. [8], who pro-
vided a methodology for estimation of the limit of predictability of human movement
sequences. The predictability estimation method calculates the entropy of each sequence,
which is then converted into the limit of predictability by solving a limiting case of Fano’s
inequality (which is related to the average information loss in a message obtained over a
noisy channel) [10]. Predictability limit serves as a reference for mobility prediction algo-
rithms to which their performance can be compared [11]. Song et al. [8] quantified the
predictability of individual mobility using a mobile phone location dataset collected from
45,000 people. The authors have processed the dataset into movement sequences by de-
termining a person’s location at regular time intervals (this approach is called the next
time-bin approach). Their work reported the upper bound of predictability to be 93%.
However, later works used the same method and found predictability to range from 43%
to 95% as a result of different input data used for its estimation [5]. This large difference
has driven researchers to investigate the factors influencing mobility predictability. Their
identification is crucial for movement prediction and will enable a deeper understanding
of human mobility behaviour. The methodology of predictability estimation suffers from
low interpretability, as it is based on a complex Lempel–Ziv data compression algorithm
[12]. Therefore, finding what impacts movement predictability is difficult and this issue
has not been fully resolved yet [13].

Identifying the factors impacting mobility predictability have been attempted multiple
times. The biggest impact on predictability have data characteristics and processing meth-
ods. Specifically, changes in movement sequences directly impact predictability, among
which the number of unique locations (unique symbols) in the sequence and its length
have been identified as the most influential [14, 15]. Furthermore, Kulkarni et al. [14] iden-
tified the existence of long-range structural correlations in movement sequences, finding
the number of interacting symbols (symbols that are co-occurring in a specific pattern)
and the distance between them to be other important factors impacting movement pre-
dictability. However, the changes are introduced into sequences indirectly through mobil-
ity data processing, therefore, it is important to know how the data processing influences
extracted sequences and hence, predictability.

Predictability varies with spatio-temporal data resolution [5]. A decrease in spatial data
resolution increases predictability and the dependence between temporal resolution of
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the data and predictability is irregular. In these cases, predictability variations still stem
from changes in extracted movement sequences, but they are caused by the variations of
data spatio-temporal resolution. For example, data of higher spatial resolution will have a
higher number of unique locations in the sequence and thus lower predictability.

Another important factor was noted simultaneously by Ikanovic & Mollgaard [16] and
Cuttone, Lehmann & Gonzalez [17]. The original approach, used in the work of Song et
al. [8], to present the predictability concept was to extract movement sequences using the
next time-bin approach. Ikanovic & Mollgaard [16] and Cuttone, Lehmann & Gonzalez
[17] noticed that this sequence extraction method artificially raises mobility predictabil-
ity through the introduction of many situations when a person at the current and next
time interval is in the same location (the next symbol in the sequence is identical to the
previous one). These repetitions are called self-transitions. For such a sequence, even a
naïve algorithm, guessing the next location to be the same as the previous one, would
achieve high accuracy. To eliminate self-transitions, the authors suggested recording only
transitions between distinct locations in the movement sequences, arguing that such an
event is the most important and difficult to predict in an individual’s mobility pattern. This
approach is called the next-place approach. Sequences extracted using the next-place ap-
proach were found to have significantly lower predictability (for example in the work of
Cuttone, Lehmann & Gonzalez [17] predictability decreased from 95% for next time-bin
sequences to around 70% for next-place sequences).

Some works raised concerns regarding the theory behind predictability estimation
methodology. Moreover, contradictory results of actual predictions surpassing the the-
oretical limit were reported, suggesting that this limit is underestimated. Kulkarni et al.
[14] noted that sophisticated prediction algorithms surpass the predictability limit, which
is caused by the existence of long-range structural correlations in movement sequences.
The existence of these correlations is not considered by the predictability limit estimation
method. Lu et al. [7] found that the prediction accuracy of prediction algorithms surpasses
the predictability limit when a sequence has non-stationary characteristics, that is when
the unconditional joint probability distribution of a sequence varies across its span [18].
This aligns with the fact that the Lempel–Ziv algorithm, which is used to estimate se-
quences entropy, provides accurate estimations only for the stationary trajectories [13]. It
is highly likely that sequences extracted using the next time-bin and, especially, the next-
place approaches are non-stationary [19], hence the predictability estimation method is
not suitable for this type of data.

Discrepancies between predictability limit and prediction accuracy suggest that factors
that were found to impact the predictability limit are not influencing the accuracy of the
predictions in the same way. First of all, because the Lempel–Ziv algorithm is suitable only
for stationary trajectories, the predictability estimation method may not be suitable for
movement sequences and yield incorrect values. Another concern is related to the inter-
pretation of this limit. Predictability is measured for the whole sequence and corresponds
to the general predictability of the movement, while the accuracy of prediction algorithms
is measured over a part of the movement sequence, usually referred to as a test set. Predic-
tion algorithms require some part of the sequence for training, which has to be excluded
from the prediction. Therefore, predictability is measured on a different sequence than
accuracy and they cannot be directly compared.
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In summary, discrepancies identified between predictability estimation theory and ac-
tual predictions are

• Prediction accuracy values are surpassing the theoretical limit;
• Lempel–Ziv estimator is suitable only for stationary sequences, while movement

sequences can be non-stationary;
• Predictability cannot be related to a prediction task.

Hence, in this paper, we propose an alternative approach to explain the predictability of
human mobility. This work is inspired by the two simple measures of stationarity and reg-
ularity, proposed by Teixeira et al. [20], which can explain a large portion of predictability
variations. However, instead of studying factors influencing the predictability limit, we fo-
cus on the accuracy of the actual predictions and explain what impacts them. We propose
a more complex approach based on a pattern matching algorithm, which quantifies the
similarity of information contained in the training and test sequences. We show that this
similarity is strongly related to the maximum accuracy that algorithms can achieve.

We validate our method using sequence prediction algorithms, deep neural networks,
ensemble decision trees, Markov chains, and a naïve approach. First, to validate our as-
sumptions, the proposed approach is tested on generated sequences with known prop-
erties. Then, we use a human mobility dataset from 500 mobile phones users, where the
data are processed to extract mobility sequences on various levels of spatial and temporal
aggregation. The contributions of this work are:

• We present a novel pattern matching-based approach explaining what impacts the
accuracy of actual predictions made on movement sequences;

• We validate the discrepancies between the predictability and predictions, presenting
the relationship between them;

• We compare the accuracy values of different sequence prediction algorithms on
various types of movement sequences.

2 Data and methods
This section presents the methods and data used in the study. The workflow is presented
in Fig. 1. In this research, we will use two datasets: synthetic sequences and real human
mobility data. First, we introduce synthetic sequences generated for this experiment. Then
we present a human mobility dataset, which was first preprocessed using techniques de-
scribed in the data processing section. Further, we describe prediction methods that were
used to obtain prediction accuracy values. At the end of this section, we present all the
metrics used in this study. These are predictability metric proposed by Song et al. [8],
metrics proposed by Teixeira et al. [21], and our proposed pattern matching-based met-
rics. Metrics and prediction accuracy were used to study their correlations and functional
dependencies, for which results are presented in the Results section.

2.1 Synthetic sequences
In order to provide a theoretical analysis of our approach, we generated three types of
artificial sequences: random, Markovian and non-stationary. The sequence is a series of
symbols

X = [x1, x2, . . . , xm], (1)
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Figure 1 Workflow adopted in this study. Each block’s name (apart from those written in italic font)
corresponds to the particular subsection of the workflow description. First, data were processed into
movement sequences, after which predictability, stationarity, regularity and proposed metrics were
calculated. Results were compared against the accuracy of mobility predictions

where each symbol xm represents a different location (as in mobility sequences). The sym-
bols can repeat within the sequence. For each type of sequence, we generate 100 instances.
Each instance is generated using sequence type-specific parameters, which are selected
randomly from a given subspace (see sequence types description below for details). The
lower bound of the subspace of possible parameters is set so the generated sequences are
stable (have to be long enough to obtain stable results) and can be analysed (have at least
two symbols).

In random sequences, every symbol xm in a sequence X is selected from a uniform dis-
tribution of m possible symbols. The number of possible symbols m (from 2 to 20) and
the length of the sequence n (from 100 to 500 symbols) are randomly selected for each
generated sequence. This kind of sequence corresponds to the case of low predictability,
as the information shared between training and test sequences should be minimal. The
predictability of such sequences decreases with the increase of m possible symbols.

In Markovian sequences, each symbol is following a deterministic sequence x1 → x2 →
·· · → xm → x1 → ·· · with probability p. With probability 1 – p, the next symbol is ran-
domly selected from the m possible symbols. The p value, sequence length n, and the
number of m symbols are selected randomly for each generated sequence and are in the
range of 0.1 to 0.9, 100 to 500, and 2 to 20, respectively. Markovian sequences are repet-
itive and should be easy to predict for most of the prediction algorithms, however, with
larger values of p the predictability will decrease.
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Non-stationary sequences are generated by a mixture of states, where each state has a
different symbol generation process [18]. The state is selected for every generated symbol
separately from a distribution Ps, where each state has been assigned a corresponding
probability. These probabilities are selected randomly from a uniform distribution and
they are normalised together. Each state generates a symbol xm, from the set of m possible
symbols, using probability distribution Pm, which is created using an identical approach
as for the creation of the Ps distribution. The number of m possible symbols (from 2 to
20), sequence length n (from 100 to 500), and the number of states s (from 2 to 12) are
selected randomly for each generation. Such a generation routine ensures the creation of
non-stationary sequences, for which the Lempel–Ziv estimator should fail [20].

2.2 Human mobility dataset
We validate our approach on a large human mobility dataset of a high spatio-temporal res-
olution. It was collected using mobile phone built-in Global Navigation Satellite Systems
(GNSS) receivers and shared for the purpose of this study by the UberMedia company. It
contains mobility data from 500 mobile devices of people living in London, UK. In this
dataset, location data are collected through applications installed on mobile devices and
stored in a database using an advertising identifier. The length of the collected movement
trajectories varies from 28 to 31 days. The median fraction of missing records q, expressed
in hour-long intervals [8], is q = 0.04, which can be considered as complete data with al-
most no data gaps [19].

It is worth noting that devices with a low value of q can be owned by a specific socio-
demographic group, which tends to use mobile internet often. Therefore, this data might
not be representative of people who do not use it often. However, we do not study mo-
bility in the spatio-temporal context, such as land use, therefore this potential bias should
not impact our findings. Although to mitigate this type of selection bias, the sample was
randomly chosen from the subset of trajectories that had q < 0.4.

2.3 Data processing
Movement sequences X of individuals represent a series of locations, where each location
has been assigned a corresponding symbol in a sequence. Therefore, to extract movement
sequences from mobility data, locations visited by an individual have to be detected. This
process has three steps: stay-points extraction, stay-regions detection, and movement se-
quences creation.

2.3.1 Stay-points extraction
First, a stay-point detection algorithm, based on two parameters δ and τ , searches for
places where an individual stayed for a significant amount of time in one location. Let the
movement trajectory

T = {t1, t2, . . . , tn} (2)

be a sequence of data points recorded by a single device. This algorithm iterates through
each data point in a movement trajectory in temporally ascending order. Each data point
is a triplet (xt , yt , t) of two coordinates xt and yt recorded at time t. Starting from the first



Smolak et al. EPJ Data Science           (2022) 11:45 Page 7 of 27

point in the movement trajectory, the algorithm calculates a distance between each iter-
ated data point and the first point. If that distance is lower than δ, that data point is as-
signed to a currently processed stay-point and the algorithm moves to the next data point.
If the distance is higher than a threshold δ, the algorithm calculates the time interval be-
tween the first point and the last point within the δ distance. If that time interval is larger
than τ , then all data points within the distance threshold are recorded as a stay-point, oth-
erwise, they are discarded. The stay point is recorded as a quadruple (xn, yn, startn, endn),
where xn and yn are geographical coordinates of a visited stay-point centre between startn,
and the endn time. After that, the process repeats starting from the first point that was
not assigned to the previous stay-point. The process is repeated until the last point in the
movement trajectory is processed. δ and τ have to be set to the values ensuring that unim-
portant stops, such as traffic lights stop [16], are not considered as stay-points. The level
of δ also has to account for a GNSS positioning error. In this work we set these values fol-
lowing the guidelines from the work of Jiang et al. [22], that are δ = 300 metres and τ = 10
min.

2.3.2 Stay-regions detection
In the second step of the process, all the stay-points are spatially aggregated into stay-
regions, where each stay-region corresponds to a location that was repeatedly visited by
an individual. When a location was visited more than once, nearby stay-points probably
represent the same location, therefore they can be assigned the same symbol. For this
step, we use the density-based spatial clustering of applications with noise (DBSCAN)
[16, 17, 23] algorithm. DBSCAN clusters stay-points based on a distance parameter ε.
That is, if a stay-point is closer to another stay-point in a cluster than ε they are considered
a single stay-region. After this process, each stay-point is assigned a label of a cluster to
which it has been allocated. To simulate various spatial resolutions of data we process data
with ε equal to 33, 204 and 1688 metres, which approximately corresponds to the scale of
buildings, streets and districts, respectively [24].

2.3.3 Movement sequences creation
Finally, the detected stay-regions are processed into the movement sequences. So far, in
the predictability studies, two types of movement sequences, next time-bin and next place
have been used. Therefore, in our experiment, we process our data into these types of
sequences.

To create the next time-bin sequences, we record positions of an individual at regular
time intervals (time-bins) �t. For each time-bin, we check the currently visited stay-region
and assign its label to a sequence. If more than one location was visited in a time-bin, then
the location visited for a longer period is recorded. If none of the stay-regions was visited
during the selected time interval, an empty value is assigned, creating a gap in a sequence.
This process creates a temporally ordered movement sequence consisting of symbols rep-
resenting stay-regions. We use �t equal to 30 min and 1 h to simulate different temporal
resolutions of data often used in human mobility studies [8, 15–17]. Our resulting next
time-bin sequences have an average length of 697 symbols for �t = 1h and twice more
for �t = 30 min. The number of unique symbols in the sequences decrease with spatial
resolution, starting from 25 unique symbols at an average for ε = 33m, through 20 unique
symbols for ε = 204m, to 9 unique symbols for ε = 1688m.
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The next time-bin approach tends to create many self-transitions, that is situations when
symbols are consecutively repeated in a sequence. The idea behind the next-place ap-
proach is to eliminate these self-transitions, therefore, the next-place sequence is created
by temporally ordering visited stay-regions. In the next-place sequences the temporal di-
mension is lost, as visited locations are not evenly spread on a time scale. Resulting next-
place sequences have an average length of 76 symbols. The average number of unique
symbols is slightly higher in these sequences, being 27, 20, and 10 unique symbols for
ε = 33m, ε = 204m, ε = 1688m, respectively.

2.4 Prediction methods
In this work, we focus on explaining what impacts the accuracy of movement sequences
predictions. To ensure the best prediction accuracy, we simultaneously assign the same
prediction task, that is predicting the next symbol in a sequence, to various methods.
These are deep neural networks, ensemble decision trees, and Markov chains. They repre-
sent three groups of the most commonly used algorithms for human mobility predictions
[9], that is deep learning and shallow learning algorithms, and Markov-based models. Us-
ing different approaches, we are able to select the best predictor for each kind of sequence
for further analyses.

It is important to note that each sequence, representing a movement of an individual, is
subject to a separate prediction. We use the same approach to prepare input data for ma-
chine learning algorithms. First, sequences are transformed into chunks through a win-
dowing algorithm (see Fig. 2). The window extracts W + 1 symbols, where W is the size
of the window. Next W first symbols are kept as input data and the last symbol is a tar-
get value for the prediction. We set W = 10, as using larger windows did not result in
improvement in predictions, while for lower values we observed a drop of accuracy. At
each step, the window moves by one position towards the end of the sequence. Then, the
extracted chunks are divided into training and test sets, where the training set contains
80% of the data. A training set is transformed into training-validation pairs using 5-fold
cross-validation, each time leaving a fifth part of the data for validation. The prediction
accuracy is measured as the number of correctly predicted symbols in a test sequence [7].

Figure 2 The scheme of windowing algorithm. A window of sizeW + 1, moving over a movement sequence,
cuts sequence into chunks of sizeW and a target value at each step
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Figure 3 The scheme of a GRU neural network. Each block
represents a layer and contains layer’s name, the name of a
parameter representing the input, and output size of a layer.
Arrows indicate the direction of the forward propagation of
data through the network

2.4.1 Deep learning network
We implement a deep neural network as a state-of-the-art sequence prediction method.
Our solution is based on the gated recurrent unit (GRU) which is a type of recurrent neural
networks (RNNs). GRUs are one of the proposed solutions to the vanishing gradient prob-
lem, which prevents the neural network from effective training through limited weights
adjustment. GRUs are extended by update and reset gates which decide whether the in-
formation should be passed to the output. That way, noise is removed during training and
important information is kept in the training cycle for longer. The architecture of our net-
work is similar to the next character prediction networks used in language modelling and
is presented in Fig. 3. First, we use an embedding layer to transform chunks extracted from
sequences into a dense vector. It is then fed to a single GRU layer with a hyperbolic tangent
activation function, allowing to scale learned weights into a range from –1 to 1. The GRU
layer is connected to the dropout layer, which randomly resets weights to prevent a net-
work from overfitting. Finally, the information is fed to a dense layer activated using the
softmax function, which outputs a categorical probability distribution. The distribution
represents how likely it is for each symbol to be the next one in the sequence. Using it we
draw the next symbol.

To select the embedding layer output size and the number of units in the GRU layer,
each time during network training we conduct a series of tests. Using the cross-validation
approach, we aim to reach the best prediction accuracy. We test all the combinations of
values from a set of powers of 2, ranging from 27 to 211. The input and the output sizes
(vocabulary size) of the network are fixed and equal to the number of stay-regions in a
processed sequence. We train each network for 30 epochs, however, we implement an
early stopping mechanism preventing the network from further training when accuracy
on the validation set drops at the two next epochs. In all of the cases, the upper limit of 30
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epochs is never reached as networks can be effectively trained within a lower number of
epochs.

Movement sequences, especially for high levels of temporal aggregation, can be short.
This impacts neural network performance, and they are known to be highly data demand-
ing. Therefore, we decided to use GRUs as they perform better on shorter sequences with
less data than other RNNs architectures [25]. Moreover, we apply a cross-validation pro-
cess to network training which is a rather unusual technique but in our case improves
accuracy. Using each data fold, we repeat the training process of a network, which in-
crementally improves its performance. As a result we noticed around 30% of accuracy
improvement.

2.4.2 Ensemble decision trees
As mentioned earlier, the length of movement sequences may be low for which deep-
learning-based methods will have limited prediction capabilities. To mitigate the impact
of limited sequences length on prediction accuracy, we apply a less data-demanding ap-
proach, that is Random Forest (RF), a tree-based ensemble method. This type of method
is known for being robust to overfitting problems and to effectively handle small sample
sizes [26].

During training, RF constructs a set of trees, each being a separate predictor. These pre-
dictors are trained by applying a bootstrap aggregation, that is each tree learns from a
randomly selected chunk of data fed to the RF. Bootstrapping ensures that they are uncor-
related, which enables maximising the amount of captured relationships in the data. The
final result is derived through the majority vote rule applied to the output of each tree.

We approach the sequence prediction problem with a classification variant of the RF
algorithm. The node split is based on the Gini impurity metric, which expresses the like-
lihood of observation misclassification. Using the cross-validation each time when RF is
trained (i. e. for every predicted sequence) we conduct an exhaustive search to select the
number of predictors trained within the model. Using a small training sample we found
that number of estimators ranging from 500 to 2000 trees gives the best prediction results.
We used that search subspace for the RF training.

2.4.3 Markov chains
Markov chains (MCs) have been often used in mobility prediction [7, 9, 13, 20, 27, 28].
MCs are based on probabilities determining which state (symbol) will follow a finite num-
ber of symbols preceding it. The number of previous symbols k considered in the MC
is called a chain order. For example, an MC of second-order considers the current and
the previous symbol when predicting the next symbol. Probabilities are determined using
learning data. When predicting, depending on the k last symbols of a sequence corre-
sponding probabilities are selected and used to draw the next symbol. In our experiment,
we consider MCs orders from one to six. Research shows that the increase in order does
not usually result in an increase in algorithm accuracy [7, 14].

2.4.4 Naïve predictor
For reference, we use a naïve predictor from the work of Cuttone et al. [17], called toploc.
During prediction the algorithm repeats the symbol which most often appears in a training
sequence, hence guessing that the next location will be the one that was most often visited.
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This method was found to perform well for next time-bin sequences where a large number
of self-transitions appears [17].

2.5 Predictability
We compare our metrics to the actual predictability estimations based on the work of
Song et al. [8]. The measure of predictability �max expresses a theoretical upper bound of
predictability that a theoretically perfect (infallible) prediction algorithm can reach. Pre-
dictability is estimated separately for each sequence and the whole sequence is taken into
consideration. To estimate predictability, first, we measure an actual entropy of a sequence
as

Si = –
∑

X′
i⊂Xi

P
(
X ′

i
)

log2
[
P
(
X ′

i
)]

, (3)

where P(X ′
i) is the probability of finding a particular time-ordered subsequence X ′

i in the
Xi sequence. Then, entropy is converted into predictability by solving a Fano’s inequality
[10] which is

�i ≤ �Fano
i (E, m), (4)

where E is the measured entropy, and m is the number of unique symbols in the sequence.
�Fano

i is given by
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)
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(
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By substituting E by Si we are able to calculate an upper bound of predictability �max.
Direct calculation of entropy is computationally demanding, thus, Song et al. proposed

to use the Lempel–Ziv estimator [12]. An actual entropy can be calculated as

Sest =
(

1
n

∑

j

�j

)–1

log2 n, (6)

where n is the length of the sequence and �j is the length of the shortest substring starting
at position j in the sequence, which does not appear from position 1 to j – 1.

Since the publication of the predictability estimation theory, some researchers noted
that a vague description of calculation methodology led to implementation inconsisten-
cies [11]. These include unmatched logarithm bases in equations (5) and (6) and incorrect
values of �j in positions where unique substring could not be found (for details refer to
[11]).

There are two other major issues worth mentioning. First, the Lempel–Ziv estimator
was proved to provide accurate estimates only for stationary sequences, while movement
sequences might have non-stationary characteristics [13, 18]. Second and the most impor-
tant issue is that the predictability and accuracy of predictions should not be compared
because of the fundamental differences in their definitions. These measures are calculated
using different sequences, which leads to discrepancies.
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2.6 Pattern matching-based measures
Given the discrepancies between predictability estimation theory and actual predictions,
we propose alternative approaches to explain the variations in mobility predictions accu-
racy. In this section, we present our pattern matching-based metrics which can be used to
estimate the potential accuracy of the prediction of movement sequences.

We base our measures on two types of sequence matching methods, which are the
longest common subsequence (LCS) and Needleman–Wunsch [29] algorithms. Origi-
nally, these methods are widely used in the bioinformatics field for nucleotide or protein
sequences alignment [29–31]. Converting movement sequences into a series of symbols
enables the application of those methods to search for the best match between the training
and test sets on which movement prediction algorithms were used earlier. A large over-
lap between the training and test sequences should indicate that a test sequence is highly
predictable, while the low number of matched symbols should indicate that the move-
ment will be predicted with low accuracy. We extend sequence matching algorithms to
adjust them to sequence prediction problems and derive novel metrics which will help us
understand movement predictability.

First, we define a general pattern matching problem. The goal of the pattern matching
algorithm is to find matching series of symbols in two movement sequences. In our case,
these are training Xtr and test Xts subsequences extracted from a movement sequence of
an individual. Intuitively, if a series of symbols to predict is also present in a training sub-
sequence, it should be possible to predict it as it was already encountered by an algorithm.
Moreover, the longer the matching pattern is the easier it should be to predict.

The idea is to measure the similarity of training and test sequences using a score based
on the LCS or Needleman–Wunsch algorithms. This score is calculated differently for
each metric, for which details are presented below. However, each metric is normalised
using the same approach to eliminate the effect of the differences in sequences lengths.
This normalisation is based on the number of transitions observed in the test sequence,
where a transition is a pair of symbols. Therefore, the number of transitions in the test
sequence is its length minus one. The motivation for the use of transitions as a normali-
sation factor is that prediction algorithms learn to forecast the next symbol based on the
symbols preceding it. Calculating the number of identical transitions present in the train-
ing and test sequence gives a better overview of the similarity of these sequences. After
normalisation, metrics express the ratio of matched transitions to the number of transi-
tions that could be matched in the test sequence. For example, a score of one indicates
that all transitions in the test sequence were found in the training sequence. Each metric
can be generally expressed as:

S
T

=
S

n – 1
, (7)

where S is a score, T is the number of transitions, and n is a sequence length.

2.6.1 LCS-based metrics
The goal of the LCS algorithm is to find the longest subsequence shared by the pair of se-
quences. Matching subsequences have to appear in the sequences, from which they have
been derived, in the same order. They do not necessarily have to appear at the same po-
sitions and can be separated by a number of mismatched symbols, called gaps. Gaps can
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Figure 4 Visualisation of three variants of the longest common subsequence problem. Three score matrices
represent scoring for the same pair of sequences. The longest common subsequence is chosen differently in
each variant. Picture (a) shows the dense repeatability metric, picture (b) represents the sparse repeatability
metric, and picture (c) shows the equally sparse repeatability metric, where the blue line indicates the diagonal
with the highest score

have different sizes, including the size of gaps separating the same symbols matched in
two sequences.

We propose three LCS-based metrics, denoted dense repeatability (DR), sparse repeata-
bility (SR), and equally sparse repeatability (ESR). Each of these metrics expresses the
normalised length of the longest matching subsequence. The length of the sequence is
measured using different variants of the LCS algorithm, which are depicted in Fig. 4. In
the presented example, a sequence was divided into training Xtr = [A, B, C, D, A, B, C, C, D]
and test Xts = [A, B, A, D, A, B, A, D] sequences. First, let A be a matrix of scores (presented
for each metric in Fig. 4) created for a pair of matched sequences, where (i, j) is an element
keeping a score for the i – th element of Xts and j – th element of Xtr. The algorithm iterates
through the matrix, and for each matched pair of symbols an element at (i, j) positions is
given a score of (i – 1, j – 1) + 1. When symbols are not matching, element at (i, j) is given
the higher of (i – 1, j) and (i, j – 1) elements. The score matrix A is created identically for
all three metrics.

Next, the longest common subsequence is found using a traceback approach. The al-
gorithm starts from any element of matrix A and searches for the path. When being at
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element (i, j) element at (i – 1, j – 1) is smaller, the path is drawn between those two el-
ements. When the above is not the case, then the path can be drawn between element
(i, j) and (i – 1, j) or (i, j) and (i, j – 1) if they are equal. This produces a series of possible
paths, which are the basis for the three suggested metrics. The difference between three
of proposed metrics is in how the longest path is chosen.

In Fig. 4(a) a path for the dense repeatability (DR) is presented. This approach assumes
that no gaps are allowed in a matched subsequence. That variation of LCS is known as
the longest common substring problem [32]. This is an equivalent to the longest path,
where all the moves between elements are diagonal, resulting in [D, A, B] with a score
equal to two (two matched transitions). Figure 4(b) presents the sparse repeatability (SR).
In this case, the longest possible path is chosen, but only those elements which are posi-
tioned diagonally to each other are the matching pairs of symbols. Therefore the result is
[A, B, D, A, B, D] and the score is five. Figure 4(c) presents the equally sparse repeatability
(ESR) metric. Here, gaps are allowed but the additional constraint is that the correspond-
ing gaps in the matched subsequences have to be of identical size, but the size of these gaps
can vary across the matched pattern. To enforce that, the path with the highest number
of elements on the single diagonal is chosen. In our example, the result of such function
would be [A, B, D, A, B], because the length of a gap between the last two symbols is dif-
ferent.

2.6.2 Needleman–Wunsch algorithm-based metrics
We base two other measures of similarity on the Needleman–Wunsch algorithm [29],
which finds the optimal global alignment between two sequences. In comparison to the
LCS algorithm, the Needleman–Wunsch algorithm tries to match the whole sequence,
rather than find the longest matching subsequence. Usually, the Needleman–Wunsch al-
gorithm is given a reward for every matched symbol and a penalty for symbols that could
not be matched. The overall goal of the algorithm is to maximise the overall score. Addi-
tionally, it is allowed to deliberately introduce gaps in a sequence to increase the number
of matched symbols, however, the algorithm may be penalized for each introduced gap as
well this penalty can be higher if the gap is larger. The algorithm tries various alignments,
including variants where some gaps are introduced into both sequences (if algorithm is
allowed to introduce them), and calculate the score for each of them. In our example, one
potential alignment might be

ABCDABCCD

ABADABAD -,

but also another might be

ABCDABCCD - -

ABADAB - - - AD.

For the details on how these candidate alignments are chosen, see the original work [29].
We set up the Needleman–Wunsch algorithm to be rewarded and penalized identically

for each matched or mismatched symbol and introduced gap. We do not penalize the
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algorithm for a gap size, as larger spacing between matched information does not affect
the predictability of the sequence. Also, we do not penalize the algorithm for introducing
gaps at the beginning and the end of any of the sequences. In that case, in our example,
the best global alignment would be

ABCDABCCD–

ABADAB—AD,

with five matches, one mismatch and one gap introduced. We calculate the score for our
metric as the number of matched transitions reduced by a penalty for each gap and mis-
matched transition. This score, when normalised, yields a value of another proposed met-
ric called global alignment (GA).

The last proposed metric is iterative global alignment (IGA). In some cases, to find the
best alignment, parts of Xts subsequence are not matched and are left out of the match-
ing process. However, we are also interested if these parts can be matched with the Xtr

subsequence, that is if they are predictable. Therefore, we propose a modification to the
Needleman–Wunsch algorithm, where the alignment process is repeated until all parts of
Xts subsequence are subject to matching. In our example, we would have two iterations,
where the best global alignment would be

ABCDABCCD–

ABADAB—AD

in the first iteration, and

ABCDABCCD

A - - D - - - - -

in the second iteration. To calculate the score for iterative global alignment (IGA), the
scores from all the iterations are summed.

2.7 Stationarity and regularity
This work is inspired by the measures proposed by Teixeria et al. [20] in the attempt to
explain what impacts the predictability of movement sequences. They proposed a mea-
sure of regularity, which along with stationarity explains a large portion of predictability
variations. Stationarity is defined as

Stationarity =
ST
n

, (8)

where ST is the number of observations when a person stays in the same location (self-
transitions), that is situations when the next symbol in the sequence is the same as the
previous one. Regularity is defined as

Regularity =
n

UQ
, (9)
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where UQ is the number of unique symbols in the sequence. It is important to note, that in
the original work these measures were compared to predictability, while in our experiment
we compare them to the accuracy of actual predictions.

We propose a modified version of stationarity measure which is calculated as the num-
ber of self-transitions divided by the total number of transitions in a sequence. The mo-
tivation for developing that metric is to have a stationarity measure based on the same
principles as the pattern-based metrics. We name that measure normalised stationarity
(NStationarity).

3 Results
This section summarises our findings and presents obtained results that compose the
three major contributions mentioned in the introduction. Specifically, we compare the
accuracy of prediction algorithms, validate the discrepancies between predictability limit
and predictions, and examine the ability of proposed metrics to explain the variability of
predictions accuracy.

Ensemble decision trees and deep learning networks yield the best prediction results for
our datasets, with a slight advantage of the decision trees. Although on average the pre-
dictability limit is not violated, every algorithm, including the naïve approach, surpasses
the theoretical limit in a several cases. Generally, the best performing algorithm surpasses
this limit in a higher number of cases than other prediction algorithms. This shows that
the predictability limit cannot be compared to the accuracy of predictions.

As an alternative approach to explain variability of predictions accuracy, we propose
and evaluate five candidate metrics. We base our solutions on the sequence matching and
alignment algorithms, which purpose is to quantify the similarity of training and test sets
used for mobility predictions. Using the R-squared (R2) metric, we measure which of the
metrics explains the most of the predictions accuracy variability. The highest values are
reached for the IGA and ESR metrics. The IGA metric reaches up to R2 = 89.67% for
the next time-bin sequences and is further improved when combined with NStationarity,
reaching up to R2 = 90.33%. The ESR metric performs best on the next-place sequences
reaching R2 = 61.09% of explained variability. At the same time, we show that R2 values of
regularity and stationarity are low for the accuracy of predictions, proving their inability
to explain prediction accuracy variations.

3.1 Predictions accuracy and the upper bound of predictability
We start with verifying the existing discrepancies noted in the literature. Specifically, we
compare the accuracy of our predictors against the theoretical limit of predictability. Ta-
ble 1 presents algorithms’ accuracy values obtained using the synthesised datasets. The
accuracy on random sequences is almost identical in all of the algorithms, which is around
20%, showing no clear advantage of any approach. A similar situation can be observed in
non-stationary sequences, as their generation process is close to random. Markovian se-
quences, which are less random, can be predicted with higher accuracy. It is shown by
the superiority of machine learning-based methods. In all the cases, higher-order MCs
do not yield better prediction accuracy than lower-order variants of this algorithm and
sometimes their accuracy is even worse.

Although the average accuracy of any algorithm does not surpass the average theoretical
limit, there are situations when this happens (see Table 2). Comparison of the results in
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Table 1 An average accuracy of four prediction algorithms and theoretical upper bound of
predictability calculated for the three types of synthetic sequences

Random [%] Markovian [%] Non-stationary [%]

GRU 19.11 ± 18.6 34.46 ± 26.2 23.40 ± 15.2
RF 18.93 ± 18.9 41.01 ± 27.7 25.22 ± 15.5
MC 19.49 ± 18.0 28.29 ± 21.7 23.12 ± 15.2
Toploc 19.54 ± 19.7 13.97 ± 12.4 27.90 ± 16.5
�max 40.04 ± 8.6 52.10 ± 15.7 44.05 ± 5.1

GRU is the deep neural network algorithm, RF is an ensemble decision trees method, MC is the Markov chains-based
prediction algorithm, and Toploc is a baseline predictor. Bold values indicate the best result for each sequence type. Values
given after the plus-minus signs are corresponding standard deviations.

Table 2 A relative number of cases when prediction accuracy of four different prediction algorithms
surpasses the predictability limit calculated for the three types of synthetic sequences

Random [%] Markovian [%] Non-stationary [%]

GRU 8.00 12.00 9.00
RF 7.00 31.00 11.00
MC 16.00 8.00 14.00
Toploc 8.00 2.00 15.00

GRU is the deep neural network algorithm, RF is an ensemble decision trees method, MC is the Markov chains-based
prediction algorithm, and Toploc is a baseline predictor. Bold values indicate the highest result for each sequence type.

Figure 5 Predictability of sequences in comparison to the accuracy of the best predictor. The black dashed
line represents the x = y line, where predictability is equal to the accuracy of predictions

Tables 2 and 1 shows that algorithms that perform better on a particular type of sequence
also tend to surpass the limit more often than other prediction methods. Interestingly, we
find that most of the cases when algorithms surpass the limit occur when the limit value is
over 55%. An example of that on Markovian sequences can be found in Fig. 5. In the case
of non-stationary sequences, the fraction of predictions surpassing the limit is relatively
high for all the algorithms.

Next, we verify the accuracy of predictions made on the actual mobility dataset. The
dataset was processed using the next time-bin and next-place approaches into different
spatial and temporal resolutions. In Table 3 we present prediction accuracy values for
the processed dataset. The best performing algorithm is RF, with a deep learning-based
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Table 3 An average accuracy of four prediction algorithms and theoretical upper bound of
predictability calculated for the two types of mobility sequences of various spatio-temporal
resolution

Next-place [%]

1688 m 204m 33 m

GRU 58.58 ± 22.2 43.95 ± 19.1 33.12 ± 18.6
RF 60.60 ± 22.8 47.68 ± 18.6 40.08 ± 17.9
MC 55.88 ± 22.5 39.23 ± 17.8 28.56 ± 16.3
Toploc 45.11 ± 11.2 38.26 ± 10.1 36.30 ± 10.3
�max 72.93 ± 9.6 68.28 ± 8.6 59.90 ± 10.8

Next time-bin [%]

1688 m 204m 33 m 1-hour 30-minutes

GRU 94.63 ± 5.1 90.32 ± 7.3 88.73 ± 7.6 89.65 ± 7.7 92.81 ± 5.7
RF 94.80 ± 5.0 90.90 ± 6.0 89.28 ± 7.0 90.48 ± 6.6 92.84 ± 5.4
MC 92.07 ± 6.0 87.09 ± 6.7 85.63 ± 7.5 85.93 ± 7.7 90.60 ± 5.8
Toploc 84.45 ± 17.2 78.99 ± 16.9 78.14 ± 17.22 80.22 ± 17.1 80.84 ± 17.1
�max 97.29 ± 1.5 95.89 ± 1.7 95.71 ± 1.8 95.30 ± 2.1 97.29 ± 1.2

GRU is the deep neural network algorithm, RF is an ensemble decision trees method, MC is the Markov chains-based
prediction algorithm, and Toploc is a baseline predictor. Bold values indicate the best result for each sequence type. Values
given after the plus-minus signs are corresponding standard deviations.

method yielding very close results, especially for the next time-bin sequences. The deep
learning-based method is performing slightly worse for the next-place sequences. Other
algorithms have noticeably worse accuracy. Similarly to the results of the experiment ob-
tained on the synthetic sequences, the order of MCs is not correlated with the accuracy of
predictions. This means that all the MCs models perform with almost identical accuracy.
The maximum difference between the mean accuracy of evaluated MCs models is lower
than 0.01%.

Although by looking at the average performance of prediction algorithms and the pre-
dictability of the dataset the limit seems not to be violated, conducting a detailed investi-
gation of results reveals the same situation as in the case of the synthetic sequences. The
ratio of predictions violating the predictability limit of the next-place sequences is posi-
tively correlated with the spatial resolution of these sequences. At a resolution of 33 metres
(in the next-place sequences), predictions reaching over 40% of accuracy surpass the limit,
while for the resolution of 1688 metres (in the next-place sequences) only predictions over
95% violate the limit of predictability. In the case of the next time-bin sequences, predic-
tions reaching over 90% are surpassing the limit. However, it is important to note that for
these sequences accuracy is on average higher than for the next-place sequences. As the
comparison of the results in Table 4 and Table 3 shows, the fraction of predictions sur-
passing the limits is higher for prediction algorithms which performed better, confirming
that the predictability limit is violated more often when this limit is relatively high.

3.2 Relationship between metrics and predictions accuracy
To measure the relationship between pattern matching-based measures and predictions
accuracy we calculate Spearman’s rank correlation, which expresses the strength of the
monotonic relationship between variables. Then, we determine the level up to which pre-
diction accuracy can be explained by these measures using R2 metric for the best regres-
sion model fit. As a reference, we conduct the same tests using proposed in the literature
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Table 4 A relative number of cases when prediction accuracy of four different prediction algorithms
surpasses the predictability limit calculated for the two types of mobility sequences of various
spatio-temporal resolution

Next-place [%] Next time-bin [%]

1688 m 204m 33 m 1688 m 204m 33 m 1-hour 30-minutes

GRU 25.67 5.33 3.33 26.50 10.33 8.00 16.11 13.78
RF 25.30 6.33 6.67 27.00 11.11 8.50 17.44 13.67
MC 18.00 6.00 5.33 18.17 3.33 3.50 8.44 16.00
Toploc 18.00 0.67 4.33 21.83 8.33 8.33 8.22 10.00

GRU is the deep neural network, RF is an ensemble decision trees method, MC is the Markov chains-based prediction
algorithm, and Toploc is a baseline predictor. Bold values indicate the highest result for each sequence type.

Table 5 Spearman’s correlation of the evaluated metrics and accuracy of predictions calculated on
the three types of synthetic sequences

Random [%] Markovian [%] Non-stationary [%]

ESR 88.21 95.76 86.67
SR 90.14 74.80 82.34
DR 79.50 88.76 73.13
Regularity 64.88 33.01 62.30
Stationarity 87.99 –20.78 82.66
NStationarity 87.99 –20.78 82.66
GA 90.60 85.51 85.95
IGA 88.04 84.97 83.56
�max 60.56 93.29 77.04

ESR is an equally sparse repeatability, SR is a sparse repeatability, DR is a dense repeatability, GA is a global alignment measure,
and IGA is an iterative global alignment measure. All the correlations are significant at the level of p < 0.001 (significance of
correlation between stationarity and accuracy of markovian sequences is p < 0.03). Bold values indicate the best result for
each sequence type.

metrics, which are stationarity and regularity. These metrics were originally used to ex-
plain predictability variability.

Table 5 presents Spearman’s correlation values observed on the synthetic sequences.
The accuracy of predictions is strongly correlated with all the proposed measures. The
most correlated measures on average are ESR, GA, and IGA (in that order). The superior-
ity of the ESR metric is clearly seen when applied to Markovian sequences. In other cases
(for random and non-stationary sequences), correlation values associated with GA and
IGA metrics are similar to the correlation of ESR. Stationarity also has a large impact on
the predictability of random and non-stationary sequences, however, not on Markovian
sequences which have a small number of self-transitions. Regularity is on average the least
correlated measure. �max seems to be correlated strongly only with Markovian sequences,
while in other cases this correlation is relatively low.

Spearman’s correlation between predictions accuracy and metrics calculated on real
mobility data are presented in Table 6. Tests were conducted on the two types of sequences
of various spatio-temporal resolution. For the next-place sequences, Spearman’s correla-
tion value for the ESR metric is the highest (75% on average) for all the spatial resolutions
of data. The correlation value slightly decreases with the spatial resolution increase, which
is caused by the higher number of unique symbols present in the sequence. GA metric has
the second-highest correlation, while regularity is the least correlated metric. By defini-
tion, all self-transitions are removed in the next-place sequences, therefore stationarity is
not correlated with this type of movement sequence (it is always equal to one). For the
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Table 6 Spearman’s correlation of the evaluated metrics and accuracy of predictions calculated on
the two types of mobility sequences of various spatio-temporal resolution

Next-place [%] Next time-bin [%]

1688 m 204m 33 m 1688 m 204m 33 m 1-hour 30-minutes

ESR 75.38 75.26 74.35 76.42 68.24 71.55 73.85 69.25
SR 52.92 62.17 66.25 74.80 79.73 86.35 76.42 83.04
DR 48.83 56.41 55.49 80.93 74.28 73.60 75.89 72.65
Regularity 51.48 46.18 57.93 54.87 53.26 56.15 53.04 56.45
Stationarity – – – 76.55 68.00 65.30 69.94 66.06
NStationarity – – – 76.55 68.00 65.30 69.94 66.06
GA 68.18 71.79 70.39 90.62 89.61 92.50 89.70 91.53
IGA 67.12 69.32 69.85 92.19 91.34 94.50 90.52 93.86
�max 63.16 62.64 62.05 74.89 68.08 64.96 70.93 67.70

ESR is an equally sparse repeatability, SR is a sparse repeatability, DR is a dense repeatability, GA is a global alignment measure,
and IGA is an iterative global alignment measure. All the correlations are significant at the level of p < 0.001. Bold values
indicate the best result for each sequence type.

next time-bin sequences, Spearman’s correlation values of IGA and GA metrics are the
highest by a large margin, almost 10% over the third-highest correlated SR metric. Other
LCS-based metrics and stationarity are strongly correlated with prediction accuracy on an
average level of around 70%. Similarly to the next-place sequences, regularity is the least
correlated metric on average. The average correlation value across all spatio-temporal res-
olutions and sequence types is the highest for the IGA metric, reaching over 83%. In all
of the cases, correlation between �max and prediction accuracy is smaller than for ESR,
IGA, and GA.

To validate the extent up to which these metrics explain predictions accuracy variability,
we fit various regression functions to the data and calculate the coefficient of determina-
tion R2 for each of these fits. First, we determine the type of functional dependency be-
tween metrics and predictions accuracy. We find that the relationship between accuracy
and all the LCS-based metrics is exponential, regularity and stationarity have a logarithmic
relationship, and the GA and IGA metrics are linearly dependent on the accuracy variable.
Next, we fit a regression model modelling those functional relationships and calculate the
R2 for each fit. To avoid overfitting, R-squared is calculated using a 5-fold cross-validation
approach. Moreover, because NStationarity was weakly correlated with the other metrics,
we combine all the metrics with NStationarity by fitting a multivariate regression model.
For those combinations, adjusted R-squared is calculated. The results are presented in
Table 7 and Table 8.

Tests conducted on the synthetic sequences reveal that the ESR metric, together with
NStationarity, explains the accuracy of predictions made on Markovian sequences best,
reaching R2 > 90%. The accuracy of predictions on random sequences is explained well by
all of the metrics, especially when NStationarity is involved. Predictions made on Marko-
vian sequences appear to be more difficult to explain than random sequences because only
ESR and GA metrics combined with NStationarity reach R2 > 80%. Interestingly, regu-
larity combined with stationarity is unable to explain the accuracy of predictions made
on Markovian sequences. Similarly to Markovian sequences, the accuracy of predictions
made on non-stationary sequences is explained well by ESR, GA, and IGA metrics, as well
as all the combinations where NStationarity is involved. The �max metric, in most cases,
performs worse than ESR, IGA, and GA metrics, but it yields good results for highly pre-
dictable Markovian sequences.
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Table 7 An average proportion of variation of accuracy of predictions made on the synthetic
sequences explained by the regression models fit to the evaluated metrics

Random [%] Markovian [%] Non-stationary [%]

ESR 91.11 89.98 85.08
SR 78.81 45.81 42.98
DR 78.09 73.85 59.14
ESR + NStationarity 93.03 91.53 83.94
SR + NStationarity 92.08 58.87 81.16
DR + NStationarity 91.55 74.71 81.40
Regularity + Stationarity 91.32 1.25 73.83
GA 91.18 67.41 79.17
GA + NStationarity 93.04 81.56 82.38
IGA 88.12 65.24 75.54
IGA + NStationarity 92.35 77.61 81.78
�max 80.76 89.22 76.44

ESR is an equally sparse repeatability, SR is a sparse repeatability, DR is a dense repeatability, GA is a global alignment measure,
and IGA is an iterative global alignment measure. All the R2 values are significant at the level of p < 0.001. Bold values indicate
the best result for each sequence type.

Table 8 An average proportion of accuracy variation explained by the regression models fit to the
evaluated metrics presented for the two types of mobility sequences of varied spatio-temporal
resolutions

Next-place [%] Next time-bin [%]

1688 m 204m 33 m 1688 m 204m 33 m 1-hour 30-minutes

ESR 57.71 61.09 56.97 38.78 27.02 35.69 38.18 33.20
SR 26.45 41.65 47.63 47.61 29.51 46.80 42.51 43.69
DR 19.34 30.95 32.06 50.57 44.87 44.28 50.21 40.92
ESR + NStationarity – – – 47.92 45.03 47.14 52.88 42.95
SR + NStationarity – – – 75.63 48.92 67.64 72.68 62.60
DR + NStationarity – – – 48.91 52.28 47.99 57.46 47.10
Regularity + Stationarity 23.79 24.36 31.89 43.28 38.12 38.49 40.62 36.44
GA 55.27 55.32 56.98 75.69 51.84 61.50 64.91 57.09
GA + NStationarity – – – 80.55 65.48 66.49 74.56 66.41
IGA 52.97 52.74 55.95 86.23 85.44 89.67 84.44 88.03
IGA + NStationarity – – – 88.55 86.49 90.33 87.53 89.23
�max 38.32 43.39 42.10 48.56 48.57 47.70 52.92 43.63

ESR is an equally sparse repeatability, SR is a sparse repeatability, DR is a dense repeatability, GA is a global alignment measure,
and IGA is an iterative global alignment measure. All the R2 values are significant at the level of p < 0.001. Bold values indicate
the best result for each sequence type.

Predictions made on the real movement sequences proved to be less explainable than
predictions made using synthetic sequences. Predictions made on the next-place se-
quences are best explained by the ESR metric, with an average value reaching R2 > 58%

(see Fig. 6 for the example). The GA and IGA are closely following, reaching an aver-
age value of R2 > 53%. Predictions made on the next-time bin sequences are best ex-
plained by the IGA metric, outperforming other metrics by a large margin. Interestingly,
the GA metric is performing worse than expected given its strong correlation with the
accuracy variable (see GA correlations in Table 6). Combining metrics with NStationar-
ity improved their ability to explain the variability of predictions accuracy, especially in
the case of the SR metric. However, NStationarity increased R2 for the IGA metric only
slightly, which means that IGA already incorporates the majority of information deliv-
ered by the stationarity-based metric. The combination of regularity and stationarity is
the worst performing metric in most cases. Performance of the �max metric on human
mobility sequences seems to be poor, which proves that �max should not be compared
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Figure 6 The equally sparse repeatability metric in comparison to the accuracy of the best predictor. The red
dashed line represents a regression model fit to the data

Table 9 An average proportion of predictability variations explained by the regression models fit to
the evaluated metrics calculated for the two types of mobility sequences

Next-place [%] Next time-bin [%]

ESR 43.23 40.21
SR 42.56 4.61
DR 45.76 51.50
ESR + NStationarity – 82.23
SR + NStationarity – 80.03
DR + NStationarity – 83.32
Regularity + Stationarity 58.91 81.40
GA 64.50 32.67
GA + NStationarity – 83.13
IGA 62.70 41.26
IGA + NStationarity – 80.53

ESR is an equally sparse repeatability, SR is a sparse repeatability, DR is a dense repeatability, GA is a global alignment measure,
and IGA is an iterative global alignment measure. All the R2 values are significant at the level of p < 0.001. Bold values indicate
the best result for each sequence type.

with the accuracy of predictions. The average R2 value across all spatio-temporal resolu-
tions and sequence types is the largest for the IGA metric.

3.3 Relationship between metrics and predictability
The combination of regularity and stationarity was originally intended to explain fluctua-
tions of predictability in mobility data, rather than the accuracy of predictions. Therefore,
we check the R2 values for all the metrics presented above in relation to the predictabil-
ity of movement sequences. Table 9 presents the average value of R2 for all the types of
sequences. The results confirm the findings of previous works, that regularity combined
with stationarity explains predictability well in both types of movement sequences. Al-
though the R2 values of regularity and stationarity are not the highest, they are close to
the highest values. The results suggest that the stationarity is uplifting the R2 value in the
case of next time-bin sequences and explains the majority of predictability variations.
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4 Discussion
Since the publication of Song et al. [8], predictability of human mobility has been sub-
ject to intensive studies which aimed to improve our understanding of human mobility
behaviour and quantify the degree of randomness in the movement. Only a few times,
the outcomes of these estimations were compared to actual predictions [7, 14], yielding a
surprising result of prediction accuracy surpassing the theoretical upper bound. We in-
vestigated that phenomenon in more detail and observed the same result on the synthetic
and real mobility sequences. Specifically, we found that predictions accuracy surpasses
the theoretical upper bound of predictability when both of these values are high, that is
when a sequence is highly predictable and the algorithm is able to capture the complex
structure of the sequence. This finding aligns well with the results reported by Kulkarni
et al. [14], who found that sophisticated algorithms, such as deep neural networks, are
surpassing predictability values. Algorithms of higher overall accuracy were surpassing
the upper bound of predictability more often than algorithms of lower prediction accu-
racy. Such results suggest the unsuitability of the predictability estimation theory to hu-
man movement sequences. Few authors raised concerns regarding the calculation process,
specifically the Lempel–Ziv algorithm. Kulkarni et al. [14] found that this algorithm does
not capture long-range structural correlations present in movement sequences, which in
result decreases the predictability estimation. Moreover, Lu et al. [7] observed that pre-
dictions made on non-stationary sequences surpass the predictability limit, which aligns
with the fact that the Lempel–Ziv algorithm is proved to work accurately only on station-
ary sequences [13].

However, we argue that the accuracy of predictions should not be compared to the pre-
dictability limit at all, as these values are based on different parts of movement sequences.
Predictability is calculated as a single metric for the whole sequence, while accuracy is ob-
tained only on a part of the data which had to be split to provide the learning material for
the prediction algorithm. For example, in our experiment outcomes of such situations can
be observed when even the naïve algorithm was able to surpass the predictability limit.
In these cases, the test set was consisting of only one symbol which is easy to predict
and results in perfect accuracy, while the training set had additional, unique symbols in
it, which decreased the predictability estimation. Also, it is important to note that pre-
dictability estimated only on a test dataset would also not be comparable to prediction
results as prediction algorithms use information from training sets which, in that case,
would be omitted by the predictability estimator.

In their work, Teixeira et al. [20] attempted to explain predictability fluctuations through
other, easier to interpret, metrics. As we confirm (see Table 9), their two simple metrics are
able to explain the majority of predictability variability. Although, stationarity is not ap-
plicable to the next-place sequences (because by the definition it is always equal to one),
regularity alone is able to explain almost 60% of the predictability variability. However,
these metrics are poorly explaining the variability of predictions accuracy, which is an-
other argument for the incomparability of predictability and predictions.

As an alternative, we proposed a set of metrics based on pattern-matching algorithms.
These algorithms were modified to search for identical transitions (pairs of symbols), in-
stead of reoccurring symbols. This increased R2 values in all the cases. This shows that
repeatability of transitions is another important factor influencing the accuracy of pre-
dictions. We applied our metrics on the two types of datasets: synthetically generated se-
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quences and actual mobility data processed into the two types of sequences (next time-bin
and next-place) aggregated to various spatio-temporal scales. The IGA metric, which is
based on global sequence alignment, explained on average over 88% of variability in pre-
dictions accuracy in the next time-bin sequences. The ESR metric, based on the longest
common subsequence matching, was able to explain almost 59% of variability in the ac-
curacy of predictions for the next-place sequences.

Through the analysis of the correlations between the accuracy of predictions and vari-
ous metrics, we found that stationarity is strongly correlated with predictions (see Table 5
and 6) and usually weakly correlated with other metrics, therefore, we decided to combine
its modified variant with our metrics in the regression models. Stationarity is useful when
analysing next time-bin sequences where the number of self-transitions is high. Multiple
works found the cause of the uplifted predictability of next time-bin sequences in the high
number of self-transitions [11, 17, 20], and as expected it raised R2 value in our multivari-
ate regression models. Therefore, stationarity is an important factor influencing also the
accuracy of predictions in the next time-bin sequences.

Among all the proposed metrics, IGA combined with stationarity was performing the
best on average, but IGA alone was also able to explain a large portion of the variability
in prediction results. The Needleman–Wunsch algorithm is able to align transitions, in-
cluding self-transitions, between sequences, hence, adding stationarity to the model did
not result in the large increase of R2 value. Also, we found that applying a penalty to the
IGA and GA metrics scoring, for every gap or mismatched transition, further increases
R2 values. Among the LCS-based measures, the ESR metric was performing best and was
the overall best performing metric on the next-place sequences. The reason for that per-
formance was the constraint imposed on the ESR metric forcing matched transitions to
be identical (identically spaced), which can be observed as a superiority of ESR over SR,
especially in the next-place sequences. Such transition, present in a training set, should be
predictable for the algorithm in a test set.

We investigated in detail sequences in which ESR performed poorly and found that ESR
is underestimating predictability in situations when the longest matched pattern is much
shorter than the test sequence. This causes ESR not to capture all the reoccurring tran-
sitions which contribute to the increased predictability of a sequence. These transitions
are usually overlapping, which makes that task non-trivial, hence our attempts to merge
these detected transitions in a single sequence failed. On the other hand, sequence align-
ment used in the IGA metric is free of such problems, as the whole sequence is subject
to optimal matching. However, in contrast to the ESR metric, the IGA metric is unable
to capture reoccurring transitions that are separated by other symbols. We found that
in the next-place sequences, which are short and where all self-transitions are removed,
such transitions are often the only transitions that could be matched between sequences
and which were predicted by the prediction algorithm. In such cases, IGA underestimated
predictability.

This work can be further extended by developing even more robust metrics based on
our current findings. One solution may be to merge the best performing metrics, which
are ESR and IGA, which should help to overcome their identified limitations. Although the
primary goal of this work was to identify factors influencing the accuracy of predictions
made on human movement sequences, our solution has other applications which we plan
to pursue in the future. First of all, a quick estimation of the potential predictability of a
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sequence may serve as a reference value during the data preprocessing and filtering stage.
Assessment of potential predictability of movement sequence, in combination with quan-
tification of information loss (due to data preprocessing), may be used to find optimal data
preprocessing methods that maximise retained information and data predictability. This
would minimise the bias introduced into the data through inattentive processing, such
as accidental split of stay-regions, which significantly influences the outcomes of analy-
ses and modelled mobility. Also, transition detection algorithms developed during this
experiment may be used to construct a new sequence prediction algorithm. Such an algo-
rithm would scan the training set in search of repeated transitions (for example using the
approach from the ESR metric), which could be later used at the prediction stage when a
similar series of transitions appear. In contrast to many machine learning algorithms, such
a method would be much more transparent.

5 Conclusions
In this work, we evaluate and confirm the discrepancies between the theoretical limit of
predictability of human mobility and the results of the actual predictions. In response, we
attempt to develop a pattern matching-based metric that will help quickly evaluate the
actual predictability of movement sequences and serve as an alternative solution to the
predictability estimation theory. We propose five candidate metrics and evaluate them on
the results of actual predictions. The key findings of this work are:

• We find that the accuracy of sophisticated prediction models surpasses the theoretical
upper bound of predictability;

• We confirm that the best of the proposed metrics, that are IGA and ESR, explain on
average over 88% of variability in predictions accuracy in the next time-bin sequences
and almost 59% of variability in the accuracy of predictions for the next-place
sequences;

• We find the regularity and stationarity metrics proposed by Teixeira et al. [20] explain
the accuracy of predictions worse than any of our metrics. On the other hand, we
confirm that regularity and stationarity are able to explain a major portion of the
variability of the predictability measure proposed by Song et al. [8], demonstrating
that the predictability and accuracy of predictions should not be compared.

A good performance of our metrics implicates that similarity of transitions present in the
training and test set highly impacts the predictability of the movement sequence. More-
over, relative spacing (the number of other symbols separating the transition) of these
transitions is important. We confirm that stationarity is a significant factor impacting the
predictability of the next time-bin sequences.

We identify shortcomings of our metrics and for future works, we propose merging the
IGA and ESR metrics into a single measure able to perform best for all types of move-
ment sequences. Their abilities are complementary, and we expect their combination to
improve our results. Our metrics can be applied for a quick estimation of the potential
predictability of movement sequences, which combined with quantification of informa-
tion loss caused by data preprocessing, might be used to optimise data preprocessing al-
gorithms. This would help to maximise the amount of information retained in the data
and avoid potential biases caused by inattentive data processing.

Although, we focus on the human mobility studies from which predictability theory
stems, our findings can be applied beyond that area. Our solution can be applied to mea-
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sure the predictability of any type of series of symbols and possibly can be expanded to
work with discrete sequences.
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