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Summary

This thesis aims to improve the efficiency and accuracy of optimization algorithms.

High-dimensional optimization problems are frequently encountered in many prac-

tical situations due to the advancements in technology and availability of big data.

Also, the analytical form of a black-box objective function is unknown, adding to

the challenging nature of high-dimensional optimization problems.

Multistart is a celebrated global optimization algorithm that involves sampling

points at random from the feasible domain and applying a local optimization algo-

rithm to find the corresponding local minimizer. The main drawback of multistart

is the low efficiency since the same local minimizers may be found repeatedly. A

vital research contribution in this thesis improves the efficiency of multistart for

high-dimensional optimization problems by reducing the number of local searches

to the same local minimizers.

Ensuring local optimization methods are reliable and accurate when only objec-

tive function values containing errors are available is an important area of research.

Specifically, the central focus is on the first phase of the Box-Wilson (BW) algorithm,

a response surface methodology (RSM) strategy. The first phase of BW consists of

performing a succession of moves toward a subregion of the minimizer. A significant

research contribution in this thesis enhances the accuracy of the first phase of BW

and RSM, in general, for high-dimensional optimization problems by employing a

different choice of search direction.

Producing high-quality software is vital to ensure accurate research investiga-

tions and to allow other researchers to apply the software, which is an additional

research contribution demonstrated in this thesis. Furthermore, increasingly com-

plex high-dimensional optimization problems are encountered in various areas of

machine learning. Therefore, the development of advanced optimization methods

is essential to the progression of many machine learning algorithms. Consequently,

the final research contribution in this thesis outlines the potential enhancements to

optimization methods applied within various areas of machine learning.
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Chapter 1

Introduction

1.1 Motivation of thesis

Optimization is frequently applied in many practical situations to find the maximum

or minimum of some objective function defined on a feasible domain. Throughout

this thesis, the minimization problem will be considered.

There have been significant advancements in technology and storage capabilities

in recent times, and consequently, substantial amounts of data are widely available.

Therefore, high-dimensional optimization problems are often encountered and are

considered in this thesis. The analytical form of the objective function may also

be unknown in many practical situations, which further enhances the difficulty of

optimization problems.

The type of optimization algorithm employed depends on the underlying struc-

ture and behaviour of the objective function. Specifically, many local minima may

exist if the objective function is assumed to be multimodal. A local minimum is

the smallest function value observed on a subregion of the feasible domain. If a

local minimum is the smallest function value observed on the entire feasible domain,

then the local minimum is the global minimum. On the other hand, if the objective

function is unimodal then a single local minimum exists, which is also the global

minimum. Global optimization algorithms aim to find the global minimum of an

objective function and often consist of a global and local phase. The global phase in-

volves exploring the feasible domain by sampling points, and the local phase employs

a local optimization algorithm to make local improvements to the sampled points.

The choice of local optimization algorithm often depends on whether the objective

function is deterministic or stochastic. The objective function is deterministic if the

same output is repeatedly produced when evaluated with a particular input. Con-

versely, the objective function is stochastic if different outputs are produced when
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1.2. OUTLINE OF THESIS

evaluated with a particular input.

The research contributions in this thesis aim to improve the efficiency and ac-

curacy of algorithms for high-dimensional optimization problems. In addition, the

enhanced algorithms also have the potential to be applied with black-box objective

functions. Suppose the objective function is deterministic, multimodal and apply-

ing a local optimization algorithm to many sampled points from the feasible domain

results in repeatedly finding the same local minima. In that case, it is desirable to

apply the local optimization algorithm to promising points only, which may lead

to the discovery of a new local or global minimum. As a result, the efficiency of a

global optimization algorithm can be significantly improved, which is a key research

area explored in this thesis. On the other hand, suppose the objective function is

stochastic for high-dimensional optimization problems. Ensuring local optimization

methods are reliable and accurate when only function values containing errors are

available is another key area of research investigated in this thesis.

Improved computational resources and the availability of big data in recent times

have presented many opportunities to enhance progression in various fields. Specif-

ically, the ability to efficiently and effectively extract knowledge and trends from a

substantial amount of data is a crucial area of research. Machine learning involves

learning a model from observed data to predict an output or trend for unseen data.

The progression of many machine learning algorithms involves solving increasingly

complex high-dimensional optimization problems, and as a result, a great deal of

interest is devoted to optimization methods. The development of advanced opti-

mization methods has influenced the significant progress made in machine learning.

Therefore, a discussion on how each research contribution in this thesis may be ap-

plied to enhance optimization methods used in various areas of machine learning

will be presented.

1.2 Outline of thesis

The structure of this thesis is summarized as follows.

• Chapter 1 motivates and illustrates the key research contributions presented

in this thesis.

• Chapter 2 provides a literature review of global and local optimization al-

gorithms, properties of high-dimensional objects and distributions, and the

connection between machine learning and optimization.

• Chapter 3 outlines the multistart with early termination of descents (METOD)

algorithm, which has been published in [144]. METOD aims to reduce the

2
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number of repeated local searches to the same local minimizer. A variety of

enhancements to the original METOD algorithm in [144] have been imple-

mented in Chapter 3 to improve the efficiency and accuracy of identifying new

local minima. In addition, clear recommendations for the METOD algorithm

parameters are provided, along with numerical investigations. Furthermore,

the implementation of the METOD algorithm in Python is discussed, which

allows other researchers to apply the software for high-dimensional global op-

timization problems.

• Chapter 4 presents a different choice of search direction in high-dimensional

response surface optimization, where the objective function to be optimized

is stochastic. Hence, an important area of research is to ensure that descent

directions produced in stochastic local optimization algorithms are accurate

and reliable. Specifically, the key focus of Chapter 4 is the Box-Wilson (BW)

algorithm, which is a response surface methodology (RSM) strategy and con-

sists of two phases. The first phase of BW consists of performing a succession

of moves toward a subregion of the minimizer. The second phase of BW in-

volves fitting a locally quadratic model of the response function to estimate

the location of the minimizer. Chapter 4 investigates a different choice of

descent direction for the iterative updates within the first phase of BW for

high-dimensional stochastic optimization problems.

• Chapter 5 illustrates the best practices adopted for the development of software

for research contributions presented in Chapters 3 and 4. The purpose of this

is to ensure that the software and outputs produced from the software are

reliable and accurate.

• In Chapter 6, all work outlined in the previous chapters is discussed and further

areas of research are identified.

1.3 Research contributions

The key research contributions of this thesis are,

1. To improve the efficiency of multistart for high-dimensional optimization prob-

lems by reducing the number of local searches to the same local minimizers.

2. To enhance the accuracy of high-dimensional response surface optimization

algorithms by employing a different choice of descent direction.

3. To produce high-quality software for the research contributions in Chapters 3

and 4, which ensures numerical results are accurate and other researchers are

able to apply the software.

3
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4. To outline the potential enhancements to optimization methods applied within

various areas of machine learning.

1.4 Notation

All notation used is outlined within each chapter. Furthermore, notation is specific

to each chapter and can vary between different chapters. In general, if a single

point is generated and applied with an optimization algorithm, the point is denoted

as x = (x1, . . . , xd)
T , where d is the dimension. Alternatively, if many points are

generated and applied with an optimization algorithm, the collection of points are

denoted as xn = (xn1 , . . . , xnd
)T , where n = 1, . . . , N is the point index and N is the

total number of points.

4



Chapter 2

Literature review

This chapter is summarized as follows.

• Section 2.1 outlines the purpose of the literature review.

• Section 2.2 provides an overview of the global optimization problem and the

approaches adopted by many global optimization algorithms to solve the cor-

responding problem. In addition, the motivation for research contributions

in Chapter 3 is presented, which is to improve the efficiency of multistart, a

celebrated global optimization algorithm.

• In Section 2.3, an overview of deterministic local optimization methods is pre-

sented, where exact information on objective function values and derivatives

is assumed to be available.

• Section 2.4 summarises stochastic local optimization methods, namely, stochas-

tic approximation (SA) and response surface methodology (RSM), where noisy

objective function values are utilized. The focus of this section is to demon-

strate how the application of RSM can be expanded to high-dimensional op-

timization problems, which is the main research contribution in Chapter 4.

• In Section 2.5, the counter-intuitive properties of high-dimensional objects and

distributions are presented.

• Section 2.6 portrays the immense value and significance of optimization in

various areas of machine learning, which illustrates the great importance and

potential applications of research contributions in Chapters 3 and 4.

2.1 Introduction

This chapter aims to motivate and provide context for the research contributions

presented in Chapters 3 and 4. That is, enhanced algorithms to efficiently and

5
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accurately solve high-dimensional black-box optimization problems, where the un-

derlying objective function is either assumed to be deterministic or stochastic. If the

objective function is deterministic, exact information on objective function values

and derivatives is available. On the other hand, the objective function is stochastic

if objective function values contain errors.

Section 2.2 discusses the problem of global optimization and the approaches

adopted by many global optimization algorithms to solve the corresponding prob-

lem. Many global optimization algorithms utilize local optimization algorithms to

make local improvements. Hence, Sections 2.3 and 2.4 present various determin-

istic and stochastic local optimization algorithms, which are applied depending on

whether the underlying objective function is assumed to be deterministic or stochas-

tic. Sections 2.2 - 2.4 also demonstrate the challenges often encountered with high-

dimensional black-box optimization problems. In addition, Section 2.5 presents

the counter-intuitive properties of high-dimensional objects and distributions, fur-

ther illustrating the challenging aspects of high-dimensional black-box optimization.

Section 2.6 portrays the importance of optimization in various areas of machine

learning.

2.2 Global optimization

2.2.1 Overview

Global optimization is an extensive and fast-growing area of research. Many pro-

cedures are associated with global optimization, such as examining and investigat-

ing optimization problems, developing various algorithms to perform optimization,

and developing software to allow automation of algorithms and analysis. Global

optimization is frequently utilized in various fields, including engineering, natural

sciences, medicine and machine learning (see [1, 45, 96, 99, 104]). Developments

in technology and science involve solving increasingly difficult global optimization

problems with a large number of variables, where the analytical form of the objec-

tive function to be optimized is often unknown. These problems are called high-

dimensional black-box global optimization problems since the objective function to

be optimized is black-box. This section outlines the approach of many global opti-

mization algorithms and is based on the monographs [139, 140, 141, 143].
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2.2.2 Formulation of global optimization problem

Consider the following global minimization problem,

f ∗ = min
x∈X

f(x), (2.1)

where f : Rd → R is an objective function that is continuous on the feasible domain

X. In some cases, objective function values may contain errors, which is often the

case when the objective function f is a regression function [141]. A global minimizer

is any point x∗ ∈ X which satisfies,

x∗ = argmin
x∈X

f(x). (2.2)

By [139, 141, 143], a global optimization algorithm constructs a sequence of

points xn ∈ X (n = 1, . . . , N) such that,

yN = min
n=1,...,N

f(xn)

approaches f ∗ as N increases. The structure of the feasible domain X and the

objective function f may influence the ability of solving (2.1). Throughout, it is

assumed that X ∈ Rd is continuous and high-dimensional. The search space of the

feasible domain X increases exponentially as the dimension d grows. For example,

suppose X = [0, 1]d, and a grid of equidistant points to cover X is obtained. If d = 1,

then 10 points placed at intervals of 0.1 cover X evenly. Hence, the number of points

in the grid to cover X for d dimensions is 10d and thus, the number of points required

increases exponentially as d grows. In addition, Section 2.5 provides an overview

of high-dimensional geometry to illustrate the contradictory behaviour of sampling

points from a high-dimensional unit cube and Gaussian distribution compared to

the known 2-dimensional behaviour.

A local minimizer x∗l (l = 1, 2, . . .) exists if

f(x∗l ) < f(x), (2.3)

for all x ∈ Al ⊂ X, where Al is a region of attraction of the local minimizer x∗l
and f(x∗l ) is the local minimum. If the objective function f has just one local

minimizer in the feasible domain X, the objective function is unimodal and the local

minimizer is the global minimizer. Otherwise, if the objective function has many

local minimizers in the feasible domain X, then the objective function is multimodal.

The local minimizer x∗l is also the global minimizer x∗ if (2.3) holds for all x ∈ X.

Each time local search is applied with x ∈ Al, the local minimizer x∗l associated

with region of attraction Al will be found. Figures 2.1 and 2.2 portray an example

of a unimodal and multimodal objective function defined on the feasible domain X.

7
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Figure 2.1: Plot of a unimodal function (left) and corresponding contour plot (right),

where x∗ = (0.5, 0.5)T and X = [0, 1]2.

Figure 2.2: Plot of a multimodal function (left) and corresponding contour plot

(right), where x∗ = (0, 0)T , X = [−5, 5]2 and the objective function f is called

Rastrigin’s function.

2.2.3 Properties of global optimization algorithms

Suppose x is a point sampled from X. The objective function value f(x) can be

improved by applying several iterations of a local search method to obtain a sequence

of points x(k) (k = 0, 1, . . .) that approach a local minimizer x∗l . The sequence x(k)

can be constructed as follows,

x(k+1) = x(k) − γ(k)s(k), (2.4)

8



2.2. GLOBAL OPTIMIZATION

where x(k) ∈ Rd is a point at the k-th iteration of a local search method, s(k) is the

search direction and γ(k) is the step length. If exact information on objective function

values and derivatives is available, deterministic local optimization procedures in

Section 2.3 are utilized to obtain s(k) and γ(k). Otherwise, if the objective function

values contain errors, stochastic local optimization procedures discussed in Section

2.4 are used.

Many global optimization algorithms incorporate global and local search to im-

prove the likelihood of finding the global minimum. The global search involves ex-

ploring and sampling points scattered over the feasible domain X. The local search

involves making local improvements to the sampled points by employing some local

optimization method. The efficiency of global optimization algorithms often de-

pends on the trade-off between global and local search. A suitable balance between

global and local search depends on the complexity of X, information of f (obtained

before and during the search), and also the computational cost of evaluating the

gradient of f [139, 140, 143].

Global optimization algorithms can be mainly categorized as deterministic or

stochastic. The focus throughout will be on stochastic global optimization (see

[139, 143]). Stochastic global optimization methods are described in [143] as methods

for solving global optimization problems where the problem itself is stochastic (i.e.

objective function values contain errors), the algorithm contains stochastic elements

or a combination of the both.

Global random search (GRS) is a class of stochastic global optimization algo-

rithms. Suppose xn (n = 1, . . . , N) is a collection of points, where xn has some

probability distribution Pn. The GRS class consists of algorithms that generate xn

(n = 1, . . . , N), where at least one Pn is non-degenerate [139, 140, 143]. In addition,

[139, 140, 143] states that the probability distributions Pn with n ≥ 2 may depend

on previous starting points x1, . . . , xn−1 and on corresponding objective function

evaluations f(x1), . . . , f(xn−1).

Many GRS algorithms employ a selection of the principles outlined in [139, 140,

143], which are provided in Table 2.1. Popular GRS algorithms are stated in [140,

143] and include pure random search, markovian global search, pure adaptive search,

random multistart and population based search. Advantages of GRS algorithms are

outlined in [139, 140, 143] and include, ease of implementation and insensitivity to

the structure of the feasible domain, volatility of the objective function, and size of

dimension. However, the main drawback of GRS algorithms is the slow convergence

rate [139, 140, 143]. Hence, improving the efficiency of GRS algorithms is a key area

of research in stochastic global optimization.

Low efficiency is often encountered when applying random multistart (also known

9



2.3. DETERMINISTIC LOCAL OPTIMIZATION

Principle Description

P1 Sample points at random and evaluate f .

P2 Random coverage of the feasible domain.

P3 Use of local optimization techniques.

P4
Apply heuristics to avoid a collection of points around certain local

minima.

P5 Selection of new points in the vicinity of good previous points.

P6 Use of statistical inference.

P7 Decrease of randomness in the selection rules for new points.

Table 2.1: A variety of principles from [139, 140, 143] which are utilized within a

broad range of GRS algorithms.

as multistart) since local search is applied to each sampled point generated within

the global phase. Hence, the same local minima may be found repeatedly, and

as a result, computational efforts are not used resourcefully to locate the global

minimum. Consequently, the main focus of Chapter 3 is to illustrate an efficient

version of multistart, which aims to reduce the number of local searches to the

same local minimizers. As a result, the efficiency of multistart can be significantly

improved, especially when the dimension of the problem is very large.

2.3 Deterministic local optimization

2.3.1 Overview

Deterministic local optimization algorithms assume exact information on objective

function values and derivatives is available, and are often employed within global

optimization algorithms. The focus of this section is on deterministic local optimiza-

tion procedures that obtain x(k) (k = 1, 2, . . .) according to the iterative procedure

(2.4), where various methods to compute the search directions s(k) and step lengths

γ(k) are discussed.

2.3.2 Step length γ(k)

Suppose s(k) is a search direction for the iterative update (2.4) and satisfies,

−∇f(x(k))T s(k) < 0.

10
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Then γ(k) can be selected by minimizing the following one-dimensional optimization

problem,

γ(k) = argmin
γ>0

f(x(k) − γs(k)). (2.5)

It can be computationally expensive to identify an exact value of γ(k) that satisfies

(2.5). Therefore, a solution of (2.5) is often approximated. Typically, line search

algorithms test a variety of guesses γ within (2.5), and the most suitable γ is selected

as γ(k) when some stopping criterion is met. Specifically, [94, Chpt. 3.1] states that

line search algorithms consist of two phases. The first phase brackets an interval of

suitable values of γ to test, and the second phase applies bisection or interpolation

to select an appropriate step length γ(k) within the bracketed interval. An extensive

summary of line search methods is provided in [20, Chpt. 7], [77, Chpt. 8.1] and

[94, Chpt. 3], and the following contains a brief overview of the line search methods

discussed.

Golden section search

Suppose that (2.5) is unimodal on a bracketed interval [0, b]. The interval can be

obtained by applying bracketing methods, which are discussed in [20, Chpt. 7.7].

The golden section search method was first introduced in [60] to approximate the

minimizer of a one-dimensional unimodal function f : [a, b]→ R without the use of

derivatives (see [20, Chpt. 7.2] and [77, Chpt. 8.1] for more details). Consequently,

golden section search can be used to determine γ(k). Consider the points

x1 = b+
a− b
ϕ

(2.6)

x2 = a+
b− a
ϕ

(2.7)

where ϕ = 1.618 is the golden ratio. By construction, the length of interval [a, x2]

is the same as interval [x1, b].

Consider the following updates performed at each iteration of golden section

search. If f(x1) < f(x2), then b ← x2, x2 ← x1 and x1 is recomputed using (2.6).

Otherwise, if f(x1) ≥ f(x2), then a ← x1, x1 ← x2 and x2 is recomputed using

(2.7). At each iteration, the length of the interval reduces by 1/ϕ and the algorithm

terminates when the length of the interval is less than some tolerance. By [14, Chpt

5.4], golden section search has guaranteed linear convergence.

11
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Brent’s minimization method

Brent’s minimization method [14, Chpt 5.4] uses both golden section search and

successive parabolic interpolation to approximate a minimizer of a one-dimensional

unimodal function f : [a, b]→ R. Successive parabolic interpolation involves fitting

a quadratic model from three points (xi, f(xi)), where i = 0, 1, 2. The point xi+1

is found by observing where the derivative of the fitted quadratic model is zero.

A point xi is replaced with xi+1 and the process is repeated until some stopping

criterion is met.

According to [14, Chpt 5.1], a drawback of successive parabolic interpolation is

that it can diverge or converge to a maximum or inflection point. Therefore, applying

a combination of golden section search and successive parabolic interpolation ensures

that the advantages of both methods are retained (see [14, Chpt 5.4] for more

details).

Both golden section search and Brent’s minimization method have been im-

plemented within the SciPy library [134] in Python, and can be applied by using

scipy.optimize.minimize scalar with the appropriate method.

Algorithms for inexact line search and termination conditions

In practice, it is common to sacrifice some accuracy when computing γ(k) within line

search methods to improve the overall efficiency of the local optimization procedure.

Hence, the Armijo, Wolfe and Strong Wolfe conditions are proposed to allow termi-

nation of a line search method when a sufficient reduction in the objective function

value is achieved. The following description of the Armijo, Wolfe and Strong Wolfe

conditions is based on [94, Chpt. 3.1].

Consider the following Armijo condition

f(x(k) − γ(k)s(k)) ≤ f(x(k))− c1γ(k)∇f(x(k))T s(k), (2.8)

where c ∈ (0, 1). The Armijo condition (2.8) ensures that a sufficient decrease in the

objective function f is achieved. Furthermore, the Armijo condition can be used in

conjunction with the following curvature condition to eliminate unacceptable small

step sizes γ(k),

∇f(x(k) − γ(k)s(k))T s(k) ≤ c2∇f(x(k))T s(k), (2.9)

where c2 ∈ (c1, 1). Application of the Armijo and curvature conditions are known as

the Wolfe conditions. It may be possible that a step length γ(k) which satisfies the

Wolfe conditions is not close to a minimizer of (2.5). Hence, the curvature condition

can be altered as follows to ensure that the selected γ(k) is in the vicinity of a local

12
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2.3. DETERMINISTIC LOCAL OPTIMIZATION

minimizer or stationary point of (2.5)

|∇f(x(k) − γs(k))T s(k)| ≤ c2|∇f(x(k))T s(k)|. (2.10)

The conditions (2.8) and (2.10) are known as the Strong Wolfe conditions.

The Armijo backtracking line search algorithm (see [94, Alg. 3.1] for more de-

tails) is a popular method to determine γ(k), and in general, involves repeatedly

reducing the initial guess γ until the Armijo condition (2.8) is satisfied. The cur-

vature condition (2.9) is omitted since the trial step lengths γ are suitably chosen

by the backtracking method. A line search algorithm applying the Strong Wolfe

conditions is provided in [94, Chpt. 3.5], which consists of a bracketing and selec-

tion phase. Furthermore, the corresponding algorithm in [94, Chpt. 3.5] has been

implemented within the SciPy library [134] in Python and can be applied by using

scipy.optimize.line search.

2.3.3 Search direction s(k)

The computation of the search direction s(k) will be discussed according to first-

order, second-order and direct search methods. The motivation for various first

and second-order methods to compute the search direction s(k) originates from Tay-

lors theorem presented in Theorem 1 (based on [94, Thm. 2.1]). Direct search

methods incorporate objective function values to determine the search direction

s(k). Typically, direct search methods are employed if the gradient is unknown or

computationally expensive to compute.

Theorem 1. Assume f : Rd → R is continuously differentiable and that p ∈ Rd.

Then

f(x(k) + p) = f(x(k)) + pT∇f(x(k) + tp), (2.11)

where 0 < t < 1. In addition, if f is twice continuously differentiable then

f(x(k) + p) = f(x(k)) + pT∇f(x(k)) + 1

2
pT∇2f(x(k) + tp)p, (2.12)

where 0 < t < 1.

First order

Recall that Taylor’s first-order approximation around x(k) involves constructing a

linear approximation of the objective function f . The gradient ∇f(x(k)) provides

the direction of the most significant change in the objective function f at point x(k).

Hence, first-order search directions repeatedly utilize the gradient of the objective
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html


2.3. DETERMINISTIC LOCAL OPTIMIZATION

function ∇f(x(k)) to locate a local minimizer of an objective function f . Consider

the following search direction for the recursive procedure (2.4),

s(k) = ∇f(x(k)). (2.13)

Steepest descent is an iterative method which involves constructing search directions

s(k) of the form (2.13) and computing step lengths γ(k) > 0 according to (2.5).

Steepest descent ensures that a reduction in the objective function value is achieved

at each iteration since

f(x(k) − γ(k)s(k)) = f(x(k))− γ(k)∇f(x(k))T∇f(x(k)) < f(x(k)),

where ∇f(x(k))T∇f(x(k)) > 0 and γ(k) > 0 is selected according to (2.5). The

magnitude of p in (2.11) must be small to employ Taylor’s first-order approximation

around x(k). Hence, the magnitude of γ(k)∇f(x(k)) must be small, which can be

controlled by the step length γ(k). The advantage of using s(k) = ∇f(x(k)) is that

only first-order derivatives are required compared to higher order derivatives, which

are more expensive to compute. However, convergence to a local minimizer can be

very slow due to the zig-zag nature of steepest descent iterations.

There have been several variations of first-order methods to compute the search

direction s(k), such as steepest descent with momentum [102] known as the heavy ball

method, and Nesterov’s accelerated gradient method [92]. The conjugate gradient

method is a special case of the heavy ball method (see [101, Chpt. 3.2]). Consider

the following non-linear conjugate gradient method to compute a search direction

for the recursive procedure (2.4),

s(k) = ∇f(x(k))− β(k)s(k−1), (2.14)

where β(k) ensures that search directions s(k) and s(k−1) are conjugate. Initially, con-

jugate methods were used to solve linear systems of equations, which was expanded

to non-linear functions in [33]. An overview of linear and non-linear conjugate gradi-

ent methods is presented in [46] and [94, Chpt. 5], along with proposed variations of

β(k). The computational cost of performing non-linear conjugate gradient methods

and steepest descent is similar since first-order derivatives are computed. Despite

this, [94, Chpt. 2.2] states that non-linear conjugate gradient methods are more ef-

fective than steepest descent and improve efficiency. Non-linear conjugate gradient

methods are not as efficient as second-order methods. However, they require far less

storage capacity since matrices do not need to be stored for non-linear conjugate

gradient methods [94, Chpt. 2.2].
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Second order

Second-order methods utilize curvature information of the objective function f to

determine a search direction. Consider the following second-order Taylor series,

f(x(k) + p) ≈ f(x(k)) + pT∇f(x(k)) + 1

2
pT∇2f(x(k))p, (2.15)

where p ∈ Rd. If ∇2f(x(k)) is positive definite, then (2.15) can be differentiated

with respect to p and set to zero in order to obtain the Newton direction. That is,

consider the following search direction for the iterative procedure (2.4),

s(k) = ∇f(x(k))(∇2f(x(k)))−1. (2.16)

Note that (2.12) is different to (2.15) since ∇2f(x(k)+tp) is replaced with ∇2f(x(k)).

By [94, Chpt. 2.2], if ∇2f(x(k)) is smooth enough and the magnitude ∥p∥ is small,

then (2.15) approximates (2.12) reasonably well. A natural step length of γ(k) = 1

is typically used when s(k) is of the form (2.16). Although, the step length γ(k) may

be updated to reduce the objective function value further.

By [94, Chpt. 2.2], the main advantage of the Newton direction is that con-

vergence to a local minimizer can be very fast. However, computation of the Hes-

sian ∇2f(x(k)) at each iteration k can be expensive and challenging. Consequently,

Quasi-Newton search directions are often employed, which approximate ∇2f(x(k))

by a matrix B(k) that utilizes changes in the gradient to obtain knowledge on second-

order derivatives [94, Chpt. 2.2]. Examples of methods to update B(k) are BFGS

[15, 32, 43, 116] and Symmetric Rank One (SR1) [94, Sect. 6.2].

Direct search

Direct search methods can compute search directions s(k) based on objective function

values. Many methods to compute s(k) utilize the objective function values at the

current point x(k) with the unit vectors ±ei (i = 1, . . . , d), where ei contains a 1 in

the i-th position and zeros in all other positions.

The approach of finite difference methods is to evaluate the objective function

with minor changes in the coordinates of x(k) and is discussed in [94, Chpt. 8.1].

Consider the following one-sided finite difference method

df

dx
≈


f(x(k) + c(k)e1)− f(x(k))

c(k)
...

f(x(k) + c(k)ed)− f(x(k))
c(k)

 (2.17)
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where c(k) is some constant (see [94, Chpt. 8.1] for a discussion on the choice of

c(k)). Consider the following central finite difference method which can be applied

to obtain a more accurate derivative estimate,

df

dx
≈


f(x(k) + c(k)e1)− f(x(k) − c(k)e1)

2c(k)
...

f(x(k) + c(k)ed)− f(x(k) − c(k)ed)
2c(k)

. (2.18)

Even though the central finite difference method produces a more accurate gradient

approximation, it is more computationally expensive than the one-sided forward

difference method since 2d function evaluations are required instead of d + 1. The

search direction s(k) can be set as (2.17) or (2.18) to approximate the gradient.

On the other hand, the unit vectors ei (i = 1, . . . , d) can be used directly as the

search direction s(k). In particular, coordinate search (see [94, Chpt. 9.3]) attempts

to reduce the objective function value by searching along s(k) = ±ei (i = 1, . . . , d) at

each coordinate x
(k)
i . Enhancements to the selection order of coordinates i = 1, ..., d

are discussed in [94, Chpt. 9.3].

Pattern search is described as a generalization of coordinate search in [94, Chpt.

9.3]. Furthermore, [94, Chpt. 9.3] states that pattern search involves selecting a set

of search directions for x(k) and evaluating the objective function f at a predefined

step length γ(k) along each search direction. If a significant reduction in the objective

function value is achieved, then x(k+1) is obtained by moving along the corresponding

search direction s(k) at the selected step length γ(k). Subsequently, the set of search

directions and choice of step length may be updated for x(k+1), and the process is

repeated.

2.4 Stochastic local optimization

2.4.1 Overview

Stochastic (simulation) local optimization algorithms are employed when the objec-

tive function values are stochastic or when there is some randomness in selecting

the search direction [121]. Consider the following objective function

f(x) = η(x) + ϵ, (2.19)

where X is some feasible domain, x ∈ X ⊂ Rd, η(x) is an unknown objective function

and ϵ is the error. If η(x) is assumed to be unimodal, then one local minimizer exists

in the feasible domain X, which is also the global minimizer.
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In [121], randomness in the search direction can reduce sensitivity to noisy ob-

jective function values and aid exploration in different regions of X. A vast amount

of literature has been devoted to stochastic optimization [2, 19, 35, 120, 121, 129].

It is assumed that only noisy objective function values (2.19) are available to com-

pute γ(k) and s(k) in (2.4) within this section. In [129], stochastic approximation

and response surface methodology are categorized as stochastic local optimization

methods which use objective function values (2.19) and will be discussed in this sec-

tion. In particular, special attention will be given to the choice of search direction

s(k) used for the iterative update (2.4) within each method.

2.4.2 Stochastic approximation (SA)

SA was introduced in [61, 108] to iteratively reduce the stochastic objective function

(2.19) through estimation of the gradient ∇̂η(x(k)). Analogous to steepest descent,

the search direction in (2.4) is

s(k) = ∇̂η(x(k)).

In [108], unbiased stochastic gradient estimates are used to construct ∇̂η(x(k)).
Alternatively, finite difference estimates are applied in [61] to compute ∇̂η(x(k)).
Discussions on SA methods which utilize unbiased stochastic gradient estimates to

approximate the gradient are omitted in this subsection, but will be discussed in

Subsection 2.6.4 (see [120, Chpt. 4-5] for overview and [19, Sect. 3] for recent

developments of SA methods that use unbiased stochastic gradient estimates).

Suppose that only noisy objective function values are available. The following

SA methods are proposed to estimate ∇̂η(x(k)). Finite difference methods can be

applied to estimate the gradient of an objective function at some point x(k), and have

been outlined in (2.17) and (2.18) for computing the search direction s(k) within (2.4)

for deterministic local optimization methods. Forward difference stochastic approx-

imation (FDSA) is discussed in [120, Chpt. 6] and [121], along with the selection of

step length γ(k) and parameter c(k) in (2.17) and (2.18). The computation of (2.18)

requires 2d function evaluations and consequently, FDSA will be computationally

expensive to compute for large d. Consider the following simultaneous perturbation

stochastic approximation (SPSA) method outlined in [120, Chpt. 7]

∇̂η(x(k)) =


f(x(k) + c(k)ξ(k))− f(x(k) − c(k)ξ(k))

2c(k)ξ
(k)
1

...

f(x(k) + c(k)ξ(k))− f(x(k) − c(k)ξ(k))
2c(k)ξ

(k)
d

 (2.20)
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where ξ(k) = (ξ
(k)
1 , . . . , ξ

(k)
d ) is a mean zero random vector. The selection of γ(k),

c(k) and ξ(k) are discussed in detail within [120, Chpt. 7] and [121]. It can be

observed in (2.20) that ξ(k) incorporates additional randomness in the estimate of the

gradient, allowing the opportunity to explore different regions of the feasible domain

X. Furthermore, the computation of SPSA in (2.20) requires just two objective

function evaluations at each iteration k, irrespective of the size of dimension d.

According to [120, Chpt. 7] and [121], the statistical accuracy is similar for SPSA and

FDSA with a specified amount of iterations, although only 1/d function evaluations

required by FDSA are used by SPSA.

2.4.3 Response surface methodology (RSM)

RSM is a collection of methods for approximating a minimizer of a regression func-

tion using a series of observations containing errors. The most often used and cited

RSM strategy is the Box-Wilson (BW) algorithm (see [13] and [51]). The BW algo-

rithm consists of two phases. The first phase of BW consists of iteratively applying

the recursion (2.4) until a subregion of the optimum is reached. At each iteration, a

first-order model whose coefficients are estimated using least-squares are used to de-

termine the search direction s(k) in (2.4). Different options are available for choosing

the step-length γ(k) in (2.4) (see [34, 83, 86, 89]). The second phase of BW involves

fitting a locally quadratic model of the response function for estimating the location

of the minimizer.

Informative overviews of the BW algorithm and RSM, in general, can be found

in [84, Chapter 11] and [89]. In addition, surveys outlining the development and

progress of RSM are provided in [59, 87, 88].

Different modifications of the BW algorithm are distinguished by using different

designs on Phase I and different rules for choosing the step length γ(k) of the descents.

The choice of search direction s(k) for the first phase of BW has not been challenged

in the RSM-related literature, and is routinely suggested as the least-squares esti-

mator of the gradient of the response function at a current point. However, this can

restrict the use of BW since a significant computational cost is associated with per-

forming the least-squares estimator when the number of observations and dimension

of a design matrix is large. In addition, [38, 39, 141] shows that the least-squares

estimator does not provide the optimal direction. Consequently, Chapter 4 presents

an alternative search direction s(k), which can significantly improve the first phase

of BW and RSM in general for high-dimensional problems.
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2.5 High-dimensional geometry

2.5.1 Overview

This section is based on the monographs [10, 140] and aims to illustrate the counter-

intuitive properties of high-dimensional geometry. Specifically, the behaviour of

many high-dimensional objects and distributions contradicts the known behaviour

in 2-dimensions. This section considers the behaviour of sampled points drawn

uniformly from a high-dimensional unit cube and the high-dimensional Gaussian

distribution. The purpose of discussing the behaviour of points drawn uniformly

from a high-dimensional unit cube and Gaussian distribution is to portray the chal-

lenges encountered by global optimization problems when the dimension is large.

Particularly with the exploration of the feasible domain during the global phase of

optimization algorithms.

2.5.2 Properties of a high-dimensional unit cube

The results in this subsection are from [10, Sect. 2.3] and [140, Sect. 1.1].

Volume of the unit cube

Suppose X ∈ Rd is a high-dimensional object. The following quantity is obtained

by shrinking X by a small constant ϵ > 0,

(1− ϵ)X = {(1− ϵ)X|x ∈ X}.

Consider the following proportion [10, Sect. 2.3],

Vol((1− ϵ)X)
Vol(X)

= (1− ϵ)d ≤ e−ϵd. (2.21)

If ϵ is fixed, then (2.21) approaches zero as d tends to infinity. Consequently, almost

all the volume of X is contained in X \ (1 − ϵ)X. Hence, the volume of a high-

dimensional object (e.g. high-dimensional unit cube) is near the boundary.

Mass in the unit cube

Consider the following result in [140, Sect. 1.1.2], derived using the Hoeffding in-

equality, where ϵ > 0, variables x1, . . . , xd are sampled uniformly at random from

[0, 1], and (x1 − 1/2)2, . . . , (xd − 1/2)2 are independent random variables on [0, 1/4]

with mean 1/12,

Pr

{∣∣∣∣(x1 − 1/2)2 + ...+ (xd − 1/2)2 − d

12

∣∣∣∣ ≥ ϵd

}
≤ 2e−8dϵ2 .
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The result suggests that the annulus surrounding the sphere, with radius
√
d/12 and

centre point (1/2, . . . , 1/2)T , contains almost all of the mass of a high-dimensional

cube [0, 1]d. Consequently, hardly any mass will be near the 2d vertices of the cube

[140, Sect. 1.1.2].

Distance between two random points drawn uniformly from the unit cube

Suppose x = (x1, . . . , xd)
T and y = (y1, . . . , yd)

T are two points sampled uniformly

at random from [0, 1]d. The squared distance between x and y is,

∥x− y∥2 =
d∑

i=1

(xi − yi)2. (2.22)

Furthermore, E ∥x − y∥2 = d/6 and Var∥x − y∥2 = 7d/180. Hence, the distance

between points drawn uniformly at random from [0, 1]d grows with increasing d,

suggesting that points will be far away from one another in high dimensions.

Numerical investigation of properties

Suppose points xn = (xn1 , . . . , xnd
)T and yn = (yn1 , . . . , ynd

)T are sampled uniformly

at random from [0, 1]d for different dimensions d, where n = 1, . . . , 100000. Points

xn and yn will be used to illustrate some of the discussed properties of a high-

dimensional unit cube. Figure 2.3 shows boxplots of the distances ∥xn − yn∥ for

different d. It can be observed in Figure 2.3 that the distances ∥xn − yn∥ ≈
√
d/6.

Therefore, points xn and yn will be far away from one another when the dimension

is large.

A point xn is classified as being near an edge or boundary of the cube [0, 1]d

if at least one coordinate xni
(i = 1, . . . , d) is greater than 0.95 or less than 0.05.

Furthermore, a point xn is classified as being near a vertex if all coordinates are

either greater than 0.95 or less than 0.05. This is also the case for each point yn.

For example, x1 = (0.5, 0.6, 0.97, 0.3)T is a point near a boundary of [0, 1]4 and

x2 = (0.98, 0.01, 0.02, 0.99)T is a point near a vertex of [0, 1]4. Table 2.2 shows the

total percentage of points xn and yn that are near a boundary or near a vertex of

the cube [0, 1]d for various dimensions d.

Table 2.2 shows the number of points near a boundary of the cube [0, 1]d grows

as a function of d. In fact, all sampled points xn and yn are near a boundary of the

cube [0, 1]d when d ≥ 200. However, Table 2.2 illustrates that no sampled points xn

and yn are near any of the 2d vertices of the cube [0, 1]d when d ≥ 10.
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Figure 2.3: Boxplots of the distances ∥xn − yn∥ with n = 1, . . . , 100000, where

xn = (xn1 , . . . , xnd
)T and yn = (yn1 , . . . , ynd

)T are sampled uniformly at random

from X = [0, 1]d.

d

2 5 10 20 50 100 200 500

Near a boundary 18.932 40.955 65.159 87.79 99.451 99.998 100 100

Near a vertex 1.008 0.001 0 0 0 0 0 0

Table 2.2: Total percentage (%) of uniformly sampled points xn = (xn1 , . . . , xnd
)T

and yn = (yn1 , . . . , ynd
)T from [0, 1]d that are near a boundary or near a vertex of

the cube [0, 1]d for various d and n = 1, . . . , 100000.

2.5.3 Properties of the Gaussian distribution in high dimen-

sions

Suppose a point x = (x1, . . . , xd)
T is sampled from N(0, Id). Consider,

E ∥x∥2 = dEx21 = dVar(x21) = d.

Therefore, ∥x∥ ≈
√
d by the Central Limit Theorem when d is large. Furthermore,

suppose another point y = (y1, . . . , yd)
T is sampled from N(0, Id). In a similar

fashion to the above, consider,

E ∥x− y∥ = dE(x1 − y1)2 = d(Ex21 + E y21 − 2Ex1y1) = d(Var(x1) + Var(y1)) = 2d.

Suppose d is large, then points x and y are approximately orthogonal by Pythagoras’

theorem since ∥x∥2 ≈ d, ∥y∥2 ≈ d and ∥x− y∥2 ≈ 2d [10, Sect. 2.2]. The Gaussian
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Annulus Theorem in [10, Sect. 2.6] shows that for any β ≤
√
d and positive constant

c, at least 1 − 3e−cβ2
of the probability mass lies within an annulus of

√
d − β ≤

∥x∥ ≤
√
d + β. Hence, mostly all of the probability is concentrated within a thin

annulus around the sphere of radius
√
d, which contradicts the known behaviour of

a 2-dimensional Gaussian distribution.

2.6 Machine learning and optimization

2.6.1 Overview

Machine learning consists of learning a model from observed input data to predict

an output or trend for unseen data. Machine learning algorithms are widely used

for speech and image recognition, recommendation systems, text classification, mar-

ket research and data visualization. The recent success of many machine learning

algorithms is due to the improved computational resources to solve increasingly

challenging problems and the availability of big data.

Most machine learning algorithms can be categorized as either supervised or un-

supervised learning [44, 48]. Supervised learning consists of learning a prediction

model to approximate the relationship between observed inputs and outputs. In

addition, the learnt prediction model must also be able to predict accurate out-

puts for unseen inputs. Supervised learning can be categorized as a regression or

classification problem depending on whether the observed output is continuous or

discrete. Algorithms applied to solve supervised learning problems include logistic

regression, neural networks and support vector machines (SVM). For unsupervised

learning, the values or labels of output variables are unknown, and the objective

consists of understanding the attributes and features of input variables to determine

trends. Clustering and dimension reduction are examples of unsupervised learning

problems and can be solved by K-means clustering and principal component analysis

(PCA), respectively. Typically, a loss function is used to check the accuracy of the

predictions in supervised learning. Since outputs are unknown within unsupervised

learning, it can be challenging to determine whether the predicted trends are an

accurate representation.

This section focuses on the formulation of optimization problems within machine

learning and the methods applied to solve the optimization problems. Similar to

Section 2.3, gradient-based optimization methods utilized within machine learning

are of interest. Therefore, the remainder of this section will focus on supervised

learning models with continuous variables since the derivative of the loss function

may be computed.
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2.6.2 Relationship between optimization and machine learn-

ing

Optimization is a vital part of many machine learning algorithms, and a great deal

of recent literature is devoted to the relationship between optimization and machine

learning [6, 11, 25, 37, 119, 124].

The progression of many machine learning algorithms involves solving increas-

ingly challenging optimization problems, which has inspired a great deal of interest in

various optimization methods. The development of advanced optimization methods

has influenced the advancements made in machine learning. On the other hand, ma-

chine learning algorithms have also been utilized to aid optimization. For example,

[5] provides a survey of applications that use machine learning to solve combina-

torial optimization problems. Also, [16] uses machine learning to determine when

to apply local search within a global optimization algorithm in order to improve

efficiency. In addition, [135] provides a review of machine learning applications for

the optimization of product quality and production processes.

The application of optimization within machine learning will be explored through-

out this section. Areas of machine learning where optimization is utilized are out-

lined in [119, Sect. 3] and are summarized in Table 2.3.

2.6.3 Formulation of the model training optimization prob-

lem for supervised learning

A fundamental part of machine learning is model training [119]. Typically, the goal

of optimization is to minimize the objective function’s value with respect to the ob-

jective function’s parameters. However, the aims of optimization in model training

are twofold. Firstly, the prediction model should have a low training error, and sec-

ondly, be capable of generalizing to unseen data. Hence, optimality may be reduced

to improve generalization. The model training optimization problem is formulated

for many machine learning algorithms in [37, 124]. The types of optimization prob-

lems within machine learning vary from convex optimization problems (e.g. logistic

regression and SVM) to non-convex and non-linear optimization problems (e.g. deep

neural networks) [11].

Consider the following discussion on the general model training optimization

problem for supervised learning, which is based on [11, Sect. 3.1]. Suppose that

x ∈ Rd is some input variable and y ∈ R is the corresponding output variable. It

is desirable to generate a prediction model to predict the correct output y given an
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Area Description

Data preprocessing

[119, Sect. 3.1]

Various data preprocessing methods are utilized within ma-

chine learning to ensure data is suitable for model learn-

ing. For example, methods such as dimension reduction,

instance reduction and data balancing may be applied (see

[119, Sect. 3.1] for a description of methods), which can be

formulated as optimization problems.

Algorithm

selection [119,

Sect. 3.2]

Selecting a suitable machine learning algorithm for a spec-

ified problem can be difficult. Hence, optimization tech-

niques can be applied to determine the most suitable ma-

chine learning algorithm from a candidate set of algorithms

for a specified problem.

Hyper-parameter

tuning [119, Sect.

3.3]

Hyper-parameters are properties related to a machine

learning algorithm that must be tuned based on the speci-

fied problem to improve model training. Typically, hyper-

parameters are selected by an expert. Consequently, the

most promising set of hyper-parameters for a specified

problem may not be chosen. The selection of hyper-

parameters can be formulated as a black-box optimization

problem. The generalization error of the prediction model

with each set of hyper-parameters is approximated using

the validation dataset, which is a subset of the training

dataset.

Model training

[119, Sect. 3.4]

For many machine learning algorithms, the parameters for

the prediction model can be optimized by minimizing a

loss function based on the learning problem. Furthermore,

the prediction model with the selected parameters must

generalize to unseen data.

Table 2.3: Areas of machine learning where optimization is utilized, as stated in

[119, Sect. 3].

input x. The prediction model can be derived from a family of functions

H = {h(., w)}, (2.23)

where w ∈ Rd is the parameter vector that is optimized during the training process.

In order to measure the accuracy of each proposed prediction model, the loss function
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l(h(x,w), y) is computed, where h(x,w) is the predicted output and y is the true

output. Suppose that P (x, y) is the joint probability distribution that represents

the relationship between all possible inputs x and outputs y. Then the following

optimization problem is formulated

argmin
w∈Rd

E[l(h(x,w), y)], (2.24)

which is known as the expected risk. In general, the probability distribution P (x, y)

is not generally known. However, a training set with N independent and identi-

cally distributed samples (xn, yn) with n = 1, ..., N can be selected. Therefore, the

following empirical risk can be minimized with respect to w

argmin
w∈Rd

1

N

N∑
n=1

l(h(xn, w), yn). (2.25)

It is desirable to train the prediction model, which minimizes both (2.24) and

(2.25). Furthermore, it is also desirable for the prediction model to accurately

predict outputs for unseen inputs, known as generalization. This can be checked

by applying the selected prediction model on a test dataset that consists of unseen

inputs and outputs.

If the training error is minimal and the testing error is relatively large, then it is

likely that the prediction model over-fits the training dataset. That is, the prediction

model memorizes the training dataset in order to make predictions. On the other

hand, the prediction model under-fits the training dataset if the training and testing

error are both relatively large. By [44, Chpt. 5.2], a machine learning algorithm

performs best when the prediction model is appropriate for the true complexity of

the problem and the amount of training data provided. The balance between over-

fitting and under-fitting can be controlled by amending the models capacity [44,

Chpt. 5.2]. Methods to control the capacity include choosing an appropriate family

of functions (2.23) and applying regularization in (2.25) to simplify the model.

The most common form of regularization involves adding a penalty term in (2.25)

during optimization. That is,

argmin
w∈Rd

1

N

N∑
n=1

l(h(xn, w), yn) + λg(w),

where λ is some regularization constant and g is some convex regularization function.

Possibilities for g include the L1 norm g(w) = ∥w∥1 or L2 norm g(w) = ∥w∥2.
Including a regularization function ensures that entries of the parameter vector w

do not include extreme values. If g(w) = ∥w∥1 is applied, entries wi (i = 1, ..., d)

which are not influential in predicting an output may be set to zero, which can be

viewed as feature selection.
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Suppose a selection of samples are removed from the training dataset to construct

a validation dataset. Another form of regularization is early stopping of model

training (see [44, Sect. 7.8]), where the focus is on the validation error produced by

the prediction model as opposed to the training error. Specifically, the validation

error is evaluated repeatedly with updated parameters of the prediction model,

obtained after applying a particular number of iterations of a training algorithm.

If the validation error is reduced, parameters of the prediction model are stored

since they provide the lowest validation error observed so far. Otherwise, if the

validation error is not reduced, the model parameters are not stored. The process

is repeated until no further improvement in the validation error is observed with

updated parameters of the prediction model.

Hyper-parameters are required by a family of functions and also for regulariza-

tion. Consequently, hyper-parameters must also be optimized in addition to the

parameters of the prediction model. As discussed in Table 2.3, a selection of sam-

ples can be removed from the training dataset to construct a validation dataset.

Then for each set of chosen hyper-parameters, a prediction model is learnt using the

training dataset, and the generalization error can be computed using the validation

dataset. The prediction model that produces the smallest generalization error on

the validation dataset, among all sets of chosen hyper-parameters, is selected as the

prediction model.

2.6.4 Optimization methods

During model training, optimization methods are applied to minimize the loss func-

tion with respect to the parameters of the prediction model. The following list of

desirable properties of an optimization method in machine learning are outlined in

[6].

• Good generalization,

• Scalability to large problems,

• Reasonable execution times and memory requirements,

• Algorithm is simple to implement,

• Exploit problem structure,

• Fast convergence to an approximate solution,

• Numerical stability for class of machine learning models selected,

• Theoretical properties of convergence and complexity.
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Optimization methods applied for model training are outlined in [11, 25, 110, 124].

An overview of first-order optimization methods will be discussed in this subsec-

tion, namely, batch gradient descent (BGD) and stochastic gradient descent (SGD).

Steepest descent is presented in Section 2.3, which is an instance of gradient descent

since the step length γ(k) is chosen to produce the smallest objective function value

along the search direction −∇f(x(k)). Optimization methods for machine learning

use a learning rate η(k) that can be fixed or adapted at each iteration.

Throughout this subsection, the focus will be on the optimization problem (2.25).

The notation is simplified as follows to discuss various optimization methods. Sup-

pose fn(w) = l(h(xn, w), yn), then (2.25) reduces to

argmin
w∈Rd

1

N

N∑
n=1

fn(w).

Hence, the k-th iteration of BGD is as follows

w(k+1) = w(k) − η(k)

N

N∑
n=1

∇fn(w(k))

= w(k) − η(k)∇f(w(k)). (2.26)

BGD is intuitive and straightforward to implement. However, it can be observed

in (2.26) that computation of the gradient uses all samples of the training dataset.

Consequently, deriving the gradient is computationally expensive and results in slow

convergence, particularly when N and d are large. By [124], the computational

complexity of performing an iteration of BGD is O(Nd). Therefore, SGD was

proposed in [108] to reduce the computational cost associated with BGD.

Iterative methods that use direct noisy gradients have been investigated in [108].

As a result, the field of stochastic approximation was introduced (see [120, Chpt.

4-7]). SGD computes an approximation of the true gradient in (2.26) by computing

the gradient for one sample. Specifically, the k-th iteration of SGD is outlined as

follows,

w(k+1) = w(k) − η(k)∇fn(w(k)), (2.27)

where n ∈ {1, ..., N} is chosen uniformly at random. SGD is widely used to solve

optimization problems in machine learning, especially when the number of samples

N is extremely large. The approximate gradient ∇fn(w(k)) in (2.27) is an unbiased

estimator of the true gradient ∇f(w(k)) in (2.26). The computational cost of SGD

at each iteration is significantly less than BGD since a single sample is required

to compute ∇fn(w(k)). In fact, the computational complexity of performing an

iteration of SGD is O(d) [124]. However, many more iterations of SGD may need to

be performed compared to BGD since an approximation of the gradient is derived
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from a single sample. Even with additional SGD iterations, the computational cost

of SGD is still significantly less than BGD.

The variance of gradients produced in SGD is large since they may not necessarily

be descent directions. Hence, the objective function value at w(k) may fluctuate

rather than monotonically decrease with increasing k. To reduce the variance of the

gradients in SGD, several samples may be randomly selected to approximate the

gradient. This approach is known as mini-batch stochastic gradient descent. That

is,

w(k+1) = w(k) − η(k)

|B(k)|
∑

n∈B(k)

∇fn(w(k)), (2.28)

where B(k) ⊂ {1, 2, ..., N} is a subset of samples selected uniformly at random at the

k-th iteration. From herein, mini-batch stochastic gradient descent will be referred

to as SGD. The fluctuation of objective function values at w(k) for increasing k will

lessen if the gradient is approximated with more samples. However, some level of

fluctuation can still exist. This is beneficial since the literature [110, 124] states

that the fluctuations caused by the approximated gradients in SGD can encourage

exploration of the feasible domain, which can aid the discovery of better local min-

ima. This is not the case for BGD since repeatedly applying (2.26) will find one

local minimum. Nevertheless, fluctuations in SGD can slow down the convergence

of finding a local minimum [124].

Challenges are often encountered when applying SGD, which are discussed in

[110] and summarized as follows. Firstly, selecting the learning rate η(k) can be

challenging. Specifically, it is difficult to determine how to adjust the learning

rate during the training process and apply it with sparse data. Secondly, it may

be possible to be trapped within a suboptimal local minimum, which is a difficulty

often faced when optimizing a highly non-convex objective function (i.e. deep neural

networks). Even finding local minima of a non-convex function may be difficult in

some cases since saddle points may be present. Consequently, SGD may find a

saddle point instead of a local minimizer [26].

The following enhancements are proposed to improve the performance of SGD

(see [11, 25, 110, 124] for reviews of enhancements). Methods such as momentum

[102] and Nesterov’s accelerated gradient [92] with appropriate random initialization

and a slowly increasing schedule for the momentum parameter have been applied

with SGD in [126] to improve the performance. In addition, adaptive learning rate

algorithms have been proposed to address the challenge of selecting the learning

rate in SGD. AdaGrad is proposed in [28], which adjusts the learning rate for each

parameter w
(k)
i (i = 1, ..., d) based on previous gradient information. A key drawback

of AdaGrad is that the computation of the learning rate involves diving by the square
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root of the sum of squares of the previous gradients with respect to w
(k)
i . Therefore,

the denominator will rapidly increase if there are many iterations of SGD, and as

a result, the learning rate may tend to zero. Consequently, AdaDelta [138] and

RMSprop (unpublished method presented in [52]), were proposed to address the

problem of the learning rate tending to zero after many iterations. Another adaptive

learning algorithm called Adam was proposed in [62], which incorporates momentum

methods. It can be observed in [123] that adaptive learning rate algorithms can

escape saddle points faster than SGD, which leads to faster convergence. Another

proposed enhancement of SGD is to reduce the variance of approximated gradients

since large variation can result in slow convergence. Consequently, several variance

reduction methods, including SAG [109], SAGA [27] and SVRG [56] are proposed

to improve the convergence of SGD.

2.7 Summary

A vast amount of literature is presented in this chapter to provide context for the

research contributions presented in Chapters 3 and 4. That is, enhanced algorithms

to efficiently and accurately solve high-dimensional black-box optimization prob-

lems, where the underlying objective function is either assumed to be deterministic

or stochastic.

The global optimization problem is presented in this chapter, along with the ap-

proaches adopted by many global optimization algorithms to solve the corresponding

problem. Many global optimization algorithms consist of a global and local search.

The efficiency of global optimization algorithms often depends on the trade-off be-

tween global and local search.

The global search involves exploring and sampling points scattered over the fea-

sible domain. Recall from Section 2.2 that the GRS class of stochastic global opti-

mization algorithms incorporate random decisions to select points from the feasible

domain within the global search. However, the behaviour of many high-dimensional

objects and distributions contradicts the known behaviour in 2-dimensions. Conse-

quently, the behaviour of sampling points from the feasible domain during the global

search of optimization algorithms is counter-intuitive.

The local search involves making iterative local improvements (2.4) to the sam-

pled points, where the step length γ(k) and search direction s(k) are updated accord-

ing to some local optimization method. If exact information on objective function

values and gradients is available, deterministic local optimization methods are ap-

plied for local search. Otherwise, stochastic local optimization methods are applied

29



2.7. SUMMARY

if objective function values contain errors.

Suppose that the black-box objective function is deterministic, and applying a

local optimization method to find a local minimizer is computationally expensive

since many iterations are required. In that case, it is desirable to apply the local

optimization method with only promising points, which may lead to the discovery

of a new local or global minimum. This is because applying the local optimization

method to all sampled points will repeatedly find the same local minima, which will

reduce efficiency. Techniques to identify promising points may include exploiting

the information already gained and applying very few iterations of a local opti-

mization method to each sampled point. As a result, the efficiency of many global

optimization algorithms can be significantly improved, which is the focus of Chapter

3. Specifically, Chapter 3 presents an efficient version of multistart, which is part of

the GRS class of stochastic global optimization algorithms discussed in Section 2.2.

On the other hand, suppose the black-box objective function is stochastic for

high-dimensional optimization problems. Thus, ensuring local optimization methods

are reliable and accurate when only function values containing errors are available to

determine search directions s(k) is a key area of research, and the focus of Chapter 4.

In Section 2.4, RSM is a stochastic local optimization algorithm and the most often

used RSM strategy is the BW algorithm, which consists of two phases. The first

phase of BW consists of iteratively applying the recursion (2.4) until a subregion of

the optimum is reached. The second phase of BW involves fitting a locally quadratic

model of the response function to estimate the location of the minimizer. Chapter 4

demonstrates that a different choice of search direction s(k) for the iterative update

(2.4) within the first phase of BW can expand the application of BW and RSM, in

general, for high-dimensional stochastic optimization problems.

Optimization is a vital part of machine learning. Specifically, the progression

of many machine learning algorithms involves solving increasingly challenging opti-

mization problems, which has inspired a great deal of interest in various optimization

methods. The development of advanced optimization methods has influenced the

progress made in machine learning. Hence, the research contributions presented

in Chapters 3 and 4 may be applied to enhance optimization methods utilized in

various areas of machine learning.
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Chapter 3

Multistart with Early Termination

of Descents

This chapter is summarized as follows.

• Section 3.1 provides an overview of the multistart algorithm with a variety of

applications. In addition, a brief overview of multistart with early termina-

tion of descents (METOD) is provided, which can significantly improve the

efficiency of multistart.

• Section 3.2 outlines variations of multistart within the literature that reduce

the number of local searches which lead to the same local minimizer.

• Section 3.3 details the various objective functions that are applied with the

METOD algorithm for analysis and numerical examples.

• In Section 3.4, a detailed overview of the METOD algorithm is provided.

• Section 3.5 provides a numerical study on the main inequality used by METOD

to terminate local searches early for objective functions in Section 3.3.

• Section 3.6 presents the investigation of a key METOD algorithm parameter,

along with recommended values for the parameter.

• Section 3.7 provides results of numerical examples applying the METOD al-

gorithm with objective functions in Section 3.3.

• In Section 3.8, the accuracy and efficiency of METOD is investigated for high

dimensions.

• Section 3.9 details the implementation of the METOD algorithm in Python. In

addition, a summary of input and output parameters of the METOD algorithm

are discussed, along with an example of application.
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Chapter 5 illustrates the measures taken to ensure that the software developed

for the METOD algorithm is accurate and reliable. Furthermore, the METOD al-

gorithm has been implemented in Python and made publicly available on GitHub.

Hence, all source code, tests, analysis results, and examples applying the METOD al-

gorithm are readily available. In Sections 3.5 - 3.8, analysis of the METOD algorithm

is conducted and all results can be found at https://github.com/Megscammell/

METOD-Algorithm/tree/master/Numerical Experiments. On the other hand, Sec-

tion 3.9 focuses on the selection of METOD algorithm parameters to enhance adapt-

ability and performance for a range of global optimization problems.

3.1 Introduction

Suppose a solution to the following unconstrained global optimization problem is

required

min
x∈X

f(x), (3.1)

where f : Rd → R is a multimodal, continuous and differentiable objective function

defined on the feasible domain X. Since f is multimodal, many local minimizers x∗l
(l = 1, 2, ...) may exist. A local minimizer x∗l exists if

f(x∗l ) < f(x), (3.2)

for all x ∈ Al ⊂ X, where Al is a region of attraction of the local minimizer x∗l .

Each time local search is applied with x ∈ Al, the local minimizer x∗l associated

with region of attraction Al will be found. The local minimizer x∗l is also the global

minimizer x∗ if (3.2) holds for all x ∈ X.

Multistart is a celebrated stochastic global optimization method for solving

global optimization problems of the form (3.1). Specifically, multistart is part of

the global random search (GRS) class of stochastic global optimization methods,

discussed within Section 2.2. Multistart consists of a global and local phase. The

global phase involves sampling points from the feasible domain X (e.g. uniformly at

random) to allow diverse exploration, which may lead to new regions of attraction

being discovered. A local search procedure is applied to each sampled point to find

a local minimizer x∗l .

Multistart has been applied to a variety of different global optimization prob-

lems. In [81], a survey of multistart methods for combinatorial optimization is pro-

vided. The survey focuses on memory and memoryless based multistart methods.

The memory based methods exploit previous information for successive solutions,
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and memoryless based methods generate new solutions without knowledge of prior

solutions. For both categories, an extensive review of various algorithms and appli-

cations has been provided. A randomized greedy multistart algorithm is proposed

in [76] for the minimum common integer partition problem, which has several ap-

plications in molecular biology. That is, randomness is injected into the algorithm

for several iterations to allow diversification and exploration of possible solutions in

the early stages. After a certain number of iterations of the algorithm, a determin-

istic approach is applied to search within promising regions identified at the early

stages of the algorithm. A neural network to classify items for a multi-criteria ABC

inventory classification problem is proposed in [75]. A minimum number of neurons

should be included in the hidden layer to reduce the risk of overfitting to the training

set and, consequently, reducing the capability to generalize to new training samples.

Therefore, it is proposed in [75] to use a randomized greedy multistart algorithm to

add neurons to the hidden layer to minimize the size of the neural network. Fur-

ther applications include a multistart algorithm for signal adaptive subband systems

[128] and also multistart methods for quantum approximate optimization [117].

Although multistart is intuitive and simple to implement, the efficiency of multi-

start can be very poor since the same local minimizers may be found after applying

local search to each sampled point. Many algorithms attempt to reduce the number

of local searches executed within multistart to improve efficiency and to avoid a

large concentration of sample points at discovered local minimizers.

The multistart with early termination of descents (METOD) algorithm, intro-

duced in [144], aims to reduce the number of local searches to the same local mini-

mizers. For objective functions with locally quadratic behaviour close to the neigh-

bourhoods of local minimizers, the METOD algorithm can reduce the number of

repeated local searches to the same local minimizer by applying a particular in-

equality. As a result, the efficiency of multistart can be significantly improved upon,

especially when the dimension of the problem is very large (i.e. d = 100). The

application of METOD is suitable for global optimization problems where the ob-

jective function f is considered black-box. In addition, the following assumptions

of f are discussed in [144, Sect. 1]. Firstly, the objective function f has the form

(3.1), and computation of function evaluations and derivatives are not expensive.

Secondly, the feasible domain X has a simple structure, and the total number of

local minimizers of f is not large. Finally, the volume of the region of attraction of

the global minimizer is not small.

Consider the following notation that will be used throughout this chapter.

• X ⊂ Rd, the feasible domain;
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• N , the total number of starting points;

• X = {x1, x2, . . .}, sequence of points in X;

• x
(0)
n = xn = (xn1 , xn2 , ..., xnd

)T ∈ X (n = 1, 2, . . .), point chosen from set X;

• steepest descent iteration:

x(k+1)
n = x(k)n − γ(k)n ∇f(x(k)n ). (3.3)

Throughout this chapter, the local search procedure used by METOD is steep-

est descent and γ
(k)
n is found using Brent’s minimization method [14, Chpt

5.4], where γ
(k)
n is an approximation of argmin

γ>0
f(xkn − γ∇f(x

(k)
n )). Iterations

of steepest descent (3.3) are applied until the smallest Kn = k is found such

that,

∥∇f(x(k)n )∥ < δ, (3.4)

where ∥.∥ is the Euclidean norm and δ > 0 is a small constant;

• partner point of x
(k)
n :

x̃(k)n = x(k)n − β∇f(x(k)n ) (3.5)

where β > 0 is a small constant.

The point xn ∈ X is a potential starting point for local descent. The set X can be

constructed in different ways. For example, if the total number of descents is fixed,

it may be defined as the sequence with small covering radius or it could be any low

discrepancy sequence in X.

3.2 Literature review

The main drawback of multistart is efficiency since the same local minimizers may be

found repeatedly from applying local search to each sampled point. The following

variations of multistart have been proposed in the literature to ensure that local

search is only applied to promising points, which will lead to the discovery of a

new local minimizer. This improves the efficiency of multistart since the number of

repeated local searches to the same local minimizer is reduced.

3.2.1 Clustering methods

Clustering methods involve identifying clusters corresponding to the regions of at-

traction Al (l = 1, 2, ...) of a function f and are discussed in detail within [58, 107,

131, 132]. If clusters represent regions of attraction, the number of local searches
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can be significantly reduced by applying local search to a single point within each

cluster.

A detailed overview of various classical algorithms which incorporate clustering

methods for multistart is provided in [131], along with references. A general ap-

proach from [131, Sect. 5.3.1] utilized by various multistart algorithms that use

clustering methods is presented in Table 3.1.

Step Action Description

1 Sample
In general, points are sampled uniformly at random or

by using a stratified sample.

2 Concentrate

Approaches to concentrate a sample of points include,

retaining a proportion of points with the smallest func-

tion values or applying a small number of local search

steps to each point. Both approaches can be ap-

plied consecutively and the order of application is in-

terchangeable.

3

Apply

clustering

method

Clustering methods include Density clustering, Single

Linkage, Mode Analysis and Multi Level Single Link-

age (see [58, 107] for an informative overview of each

method).

4

Check

stopping

criterion

If some stopping criterion is met, go to Step (6). Oth-

erwise, go to Step (5).

5 Transform

A sample may be transformed in the following ways.

Firstly, by focusing on clusters with the smallest func-

tion values. Secondly, by considering a proportion of

points from each cluster or finally, by constructing a

sample containing new points and previously found min-

imizers and sample points. Once the sample has been

transformed, go to Step (2).

6 Terminate
If some stopping criterion has been met, terminate the

algorithm.

Table 3.1: A general approach from [131, Sect. 5.3.1] utilized by various multistart

algorithms that use clustering methods.

To concentrate a sample of points generated by the global phase of multistart,

Törn (see [131, Sect. 5.2.2]) introduced the idea of applying a small number of

local search steps before implementing a clustering method. Other methods have
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recently been proposed to sample and concentrate points within the global phase of

multistart. In [132], simulated annealing is used as a stochastic method to sample

points. However, simulated annealing can also be applied independently to minimize

multimodal functions with continuous variables [23]. In [132], it is also proposed to

use an estimate of the Hessian to concentrate sample points when the function is

smooth and twice differentiable. If a point is within a region of attraction, the

function is convex and the Hessian is positive definite. However, if a point lies

between two regions of attraction where the function is non-convex, the Hessian is

non-positive definite. Hence, it is proposed in [132] to remove sample points that

have a non-positive definite Hessian. Due to the computational cost associated with

computing the Hessian, it is outlined in [132] that an estimate of the Hessian should

be used. However, [132] states that it may be preferable to concentrate a sample of

points according to smallest function values if there are many local minimizers, the

regions of attraction are small, and the function is not smooth.

Clustering methods utilized by various multistart algorithms are outlined in Step

3 within Table 3.1. Several issues regarding Density clustering, Single Linkage and

Mode Analysis are discussed in [58, 107], and are outlined as follows. Firstly, clus-

ters discovered may contain several local minimizers and consequently, the global

minimizer may be missed if local search is applied to a single point in each clus-

ter. Secondly, function values at sample points are not incorporated to determine

clusters, which, if used, could significantly improve the application of clustering for

identifying regions of attraction. Consequently, Multi Level Single Linkage (MLSL)

was proposed in [58, 107].

Consider the critical distance used within MLSL [58, Eq. 35]

rk = π−1/2

(
Γ

(
1 +

d

2

)
µ(X)

σ log kd

kd

)1/d

(3.6)

where Γ is the gamma function, µ(.) is the Lebesgue measure, k is the iteration num-

ber and σ is a parameter. An iteration of MLSL can be summarized in the following

way. Once a set of points are sampled and concentrated, points are organized into

sequences such that pairwise points are within a critical distance rk (3.6) from each

other and corresponding function values are monotonically increasing. Local search

is applied to a point if all the following three conditions hold.

1. Point is not close to any discovered minimizers.

2. Point is not close to the boundary of the feasible domain.

3. There is no other point within a critical distance of rk (3.6), which has a

smaller function value.
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MLSL portrays similar behaviour to a local search procedure when points are

organized according to pairwise distances and function values, since a trajectory

within a region of attraction will be identified. The choice of rk (3.6) is discussed

in [58, 107] and decreases as the number of iterations increase. Modified versions of

MLSL have been proposed in [71, 72].

A self-organizing clustering technique is proposed in [132] which repeatedly splits

and merges clusters. For each cluster configuration, a similarity measure is applied

to evaluate the dispersion of clusters compared to the distances between different

cluster centres. In order for two clusters to be dissimilar, it is desirable for the

dispersion of each cluster to be small and the distance between the respective cluster

centres to be large. Therefore, the self-organizing clustering process is continued

until all the resultant clusters produce small values of the similarity measure. A

recent review of methods inspired by clustering, distance and similarity based criteria

to determine when to apply local search is presented in [73, Sect. 3.1].

Although clustering methods for multistart have proven successful in a variety

of numerical experiments, a key drawback discussed in [29, 73] is that the clustering

problem becomes increasingly difficult as the dimension increases. This is because it

will be impossible to generate a finite sample of points such that the feasible domain

is well covered.

3.2.2 Domain elimination and zooming

The domain elimination and zooming algorithms are proposed in [29] for global

optimization problems. The objective of both algorithms is to explore the feasi-

ble domain, whilst ensuring sample points are not near previously discovered local

minimizers and trajectories leading to the local minimizers.

The zooming algorithm considers the following constraint [29, Eq. 3],

f(xn) < γf(x∗l ), (3.7)

where f(x∗l ) is the function value at the previously found local minimizer x∗l and γ

is a constant. If f(x∗l ) is positive, then γ < 1. Otherwise, if f(x∗l ) is negative, then

γ > 1. Suppose f(x∗l ) is positive, then the value of γ can be set to a small value,

or set to large value which is gradually reduced at each iteration of the zooming

algorithm. Typically, (3.7) is applied until f(xn) is a very small value. The aim of

(3.7) is to repeatedly reduce the feasible domain to find the region of attraction of

the global minimizer.

The zooming and domain elimination algorithms consist of a global and local
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phase. For the global phase, starting points xn are uniformly sampled from the

feasible domain. To apply the local phase to xn, all criteria in Table 3.2 must be

satisfied.

Criteria Description

C1 xn must not be near any previously discovered local minimizers.

C2 xn must not be near any previous starting points.

C3 xn must not be near any previously rejected points.

C4
xn must not be near a previous trajectory from a starting point to

a local minimizer.

Table 3.2: Criteria C1-C4 that must be satisfied to apply the local phase within the

zooming and domain elimination algorithms. The concept of xn being near to other

points or a trajectory is formally discussed in [29, Sect. 6].

Initially, the list of rejected points is empty. However, if at least one of the

criteria C1-C4 in Table 3.2 is not satisfied, xn is added to the set of rejected points

and a new starting point xn+1 will be sampled uniformly at random from the feasible

domain. On the other hand, if xn satisfies all the criteria C1-C4 in Table 3.2, then

xn will be used for the local phase. The concept of xn being near other points or a

trajectory is formally discussed in [29, Sect. 6].

The local phase involves applying M iterations of a local search procedure to xn

and deciding whether to stop or apply more iterations of local search. The local

search is stopped if at least one of the criteria C2-C4 in Table 3.2 fails or if a new

local minimizer is discovered. Furthermore, the zooming algorithm also stops local

search if the total number of iterations of local search is larger than some predefined

tolerance. Otherwise, if local search is not stopped, more iterations are applied and

the process is repeated until the local search is stopped. If a local minimizer is found

within the zooming algorithm, then the zooming constraint (3.7) is redefined and

the tolerance for the maximum number of local search iterations may be adjusted

to improve efficiency. Explicit stopping criteria for both algorithms is provided in

[29, Sect. 6.5].

The key difference between both algorithms is the application of (3.7) in order

to repeatedly reduce the feasible domain. Moreover, the aim of domain elimination

is to locate all local minima of an objective function whereas the aim of the zoom-

ing algorithm is to find the global minima. By [29], the domain elimination and

zooming algorithms may not perform well if the dimension is very large since a local

search trajectory or a random point may not be classified as being near previous

trajectories. As a result, many points may not be rejected, which increases the
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computational cost of both algorithms.

3.2.3 Repulsion

The repulsion algorithm in [115] aims to reduce the number of local searches per-

formed by diverse exploration of the feasible domain X. An iteration of the repulsion

algorithm consists of sampling a point xn uniformly at random from the feasible do-

main X, and then transforming xn into a point zn. The point zn is constructed

by allowing previous points xi (i = 1, . . . , n − 1) to repel xn away if the distance

between xi and xn is less than some tolerance. The following equation [115, Eq. 12]

transforms xn into zn,

zn = xn +
n−1∑
i=1

∆(ri)
xn − xi
ri

, (3.8)

where ri is the distance between xi and xn, and r0 is some threshold distance used

to determine ∆(ri). That is, if ri > r0 then ∆(ri) = 0. Otherwise, ∆(ri) = α− βri,
where β = α/r0 and α ∈ [0, r0). Application of the repulsion algorithm ensures

different subsets of the feasible domain X are explored, which allows the opportunity

to find the global minimizer.

Numerical examples in [115] suggest that increasing α will increase the probabil-

ity of initiating local searches in undiscovered regions of attraction. However, there

is no general method to determine values for r0 or α.

3.2.4 Learning for Global Optimization

The LeGO (Learning for Global Optimization) method is proposed in [16], to de-

termine promising points for local search. LeGO consists of two phases. The first

phase involves generating a number of points xn (n = 1, . . . , N) and applying sev-

eral iterations of local search to each point to obtain x
(k)
n . In addition, a positive

or negative label is assigned to each point xn depending on whether f(x
(k)
n ) is less

than some particular value. The value can be chosen using knowledge of the ob-

jective function or using cross-validation. The training set consists of the starting

points with associated labels, and a Support Vector Machine (SVM) is trained on

the labelled training set. The second phase consists of generating more starting

points and using SVM to predict a positive or negative label for each starting point.

If the label is positive, then local search is applied. Numerical experiments in [16]

show that LeGO is useful for finding promising points for local search, even for more

complex methods than multistart.

A drawback of using SVM is that the training cost may become significant if SVM
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is retrained with additional training samples. Also, the key parameters used for SVM

will need to be chosen carefully to ensure generalization to unseen training samples.

Both issues have been discussed in [16] as possible research areas to consider.

3.2.5 Surrogate based multistart

Recently, variations of multistart have been proposed in [68, 98] for problems with

expensive objective function evaluations. Furthermore, derivatives of the function

are assumed to be unavailable. Although the class of objective functions applied with

surrogate based multistart is different from those used for METOD, the purpose of

discussing surrogate based multistart is to demonstrate that reducing the number

of local searches within multistart is still a relevant research problem. The inclusion

of surrogate models within multistart [68, 98] minimizes the number of expensive

objective function evaluations performed. In addition, [68, 98] considers measures

to reduce the number of repeated local searches to the same local minimizer.

The following surrogate based multistart algorithm (SOMS) is proposed in [68]

to reduce the number of expensive function evaluations performed during the global

phase of multistart. Initially, a response surface is built to approximate the objective

function. An iteration of SOMS involves sampling a number of starting points

uniformly at random from the feasible domain and evaluating the surrogate model

at each starting point. A set containing the new sampled points and previously

sampled points is formed. A proportion of points with the smallest surrogate model

values is retained, and the true objective function is evaluated at each retained

point. An additional point is sampled uniformly at random from the feasible domain

and is added to the set of retained points. This encourages diversity since the

additional point may provide extra information on the true objective function and

can be used to improve the fit of the surrogate model. All retained points and the

additional point are sorted according to objective function values. Similar to MLSL

[58, 107], points are removed if they are within distance rk (3.6) of other points that

have smaller objective function values or if local search has already been applied.

Consequently, local search is applied to the remaining points. At the end of the

iteration, the algorithm terminates if some stopping criterion is met. Otherwise, the

surrogate model is updated, and another iteration is started. Although surrogate

models are used to reduce expensive objective function evaluations, the importance

of limiting the number of local searches is clearly emphasized in [68]. That is, a

sample of points is concentrated by removing points with large surrogate model

values and also by applying a similar procedure to MLSL.

The objective of [98] is to use a surrogate model to determine a second order
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model, which will be used to compute the search direction. The convexity of the sec-

ond order model will need to be checked to determine whether the Newton direction

can be used as the search direction. Otherwise, an anti-gradient direction is used,

and the step length is computed according to golden section search. In addition, it

is proposed in [98] to use a trust region method to reduce the risk of the algorithm

moving towards regions where the surrogate model is erroneous. Furthermore, to

reduce the number of repeated local searches to the same local minimizer, [98] sug-

gests using a de-clustering method described in [97]. That is, a linear interpolation

model and kriging model (see [24, 65]) are constructed using points with known ob-

jective function values. The aim is to select points where the variance between both

surrogate models is large, suggesting there is limited information for a particular

region. Also, it is desirable to choose points with a lower expected value from the

surrogate models than the mean of the known objective function values.

The purpose of outlining variations of multistart in [68, 98] is to illustrate that

multistart and specifically, reducing the number of repeated local searches to the

same local minimizers is still a significant research problem. However, for the re-

mainder of this chapter it is assumed that the objective function and gradient eval-

uations are inexpensive to compute. Therefore, methods proposed in [68, 98] will

not in general, be comparable with METOD.

3.2.6 Summary

Many variations of multistart have been proposed in the literature to reduce the

number of repeated local searches to the same local minimizer (see Subsections

3.2.1 - 3.2.5). Furthermore, recent publications [16, 68, 73, 98] imply that reducing

the number of repeated local searches in multistart is still very much an active

research area in global optimization. A similarity between METOD and some of the

discussed variations of multistart is that a small number of local search iterations

are applied before deciding whether to stop local search. However, the performance

of many methods discussed can depend on the size of dimension or the choice of

algorithm parameters. Hence, the remainder of this chapter outlines a variation of

multistart called METOD, where clear recommendations of algorithm parameters

are provided and shown to perform well for global optimization problems in large

dimensions.
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3.3 Objective functions

Consider the following objective functions from [54, 144], which will be used through-

out this chapter.

Minimum of several quadratic forms function

f(xn) = min
1≤p≤P

1

2
(xn − x0p)TAT

pΣpAp(xn − x0p), (3.9)

where X = [0, 1]d, xn ∈ X, P is the number of minima, x0p (p = 1, . . . , P ) is a

random point in X , Ap (p = 1, . . . , P ) is a randomly chosen rotation matrix of

size d × d, Σp (p = 1, . . . , P ) is a diagonal positive definite matrix of size d × d

with smallest and largest eigenvalues λmin and λmax respectively. All other eigen-

values are sampled uniformly from (λmin, λmax). All minima of (3.9) are global and

f(x0p) = 0 (p = 1, . . . , P ). The function parameters are λmin = 1 and λmax = 10,

with the exception that different values of λmax are tested within Subsection 3.6.3.

Parameters d and P are explicitly defined in each section.

Sum of Gaussians function

f(xn) = −σ2

P∑
p=1

cp exp

{
− 1

2σ2
(xn − x0p)TAT

pΣpAp(xn − x0p)

}
, (3.10)

where X = [0, 1]d, xn ∈ X, cp (p = 1, . . . , P ) is sampled uniformly from (0.5, 1), σ2 is

a fixed constant and all other notation is the same as (3.9). The function parameters

are λmin = 1 and λmax = 10, with d, σ2 and P explicitly defined in each section.

Since x0p, cp, Ap and Σp (p = 1, . . . , P ) are chosen randomly, x∗ and f(x∗) will differ

for each function of the form (3.10).

Modified Shekel function

f(xn) = −
1

2

P∑
p=1

(
(xn − x0p)TAT

pΣpAp(xn − x0p) + bp
)−1

, (3.11)

where d = 4, X = [0, 10]d, xn ∈ X, bp (p = 1, . . . , P ) is a constant, x0p (p = 1, . . . , P )

is a random point in X and all other notation is the same as (3.9). The function

parameters are λmin = 1, λmax = 10, P = 10, x01 = (4, 4, 4, 4)T , x02 = (1, 1, 1, 1)T ,

x03 = (8, 8, 8, 8)T , x04 = (6, 6, 6, 6)T , x05 = (3, 7, 3, 7)T , x06 = (2, 9, 2, 9)T , x07 =

(5, 3, 5, 3)T , x08 = (8, 1, 8, 1)T , x09 = (6, 2, 6, 2)T , x010 = (7, 3.6, 7, 3.6)T , and b =

(1.25, 1.45, 1.45, 1.65, 1.7, 1.8, 1.75, 1.9, 1.7, 1.8)T .

The global minimizer is x∗ = (4, 4, 4, 4)T . However, since Ap and Σp (p =

1, . . . , P ) are generated at random, f(x∗) will differ for each function of the form
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(3.11).

Hartmann 6 function

f(xn) = −
4∑

j=1

αj exp

{
−

d∑
i=1

cj,i(xni
− bj,i)2

}
(3.12)

where d = 6, X = [0, 1]d, xn ∈ X, with C = (cj,i)
4,d
j,i=1, α = (αj)

4
j=1 and B = (bj,i)

4,d
j,i=1

where,

C =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 , α =


1

1.2

3

3.2

 and

B =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


.

Two local minimizers of (3.12) are identified when a local optimization algorithm is

applied to a large number of starting points, which is in agreement with [125]. One of

the identified local minimizers is the global minimizer, x∗ = (0.202, 0.150, 0.477, 0.275,

0.312, 0.657)T with f(x∗) = −3.322.

Styblinski-Tang function

f(xn) =
1

2

d∑
i=1

(x4ni
− 16x2ni

+ 5xni
), (3.13)

where X = [−5, 5]d, xn ∈ X and the total number of local minima is 2d. For d = 5,

the global minimizer is x∗ = (−2.903534,−2.903534,−2.903534,−2.903534,−2.903534)T

and f(x∗) = −195.83.

Qing function

f(xn) =
d∑

i=1

(x2ni
− i)2, (3.14)

where X = [−3, 3]d, xn ∈ X, the total number of local minima is 2d and all local min-

ima are global. For d = 5, the global minimizers are x∗ = (±
√
1,±
√
2, ...,±

√
d)T ,

where f(x∗) = 0.
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Zakharov function

f(xn) =
d∑

i=1

x2ni
+

(
d∑

i=1

0.5ixni

)2

+

(
d∑

i=1

0.5ixni

)4

(3.15)

where d = 10, X = [−5, 10]d and xn ∈ X. The Zakharov function has one global

minimizer x∗ = (0, 0, . . . , 0)T , where f(x∗) = 0.

(a) Minimum of several quadratic forms

(3.9)

(b) Sum of Gaussians (3.10)

(c) Styblinski-Tang (3.13) (d) Qing (3.14)

Figure 3.1: Contour plots of various objective functions with trajectories from ten

starting points (green) to the local minimizer.

Figure 3.1 shows contour plots of objective functions (3.9), (3.10), (3.13) and

(3.14) along with trajectories from ten starting points to the corresponding local
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minimizer. Objective functions (3.11) and (3.12) have not been plotted since func-

tion parameters are defined for dimension greater than two and objective function

(3.15) has not been plotted since there is only one minimizer.

3.4 Overview of the METOD algorithm

3.4.1 Overview

For objective functions with locally quadratic behaviour close to the neighbourhoods

of local minimizers, the early termination of descents in METOD is achieved by

means of a particular inequality. The inequality holds when trajectories are from

the region of attraction of the same local minimizer and often violates when the

trajectories belong to different regions of attraction. The main idea behind the

inequality in METOD is the following theorem and proof from [144, Sect. 2.1].

Theorem 2. Assume we have a quadratic function,

f(x) =
1

2
xTAx+ bTx+ c,

where x, b ∈ Rd, A is a positive definite d × d matrix and c is a constant. For

x1, x2 ∈ Rd we define their ‘partner points’ x̃i = xi − β∇f(xi) (i = 1, 2). For all

0 < β < 1/λmax we have,

∥x̃1 − x̃2∥ < ∥x1 − x2∥, (3.16)

where λmax is the largest eigenvalue of A.

Proof.

Consider,

(x̃1 − x̃2) = [x1 − β(Ax1 + b)]− [x2 − β(Ax2 + b)] = (Id − βA)(x1 − x2),

where Id is an identity matrix of size d×d. Since 0 < β < 1/λmax, then (Id−βA) < Id

and consequently, (Id − βA)2 < Id, where < means that the difference between the

matrices in the right-hand and left-hand sides is positive definite. Hence,

∥x̃1 − x̃2∥2 = (x1 − x2)T (Id − βA)2(x1 − x2) < (x1 − x2)T (x1 − x2) = ∥x1 − x2∥2 □

Inequality (3.16) is absolutely fundamental for METOD. With this inequality,

METOD learns whether a particular trajectory has a chance of descending to a local

minimizer which has not yet been identified.

An example illustrating the purpose of inequality (3.16) for two points belonging

to the same region of attraction and different regions of attraction can be observed
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(a) Inequality (3.16) holds for (x
(k)
1 , x

(k)
2 )

and (x̃
(k)
1 , x̃

(k)
2 ) with k = 0, . . . , 4.

(b) Inequality (3.16) fails for (x
(k)
1 , x

(k)
2 )

and (x̃
(k)
1 , x̃

(k)
2 ) with k = 0, 2, 4.

Figure 3.2: Steepest descent iterations x
(k)
1 and x

(k)
2 (blue) from two starting points

with corresponding partner points x̃
(k)
1 and x̃

(k)
2 (red), where k = 0, . . . , 4.

k ∥x(k)1 − x
(k)
2 ∥ ∥x̃(k)1 − x̃

(k)
2 ∥

∥x̃(k)1 − x̃
(k)
2 ∥ <

∥x(k)1 − x
(k)
2 ∥

Figure 3.2(a)

0 0.350 0.217 ✓

1 0.125 0.100 ✓

2 0.162 0.127 ✓

3 0.093 0.081 ✓

4 0.077 0.064 ✓

Figure 3.2(b)

0 0.250 0.384 ✗

1 0.575 0.560 ✓

2 0.619 0.661 ✗

3 0.731 0.729 ✓

4 0.745 0.761 ✗

Table 3.3: Check (3.16) with distances ∥x(k)1 − x
(k)
2 ∥ and ∥x̃

(k)
1 − x̃

(k)
2 ∥, where points

x
(k)
1 and x

(k)
2 are from Figures 3.2(a) and 3.2(b).

in Figure 3.2 and Table 3.3. It can be observed in Figure 3.2(a) and Table 3.3 that

inequality (3.16) holds for all points x
(k)
1 and x

(k)
2 (k = 0, . . . , 4) which belong to the

same region of attraction. Conversely, Figure 3.2(b) and Table 3.3 portrays that

the passing or failing of inequality (3.16) may depend on the iteration number k

when points x
(k)
1 and x

(k)
2 belong to different regions of attraction. Therefore, the

zig-zag nature of steepest descent iterations will need to be taken into account when
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deciding whether to stop local descents early using inequality (3.16) in METOD.

A full description of the METOD algorithm is provided in [144, Sect. 3.2]. How-

ever, since the publication of [144], investigations on the accuracy and efficiency of

the METOD algorithm have continued and subsequently, a variety of enhancements

have been proposed in Subsection 3.4.2. The updated description of the METOD

algorithm is provided in Subsection 3.4.3.

Consider the following notation outlined in [144, Sect. 3.1], which will be used to

describe the main conditions and proposed enhancements of the METOD algorithm

in Subsections 3.4.2 and 3.4.3.

• δ and η: small positive constants;

• M : the minimum number of steepest descent iterations (3.3) applied at each

initial point xn = x
(0)
n (n = 1, 2, . . . , N) to obtain x

(M)
n ;

• l: index for the local minimizers and regions of attraction l = 1, . . . , L, where

L is the total number of local minimizers found so far;

• x
(Kl)
l : l-th local minimizer found by applying steepest descent iterations (3.3)

until the smallest k = Kl is found such that ∥∇f(x(k)n )∥ < δ;

• Al: l-th region of attraction of local minimizer x
(Kl)
l .

3.4.2 Main conditions of the METOD algorithm and pro-

posed enhancements

The following steps of the METOD algorithm are generalized in order to discuss the

main conditions and enhancements.

1 Initialization

Generate a starting point x
(0)
1 and apply local descent to find a local minimizer.

2 n-th iteration

Generate a starting point x
(0)
n (n = 2, . . . , N).

i Check whether a region of attraction has been previously discovered.

ii Determine whether to stop steepest descent iterations (3.3) early.

3 Return local minimizers

It is possible to find the same local minimizer more than once when local

descent is applied to different xn. Consequently, only unique local minimizers

are returned at the end of the algorithm.

The necessary conditions applied to carry out each step will be discussed and

compared with the original METOD algorithm in [144, Sect. 3.2].
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Steps 1 and 2: Check adequacy of starting points x
(0)
n (n = 1, .., N)

Starting points x
(0)
n (n = 1, . . . , N) are required for Steps 1 and 2. It may be possible

that ∥∇f(x(0)n )∥ < δ. This may occur if x
(0)
n is close to a local minimizer or if x

(0)
n

is located far away from a local minimizer and in-between two different regions of

attraction [144, Sect. 3.3].

Törn introduced the idea of applying a small number of local search steps before

implementing a clustering method (see [131, Sect. 5.2.2]). The METOD algorithm

uses a similar approach since a warm-up of M steepest descent iterations (3.3) is

applied to each starting point x
(0)
n in Step 2 before checking whether a region of

attraction has been previously identified. This is to ensure that points x
(M)
n are

within close vicinity of a region of attraction so that the correct decision can be

made on terminating local descents early. However, if ∥∇f(x(0)n )∥ < δ then it is

possible that M will need to be considerably large, which will reduce the efficiency

of the METOD algorithm. On the other hand, setting M too small will reduce

accuracy since x
(M)
n may not be within close vicinity of a region of attraction and

local descents may be incorrectly terminated.

The following enhancement is proposed to improve the efficiency and accuracy

of the METOD algorithm. If ∥∇f(x(0)n )∥ < δ, a new starting point x
(0)
n will be

generated until ∥∇f(x(0)n )∥ ≥ δ. This ensures that starting points x
(0)
n which satisfy

∥∇f(x(0)n )∥ ≥ δ are used within the METOD algorithm.

Step 2(i): Check whether a region of attraction has been previously dis-

covered

Consider the following modification to inequality (3.16) in Theorem 2,

∥x̃1 − x̃2∥ ≤ ∥x1 − x2∥, (3.17)

where (3.17) holds for all 0 < β ≤ 2/λmax. A larger range of values for β can be

used to compute partner points x̃1 and x̃2 since the inequality in (3.17) is relaxed.

Recall that the proof for [144, Thm. 1] states that if 0 < β < 1/λmax, then

(Id − βA)2 < Id and as a result (3.16) holds. In a similar manner, (3.17) holds

when 0 < β ≤ 2/λmax, since (Id − βA)2 ≤ Id, where ≤ means that the difference

between the matrices in the right-hand and left-hand sides is positive semi-definite.

Throughout this chapter, inequality (3.17) will be used for the METOD algorithm.

It can be observed in Figure 3.2 that the trajectory of steepest descent iterations

(3.3) to a local minimizer follow a zigzag pattern. This may result in inequality

(3.17) holding for two points belonging to different regions of attraction, which is
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not desirable. For example, Table 3.3 and Figure 3.2(b) show that inequality (3.17)

holds when k = 1, 3 for two points belonging to different regions of attraction.

Henceforth, two consecutive points x
(M−1)
2 and x

(M)
2 , along with each point x

(k)
1

(k = M − 1, . . . , Kn), will be applied with inequality (3.17) to ensure that the

decision on terminating local descents does not depend on the zigzag nature of

steepest descent iterations.

The following variation of [144, Eq. 9] enables the METOD algorithm to make a

decision on terminating local descents in Step 2. For each l and all i =M−1, . . . , Kl,

the algorithm will test the following condition:

∥x̃(M)
n − x̃(i)l ∥ ≤ ∥x

(M)
n − x(i)l ∥ and ∥x̃(M−1)

n − x̃(i)l ∥ ≤ ∥x
(M−1)
n − x(i)l ∥. (3.18)

It can be observed that condition [144, Eq. 9] uses inequality (3.16), whereas con-

dition (3.18) uses inequality (3.17).

Step 2(ii): Simplify the decision process for terminating steepest descent

iterations early

To terminate local descents early, (3.18) must be satisfied for a least one index l.

Let Sn be the set of indices l, such that xn may belong to region of attraction Al.

If condition (3.18) holds, index l is added to the set Sn. The description of the

METOD algorithm in [144, Sect. 3.2] accounts for the possibility of Sn containing

several indices l since the checking of condition (3.18) is continued for l = 1, . . . , L.

(a) d = 50 (b) d = 100

Figure 3.3: Total number of points which satisfy (3.18) for more than one index

l = (1, . . . , L) for 100 functions of the form (3.9), with N = 1000 and P = 50
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Figure 3.3 shows a large number of points satisfy (3.18) for more that one index

l with functions of the form (3.9), especially for small values of β and M . Conse-

quently, steepest decent iterations (3.3) are terminated early. However, the checking

of condition (3.18) for different l is continued and will increase the time taken by

the METOD algorithm to find new local minimizers. Since the main focus of the

METOD algorithm is to discover local minimizers in an efficient manner, it is pro-

posed to stop checking condition (3.18) immediately when Sn contains one index l.

Otherwise, if (3.18) is not satisfied for any l, then steepest descent iterations (3.3)

are continued. Consequently, only points that do not satisfy (3.18) will be assigned

a region of attraction and points which satisfy (3.18) will be discarded. Therefore,

steps outlined in [144, Sect. 3.2] to assign a region of attraction to all starting points

xn (n = 1, . . . , N) will not be applicable.

Step 3: Check for unique local minimizers

If condition (3.18) does not hold for points x
(M−1)
n and x

(M)
n with any l, then steepest

descent iterations (3.3) are applied until a local minimizer x
(Kn)
n is found. However,

we may have that local minimizer x
(Kn)
n has already been discovered. As a conse-

quence, the final step of the METOD algorithm is concerned with returning unique

local minimizers only. Hence, the following condition is tested for i = 1, . . . , L and

j = i+ 1, . . . , L

∥x(Ki)
i − x(Kj)

j ∥ > η. (3.19)

If condition (3.19) fails for any j, then minimizers x
(Ki)
i and x

(Kj)
j are the same and

j is removed from the set of indices l = 1, . . . , L.

A proposed enhancement is to check (3.19) at the end of the METOD algo-

rithm. Previously, (3.19) was checked for each discovered local minimizer x
(Kn)
n .

That is, if a local minimizer x
(Kn)
n had already been discovered, the trajectory x

(k)
n

(k = 0, . . . , Kn) was discarded. On reflection, evaluating (3.18) with more than one

trajectory to the region of attraction of the same local minimizer may be beneficial

in terminating other local descents early. Henceforth, the efficiency of the METOD

algorithm can be improved by using the extra information available from repeated

local descents.
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3.4.3 METOD algorithm

The METOD algorithm can be split into the following three parts.

1. Initialization

Choose x1 = x
(0)
1 ∈ X that satisfies ∥f(x(0)1 )∥ ≥ δ. Use iterations (3.3)

to find a minimizer x
(K1)
1 . For all points x

(k)
1 computed in (3.3) with k =

M − 1,M, . . . ,K1, compute the associated partner points using (3.5) and set

L← 1.

2. n-th iteration

for n = 2 to N do

Choose xn = x
(0)
n ∈ X which satisfies ∥f(x(0)n )∥ ≥ δ. Compute x

(j)
n for

j = 1, . . . ,M and the associated partner points using (3.5).

for l = 1 to L do

if condition (3.18) is satisfied for i =M − 1, . . . , Kl then

Sn ← l and terminate iterations (3.3) which have started at xn.

Go to the beginning of Step (2) to generate a new starting point.

end if

end for

At this stage, Sn must be empty. Hence, let xL+1 = xn and continue

iterations (3.3) until a minimizer x
(KL+1)
L+1 is found. For all points

x
(k)
L+1 (k =M − 1, . . . , KL+1), compute the associated partner points

using (3.5) and set L← L+ 1.

end for

3. Return unique minimizers.

for i = 1 to L do

for j = i+ 1 to L do

if condition (3.19) is not satisfied for x
(Ki)
i and x

(Kj)
j then

Remove index j from the set of indices l = 1, . . . , L.

end if

end for

end for

3.4.4 Potential inaccuracies

There are two types of errors that may occur from applying the METOD algorithm.

The first possible error is that condition (3.18) may not hold for points that belong
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to the same region of attraction. Consequently, steepest descent iterations (3.3) are

continued, and the same local minimizer is found, which will reduce the efficiency of

the METOD algorithm. However, this will not affect the accuracy of the METOD

algorithm. The second possible error occurs if condition (3.18) holds for points

belonging to different regions of attraction. As a result, a region of attraction of

a new local minimizer may be missed, which reduces the accuracy of the METOD

algorithm.

Both errors may occur if the parameters M and β are not chosen appropriately.

Investigations on suitable values of M and β for a range of test functions are con-

ducted, and general recommendations for M and β are provided for different classes

of functions. Furthermore, both errors can occur if the total number of steepest

descent iterations (3.3) to find a local minimizer is small and consequently, checking

condition (3.18) will be unreliable. In that case, it is proposed not to apply condition

(3.18) as this may lead to an error occurring.

3.5 Studying the violation of the fundamental in-

equality of METOD

3.5.1 Overview

Condition (3.18) within the METOD algorithm determines whether to terminate

local descents early. Recall that condition (3.18) is based entirely on evaluating

the fundamental inequality (3.17) for various points. This section aims to study

the number of violations of (3.17) for points that belong to the same and different

regions of attraction.

To study the number of violations of (3.17), 100 functions of the form (3.9) -

(3.15) are generated. For functions of the form (3.9) and (3.10), the number of local

minimizers is P = 2 and P = 10 respectively. Furthermore, d = 100 for functions

(3.9) and d = 20 for functions (3.10) with σ2 = 0.7. For each function (3.9) - (3.15),

random starting points xn ∈ X (n = 1, . . . , 100) are also generated. Steepest descent

iterations (3.3) are applied to each xn until the smallest Kn = k is found such that

∥∇f(x(k)n )∥ < δ, where δ > 0 is a small positive constant. The value of δ is chosen to

ensure x
(Kn)
n is close to a local minimizer of a function. It is possible that x

(k)
n ̸∈ X

(k = 1, . . . , Kn− 1). Whilst studying the number of violations of (3.17), x
(k)
n ̸∈ X is

permitted.

The inequality (3.17) is evaluated for pairs of points x
(ki)
i (i = 1, . . . , 100) and

x
(kj)
j (j = i + 1, . . . , 100), where points can either belong to the same region of
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attraction of a local minimizer or different regions of attraction associated with

different local minimizers. The impact of β on the frequency of violations of (3.17)

will be investigated. During testing, inequality (3.17) will be applied with (x
(ki)
i ,

x
(kj)
j ), (x

(ki)
i , x

(kj−1)
j ), (x

(ki−1)
i , x

(kj)
j ) and (x

(ki−1)
i , x

(kj−1)
j ). Specifically, it is checked

whether all the following inequalities hold

∥x̃(ki)i − x̃(kj)j ∥ ≤ ∥x
(ki)
i − x(kj)j ∥

∥x̃(ki)i − x̃(kj−1)
j ∥ ≤ ∥x(ki)i − x(kj−1)

j ∥

∥x̃(ki−1)
i − x̃(kj)j ∥ ≤ ∥x

(ki−1)
i − x(kj)j ∥

∥x̃(ki−1)
i − x̃(kj−1)

j ∥ ≤ ∥x(ki−1)
i − x(kj−1)

j ∥.

A violation of (3.17) with (x
(ki)
i , x

(kj)
j ), (x

(ki)
i , x

(kj−1)
j ), (x

(ki−1)
i , x

(kj)
j ) and (x

(ki−1)
i ,

x
(kj−1)
j ) refers to at least one of the four inequalities above failing. Henceforth,

only a subset of inequalities of (3.18) used by the METOD algorithm is tested in

this section. Furthermore, ki and kj will be set to relatively small values which is

equivalent to applying (3.17) with points near the beginning of the corresponding

trajectories x
(ki)
i (ki = 1, . . . , Ki) and x

(kj)
j (kj = 1, . . . , Kj). It will be shown in

Section 3.7 that evaluating (3.17) with points near the beginning of each trajectory

significantly influences whether the main condition of the METOD algorithm (3.18)

holds overall. That is, the key trends of numerical examples with the METOD

algorithm in Section 3.7 can be explained by the violations of (3.17) with points

near the beginning of each trajectory.

Table 3.4 shows the value of δ, average number of steepest descent iterations (3.3)

and average ∥∇f(xn)∥ for functions of the form (3.9) - (3.15). For some functions, a

very small value of δ is required to ensure local minimizers are discovered instead of

saddle points. Alternatively, local minimizers of some functions can be found easily

when δ is a slightly larger value, resulting in a smaller number of steepest descent

iterations (3.3) and improved efficiency. Selecting δ = 0.0001 will improve accuracy

of steepest descent iterations (3.3) for functions (3.10), (3.11), (3.13), (3.14) and

(3.15). Conversely, δ = 0.01 is sufficient for functions (3.9) and (3.12).

Tables 3.6 - 3.12 show the proportion of violations of (3.17) with (x
(ki)
i , x

(kj)
j ),

(x
(ki)
i , x

(kj−1)
j ), (x

(ki−1)
i , x

(kj)
j ) and (x

(ki−1)
i , x

(kj−1)
j ) compared to the total number

of pairs (xi, xj) tested, for various β, ki and kj. For example, consider two pairs

of points (x1, x2) and (x3, x4). Suppose a violation of (3.17) occurs with (x
(k1)
1 ,

x
(k2)
2 ), (x

(k1)
1 , x

(k2−1)
2 ), (x

(k1−1)
1 , x

(k2)
2 ) and (x

(k1−1)
1 , x

(k2−1)
2 ) and suppose (3.17) holds

for all (x
(k3)
3 , x

(k4)
4 ), (x

(k3)
3 , x

(k4−1)
4 ), (x

(k3−1)
3 , x

(k4)
4 ) and (x

(k3−1)
3 , x

(k4−1)
4 ). Then the

proportion of violations will be

Proportion of violations =
Number of violations of (3.17)

Number of pairs of points
=

1

2 .
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Function δ
Average number of

steepest descent

iterations (3.3)

Average

∥∇f(xn)∥

Minimum of several quadratic

forms (3.9)
0.01 21.93 23.68196

Sum of Gaussians (3.10) 0.0001 39.91 0.01164

Modified Shekel (3.11) 0.0001 39.60 0.01488

Hartmann 6 (3.12) 0.01 148.89 1.82010

Styblinski-Tang (3.13) 0.0001 7.74 109.98983

Qing (3.14) 0.0001 25.79 50.28710

Zakharov (3.15) 0.0001 6.91 26739579.85486

Table 3.4: Value of δ, average number of steepest descent iterations (3.3) and average

∥∇f(xn)∥ for functions of the form (3.9) - (3.15).

Pairs of points (xi, xj) may either belong to the same region of attraction or different

regions of attraction.

The number of pairwise points belonging to the same and different regions of

attraction is presented in Table 3.5, where results for the Zakharov function (3.15)

have been omitted since there is just one minimizer. Consequently, all pairwise

points will belong to the same region of attraction. The purpose of Table 3.5 is to

provide insight on the number of pairwise points belonging to the same and different

regions of attraction, which are used to compute the proportion of violations. The

sum of pairwise points belonging to the same and different regions of attraction for

each function is (N × (N − 1))/2, where N = 100 is the total number of random

starting points xn ∈ X (n = 1, . . . , 100) generated. It can be observed in Table

3.5 that the sum of pairwise points belonging to the same and different regions

of attraction is 100 × (N × (N − 1))/2 since the experiment is repeated for 100

functions of the form (3.9) - (3.14), each with a set of random starting points xn ∈ X

(n = 1, . . . , 100).

The values assigned to ki and kj are determined by the average number of steepest

descent iterations (3.3) required to find a region of attraction of a local minimizer,

and the Euclidean norm of the gradient at starting points xn (n = 1, . . . , 100).

Functions of the form (3.9) - (3.15) satisfy one of the following three criteria to

determine values for ki and kj. If the average number of steepest descent iterations

(3.3) and average ∥∇f(xn)∥ is large (i.e. ∥∇f(xn)∥ > 10 in Table 3.4), then ki, kj =

1, 2, 3. Alternatively, if the average number of steepest descent iterations (3.3) is

large and average ∥∇f(xn)∥ is small (i.e. ∥∇f(xn)∥ < 10 in Table 3.4), then ki, kj =

2, 3. Otherwise, if the average number of steepest descent iterations (3.3) is small
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Function
Same region of

attraction

Different

regions of

attraction
Minimum of several quadratic

forms (3.9)
280266 214734

Sum of Gaussians (3.10) 84459 410541

Modified Shekel (3.11) 85795 409205

Hartmann 6 (3.12) 286378 208622

Styblinski-Tang (3.13) 15631 479369

Qing (3.14) 15383 479617

Table 3.5: The total number of pairwise points belonging to the same and different

regions of attraction for functions of the form (3.9) - (3.14).

and average ∥∇f(xn)∥ is relatively large (i.e. ∥∇f(xn)∥ > 10 in Table 3.4), then

ki, kj = 1, 2.

Tables 3.6 - 3.8 show the proportion of violations for functions of the form (3.9)

- (3.11), with λmin = 1, λmax = 10 and β ∈ (0, 2/λmax]. For functions (3.12) - (3.15),

λmax is unknown and an upper bound for β cannot be determined. Therefore, a

range of values for β are tested in Tables 3.9 - 3.12.

For each function of the form (3.9) - (3.15), an adequate choice for the value of β

should maximize the number of violations when points belong to different regions of

attraction, and minimize the number of violations when points belong to the same

region of attraction. Maximizing the number of violations for points belonging

to different regions of attraction ensures that unknown regions of attraction are

discovered, which improves the accuracy of the METOD algorithm. Furthermore,

minimizing the number of violations for points belonging to the same region of

attraction allows the early termination of local descents when a region of attraction

has already been discovered. This improves the efficiency of the METOD algorithm

by reducing the number of repeated local descents to the same region of attraction.

3.5.2 Minimum of several quadratic forms function

For functions of the form (3.9), there are no violations when points belong to the

same region of attraction and consequently, results for points which belong to the

same region of attraction have been omitted. Therefore, if a region of attraction has

already been discovered by the METOD algorithm, iterations of steepest descent

(3.3) are terminated early for points which belong to the same region of attraction.

Table 3.4 shows the average number of steepest descent iterations (3.3) and average
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β ki, kj 1 2 3

0.01

1 0.0003 0.0998 0.1001

2 0.1043 0.9995 0.9996

3 0.1045 0.9996 0.9997

0.1

1 0.0282 0.4118 0.4108

2 0.4153 1.0000 1.0000

3 0.4144 1.0000 1.0000

0.2

1 0.9983 0.9966 0.9964

2 0.9960 1.0000 1.0000

3 0.9959 1.0000 1.0000

Table 3.6: Proportion of violations with points x
(ki)
i and x

(kj)
j that belong to different

regions of attraction, with 100 functions of the form (3.9) for various β, P = 2 and

d = 100.

∥∇f(x(0)n )∥ is large for functions of the form (3.9). Therefore, ki, kj = 1, 2, 3 in Table

3.6. In addition, Table 3.5 shows the number of pairs of points that belong to the

same region of attraction and different regions of attraction is 280266 and 214734,

respectively.

Table 3.6 shows that when ki = 1 or kj = 1, the proportion of violations is

low when β = 0.01, 0.1 and high when β = 0.2. This suggests that if M = 1 and

β = 0.01, 0.1, the METOD algorithm will assign many points to the wrong region of

attraction and miss opportunities to identify new regions of attraction corresponding

to new local minimizers. However, if M = 1 and β = 0.2, the METOD algorithm

will identify regions of attraction which have not been discovered. For ki, kj ≥ 2,

the proportion of violations is large for all values of β, which suggests that setting

M ≥ 2 will reduce the risk of the METOD algorithm assigning points to the wrong

region of attraction.

3.5.3 Sum of Gaussians function

Table 3.4 shows the average number of steepest descent iterations (3.3) is large,

and average ∥∇f(x(0)n )∥ is small for functions of the form (3.10). As a consequence,

ki, kj = 2, 3 in Tables 3.7(a) and 3.7(b). In addition, Table 3.5 shows the number of

pairs of points that belong to the same region of attraction and different regions of

attraction is 84459 and 410541, respectively.

It can be observed in Tables 3.7(a) and 3.7(b) that the proportion of violations

increases as a function of β. However, the proportion of violations is still relatively

low for all values of β in Table 3.7(b). For ki, kj = 3, the proportion of violations
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β ki, kj 2 3

0.01
2 0.8942 0.9295

3 0.9283 0.9546

0.1
2 0.9171 0.9454

3 0.9445 0.9655

0.2
2 0.9378 0.9598

3 0.9588 0.9749

(a) x
(ki)
i and x

(kj)
j belong to different re-

gions of attraction.

β ki, kj 2 3

0.001
2 0.0602 0.0738

3 0.0694 0.0235

0.1
2 0.0769 0.0861

3 0.0814 0.0280

0.2
2 0.0976 0.1009

3 0.0958 0.0331

(b) x
(ki)
i and x

(kj)
j belong to the same

region of attraction.

Table 3.7: Proportion of violations with points x
(ki)
i and x

(kj)
j , for 100 functions of

the form (3.10) with various β, P = 10, σ2 = 0.7 and d = 20.

decreases for points belonging to the same region of attraction. Furthermore, Table

3.7(a) shows that large values of ki and kj result in a higher proportion of violations

for points belonging to different attraction regions. Therefore, choosing larger M

and β will reduce the risk of the METOD algorithm assigning points to the wrong

region of attraction, whilst maximizing the likelihood of terminating descents early

for points that belong to the same region of attraction.

3.5.4 Modified Shekel function

β ki, kj 2 3

0.01
2 0.6977 0.7291

3 0.7278 0.7516

0.1
2 0.6992 0.7308

3 0.7295 0.7536

0.2
2 0.7008 0.7327

3 0.7312 0.7557

(a) x
(ki)
i and x

(kj)
j belong to different re-

gions of attraction.

β ki, kj 2 3

0.01
2 0.3482 0.3458

3 0.3471 0.2490

0.1
2 0.3512 0.3491

3 0.3502 0.2526

0.2
2 0.3549 0.3530

3 0.3538 0.2567

(b) x
(ki)
i and x

(kj)
j belong to the same

region of attraction.

Table 3.8: Proportion of violations with points x
(ki)
i and x

(kj)
j , for 100 functions

(3.11) with various β, P = 10 and d = 4.

The average number of steepest descent iterations (3.3) is large, and average

∥∇f(x(0)n )∥ is small for functions of the form (3.11) in Table 3.4. Consequently,

ki, kj = 2, 3 in Tables 3.8(a) and 3.8(b). In addition, Table 3.5 shows the number of

pairs of points that belong to the same region of attraction and different regions of

attraction is 85795 and 409205, respectively.
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Tables 3.8(a) and 3.8(b) show that large values of β result in a higher proportion

of violations. However, Tables 3.8(a) and 3.8(b) portray that increasing β has only

a limited impact on the number of violations. Table 3.8(a) illustrates that larger

ki and kj increases the proportion of violations for points belonging to different

regions of attraction. In contrast, larger values of ki and kj reduce the proportion

of violations for points belonging to the same region of attraction in Table 3.8(b).

Hence, selecting larger M will reduce the risk of the METOD algorithm assigning

points to the wrong region of attraction, whilst reducing the number of repeated

local descents to regions of attraction already discovered.

3.5.5 Hartmann 6 function

β ki, kj 2 3

0.001
2 0.9473 0.9261

3 0.9241 0.9079

0.01
2 0.9544 0.9343

3 0.9328 0.9166

0.1
2 0.9902 0.9813

3 0.9810 0.9697

(a) x
(ki)
i and x

(kj)
j belong to different re-

gions of attraction.

β ki, kj 2 3

0.001
2 0.2195 0.2095

3 0.2102 0.2036

0.01
2 0.2362 0.2211

3 0.2218 0.2120

0.1
2 0.9466 0.9511

3 0.9524 0.9513

(b) x
(ki)
i and x

(kj)
j belong to the same

region of attraction.

Table 3.9: Proportion of violations with points x
(ki)
i and x

(kj)
j , for 100 functions

(3.12) with various β and d = 6.

Table 3.4 shows that many steepest descent iterations (3.3) are required to find

a region of attraction of a local minimizer, and that average ∥∇f(x(0)n )∥ is small for

functions (3.12). Therefore, ki, kj = 2, 3 in Tables 3.9(a) and 3.9(b). In addition,

Table 3.5 shows the number of pairs of points that belong to the same region of

attraction and different regions of attraction is 286378 and 208622, respectively.

Tables 3.9(a) and 3.9(b) illustrate that the proportion of violations increases as

β grows. Table 3.9(b) shows that when β = 0.1, the proportion of violations is

very high for points belonging to the same region of attraction. Therefore, selecting

either β = 0.001 or β = 0.01 for functions of the form (3.12) reduces the risk of

the METOD algorithm assigning points to the wrong region of attraction, whilst

also reducing the risk of repeated local descents to regions of attraction already

discovered. Furthermore, large values of ki and kj reduce the proportion of violations

in Tables 3.9(a) and 3.9(b) when β = 0.001, 0.01. Nevertheless, Table 3.9(a) portrays

that the proportion of violations for points belonging to different regions of attraction
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remains high for all values of ki and kj with β = 0.001, 0.01.

3.5.6 Styblinski-Tang function

β ki, kj 1 2

0.001
1 0.8820 0.9197

2 0.9197 0.9665

0.005
1 0.8852 0.9223

2 0.9222 0.9682

0.01
1 0.8892 0.9255

2 0.9253 0.9702

0.05
1 0.9437 0.9607

2 0.9602 0.9843

(a) x
(ki)
i and x

(kj)
j belong to different re-

gions of attraction.

β ki, kj 1 2

0.001
1 0.1123 0.1155

2 0.1177 0.1366

0.005
1 0.1187 0.1208

2 0.1238 0.1429

0.01
1 0.1267 0.1290

2 0.1319 0.1506

0.05
1 0.8368 0.7294

2 0.7211 0.2418

(b) x
(ki)
i and x

(kj)
j belong to the same

region of attraction.

Table 3.10: Proportion of violations with points x
(ki)
i and x

(kj)
j , for 100 functions

(3.13) with various β and d = 5.

For functions (3.13), the average number of steepest descent iterations (3.3) is

small, and average ∥∇f(x(0)n )∥ is large in Table 3.4. As a result, ki, kj = 1, 2 in Tables

3.10(a) and 3.10(b). In addition, Table 3.5 shows the number of pairs of points that

belong to the same region of attraction and different regions of attraction is 15631

and 479369, respectively.

Tables 3.10(a) and 3.10(b) show that choosing β = 0.05 maximizes the pro-

portion of violations for points belonging to the same and different regions of at-

traction. Consequently, there will be many repeated local descents to the same

local minimizer if β = 0.05 is selected for the METOD algorithm. Hence, selecting

β = 0.001, 0.005, 0.01 reduces the proportion of violations for points belonging to

the same region of attraction, resulting in far less repeated local descents to the

same local minimizer.

Choosing ki, kj = 2 increases the proportion of violations for β = 0.001, 0.005, 0.01

with points belonging to the same and different regions of attraction. However,

the proportion of violations increases only marginally for points belonging to the

same region of attraction in Table 3.10(b). Overall, selecting small M and β =

0.001, 0.005, 0.01 will reduce the risk of the METOD algorithm assigning points to

the wrong region of attraction, whilst reducing the number of repeated local descents

to regions of attraction already discovered.
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3.5.7 Qing function

The average number of steepest descent iterations (3.3) and average ∥∇f(x(0)n )∥ is
large for functions of the form (3.14) in Table 3.4. Therefore, ki, kj = 1, 2, 3 in Tables

3.11(a) and 3.11(b). In addition, Table 3.5 shows the number of pairs of points that

belong to the same region of attraction and different regions of attraction is 15383

and 479617, respectively.

β ki, kj 1 2 3

0.001

1 0.8405 0.8729 0.8399

2 0.8720 0.9215 0.9132

3 0.8384 0.9121 0.9238

0.005

1 0.8442 0.8760 0.8432

2 0.8749 0.9235 0.9152

3 0.8417 0.9140 0.9251

0.01

1 0.8491 0.8796 0.8474

2 0.8789 0.9259 0.9175

3 0.8461 0.9165 0.9269

0.05

1 0.9028 0.9186 0.8926

2 0.9184 0.9471 0.9388

3 0.8921 0.9383 0.9423

0.1

1 0.9808 0.9761 0.9641

2 0.9759 0.9754 0.9694

3 0.9637 0.9694 0.9709

(a) x
(ki)
i and x

(kj)
j belong to different re-

gions of attraction.

β ki, kj 1 2 3

0.001

1 0.1350 0.1353 0.0662

2 0.1342 0.1513 0.0933

3 0.0662 0.0923 0.0758

0.005

1 0.1391 0.1397 0.0692

2 0.1383 0.1559 0.0969

3 0.0688 0.0952 0.0777

0.01

1 0.1450 0.1450 0.0718

2 0.1439 0.1620 0.1002

3 0.0721 0.0993 0.0811

0.05

1 0.4637 0.3938 0.3304

2 0.3867 0.2382 0.1574

3 0.3213 0.1585 0.1306

0.1

1 0.9579 0.8983 0.8656

2 0.8944 0.7876 0.7604

3 0.8608 0.7633 0.7788

(b) x
(ki)
i and x

(kj)
j belong to the same

region of attraction.

Table 3.11: Proportion of violations with points x
(ki)
i and x

(kj)
j , for 100 functions

(3.14) with various β and d = 5.

Tables 3.11(a) and 3.11(b) show the proportion of violations increases as β

grows. For functions (3.14), if β = 0.1 is selected for the METOD algorithm

there will be many repeated local descents to the same local minimizer. Selecting

β = 0.001, 0.005, 0.01 ensures that the proportion of violations for points belonging

to the same region of attraction in Table 3.11(b) remains relatively low for all values

of ki and kj. However, the proportion of violations for points belonging to the same

region of attraction can be large for β = 0.05 and small ki and kj. Similarly, the

largest proportion of violations can also be observed when β = 0.05 in Table 3.11(a)

for points belonging to different regions of attraction.

Setting ki, kj = 3 for β = 0.001, 0.005, 0.01, 0.05 will reduce the risk of the

METOD algorithm assigning points to the wrong region of attraction, whilst reduc-
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ing the number of repeated local descents to regions of attraction already discovered.

3.5.8 Zakharov function

β ki, kj 1 2

0.00000001
1 0.0000 0.0000

2 0.0000 0.0000

0.000001
1 0.8434 0.4532

2 0.4725 0.0000

0.0001
1 0.9985 0.9593

2 0.9605 0.0000

Table 3.12: Proportion of violations with points x
(ki)
i and x

(kj)
j that belong to the

same region of attraction, for 100 functions (3.15) with various β and d = 10.

Since function (3.15) has only one minimizer, the purpose of investigating the

number of violations of (3.17) is to observe the choice of β which reduces the number

of repeated local descents to the same region of attraction. Table 3.4 shows the

average number of steepest descent iterations (3.3) is small, and average ∥∇f(x(0)n )∥
is large for functions (3.15). Therefore, ki, kj = 1, 2 in Table 3.12.

Table 3.12 highlights that the proportion of violations is high for points belonging

to the same region of attraction for β = 0.000001, 0.0001 and small values of ki and

kj. If ki, kj ≥ 2 there will be no violations for points belonging to the same region

of attraction when β = 0.000001, 0.0001. However, selecting β = 0.00000001 will

minimize the risk of repeated local descents to the same region of attraction for

all values of ki and kj. Hence, selecting β = 0.00000001 is recommended for the

METOD algorithm.
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3.6 Selection of β

3.6.1 Overview

Recall that β is used to compute partner points in (3.5). It is required that 0 <

β ≤ 2/λmax for inequality (3.17) to hold for two points belonging to the same region

of attraction. In Section 3.5, the effect of different β on inequality (3.17) holding

for points belonging to the same and different regions of attraction is investigated.

Specifically, Tables 3.6 - 3.12 show the values of β that reduce the risk of the METOD

algorithm assigning points to the wrong region of attraction and also reduce the

number of repeated local descents to a region of attraction already discovered for

functions (3.9) - (3.15). The purpose of this section is to determine why particular

values of β improve the accuracy of the METOD algorithm for functions of the form

(3.9) - (3.15).

Functions of the form (3.9) - (3.15) will be split into two categories in order to

study the influence of β. The first category consists of functions with known λmax

and the second category outlines an heuristic approximation of β which can be used

for functions with unknown λmax. The motivation for separating functions according

to known and unknown λmax is due to the requirement that β ∈ (0, 2/λmax] in (3.17).

Hence, a clear upper bound on the value of β is provided for functions with known

λmax, which is not the case for unknown λmax. Therefore, it is vital to identify

methods to approximate adequate values of β for functions with unknown λmax.

3.6.2 Functions with known λmax

Recall objective functions (3.9), (3.10) and (3.11). Suppose that point x1 belongs to

the region of attraction of minimizer x01 and another point x2 belongs to the region

of attraction of minimizer x02. Furthermore, suppose x1 and x2 are not close the

local minimizers x01 and x02. Inequality (3.17) can be expanded as follows

∥x1 − x2∥2 ≥ ∥x̃1 − x̃2∥2 = ∥(x1 − β∇f(x1))− (x2 − β∇f(x2))∥2

= ∥x1 − x2∥2 + ∥b∥2 + 2bT (x1 − x2),

where b = β(∇f(x2)−∇f(x1)). Inequality (3.17) holds when ∥b∥2+2bT (x1−x2) ≤ 0.

Let c1 = ∥b∥2 and c2 = 2bT (x1 − x2), then

c1 + c2 = ∥b∥2 + 2bT (x1 − x2). (3.20)

Since x1 and x2 are two different points which are not near the local minimizers x01

and x02, we have c1 > 0 and c2 ̸= 0.
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To test the effect of different β on (3.20), one random function of form (3.9) -

(3.11) will be generated, along with two random starting points x1, x2 ∈ X, which

belong to different regions of attraction. For each function of the form (3.9) and

(3.10), the number of local minimizers is P = 2 and P = 10 respectively. Further-

more, d = 100 for function (3.9) and d = 20 for function (3.10) with σ2 = 0.7.

Steepest descent iterations (3.3) will be applied to obtain x
(k1)
1 and x

(k2)
2 . Values c1

and c2 in (3.20) will be calculated for different β.

Figures 3.4 - 3.6 show values of c1 and c2 in (3.20) calculated for various β with

points x
(k1)
1 and x

(k2)
2 that belong to different regions of attraction for a function of

the form (3.9) - (3.11), with k1, k2 = 1, 2. Table 3.13 shows |c1/c2| for various β with

values of c1 and c2 from Figures 3.4 - 3.6.

Figure 3.4: Components c1 and c2 calculated for β = 0.01 (left), β = 0.1 (centre)

and β = 0.2 (right) with x
(k1)
1 and x

(k2)
2 that belong to different regions of attraction,

where the function is of the form (3.9).

Figure 3.5: Components c1 and c2 calculated for β = 0.01 (left), β = 0.1 (centre)

and β = 0.2 (right) with x
(k1)
1 and x

(k2)
2 that belong to different regions of attraction,

where function is of the form (3.10).

Figures 3.4 - 3.6 and Table 3.13 show the magnitude of c1 and c2 increases as a

function of β. Recall that if (3.20) is positive, then inequality (3.17) will fail, which

is desirable for two points belonging to different regions of attraction. For functions

of the form (3.9) and (3.10), large β has a great effect on the magnitude of |c1/c2|,
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Figure 3.6: Components c1 and c2 calculated for β = 0.01 (left), β = 0.1 (centre)

and β = 0.2 (right) with x
(k1)
1 and x

(k2)
2 that belong to different regions of attraction,

where function is of the form (3.11).

Function β k1 = 1,

k2 = 1

k1 = 1,

k2 = 2

k1 = 2,

k2 = 1

k1 = 2,

k2 = 2

Minimum of several

Quadratic forms (3.9)

0.01 0.051 0.0506 0.1741 0.023

0.1 0.5102 0.5063 1.7413 0.23

0.2 1.0203 1.0125 3.4827 0.46

Sum of Gaussians

(3.10)

0.01 0.0260 0.0051 0.0152 0.0557

0.1 0.2605 0.0506 0.1517 0.5571

0.2 0.5210 0.1013 0.3034 1.1143

Modified Shekel

(3.11)

0.01 0.0003 0.0027 0.0003 0.0006

0.1 0.0029 0.0271 0.0025 0.0056

0.2 0.0058 0.0543 0.0051 0.0112

Table 3.13: Computation of |c1/c2| for points x(k1)1 and x
(k2)
2 that belong to different

regions of attraction, for β = 0.01, 0.1, 0.2.

which is useful to observe when c2 < 0. This is because if the magnitude of |c1/c2|
grows and c2 < 0, then the likelihood of (3.20) being greater than zero increases,

which will result in inequality (3.17) failing. This can be observed in Figure 3.4,

where inequality (3.17) fails for β = 0.2, since the magnitude of c1 is greater than

c2 for the combinations; (k1 = 1, k2 = 1), (k1 = 1, k2 = 2), and (k1 = 2, k2 = 1).

However, this is not the case for β = 0.01, 0.1 in Figure 3.4 as inequality (3.17) may

hold for different combinations of k1 and k2 since the magnitude of c1 is less than

the magnitude of c2.

For functions of the form (3.11), large β has a very small effect on the magnitude

of c1. This is also highlighted in Table 3.13, where |c1/c2| remains very small for all

values of β, suggesting that (3.20) is effected by c2 only. Hence, increasing β will

have a limited impact on the number of violations of (3.17) for points belonging to

different regions of attraction when functions are of the form (3.11). This can also
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be observed in Table 3.8(a). Nevertheless, Tables 3.6 - 3.8 show that the number of

violations of (3.17) is largest when β = 0.2 for functions of the form (3.9) - (3.11).

Consequently, it is recommended to set β = 2/λmax when applying the METOD

algorithm for functions with known λmax.

3.6.3 Heuristic approximation of β

It can be observed in the previous subsection that setting β = 2/λmax can improve

the accuracy of the METOD algorithm. Recall that λmax is unknown for objective

functions (3.12) - (3.15). Therefore, it can be difficult to determine an upper bound

for the value of β.

Suppose starting points x
(0)
n (n = 1, . . . , N) are sampled uniformly at random

from X. The reciprocal of the average norm of the gradient,

∥∇f(x(0)n )∥−1 =

(
1

N

N∑
n=1

||∇f(x(0)n )||

)−1

(3.21)

will be investigated as a metric to determine an approximation of β.

Figure 3.7 shows the average of (3.21) for 100 functions of the form (3.9) with

P = 5 and various λmax and d, where starting points x
(0)
n (n = 1, . . . , 30) are

sampled uniformly at random from X for each function to compute (3.21). Figure

3.7 illustrates that (3.21) is largest for small d and λmax, and (3.21) decreases as

d grows. It is recommended in Subsection 3.6.2 to set β = 2/λmax to increase the

number of violations of (3.17) for points belonging to different regions of attraction.

To derive an approximation of β, the values of (3.21) will need to be reduced for

small d and increased for large d in order to approximate 2/λmax for various λmax.

Therefore, consider the following approximation of β,

β ≈ (d− 1)2

cd
√
d

(
1

N

N∑
n=1

||∇f(x(0)n )||

)−1

, (3.22)

where c = 2.25. Figure 3.7 shows the average approximation of β (3.22) for 100

functions of the form (3.9) with P = 5 and various λmax and d, where starting points

x
(0)
n (n = 1, . . . , 30) are sampled uniformly at random from X for each function to

compute (3.22). It can be observed that (3.22) approximates β = 2/λmax generally

well for functions of the form (3.9) with P = 5, and different values of d and λmax.

In order to apply (3.22) to approximate a value for β, the magnitude of the

gradient at various starting points ||∇f(x(0)n )|| (n = 1, . . . , N) should be reasonably

large to ensure that x
(0)
n is within the vicinity of a region of attraction of a local

minimizer. If ||∇f(x(0)n )|| is small, then the approximation of β in (3.22) will be very
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Figure 3.7: Average value of (3.21) (left) and average approximation of β (3.22)

(right) for 100 functions (3.9) with P = 5, various d and λmax, with starting points

x
(0)
n (n = 1, . . . , 30) sampled uniformly at random from X for each function to

compute (3.21) and (3.22), respectively.

large and may have an adverse effect on the accuracy and efficiency of the METOD

algorithm.

To ensure the approximation of β in (3.22) is suitable for functions with a differ-

ent number of local minima P , 100 functions of the form (3.9) will be generated with

various P , d and λmax. For each function (3.9), starting points x
(0)
n (n = 1, . . . , 100)

are sampled uniformly at random from X. It will be investigated whether (3.22)

approximates β = 2/λmax for λmax = 5, 10, 20, with various d and P .

Figure 3.8: Boxplots of the approximation of β in (3.22) for each random function

(3.9) with P = 5 (left), P = 20 (centre) and P = 50 (right) for various d and λmax.

Figure 3.8 shows (3.22) approximates β = 2/λmax generally well. When P = d,

the approximation (3.22) can be slightly lower than β = 2/λmax for small d and

slightly higher than β = 2/λmax for large d. Nevertheless, (3.22) can be used as

a guide to generate a suitable estimate of β. In addition, if the gradient of the
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objective function is unknown, then an approximation of the gradient may be used

to approximate β in (3.22). The approximation of the gradient may be computed,

for example, by applying the finite difference method.

For objective functions (3.13) - (3.15), Table 3.4 shows that average ∥∇f(x(0)n )∥
is relatively large. Therefore, (3.22) will be used to approximate values of β for

functions (3.13) - (3.15). For numerical examples, 100 functions (3.13) - (3.15) will

be generated along with starting points x
(0)
n (n = 1, . . . , 100) sampled uniformly at

random from X.

Figure 3.9: Approximation of β using (3.22) for functions (3.13) - (3.15). It should

be noted that the values on the y axis are different for each function and for the

Zakharov function (3.15), the y axis is scaled to e−8.

It can be observed in Figure 3.9 that the medians of the approximation of β using

(3.22) for functions (3.13) - (3.15) are close to values of β in Tables 3.10 - 3.12. The

corresponding values of β for functions (3.13) and (3.14) produced a high number of

violations for points belonging to different regions of attractions and a low number

of violations for points belonging to the same region of attraction. Furthermore,

the median of the approximation of β using (3.22) for function (3.15) is close to

the optimal choice of β which produced no violations for points belonging to the

same region of attraction. Tables 3.10 and 3.11 show that a larger value of β may

improve accuracy and efficiency of the METOD algorithm. Nevertheless, since λmax

is unknown for functions (3.13) - (3.15), it can be extremely useful to apply (3.22)

to approximate a value for β.

If ∥∇f(x(0)n )∥ is small for a function with unknown λmax, (3.22) cannot be used

to approximate a value of β. This is the case for function (3.12), where average

∥∇f(x(0)n )∥ is relatively small in Table 3.4. Therefore, it is recommended to assign

a small value to β (e.g. β = 0.001 or β = 0.01), which is consistent with the advice

in [144].
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3.7 METOD algorithm numerical examples

3.7.1 Overview

For numerical examples, 100 functions fj (j = 1, . . . , 100) of the form (3.9) - (3.14)

will be generated along withN starting points x
(0)
n (n = 1, . . . , N) sampled uniformly

at random from X. For each function, the METOD algorithm will be applied with

x
(0)
n (n = 1, . . . , N). In order to compare the results of the METOD algorithm,

multistart will also be applied to the same set of starting points x
(0)
n (n = 1, . . . , N).

That is, local descent will be applied to each x
(0)
n (n = 1, . . . , N) until the smallest

Kn = k is found such that ∥∇f(x(k)n )∥ < δ. Values of δ for each function (3.9)

- (3.14) can be found in Table 3.4. The choice of dimension d, total number of

local minima of each objective function and total number of starting points N for

functions (3.9) - (3.14) are presented in Table 3.14.

Function d N
Number of

local minima

Minimum of several quadratic forms (3.9) 100 1000 50

Sum of Gaussians (3.10) 20 100 10

Modified Shekel (3.11) 4 100 10

Hartmann 6 (3.12) 6 50 2

Styblinski-Tang (3.13) 5 1000 32

Qing (3.14) 5 1000 32

Table 3.14: Choice of dimension d, total number of local minima of each objective

function and total number of starting points N for functions (3.9) - (3.14).

Recall that application of the following condition (3.18) determines whether local

descents are terminated early within the METOD algorithm,

∥x̃(M)
n − x̃(i)l ∥ ≤ ∥x

(M)
n − x(i)l ∥ and ∥x̃(M−1)

n − x̃(i)l ∥ ≤ ∥x
(M−1)
n − x(i)l ∥,

where l is the index for a local minimizer and i = M − 1, . . . , Kl. Condition (3.18)

is based entirety on testing inequality (3.17) for various points. In Section 3.5, the

frequency of violations of inequality (3.17) is investigated for points belonging to

the same and different regions of attraction for functions (3.9) - (3.15). In addition,

only several steepest descent iterations (3.3) have been applied to points evaluated

with inequality (3.17) in Section 3.5, which is equivalent to testing only a subset

of inequalities of (3.18) used by the METOD algorithm. Evaluating a subset of

inequalities of (3.18) with small M and i can significantly influence whether all
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inequalities (3.18) hold with i = M − 1, . . . , Kl. Therefore, results of numerical

examples will be compared with the results observed in Tables 3.6 - 3.11 in Section

3.5 to explain key trends. Functions (3.15) are not considered for numerical examples

since there is only one minimizer.

The results of numerical examples will be categorized into two parts. The first

category presents results on the accuracy of the METOD algorithm compared to

multistart. That is, the total number of local minimizers found by the METOD al-

gorithm and multistart are compared for each fj (j = 1, . . . , 100) of the form (3.9) -

(3.14). Since local descent is applied to each sampled point x
(0)
n ∈ X (n = 1, . . . , N)

within multistart, each region of attraction corresponding to the local minimizer

x
(Kn)
n will be discovered. It may be possible that the METOD algorithm completely

misses an opportunity to identify new local minimizers through condition (3.18)

repeatedly holding for points belonging to undiscovered regions of attraction. Al-

though new local minimizers may be missed in the early stages, it is still possible

for the METOD algorithm to find all the same local minimizers as multistart pro-

vided that condition (3.18) eventually fails for points belonging to a new region of

attraction.

The second category of results highlights the efficiency of the METOD algorithm.

Specifically, the total number of gradient evaluations and local descents computed

by METOD and multistart are compared. The efficiency of the METOD algorithm

is reduced if condition (3.18) fails for two points that belong to the same region

of attraction. Hence, if the proportion of local descents by METOD compared to

multistart is large, then condition (3.18) fails for many points belonging to the same

region of attraction.

All results for accuracy and efficiency of the METOD algorithm will be presented

for various values of β and M .

3.7.2 Accuracy

Let fmin be the smallest function value among all local minima found by applying

multistart with starting points x
(0)
n ∈ X (n = 1, . . . , N). It should be noted that fmin

may not be the global minimum of a function fj (j = 1, . . . , 100). Consequently, if

the global minimum of an objective function is not discovered by multistart, it will

also not be discovered by METOD. Table 3.15 shows the total number of times fmin

is found by the METOD algorithm for fj (j = 1, . . . , 100) of the form (3.9) - (3.14).

All minima of functions (3.9) and (3.14) are global, and as a consequence, fmin will

be the same for each discovered local minimizer. Therefore, the total number of

local minimizers found by applying the METOD algorithm and multistart are also
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compared for each fj (j = 1, . . . , 100) of the form (3.9) - (3.14).

Let L(j)
METOD

and L(j)
Mult

be the total number of local minimizers found by METOD

and multistart respectively for each objective function fj (j = 1, . . . , 100) of the form

(3.9) - (3.14). The percentage of local minimizers (PLM) and average number of

local minimizers (ALM) missed by the METOD algorithm are computed as follows

PLM =

∑100
j=1(L

(j)
Mult
− L(j)

METOD
)∑100

j=1 L
(j)
Mult

× 100 (3.23)

and

ALM =
1

100

100∑
j=1

(L(j)
Mult
− L(j)

METOD
). (3.24)

Table 3.16 shows the percentage of local minimizers (PLM) missed by METOD

(3.23) and average number of local minimizers (ALM) missed by METOD (3.24)

for functions (3.9), (3.10), (3.11) and (3.14). Results for functions (3.12) and (3.13)

have been omitted in Table 3.16 since all local minimizers are found by METOD in

Table 3.15 for various M and β.

Tables 3.15 and 3.16 show that the number of local minimizers found by the

METOD algorithm compared to multistart is greatest when β = 0.2 for functions

(3.9) and (3.10). It can be shown in Tables 3.6 and 3.7 that selecting β = 0.2

minimizes the risk of the METOD algorithm assigning points to the wrong region

of attraction, and consequently, there is a greater opportunity of discovering new

local minimizers.

Tables 3.15 and 3.16 highlight that the selection of β for functions of the form

(3.11) has a limited effect on the total number of local minimizers found by the

METOD algorithm. A similar effect can also be observed in Table 3.8, where larger

values of β have a limited impact on the probability of the METOD algorithm

assigning points to the wrong region of attraction. Furthermore, Table 3.15 shows

that the METOD algorithm may not find as many local minimizers as multistart for

some functions of the form (3.11). In fact, results in Tables 3.15 and 3.16 are poorer

for functions (3.11) in comparison to all other classes of functions applied with the

METOD algorithm for M = 2, 3. This is due to the narrow regions of attraction

of local minimizers. Nevertheless, Table 3.15 demonstrates that selecting M = 3

ensures that the METOD algorithm finds the same number of local minimizers as

multistart for a large number of functions of form (3.11). Also, selecting β = 0.2

results in reduced values for (3.23) and (3.24) in Table 3.16. Hence, setting β =

2/λmax is recommendable.

Table 3.15 shows the METOD algorithm finds all the same local minimizers as

multistart for 100 functions of the form (3.12) and (3.13) with all values of β andM .
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Function M β

Number of functions

Local minimizers missed by

METOD
METOD finds

fmin
0 1 2 ≥ 3

Minimum of

several quadratic

forms (3.9)

1

0.01 0 0 0 100 100

0.1 0 0 0 100 100

0.2 95 5 0 0 100

2

0.01 91 8 1 0 100

0.1 100 0 0 0 100

0.2 100 0 0 0 100

3

0.01 95 4 1 0 100

0.1 100 0 0 0 100

0.2 100 0 0 0 100

Sum of Gaussians

(3.10)

2

0.01 92 8 0 0 99

0.1 96 4 0 0 99

0.2 97 3 0 0 100

3

0.01 92 8 0 0 99

0.1 95 5 0 0 99

0.2 97 3 0 0 100

Modified Shekel

(3.11)

2

0.01 73 22 5 0 100

0.1 73 22 5 0 100

0.2 74 21 5 0 100

3

0.01 78 14 8 0 100

0.1 78 14 8 0 100

0.2 78 15 7 0 100

Hartmann 6

(3.12)

2
0.001 100 0 0 0 100

0.01 100 0 0 0 100

3
0.001 100 0 0 0 100

0.01 100 0 0 0 100

Styblinski-Tang

(3.13)

1

0.001 100 0 0 0 100

0.005 100 0 0 0 100

0.01 100 0 0 0 100

2

0.001 100 0 0 0 100

0.005 100 0 0 0 100

0.01 100 0 0 0 100

Qing (3.14)

1

0.005 25 23 25 27 100

0.01 27 28 17 28 100

0.05 77 21 2 0 100

2

0.005 91 9 0 0 100

0.01 93 7 0 0 100

0.05 98 2 0 0 100

3

0.005 100 0 0 0 100

0.01 100 0 0 0 100

0.05 100 0 0 0 100

Table 3.15: Number of functions fj (j = 1, . . . , 100) of the form (3.9) - (3.14) in

which the METOD algorithm finds 0, 1, 2 or ≥ 3 less local minimizer(s) than

multistart and the number of functions in which the METOD algorithm finds the

same fmin as multistart with various M and β.
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Function M β PLM (3.23) ALM (3.24)

Minimum of

several quadratic

forms (3.9)

1

0.01 90.67% 43.42

0.1 78.58% 37.63

0.2 0.10% 0.05

2

0.01 0.21% 0.10

0.1 0% 0

0.2 0% 0

3

0.01 0.13% 0.06

0.1 0% 0

0.2 0% 0

Sum of Gaussians

(3.10)

2

0.01 0.83% 0.08

0.1 0.42% 0.04

0.2 0.31% 0.03

3

0.01 0.83% 0.08

0.1 0.52% 0.05

0.2 0.31% 0.03

Modified Shekel

(3.11)

2

0.01 3.45% 0.32

0.1 3.45% 0.32

0.2 3.34% 0.31

3

0.01 3.24% 0.30

0.1 3.24% 0.30

0.2 3.13% 0.29

Qing (3.14)

1

0.005 5.31% 1.70

0.01 4.97% 1.59

0.05 0.78% 0.25

2

0.005 0.28% 0.09

0.01 0.22% 0.07

0.05 0.06% 0.02

3

0.005 0% 0

0.01 0% 0

0.05 0% 0

Table 3.16: Percentage of local minimizers (PLM) computed in (3.23) and average

number of local minimizers (ALM) computed in (3.24) missed by the METOD al-

gorithm for functions (3.9), (3.10), (3.11) and (3.14).
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For functions of the form (3.14), Table 3.15 demonstrates that a warm-up period of

M = 1 may result in some local minimizers being missed by the METOD algorithm.

However, selecting β = 0.05 increases the number of functions in which the METOD

algorithm finds the same number of local minimizers as multistart. Furthermore,

the METOD algorithm finds the same number of local minimizers as multistart with

all 100 functions (3.14) for M = 3 and all values of β.

For all functions (3.9) - (3.14), Tables 3.15 and 3.16 show that increasing the

warm-up period M will either maintain or improve accuracy of the METOD algo-

rithm if β is chosen appropriately. Therefore, all results in Tables 3.15 and 3.16

demonstrate that if β and M are suitably chosen, the accuracy of the METOD

algorithm will be high for a variety of different test functions.

3.7.3 Efficiency

Figure 3.10 shows boxplots of the proportion of gradient evaluations by the METOD

algorithm compared to multistart. Also, Figure 3.11 shows boxplots of the propor-

tion of local descents by the METOD algorithm compared to multistart. Figures

3.10 and 3.11 display results for 100 functions of the form (3.9) - (3.14), each with

a set of starting points x
(0)
n ∈ X (n = 1, . . . , N) for various M and β.

In general, the proportion of gradient evaluations in Figure 3.10 will vary for

different classes of functions. If few steepest iterations (3.3) are applied to find a

local minimizer x
(Kn)
n (n = 1, . . . , N) in multistart, then the proportion of gradient

evaluations may be large. This is due to the METOD algorithm applying a warm-up

period of M steepest descent iterations to obtain x
(M−1)
n and x

(M)
n (n = 1, . . . , N)

to evaluate condition (3.18). However, if many steepest iterations (3.3) are applied

to find a local minimizer x
(Kn)
n (n = 1, . . . , N) in multistart, then the proportion of

gradient evaluations will be small. In some cases, increasing the warm-up period

M may lead to an increasing proportion of gradient evaluations since more steepest

descent iterations (3.3) are computed. On the other hand, increasing the warm-up

period M may reduce repeated local descents to the same local minimizer for some

functions. As a consequence, the proportion of gradient evaluations may decrease

as M increases.

Figures 3.10(a) and 3.11(a) show that for functions of the form (3.9), the pro-

portion of gradient evaluations and local descents is smaller for β = 0.01, 0.1 in

comparison to β = 0.2 whenM = 1. This is due to a very small proportion of viola-

tions in Table 3.6 for points belonging to different regions of attraction whenM = 1

and β = 0.01, 0.1, which suggests a large number of local minimizers will be missed

by the METOD algorithm. On the other hand, a large proportion of violations for
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(a) Several quadratic forms function

(3.9).

(b) Sum of Gaussians function (3.10).

(c) Modified Shekel function (3.11). (d) Hartmann 6 function (3.12).

(e) Styblinski-Tang function (3.13). (f) Qing function (3.14).

Figure 3.10: Boxplots of the proportion of gradient evaluations used by the METOD

algorithm compared to multistart for all 100 functions of the form (3.9) - (3.14), with

various M and β.

M = 1 and β = 0.2 can be observed in Table 3.6 for points belonging to different re-

gions of attraction. Figure 3.10(a) shows that the proportion of gradient evaluations

grows as M increases for functions of the form (3.9), which is due to two reasons.

Firstly, the number of additional steepest descent iterations (3.3) grows as a func-

tion of M , which results in more gradient evaluations. Secondly, condition (3.18)

holds for all points belonging to the same region of attraction with M = 1, 2, 3 and
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(a) Several quadratic forms function

(3.9).

(b) Sum of Gaussians function (3.10).

(c) Modified Shekel function (3.11). (d) Hartmann 6 function (3.12).

(e) Styblinski-Tang function (3.13). (f) Qing function (3.14).

Figure 3.11: Boxplots of the proportion of local descents by the METOD algorithm

compared to multistart for all 100 functions of the form (3.9) - (3.14), with various

M and β.

β = 0.01, 0.1, 0.2 for functions of the form (3.9). As a result, there are no repeated

local descents to the same local minimizer for any combination of parameters β and

M , which explains the low proportion of local descents for M = 1 and β = 0.01, 0.1,

and the similar proportion of local descents for all other combinations of M and β

in Figure 3.11(a).

For functions of the form (3.10) - (3.12), the proportion of gradient evaluations
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in Figures 3.10(b) - 3.10(d) and proportion of local descents in Figures 3.11(b)

- 3.11(d) decreases as M increases. This is due to the decreasing proportion of

violations for increasing M in Tables 3.7 - 3.9 with points belonging to the same

region of attraction. Consequently, the number of repeated local descents to a known

region of attraction is reduced.

The proportion of gradient evaluations in Figure 3.10(e) grows as M increases

for functions (3.13) since additional steepest descent iterations (3.3) are computed

within the METOD algorithm. Also, increasing M appears to marginally increase

the proportion of local descents in Figure 3.11(e). This can be explained by a larger

proportion of violations in Table 3.10 for increasing M with points belonging to

the same region of attraction, resulting in an increased number of repeated local

descents. The proportion of gradient evaluations in Figure 3.10(e) is relatively large

since only few steepest descent iterations (3.3) are required to find a local minimizer

x
(Kn)
n (n = 1, . . . , N) in multistart for functions (3.13), which can be observed in

Table 3.4.

The key trends of Figures 3.10(f) and 3.11(f) vary depending on the value of β

and M chosen. Therefore, results for different M will be discussed individually. For

M = 1, Figures 3.10(f) and 3.11(f) show that the proportion of gradient evaluations

and local descents is smaller for β = 0.005, 0.01 compared to β = 0.05. This is due

to a smaller proportion of violations in Table 3.11 for points belonging to the same

and different regions of attraction when M = 1 and β = 0.005, 0.01. Consequently,

some local minimizers can be missed by the METOD algorithm with β = 0.005, 0.01.

However, a smaller number of repeated local descents to the same local minimizer

is also observed for β = 0.005, 0.01 compared to β = 0.05 with M = 1.

When M = 2, the proportion of local descents in Figure 3.11(f) is marginally

larger than when M = 1, 3 for β = 0.005, 0.01. The same trend can be observed

in Table 3.11, where the proportion of violations with points belonging to the same

region of attraction for β = 0.005, 0.01 is largest whenM = 2 compared toM = 1, 3.

However, the same theme is not apparent for the proportion of gradient evaluations

in Figure 3.10(f). That is, for β = 0.005, 0.01 the proportion of gradient evaluations

appears to increase as a function ofM . This is due to the additional steepest descent

iterations (3.3) required for a larger warm-up period M . Furthermore, increasing

M does not significantly reduce the proportion of local descents and consequently,

the number of gradient evaluations is not reduced.

For M = 3 and all values of β, the METOD algorithm finds the same local

minimizers as multistart for all fj (j = 1, . . . , 100) of the form (3.14). Furthermore,

the proportion of gradient evaluations and local descents is largest when β = 0.05 in

comparison to β = 0.005, 0.01 for corresponding M = 1, 2, 3. This is highlighted in
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Table 3.11, where the number of violations for points belonging to the same region

of attraction is largest for β = 0.05 compared to β = 0.005, 0.01 for all M . The

proportion of gradient evaluations for β = 0.05 differs slightly for increasing M due

to two conflicting objectives. That is, there is a trade-off between a lower number of

gradient evaluations from fewer repeated local descents to the same local minimizer,

and an increased number of steepest descent iterations (3.3) from larger values of

M .

3.7.4 Summary

In numerical examples, the accuracy and efficiency of the METOD algorithm with

various M and β have been compared with multistart for a variety of different test

functions. In this subsection, the main conclusions on the choice of parameters M

and β are presented for each class of function.

Recall that inequality (3.17) is an integral part of METOD and is applied with

various points in the main condition (3.18) of the METOD algorithm to decide

on terminating local descents early. For objective functions with locally quadratic

behaviour close to the neighbourhoods of local minimizers, inequality (3.17) holds

for two points that belong to the same region of attraction for β ∈ (0, 2/λmax]. In

Section 3.6, the values of β which improve the accuracy of the METOD algorithm

are investigated.

For functions with known λmax, it is recommended to set β = 2/λmax. It can be

observed in numerical examples that setting β = 2/λmax can improve the accuracy

of the METOD algorithm for functions (3.9), (3.10) and (3.11), whilst ensuring

efficiency is maintained. For functions (3.9), setting M = 2 and β = 2/λmax will

improve accuracy and efficiency of the METOD algorithm. Setting M = 3 and

β = 2/λmax for functions (3.10) and (3.11) will improve efficiency of the METOD

algorithm by reducing the proportion of gradient evaluations and local descents.

A larger warm-up period M is required for functions (3.10) and (3.11) since the

magnitude of the gradient at various starting points in Table 3.4 can be small,

suggesting that starting points are far away from a local minimizer and in-between

regions of attraction.

For functions with unknown λmax, two approaches may be taken to determine a

value for β. If the magnitude of the gradient at several starting points is relatively

large, then β may be approximated using (3.22). Otherwise, β can be set as a small

positive constant (i.e. β = 0.001, 0.01), which is consistent with the advice provide

in [144].

Table 3.4 shows that the magnitude of the gradient at a number of starting points
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is relatively small for functions of the form (3.12) and consequently β = 0.001, 0.01 is

chosen for numerical examples. For all 100 functions (3.12), the METOD algorithm

finds the same number of local minimizers as multistart for M = 2, 3 and β =

0.001, 0.01. Furthermore, selectingM = 3 will improve the efficiency of the METOD

algorithm since the proportion of gradient evaluations and local descents in Figures

3.10(d) and 3.11(d) are smaller in comparison to M = 2.

For functions (3.13) and (3.14), the magnitude of the gradient at a number of

starting points is relatively large in Table 3.4. Therefore, β can either be assigned a

small value or approximated using (3.22). For all 100 functions (3.13), the METOD

algorithm finds the same number of local minimizers as multistart for M = 1, 2 and

β = 0.001, 0.005, 0.01. Also, the METOD algorithm is most efficient when M = 1,

since only a moderate number of steepest descent iterations (3.3) are required to

find a local minimizer for functions of the form (3.13). Hence, smallM enhances the

efficiency of the METOD algorithm with functions of the form (3.13). Furthermore,

the median of the approximation of β using (3.22) in Figure 3.9 is 0.0058. High

accuracy and efficiency of the METOD algorithm can be observed for β = 0.005

with functions (3.13). In this case, (3.22) is beneficial in approximating β.

The accuracy of the METOD algorithm for functions (3.14) improves for large

values of M . When M = 2, selecting β = 0.05 produces the largest number of

functions in which METOD finds the same local minimizers as multistart. When

M = 3, all values of β result in the METOD algorithm finding the same number

of local minimizers as multistart for all 100 functions (3.14). The efficiency of the

METOD algorithm improves marginally for smaller values of β at corresponding

values ofM = 1, 2, 3, since the proportion of gradient evaluations and local descents

are slightly smaller in Figures 3.10(f) and 3.11(f) for decreasing values of β. Al-

though different values of β are applied with the METOD algorithm for numerical

examples, this would not be done typically in practice since numerous runs of the

METOD algorithm would be computationally expensive. The median of the ap-

proximation of β using (3.22) in Figure 3.9 is 0.01277, which underestimates the

promising value of β = 0.05 that has proven the most successful in improving the

accuracy of the METOD algorithm for functions (3.14). However, suppose the ap-

proximation of β using (3.22) is applied for the METOD algorithm. In that case, it

can be observed for M = 2, 3 that β = 0.01 results in a large number of functions

in which METOD finds the same number of local minimizers as multistart. Hence,

approximating β using (3.22) may improve accuracy and efficiency of the METOD

algorithm as opposed to guessing a small value of β.
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3.8 METOD algorithm in large dimensions

3.8.1 Overview

Recall that condition (3.18) is based on evaluating the fundamental inequality (3.17)

with various points, and is essential for terminating local descents early within the

METOD algorithm. The METOD algorithm has been applied with a variety of

functions (3.9) - (3.14) in previous sections to provide general recommendations for

the values of β and M . The purpose of this section is to analyze the impact of

different d on the accuracy of condition (3.18) of the METOD algorithm. That

is, the number of times condition (3.18) holds for points belonging to undiscovered

regions of attraction and the effect this has on the total number of local minimizers

discovered by the METOD algorithm.

Functions (3.9) and (3.10) can be used to investigate the performance of the

METOD algorithm for different d since the function parameters can be set for any

d. This is not the case for functions (3.11) - (3.14), where either parameters of the

functions are predefined for certain values of d or the number of local minimizers

increase exponentially as a function of d. To investigate the accuracy of the METOD

algorithm for different d, 100 functions of the form (3.9) and (3.10) will be generated

along with N = 1000 starting points x
(0)
n (n = 1, . . . , N) sampled uniformly at

random from X = [0, 1]d. For functions (3.9), the different dimensions considered

are d = 100, 200 and the number of local minimizers is P = 50. For functions (3.10),

the number of local minimizers is P = 10 and the different dimensions considered

are d = 20, 50 with σ2 = 0.7, 1.6 respectively. Since λmax = 10 for functions (3.9)

and (3.10), β = 2/λmax will be used when applying the METOD algorithm (see

Section 3.6).

The METOD algorithm and multistart will be applied to each function with a

set of starting points x
(0)
n (n = 1, . . . , N). Multistart consists of applying steepest

descent iterations (3.3) to each x
(0)
n (n = 1, . . . , N) until a local minimizer is dis-

covered. Therefore, it is possible to check the accuracy of the METOD algorithm

through comparison with multistart. Specifically, the local minimizers discovered by

the METOD algorithm and mulitistart will be compared. Since the focus of analysis

is on the accuracy of METOD with different d, a large number of starting points

are generated to investigate the frequency of times inequality (3.18) holds for points

belonging to undiscovered regions of attraction.

In [144, Sect. 5], accuracy is investigated by observing the total number of local

minimizers discovered by METOD and the total number of local descents performed

from condition (3.18) failing. Also investigated is the total percentage of points xn
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(n = 1, . . . , N) that are assigned the wrong region of attraction, which is a conse-

quence of incorrect classification in [144, Sect. 3.2]. The same investigations as [144,

Sect. 5] are also presented in Tables 3.18 - 3.19 and 3.21 - 3.22, with the exception

that the total percentage of misclassifications of points xn (n = 1, . . . , N) assigned

the wrong region of attraction is not considered. This is because it is unnecessary to

assign a region of attraction to a point where local descent is terminated early. That

is, the process of continuously checking condition (3.18) for all l = 1, . . . , L can be

computationally expensive when condition (3.18) has already been satisfied for one

index l. As a result, only points that do not satisfy (3.18) will be assigned a region

of attraction and points which satisfy (3.18) will be discarded. Consequently, the

METOD algorithm will be able to find new regions of attraction more efficiently.

Results in Tables 3.18 - 3.19 and 3.21 - 3.22 are different to those in [144, Sect.

5] since the objective functions (3.9) and (3.10) are slightly different. Specifically,

each objective function (3.9) and (3.10) is multiplied by a constant, whereas the

objective functions considered in [144, Sect. 5] are not multiplied by a constant.

Furthermore, different d and P are used for functions (3.9) and (3.10). In addition,

β = 0.2 is applied with the METOD algorithm for functions (3.9) and (3.10) since

β = 2/λmax is recommended in Section 3.6 for functions with known λmax.

Tables 3.18 - 3.19 and 3.21 - 3.22 also display the total percentage of times a local

minimizer is missed due to condition (3.18) holding for points belonging to undis-

covered regions of attraction, which is not considered in [144, Sect. 5]. Although

new local minimizers may be missed in the early stages, the METOD algorithm can

still find all the same local minimizers as multistart provided that condition (3.18)

eventually fails for points belonging to undiscovered regions of attraction. A conse-

quence of condition (3.18) failing is that local descent is applied to the corresponding

point and a new region of attraction of a local minimizer will be discovered. Hence,

a non-zero percentage of local minimizers missed in Tables 3.18 - 3.19 and 3.21 -

3.22 does not necessarily indicate that a local minimizer is completely missed by the

METOD algorithm.

3.8.2 Minimum of several quadratic forms function (3.9)

Table 3.17 shows the number of functions (3.9) in which 50, 49 or ≤ 48 local min-

imizers are discovered from applying local descent to each set of starting points xn

(n = 1, . . . , 1000), where d = 100, 200.

Tables 3.18 and 3.19 show that the number of local descents is equivalent to the

number of local minimizers discovered by the METOD algorithm for all M and d.

This illustrates that condition (3.18) always holds for points belonging to the same
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d

Number of local minimizers

discovered

50 49 ≤ 48

100 34 32 34

200 16 32 52

Table 3.17: Number of functions (3.9) in which the number of local minimizers

discovered is 50, 49 or ≤ 48 from applying local descent to each set of starting

points xn (n = 1, . . . , 1000) for each function.

β M

Number of local

minimizers

Number of local

descents
Missed

minimizers %
50 49 ≤ 48 50 49 ≤ 48

0.2

1 32 33 35 32 33 35 0.327

2 34 32 34 34 32 34 0

3 34 32 34 34 32 34 0

Table 3.18: Number of functions (3.9) in which the METOD algorithm finds 50,

49 or ≤ 48 local minimizers and performs 50, 49 or ≤ 48 local descents. Also, the

total percentage of new local minimizers missed through condition (3.18) holding

for points belonging to different regions of attraction. All results are for P = 50,

d = 100, and various M and β.

β M

Number of local

minimizers

Number of local

descents
Missed

minimizers %
50 49 ≤ 48 50 49 ≤ 48

0.2

1 16 32 52 16 32 52 0.007

2 16 32 52 16 32 52 0

3 16 32 52 16 32 52 0

Table 3.19: Number of functions (3.9) in which the METOD algorithm finds 50,

49 or ≤ 48 local minimizers and performs 50, 49 or ≤ 48 local descents. Also, the

total percentage of new local minimizers missed through condition (3.18) holding

for points belonging to different regions of attraction. All results are for P = 50,

d = 200, and various M and β.

region of attraction, and there are no repeated local descents to regions of attraction

already identified.

Table 3.18 shows a smaller number of local minimizers are discovered by METOD

compared to multistart when M = 1 and d = 100. However, this is not the case
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in Table 3.19 as METOD finds the same local minimizers as multistart for M = 1

and d = 200. In addition, Tables 3.18 and 3.19 show that the percentage of local

minimizers missed is significantly reduced for larger d when M = 1. Hence, the

accuracy of the METOD algorithm with small M improves as d increases. For

M ≥ 2, Tables 3.18 and 3.19 show that METOD finds the same local minimizers as

multistart for different d.

3.8.3 Sum of Gaussians function (3.10)

Table 3.20 shows the number of functions (3.10) in which 10, 9 or ≤ 8 local mini-

mizers are discovered from applying local descent to each set of starting points xn

(n = 1, . . . , 1000), where d = 20, 50.

d

Number of local minimizers

discovered

10 9 ≤ 8

20 99 1 0

50 100 0 0

Table 3.20: Number of functions (3.10) in which the number of local minimizers

discovered is 10, 9 or ≤ 8 from applying local descent to each set of starting points

xn (n = 1, . . . , 1000) for each function.

β M

Number of local

minimizers
Average local

descents

Missed

minimizers %
10 9 ≤ 8

0.2

2 99 1 0 99.92 0.033

3 99 1 0 31.97 0.036

4 99 1 0 15.66 0.020

Table 3.21: Number of functions (3.10) in which the METOD algorithm finds 10,

9 or ≤ 8 local minimizers and average number of local descents. Also, the total

percentage of new local minimizers missed through condition (3.18) holding for

points belonging to different regions of attraction. All results are for P = 10,

d = 20, σ2 = 0.7 and various M and β.

Tables 3.21 and 3.22 show that the METOD algorithm finds the same total

number of local minimizers as multistart in Table 3.20 for allM and d. Furthermore,

the average number of local descents decrease as a function of M . However, when

M is small, the average number of local descents increases significantly for large d.
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β M

Number of local

minimizers
Average local

descents

Missed

minimizers %
10 9 ≤ 8

0.2

2 100 0 0 243.57 0.001

3 100 0 0 45.64 0.001

4 100 0 0 15.57 0

Table 3.22: Number of functions (3.10) in which the METOD algorithm finds 10,

9 or ≤ 8 local minimizers and average number of local descents. Also, the total

percentage of new local minimizers missed through condition (3.18) holding for

points belonging to different regions of attraction. All results are for P = 10,

d = 50, σ2 = 1.6 and various M and β.

This illustrates that it will be increasingly likely that many points drawn randomly

from the feasible domain will not be within close vicinity of a region of attraction

when d is large. Hence, the warm-up period M should be set to a larger value to

ensure x
(M)
n is within close vicinity of a region of attraction.

It can also be observed in Tables 3.21 and 3.22 that the percentage of missed

local minimizers reduces as d increases. Although the percentage of local minimizers

missed is non-zero, Tables 3.21 and 3.22 display that eventually condition (3.18)

fails for a point belonging to a new region of attraction. This enables the METOD

algorithm to identify the same local minimizers as multistart in Table 3.20 for each

function (3.10).

3.8.4 Summary

Two key messages are portrayed from evaluating the accuracy of the METOD algo-

rithm for different d within Subsections 3.8.2 and 3.8.3. Firstly, the accuracy of the

METOD algorithm improves as d increases for functions of the form (3.9) when M

is small, and for functions of the form (3.10) with all M .

Secondly, condition (3.18) may hold for several points belonging to undiscovered

regions of attraction. However, the METOD algorithm can still find all the same

local minimizers as multistart, provided that condition (3.18) eventually fails for

points belonging to undiscovered regions of attraction. A consequence of condition

(3.18) failing is that local descent is applied to the corresponding point, and a new

region of attraction of a local minimizer will be discovered. If condition (3.18)

holds for numerous points belonging to undiscovered regions of attraction, then the

METOD algorithm is likely to completely miss local minimizers, as shown in Tables
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3.18 and 3.19. Nevertheless, the number of times condition (3.18) holds for points

belonging to undiscovered regions of attraction decreases as d and M increase.

3.9 Implementation and usage of the METOD al-

gorithm in Python

3.9.1 Overview

Chapter 5 describes the process of implementing the METOD algorithm in Python,

where details illustrating compliance with a variety of software development prac-

tices is provided. These include, ensuring that a version control system is used,

software is readily accessible, all results can be reproduced, testing on all source

code is conducted with 100% test coverage, continuous integration is employed and

documentation is provided. In addition, the METOD algorithm has been made

publicly available on GitHub, to enable other researchers to inspect and apply the

algorithm for global optimization problems.

The purpose of this section is to provide details on the various input and output

parameters of the METOD algorithm. In addition, instructions on how to install and

apply the METOD algorithm are also provided. The input and output parameters

of the METOD algorithm are displayed in Figure 3.12. The function (f), gradient

(g), function arguments (func args) and dimension (d) must be provided before

applying the METOD algorithm.

1 >>> (discovered_minimizers,

2 ... number_minimizers,

3 ... func_vals_of_minimizers,

4 ... excessive_no_descents,

5 ... starting_points,

6 ... no_grad_evals) = metod_alg.metod(f, g, func_args, d,

7 ... num_points=1000, beta=0.01,

8 ... tolerance=0.00001, projection=False,

9 ... const=0.1, m=3, option='minimize_scalar',

10 ... met='Brent', initial_guess=0.005,

11 ... set_x='sobol', bounds_set_x=(0, 1),

12 ... relax_sd_it=1)

Figure 3.12: Example of calling the METOD algorithm in Python. To apply the

METOD algorithm, the function (f), gradient (g), function arguments (func args)

and dimension (d) must be provided. Default values for the input parameters may

be updated accordingly.

84



3.9. IMPLEMENTATION AND USAGE OF THE METOD ALGORITHM IN
PYTHON

3.9.2 Input parameters

A range of METOD algorithm parameters have been discussed in [144, Sect. 3.3],

along with recommendations on suitable choices for the parameters. All parameters

discussed in [144, Sect. 3.3] form a subset of the required input parameters for the

METOD algorithm in Python. Additional input parameters are also included to

enhance the adaptability and usage of the METOD algorithm. The remainder of

this subsection consists of several categories outlining each input parameter.

Objective function, gradient and dimension

The following input parameters in Figure 3.12 will need to be updated each time

the METOD algorithm is applied.

• f: Objective function f applied with the METOD algorithm. The objective

function will be evaluated at each x
(k)
n .

• g: Gradient of the objective function f , which is used to compute ∇f(x(k)n )

for steepest descent iterations (3.3).

• func args: Function arguments required to compute f(x
(k)
n ) and ∇f(x(k)n ).

• d: Size of dimension which is required to generate starting points x
(0)
n and may

also be used to generate function arguments.

The METOD algorithm can be applied by only updating f, g, func args and

d since the remaining input parameters are assigned default values. However, to

improve the efficiency and accuracy of the METOD algorithm, it is strongly rec-

ommended to update values of the input parameters based on the chosen objective

function, which will be discussed in the following categories.

Selection of starting points x
(0)
n (n = 1, . . . , N)

Multistart consists of a global and local phase. For the global phase, typically

starting points x
(0)
n ∈ X (n = 1, . . . , N) are sampled at random, which allows diverse

exploration of the feasible domain and increases the possibility of finding the global

minimizer. The METOD algorithm also incorporates the same global phase. The

following input parameters in Figure 3.12 are utilized for the selection of starting

points x
(0)
n (n = 1, . . . , N) within the METOD algorithm.

• num points: The total number of starting points N generated before stopping

the METOD algorithm.
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• set x: Starting points can either be generated uniformly at random from X or

by using a quasi-random sequence, such as Sobol sequence samples (see [118]).

Sobol sequence samples will be transformed to ensure all samples are within X,

and shuffled at random before applying the METOD algorithm. The Numpy

library [47] is used to generate points uniformly at random and the SALib

library [50] is used to generate Sobol sequence samples.

• bounds set x: The feasible domain X.

If the SALib library [50] is employed to generate Sobol sequence samples, an array

is returned. Subsection 3.4.2 outlines a condition of the METOD algorithm which

checks the adequacy of starting points x
(0)
n (n = 1, .., N). That is, if ∥∇f(x(0)n )∥ < δ

then a new starting point x
(0)
n ∈ X is produced. Since all Sobol sequence samples

are generated in advance of applying the METOD algorithm, 2N Sobol sequence

samples will be generated as opposed to N , to ensure that starting points x
(0)
n can

be replaced if adequacy fails.

Partner point step size β

The partner point step size β in (3.5) is represented by the input parameter beta in

Figure 3.12. It is extremely important that β is chosen appropriately in (3.5) since

accuracy or efficiency of the METOD algorithm may be compromised. The effect of

β on the accuracy and efficiency of the METOD algorithm with a variety of different

test functions is studied in Section 3.6, and the following recommendations for the

value of β are provided. For functions with known λmax, it is recommended to set

β = 2/λmax. For functions with unknown λmax and relatively large ∥∇f(x(0)n )∥ for
each n = 1, . . . , N , (3.22) may be used to approximate a value for β. Alternatively,

β may be assigned a small positive value (i.e. β = 0.001 or β = 0.01).

Stopping criterion for steepest descent iterations (3.3)

Recall that steepest descent iterations (3.3) are terminated when (3.4) is satisfied.

Also, recall in Subsection 3.4.2 that the adequacy of a starting point x
(0)
n is checked

by ensuring that ∥∇f(x(0)n )∥ ≥ δ for each n = 1, . . . , N . The value of δ used to

terminate steepest descent iterations (3.3) and to check adequacy of starting points

is represented by the input parameter tolerance in Figure 3.12. It is recommended

to assign δ a very small positive value (i.e. 0.00001 or 0.0001), to ensure steepest

descent iterations (3.3) are not terminated too early when attempting to find a local

minimizer. If steepest descent iterations (3.3) are terminated too early, saddle points

may be found as opposed to local minimizers.
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Projection of steepest descent iterations (3.3)

It is possible that an iteration of steepest descent x
(k)
n /∈ X for k = 1, . . . , Kn − 1. If

this occurs, there is an option to project x
(k)
n ∈ X. That is, suppose X = [a, b]d, then

coordinates of x
(k)
n which are less than a will be set to a. Alternatively, coordinates

of x
(k)
n which are greater than b will be set to b. It is not a concern if x

(k)
n /∈ X, as

long as the discovered local minimizer x
(Kn)
n ∈ X. The input parameter projection

in Figure 3.12 represents the choice of projecting points x
(k)
n .

Selection of η in (3.19)

Recall that η is used within condition (3.19) to identify unique local minimizers found

by the METOD algorithm. The value of η is represented by the input parameter

const in Figure 3.12. If η is a large value, then two different local minimizers

x
(K1)
1 and x

(K2)
2 may be classified as the same local minimizer by condition (3.19).

Alternatively, if η is a very small value then two matching local minimizers x
(K1)
1

and x
(K2)
2 , may be classified as different local minimizers by condition (3.19).

Warm up period M

The warm up periodM is represented by the input parameter m in Figure 3.12. Since

starting points may be located in between two regions of attraction or far away from

a local minimizer, a warm up period ofM steepest descent iterations (3.3) is applied

to a starting point x
(0)
n to obtain x

(M)
n . As a result, x

(M)
n will be within close vicinity

of a region of attraction and application of condition (3.18) can determine whether

steepest descent iterations (3.3) should be terminated early. However, the efficiency

of the METOD algorithm will be reduced if M is set to a large value, particularly

if only a small or moderate number of steepest descent iterations (3.3) are required

to find a local minimizer. Sections 3.5, 3.7 and 3.8 show that a warm up period of

M = 2 or M = 3 yields promising results by the METOD algorithm.

Step length γ
(k)
n

Recall in Section 2.3 that for a steepest descent iteration, it is desirable to select

a value for γ
(k)
n such that the following minimization problem outlined in (2.5) is

satisfied,

γ(k)n = argmin
γ>0

f(x(k)n − γ∇f(x(k)n )).

However, it can be computationally expensive to identify an exact value of γ(k) that

satisfies (2.5). Therefore, a solution of (2.5) is often approximated and methods
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applied to determine γ
(k)
n are discussed in Section 2.3.

The METOD algorithm applies Brent’s minimization method [14, Chpt 5.4] to

approximate γ
(k)
n . Brent’s minimization method has been implemented within the

SciPy library [134] in Python. The SciPy library offers a wide range of optimization

algorithms to find a local minimizer of a function. The scipy.optimize.minimize

scalar solver can be used to find a local minimizer of a univariate function. Alterna-

tively, the scipy.optimize.minimize solver can be used to find a local minimizer

of a univariate or multivariate function. Table 3.23 details each of the available

solvers from the SciPy library to approximate γ
(k)
n .

Solver Features

scipy.optimize.

minimize

Requires an initial guess γ > 0 of γ
(k)
n to initialize the solver.

It must be ensured that γ is not too large, otherwise x
(k+1)
n in

(3.3) may overshoot the region of attraction that x
(k)
n belongs

to, which can be observed in Figure 3.13. Hence, it is recom-

mended that a small value for γ is chosen (i.e. γ = 0.005 or

γ = 0.01)

scipy.optimize.

minimize scalar

A bracket interval can be provided as an optional input pa-

rameter, which can either be of the form [a, b] or [a, b, c],

where a < b < c and f(b) < f(a), f(c). If the bracket inter-

val is of the form [a, b], then the scipy.optimize.bracket

function is executed to find an interval which brackets the

minimum of a function and returns points [a, b, c] such that

f(b) < f(a), f(c). Hence, the minimum of a function will lie in

the interval [a, b]← [a, c] if a < c or [a, b]← [c, a] if a ≥ c. Fig-

ure 3.14 presents an application of scipy.optimize.bracket.

To compute γ
(k)
n , it is recommended to set a = 0 and b as a

small number (i.e. b = 0.005 or b = 0.01). This is to reduce

the risk of x
(k+1)
n in (3.3) overshooting the region of attraction

that x
(k)
n belongs to.

Table 3.23: Type of solver in SciPy [134] that can be used within the METOD

algorithm to approximate γ
(k)
n .

The following input parameters represent the type of solver, method and addi-

tional parameters for each solver to compute γ
(k)
n .

• option: Option of solver in Python to compute γ
(k)
n for steepest descent iter-

ations (3.3). Can either choose scipy.optimize.minimize scalar or
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(a) Initial guess γ = 0.005 (b) Initial guess γ = 5

Figure 3.13: Effect of choosing different values for the initial guess γ in

scipy.optimize.minimize to obtain γ
(k)
n with function f(x) = sin(x).

(a) Initial guess of the interval [a, b] =

[−1.5,−0.5].
(b) Point c is returned by scipy.

optimize.bracket.

Figure 3.14: Graphical representation of scipy.optimize.bracket, where f(x) =

4x2 + x3 on the interval [−2, 1.2].

scipy.optimize.minimize, which is represented as option=‘minimize scalar’

or option=‘minimize’ respectively.

• met: A method is required for scipy.optimize.minimize scalar and

scipy.optimize.minimize. For example, if option=‘minimize scalar’,

then Brent’s minimization method can be used by setting met=‘Brent’.

• initial guess: If option=‘minimize’, then initial guess is the value of

γ. Alternatively, if option=‘minimize scalar’, then initial guess is the

value of the upper bound of the interval [a, b].
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Relaxed steepest descent

Relaxed steepest descent is described in [105] and involves multiplying the step

length γ
(k)
n by a small constant r ∈ [0, 2], to obtain a new step length for steepest

descent iterations (3.3). It is possible that multiplying γ
(k)
n by r can improve the

rate of convergence of steepest descent iterations [49]. The constant r is represented

by the input parameter relax sd it in Figure 3.12.

Summary

All input parameters required by the METOD algorithm in Python are summarized

in Table 3.24, along with details on whether an input parameter is compulsory to

update for the application of the METOD algorithm. An optional input param-

eter is assigned a value which does not have to be updated. However, providing

values for the optional input parameters will enhance the accuracy and efficiency

of the METOD algorithm. In particular, values for beta and m should be updated

according to the advice given in this chapter.

Input

parameter

Update Type Description

f Yes function

Objective function evaluated at a

point, which is a 1-D array with shape

(d,), and outputs a float.

g Yes function

Gradient evaluated at a point, which

is a 1-D array with shape (d,), and

outputs a 1-D array with shape (d,).

func args Yes tuple Extra arguments passed to f or g.

d Yes integer Size of dimension.

num points Optional integer

Number of starting points generated

before stopping the METOD algo-

rithm. The default is num points =

1000.

beta Optional float

Small constant step size β to compute

the partner points (3.5). The default is

beta = 0.01.
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tolerance Optional float or

integer

Stopping condition for steepest de-

scent iterations (3.3). That is, apply

steepest descent iterations (3.3) until

∥∇f(x(k)n )∥ < δ, where the value of δ

is represented by tolerance. Further-

more, if ∥∇f(x(0)n )∥ < δ, another start-

ing point x
(0)
n is used. The default is

tolerance = 0.00001.

projection Optional boolean

If projection = True, then x
(k)
n is

projected into a feasible domain X. If

projection = False, then x
(k)
n is not

projected. The default is projection

= False.

const Optional float
Value of η used in (3.19). The default

is const = 0.1.

m Optional integer

The number of steepest descent itera-

tions (3.3) to apply to a starting point

x
(0)
n before making a decision on termi-

nating descents. The default is m = 3.

option Optional string

Option of solver to compute γ
(k)
n

for steepest descent iterations

(3.3). Choose from "minimize"

or "minimize scalar" (i.e. scipy.

optimize.minimize or scipy.

optimize.minimize scalar).

The default is option =

"minimize scalar".

met Optional string

A method is required for option

= "minimize" or option =

"minimize scalar". The default

is met = "Brent".

initial guess Optional float

Initial guess passed to option =

"minimize" and the upper bound

for the bracket interval when option

= "minimize scalar" for met =

"Brent" and met = "Golden". The

default is initial guess = 0.005.
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set x Optional string

If set x = "random", then starting

points x
(0)
n ∈ X are generated uni-

formly at random for the METOD al-

gorithm. If set x = "sobol", then a

2-D array of Sobol sequence samples,

introduced in [118], are generated using

the SALib library [50]. Sobol sequence

samples are transformed so that sam-

ples are within X. The Sobol sequence

samples are then shuffled at random

and selected by the METOD algo-

rithm. Default is set x = "sobol".

bounds set x Optional tuple
Feasible domain X. The Default is

bounds set x = (0, 1).

relax sd it Optional float or

integer

Multiply the step length γ
(k)
n by a

constant in [0, 2], to obtain a new

step size for steepest descent iterations

(3.3). This process is known as relaxed

steepest descent (see [105]). Default is

relax sd it = 1.

Table 3.24: Summary of the input parameters for the METOD algorithm, as ob-

served in Figure 3.12.

3.9.3 Output parameters

Table 3.25 summarizes the outputs of the METOD algorithm. The output pa-

rameters excessive descents and no grad evals may be inspected to assess the

efficiency of the METOD algorithm. It is desirable for excessive descents to be

a small value since this outlines the number of repeated local descents to a known

local minimizer. Also, it is desirable that the majority of entries in no grad evals

are labelled as M +1, which implies that many local descents have been terminated

early.

The starting points used within the METOD algorithm are returned to allow

the comparison of METOD algorithm outputs with other global optimization algo-

rithms.
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Output Type Description

unique minimizers list Each unique minimizer found.

unique number of minimizers integer
Total number of unique minimizers

found.

func vals of minimizers list
Objective function evaluated at

each discovered unique minimizer.

excessive descents integer

Number of repeated local descents

to the same local minimizer (see

(3.19) for more details).

starting points list
Starting points used by the

METOD algorithm.

no grad evals 1-D array

Array containing the number of gra-

dient evaluations computed for each

point xn (n = 1, . . . , N).

Table 3.25: Summary of the output parameters for the METOD algorithm, as ob-

served in Figure 3.12.

3.9.4 Quickstart example

Figure 3.15 provides instructions on how to install and test the METOD Algorithm

via the command line. An application of the METOD algorithm with an objective

$ git clone https://github.com/Megscammell/METOD-Algorithm.git

$ cd METOD-Algorithm

$ python setup.py develop

$ pytest

Figure 3.15: Install and test the METOD algorithm.

function and gradient is presented in Figure 3.16. Also included within the example

are checks to ensure that outputs from the METOD algorithm are of expected form.

The purpose of each line of code in Figure 3.16 is discussed in more detail within

Table 3.26.
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3.10 Summary

This chapter presents the METOD algorithm [144], which can reduce the number

of repeated local descents to the same local minimizer. The early termination of

descents in METOD is achieved through repeatedly evaluating the fundamental

inequality (3.17). A variety of enhancements to the METOD algorithm have been

implemented to improve efficiency and accuracy. Furthermore, extensive analysis

on inequality (3.17) has been conducted, along with an investigation on suitable

values for the essential parameters β and M of the METOD algorithm. Numerical

examples show the high efficiency and accuracy of the METOD algorithm compared

to multistart with various test functions. Moreover, the accuracy of the METOD

algorithm improves as the dimension increases.

Finally, the implementation of the METOD algorithm in Python is outlined,

which allows other researchers to apply the software for global optimization prob-

lems. A thorough discussion on the input parameters of the METOD algorithm and

recommended values is presented. Furthermore, all METOD algorithm outputs are

described, and an example applying the METOD algorithm is displayed.
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1 >>> import numpy as np

2 >>> import math

3 >>> import metod_alg as mt

4 >>>

5 >>> np.random.seed(90)

6 >>> def f(x, x0, A, rotation):

7 ... return 0.5 * (x - x0).T @ rotation.T @ A @ rotation @ (x - x0)

8 ...

9 >>> def g(x, x0, A, rotation):

10 ... return rotation.T @ A @ rotation @ (x - x0)

11 ...

12 >>> d = 2

13 >>> A = np.array([[1, 0],[0, 10]])

14 >>> theta = np.random.uniform(0, 2 * math.pi)

15 >>> rotation = np.array([[math.cos(theta), -math.sin(theta)],

16 ... [math.sin(theta), math.cos(theta)]])

17 >>> x0 = np.array([0.5, 0.2])

18 >>>

19 >>> args = (x0, A, rotation)

20 >>> (discovered_minimizers,

21 ... number_minimizers,

22 ... func_vals_of_minimizers,

23 ... excessive_no_descents,

24 ... starting_points,

25 ... no_grad_evals) = mt.metod(f, g, args, d, num_points=10)

26 >>> assert(np.all(np.round(discovered_minimizers[0], 3) ==

27 ... np.array([0.500, 0.200])))

28 >>> assert(number_minimizers == 1)

29 >>> assert(np.round(func_vals_of_minimizers, 3) == 0)

30 >>> assert(excessive_no_descents == 0)

31 >>> assert(np.array(starting_points).shape == (10, d))

32 >>> assert(np.all(no_grad_evals[1:] == 4))

Figure 3.16: Application of the METOD algorithm.
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Line number Purpose of each line of code in Figure 3.16

1 - 3 Import the required libraries.

5 Initialize the pseudo-random number generator seed.

6 - 7
Define a function f to apply the METOD algorithm, where

only one local minimizer is to be found.

9 - 10 Define the gradient g, which returns the gradient of f.

12 Set the dimension as d = 2.

13 Create the variable A, which is assigned a diagonal matrix.

14
Create the variable theta, which is assigned a value chosen

uniformly at random from [0, 2π].

15 - 16
Create the variable rotation, which is assigned a rotation

matrix using theta.

17 Create the variable x0, which is the minimizer of f.

19
Set x0, A and rotation as objective function arguments.

The function arguments are required to run f and g.

20 - 25

Run the METOD algorithm with f, g, args, d and

optional input num points=10 to obtain the out-

puts; discovered minimizers, number minimizers,

func vals of minimizers, excessive no descents,

starting points and no grad evals.

26-32

Check outputs of the METOD algorithm. Specifically, check

that one minimizer x
(K1)
1 is found, the function value at the

discovered minimizer is f(x
(K1)
1 ) = 0, all local descents are

terminated early after discovering x
(K1)
1 , ten starting points

are generated before stopping the METOD algorithm and

only 4 gradient evaluations are computed for nine starting

points.

Table 3.26: Purpose of each line of code in Figure 3.16.
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Chapter 4

The choice of direction in

high-dimensional response surface

optimization

This chapter is summarized as follows.

• Section 4.1 provides an overview of response surface methodology (RSM) for

stochastic optimization problems. In addition, the scope of the chapter is

presented, which is to propose a new search direction that can be used to

improve the performance of RSM for high-dimensional problems.

• Section 4.2 presents the Box-Wilson (BW) algorithm, which is the most of-

ten used and cited RSM strategy. The main focus is on Phase I of the BW

algorithm, where steepest descent iterations are employed to approach a neigh-

bourhood of a minimizer. Section 4.2 also outlines the strategies proposed in

the RSM-related literature to compute the search direction and step length

for steepest descent iterations.

• Section 4.3 details the response functions employed to demonstrate the perfor-

mance of Phase I of BW with different search directions for steepest descent

iterations.

• In Section 4.4, a new search direction is proposed for Phase I of BW for high-

dimensional problems.

• Section 4.5 presents two modifications to the least-squares estimator as the

choice of search direction for Phase I of BW for high-dimensional problems.

The purpose of the modifications is to enable comparisons with the new search

direction presented in Section 4.4.

• Section 4.6 outlines the strategy used to compute the step length for steepest
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descent iterations within Phase I of BW for numerical experiments in Section

4.7.

• Section 4.7 provides the results of numerical experiments for Phase I of BW

for different search directions presented in Sections 4.4 and 4.5.

The new search direction presented in Section 4.4 has been implemented in

Python and made publicly available on GitHub. Hence, all source code, tests and

analysis results are readily available. Furthermore, Chapter 5 illustrates the mea-

sures taken to ensure that all software developed is accurate and reliable.

4.1 Introduction

Response surface methodology (RSM) is a collection of methods for approximating

a minimizer x∗ of a regression function η(x) using a series of observations

yj = η(zj) + εj, j = 1, 2, . . . , (4.1)

where z1, z2, . . . are the values of a d-dimensional predictor (input variables) x ∈ Rd.

Usually the function η(x) is assumed to be unimodal and errors εj are assumed to

be rather large but not necessarily independent nor even random.

Stochastic optimization (also known as simulation optimization) involves find-

ing values of the input parameters to minimize the output of a stochastic function.

Stochastic optimization has been discussed in [2, 19, 35, 36, 74, 129], where various

methods to solve different stochastic optimization problems are outlined. Typi-

cally, unconstrained stochastic functions follow the form (4.1) and are black-box

since the true analytical form of η(x) is unknown. Hence, RSM is often applied to

solve stochastic optimization problems. Other popular techniques used for stochas-

tic optimization include stochastic approximation methods [61, 108] such as finite-

difference stochastic approximation or simultaneous perturbation stochastic approx-

imation (see Subsection 2.4 for more details). In addition, direct search methods

such as the Nelder-Mead simplex method [91], and random search algorithms such as

simulated annealing [63] are also applied to solve stochastic optimization problems.

The relationship between stochastic optimization and several machine learning

methods are described in [2] and include active learning [22] and reinforcement

learning [127]. Specifically, the process of active learning involves querying labels of

additional observations when necessary. Therefore, improving the accuracy of the

prediction model can be achieved with very few labelled observations, which reduces

the computational cost, especially when the labelled observations are expensive to

obtain. According to [2], the process of active learning is similar to stochastic
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optimization since a selection of points is chosen at each iteration of an algorithm to

evaluate the response function. Reinforcement learning involves discovering the set

of actions to perform to maximize some reward. A key challenge in reinforcement

learning is balancing the trade-off between exploring the feasible domain for different

sets of actions and exploiting what has been learnt so far [127]. This is a similar

dilemma often encountered with stochastic optimization. That is, [2] outlines that a

trade-off exists between exploring the feasible domain for suitable points to improve

the response function value, and exploiting the knowledge gained so far on the true

analytical form of η(x).

Typically, stochastic optimization methods are selected depending on whether

the input variables are continuous or discrete and whether local or global optimiza-

tion is required. RSM is often applied to solve stochastic optimization problems

with continuous input variables [2]. Furthermore, RSM embodies one of the follow-

ing two forms. The first form of RSM is a sequential strategy for solving stochastic

local optimization problems. This consists of iteratively exploring small subregions

of the feasible domain to determine search directions toward subregions where im-

provement in the response function is observed. Once a subregion of the optimum is

located, a higher-order model is fitted to approximate the optimal point. The sec-

ond form of RSM is used for stochastic global optimization problems, and involves

exploring the entire feasible domain and fitting a global approximation model (i.e.

using a neural network or kriging model). Exploration of the global approximation

is conducted during the optimization process [4]. Throughout this chapter, the focus

is on the first form of RSM.

Various authors have applied RSM in a wide range of disciplines. In [137], a

review of the various applications of RSM within the food industry is considered.

Some applications considered in [137] are optimization of the conditions to maximize

extraction yield, and optimization of the drying process to improve the quality of

a product and minimize production costs. In [80], a tutorial detailing the use of

experimental designs and RSM in energy applications is provided. Some examples

in [80] include observing the effect of different experimental conditions on biodiesel

production and on the performance of batteries and fuel cells. RSM has also been

used for optimization in analytical chemistry [8] and to determine the optimal ex-

traction conditions to enhance the yield and quality of plant materials [3]. Work in

[78] uses design of experiments and RSM to screen and tune the hyperparameters

of a machine learning algorithm. Furthermore, [78] provides a case study where

the hyperparameters of the random forest algorithm have been tuned with a given

dataset.

The most often used and cited RSM strategy is the so-called Box-Wilson (BW)
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algorithm (see [13] and [51]). This algorithm and its modifications are discussed in

Section 4.2. The BW algorithm consists of two phases. On Phase I, a succession of

moves toward the neighbourhood of x∗ is performed. On Phase II, a locally quadratic

model of the response function is assumed for estimating the location of x∗. Different

modifications of the BW algorithm are distinguished by using different designs on

Phase I and different rules for choosing the step length of the descents. What has

never been challenged is the choice of descent direction in the BW algorithm, which

is generally chosen to be the least-square estimator of the gradient of the response

function at a current point. This chapter presents an alternative descent direction,

which can significantly improve the first phase of BW and RSM, in general, for

high-dimensional problems.

Consider the following notation that will be used throughout this chapter.

• M = (mj,i)
N,d
j,i=1, is a design matrix with N observations and d variables. Also,

mj = (mj,1,mj,2, ...,mj,d)
T is the j-th row of M ;

• mj,i ∈ {−1,+1}, each entry of M is either -1 or +1;

• M+ has the following form;

M+ =


1 m1,1 m1,2 . . . m1,d

1 m2,1 m2,2 . . . m2,d

. . . . . . . . . . . .

1 mN,1 mN,2 . . . mN,d


︸ ︷︷ ︸

q = d+ 1

N (4.2)

• x(k) = (x
(k)
1 , ..., x

(k)
d )T ∈ Rd, is a point at iteration k = 0, 1, ...;

• R = (x
(k)
1 ± r, . . . , x

(k)
d ± r)T , is a small neighbourhood centred at the point

x(k), where r > 0 is a small constant. The neighbourhood R is often called the

region of interest or subregion in RSM-related literature;

• Throughout this chapter, it is assumed that ±1 in the design matrix represents

a change of ±r in each coordinate of x(k) when evaluating the response function

(4.1). Specifically, z1, z2, . . . , zn, are the values of a d-dimensional predictor at

the k-th iteration such that,

zj = x(k) + rmj, (4.3)

and entries of the response vector Y = (y(zj))
N
j=1 consist of the response

function evaluations (4.1) at zj (j = 1, . . . , N).

The selection of r for the region of interest R is essential in RSM. If r is too

small, the errors εj (j = 1, . . . , N) in (4.1) will be the main reason for considerable
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differences between the response function values yj (j = 1, . . . , N). Consequently,

the search within Phase I of BW will be inaccurate. However, selecting r too large

will result in inadequate local models, and therefore, the search within Phase I of

BW may stop too early. Hence, r must be chosen carefully.

4.2 Classical strategies for response surface opti-

mization

4.2.1 Overview

The Box-Wilson (BW) algorithm is the key RSM strategy and consists of two phases

which are described in Subsection 4.2.2. This chapter focuses on Phase I of BW,

which performs a succession of moves towards the neighbourhood of x∗. During

Phase I of BW, it is assumed that x(k) is far away from x∗ and the response function

is approximately linear in the neighbourhood of x(k). Hence, a first-order model is

constructed to approximate the response function in the neighbourhood of x(k). If

the first-order model is significant, then coefficients of the first-order model are used

to determine the search direction, and a sequence of experiments are performed to

determine a suitable step length. This process is known as steepest descent and

is frequently used within Phase I of BW to move towards the neighbourhood of

x∗. This section aims to provide a literature review of the processes and methods

associated with Phase I of BW. Specifically, details on the computation of the search

direction and step length for steepest descent are outlined in Subsections 4.2.3 and

4.2.4.

4.2.2 Box-Wilson algorithm

The BW algorithm is the key RSM strategy and is summarized below.

Box-Wilson version of RSM

• Phase I: descent to a neighbourhood of a local minimizer

- Initialization: Choose a point x(0) ∈ Rd (an initial approximation) and

set k = 0.

- k-th iteration of Phase I

I.1 Assume η(x) is approximately linear in the neighbourhood of x(k):

η(x) ≈ θ0 + θ1(x1 − x(k)1 ) + · · ·+ θd(xd − x(k)d ), (4.4)
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where x = (x1, . . . , xd)
T and x(k) = (x

(k)
1 , . . . , x

(k)
d )T . If the model

(4.4) is adequate then

θ0 = η(x(k)), θi =
∂η(x)

∂xi

∣∣
x=x(k) and ∇η(x(k)) = (θ1, . . . , θd)

T .

Typically, a two-level factorial or fractional factorial design cen-

tred at x(k) is used (see [89]) to perform observations (4.1) and

to compute the least-squares estimator of the unknown parameters

(θ0, . . . , θd)
T of the model (4.4). Let θ̂(k) be the least-squares estima-

tor of the gradient ∇η(x(k)) = (θ1, . . . , θd)
T .

The significance of the linear regression model is tested by com-

puting, for example, the R2 or F−statistic. If the linear model is

insignificant, go to Phase II. Otherwise, go to Step I.2.

I.2 Perform steepest descent iteration:

x(k+1) = x(k) − γ(k)s(k), (4.5)

where the search direction is s(k) = θ̂(k) and γ(k) ≥ 0 is some step

length. Set k → k + 1 and return to I.1.

• Phase II: fitting a second-order local regression model in a neighbourhood of x∗

Since the linear model is insignificant, a second-order model is required. The

two-level factorial or fractional factorial design is extended to a design which

is suitable for estimating coefficients of the quadratic regression model. This

gives an estimator for x∗.

Before conducting Phase I of BW, a screening experiment is typically performed

to identify a subset of input variables that have a significant effect on the response

(see [89]). This chapter proposes an alternative search direction for steepest descent

iterations (4.5) and can be easily computed for all input variables. Including all

input variables will potentially enhance the accuracy of search directions utilized in

steepest descent iterations (4.5). In addition, computational resources are saved by

not performing the screening experiments.

A detailed overview of the Box-Wilson algorithm and RSM in general can be

found in [89] and [84, Chapter 11]. Surveys detailing the development and progress

of RSM are provided in [59, 87, 88]. Furthermore, frameworks to promote the au-

tomation of RSM are discussed in [90, 93]. According to [17], the following two key

problems are associated with RSM. Firstly, the RSM process requires human in-

volvement (i.e. selecting R and the appropriate local model), and secondly, RSM is

heuristic with no convergence guarantees. To combat the discussed issues, a stochas-

tic trust-region response surface method (STRONG) is proposed in [17], which com-

bines RSM and trust region methods. In addition, STRONG-S is proposed in [18],
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which utilizes screening designs to solve simulation optimization problems with a

large number of variables.

This chapter focuses on Phase I, where the goal is to perform a succession of

moves towards the neighbourhood of x∗. The key ingredients of Phase I are:

(a) iterative updating of the sequence of points x(0), x(1), . . .;

(b) use of the linear model (4.4) and the iterative update (4.5);

(c) use of the least-squares estimator for estimating coefficients in the model (4.4)

and hence constructing the search direction s(k);

(d) a particular choice of the step length γ(k).

Steps (a) and (b) are not challenged throughout this chapter. Different options are

available for choosing the step length γ(k) in (d), and are discussed in Subsection

4.2.3. In this chapter, the primary concern is Step (c), which is the choice of search

direction s(k) for steepest descent (4.5). In the RSM-related literature, the choice of

s(k) was never seriously questioned and the least-squares estimator θ̂(k) of the gradi-

ent ∇η(x(k)) was routinely suggested as s(k). Nevertheless, some minor adjustments

to the choice s(k) = θ̂(k) have been considered in the literature and are discussed in

Subsection 4.2.4.

4.2.3 Line search process in Phase I of BW

The succession of moves performed in Phase I of BW to approach the neighbour-

hood of x∗ are determined by steepest descent iterations (4.5), which require a search

direction s(k) and step length γ(k). The least-squares estimator θ̂(k) of ∇η(x(k)) is

suggested in the literature as the search direction s(k). A procedure known as line

search is conducted to determine a suitable step length γ(k), which involves perform-

ing experimental runs along the descent direction until some stopping criterion is

met.

Consider

y(γ) = y(x(k) − γs(k)), (4.6)

where γ > 0 is some initial guess of the step length and s(k) is the search direction.

Experimental runs along the search direction s(k) consist of modifying γ and eval-

uating (4.6). The value of γ which provides the most improvement in the response

(4.6) is set as γ(k) for the steepest descent iteration (4.5). This process is known as

line search. Consider the following procedure for modifying γ,

γ ← h(γ), (4.7)
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where h : R → R is chosen depending on the line search strategy. In this subsec-

tion, various line search strategies are discussed, along with stopping conditions to

determine when a suitable step length is found.

The following basic line search strategy is outlined in [84, 89], and involves

moving along increments of the search direction. An increment ∆x(k) of the search

direction is computed as follows,

∆x(k) =
θ̂(k)

max
i=1,...d

|θ̂(k)i |
. (4.8)

The line search process moves sequentially along the increments ∆x(k) until some

stopping criterion is met. Hence, the discussed line search strategy involves setting

s(k) = ∆x(k) and the initial guess as γ = 1, which is modified by setting h(γ) =

γ + 1 in (4.7) until some stopping criterion is met. It is assumed in this chapter

that ±1 in the design matrix represents a change of ±r in each coordinate of x(k).

Therefore, ∆x(k) may be converted back to the natural units of measurement by

setting s(k) = r∆x(k). However, this is not necessary if the initial guess γ and choice

of h are updated to account for the magnitude of entries of ∆x(k).

More effective strategies such as forward or backward tracking can be applied for

computing the step length γ(k). Forward and backward tracking involves repeatedly

doubling or halving the initial guess γ until some stopping criterion is met. The first

step for forward and backward tracking involves evaluating the response function

(4.6) with γ = 0 and an initial guess γ > 0, to obtain y(0) and y(γ), respectively.

Forward tracking is applied if y(γ) < y(0) and backward tracking is applied if

y(γ) ≥ y(0). The updating of γ in (4.7) for forward and backward tracking involves

setting h(γ) = 2 × γ and h(γ) = 0.5 × γ, respectively. Since there is an option to

increase or decrease γ iteratively, the search direction does not need to be of the

form (4.8), provided that the starting value of γ is chosen appropriately. That is,

selecting the initial value of γ too small will result in little movement along the search

direction since changes in the response function (4.6) will be mainly influenced by

noise. On the other hand, if the initial value of γ is too large, then many experiments

along the search direction may be conducted, and will result in slow convergence

since the true form of η in (4.1) is assumed to be unimodal.

Another effective line search strategy is outlined in [34] and involves conducting a

set of experiments along the search direction and fitting a second-order polynomial.

The second-order polynomial is minimized to determine the step length γ(k) for

steepest descent (4.5). The set of experiments conducted along the search direction

can be obtained, for example, by applying forward or backward tracking.

Deciding when to stop a line search strategy can be difficult when response val-
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ues contain noise. That is, line search may be stopped before observing the smallest

response value along the search direction. As a result, another iteration of Phase I

of BW is performed, and consequently, s(k) and γ(k) are recomputed. This may be

a waste of computational resources since s(k) may be similar to the previous search

direction s(k−1). Therefore, line search may be stopped when several consecutive

response values are larger than the minimum response value observed so far. This

rule is known as the n-in-a-row stopping condition [93]. Typically in practice, if

2 or 3 consecutive experiments along the search direction result in larger response

values, the line search is stopped [89]. Formal stopping rules have been proposed by

Myers and Khuri [86] and Del Castillo and Miró-Quesada [83] to combat the issues

of stopping the line search too early or late.

4.2.4 Adjustments proposed for steepest descent in Phase I

of BW

In the literature, the choice of s(k) for steepest descent iterations (4.5) is routinely

suggested as the least-squares estimator θ̂(k) of ∇η(x(k)). Nevertheless, some minor

adjustments to the choice of s(k) = θ̂(k) have been considered in the literature, which

are discussed in this subsection.

Adapted steepest ascent/descent (ASA/ASD) [64, 66]

Steepest descent (4.5) within Phase I of BW can suffer from two problems. Namely,

steepest descent is scale dependent and the step length γ(k) is selected manually

[64]. To address both issues, adapted steepest ascent (ASA) was proposed in [64],

and its counterpart, adapted steepest descent (ASD) was proposed in [66]. The only

difference between ASA and ASD is the sign of the adapted search direction (i.e.

negative for steepest descent and positive for steepest ascent). Since minimization

is the focus of this chapter, ASD will be discussed.

The following is a brief summary of the main ideas behind ASD. Recall from

(4.2) that a design matrix M+ consists of the original design matrix M with an

additional first column of ones. Furthermore, suppose θ̂
(k)
+ = (θ̂

(k)
0 , . . . , θ̂

(k)
d ) and

θ̂(k) = (θ̂
(k)
1 , . . . , θ̂

(k)
d ). Consider the covariance matrix of θ̂

(k)
+

cov(θ̂(k)+ ) = σ2(MT
+M+)

−1 (4.9)

= σ2

(
a bT

b C

)
(4.10)
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where a is a scalar, b is a vector of size d and C is a d× d matrix. Also consider the

covariance matrix of θ̂(k)

cov(θ̂(k)) = σ2C.

The error variance σ2 can be estimated by using the mean squared residual estimator

with the observed responses and the regression predictor ŷ = Mθ̂(k) (see [64, Eq.

5]). Suppose x is some arbitrary point. The predictor variance Var(ŷ|x) increases as
x moves further away from the region where the gradient is approximated [64, 66].

Hence, [64] suggests starting the search from the point which achieves minimal

predictor variance to ensure the approximated gradient is an accurate estimate of

the true gradient. Consider the following ASD procedure outlined in [66],

x(k+1) = −C−1b− γ(k)C−1θ̂(k), (4.11)

where −C−1b is the point which achieves minimal predictor variance, γ(k) is the step

length and −C−1θ̂(k) is the modified search direction that takes into account the co-

variance matrix of θ̂(k). As a consequence, the search direction is scale independent.

Discussion on the choice of step length γ(k) is also provided in [64].

Incorporation of gradient deflection methods to compute search direc-

tions [57]

For each iteration of Phase I of BW, the choice of s(k) for steepest descent iterations

(4.5) is frequently suggested as the least-squares estimator θ̂(k) of ∇η(x(k)). How-

ever, an opportunity is missed to exploit information gained from previous search

directions to improve s(k). In addition, the zigzag behaviour of steepest descent

iterations (4.5) can slow convergence. Therefore, a gradient deflection approach for

computing the search direction is proposed in [57] to combat the discussed issues.

That is, the following gradient deflection method [57, Eq. 3-4] is used to improve

the performance of Phase I of BW,

x(k+1) = x(k) − γ(k)s(k),

where

s(k) = θ̂(k) − ψ(k)s(k−1) (4.12)

with s(0) = θ̂(0), multiplier ψ(k) and step length γ(k). Possible choices for ψ(k) are

discussed in [57, Sect. 1.2], along with restarting criteria for (4.12) to improve the

performance of gradient deflection methods.
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Incorporation of the conjugate gradient method to compute search direc-

tions [31]

A procedure for augmenting the search direction by the conjugate gradient method

is proposed in [31]. This involves applying the conjugate gradient method to derive

consecutive search directions s(k) instead of using the coefficients of the least-squares

estimator θ̂(k).

Since minimization is the focus of this chapter, the following description of the

procedure outlined in [31] is amended for steepest descent. Suppose that a first-

order model without interaction is fitted, where coefficients are computed by the

least-squares estimator. The first search direction is s(0) = ∆x(0), where ∆x(0) is

computed using (4.8). The line search strategy involves modifying γ according to

(4.7) with h(γ) = γ+1 until an increase in the response value is observed. The step

length γ which corresponds to the smallest response value along the search direction

will be set as γ(0), and x(1) in (4.5) is obtained.

The k-th iteration involves solving the following with respect to the vector v [31,

Eq. 12],

(∆x(k−1))T Ĥv = 0, (4.13)

where Ĥ is the estimate of the Hessian. Since the fitted first-order model does not

contain interaction terms, it is proposed in [31] to use a central composite design

centred at x(k) to estimate the Hessian. The search direction is set to s(k) = v and

steepest descent (4.5) is applied, where γ(k) is computed using the same line search

strategy mentioned previously. The process is repeated until several consecutive

response values are greater than the minimum response value observed so far. The

benefits of using the proposed method are outlined in [31] and include, simple im-

plementation in practical experiments and consideration of possible curvature in the

function being investigated.

Direct gradient methods [70]

Direct gradient augmented response surface methodology (DiGARSM) is proposed

in [70] and aims to enhance RSM by using response values and gradient estimates to

fit regression models. White-box methods utilize available gradient estimates [66],

and hence, DiGARSM is a white-box method. However, throughout this chapter, it

is assumed that gradient estimates are unavailable since the focus is on black-box

stochastic functions.
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4.2.5 Summary

Throughout this section, a wide range of literature regarding RSM and, in particular,

Phase I of BW has been discussed. Specifically, the strategies for selecting the search

direction s(k) and step length γ(k) within Phase I are presented. The line search

strategies to obtain γ(k) involve conducting experiments along the search direction

by modifying an initial guess γ using (4.7) until some stopping criterion is met.

The choice of s(k) has not been questioned in the RSM-related literature, and the

least-squares estimator θ̂(k) of ∇η(x(k)) is routinely suggested as s(k). In some cases,

the search direction s(k) is set proportional to θ̂(k) by employing, for example (4.8),

to determine increments along the search direction.

Minor adjustments to θ̂(k) as the search direction have been considered in the

literature and are discussed in Subsection 4.2.4. However, the remainder of this

chapter will focus on an alternative search direction to the least-squares estimator

θ̂(k). It will be shown that the alternative search direction can significantly improve

Phase I of BW and RSM, in general, for high-dimensional problems.

4.3 Test functions

The purpose of this section is to outline two response functions that will be used

throughout this chapter to evaluate the performance of Phase I of BW with different

search directions s(k). Consider the following two response functions,

y(x) = (x− x∗)TATΣA(x− x∗) + ϵ, (4.14)

and

y(x) =
√

(x− x∗)TATΣA(x− x∗) + ϵ, (4.15)

where x ∈ Rd, x∗ = (0, 0, ..., 0)T , A is a random orthogonal matrix, Σ is a diagonal

positive definite matrix with smallest and largest eigenvalues λmin and λmax respec-

tively, and ϵ ∼ N(0, σ2). It can be observed that functions (4.14) and (4.15) have

the form,

y(x) = η(x) + ϵ. (4.16)

The performance of Phase I of BW will be measured with varying degrees of

noise. Since σ2 is the variance used to simulate the noise term ϵ, the following

modified signal to noise ratio (SNR) will be used to construct values for σ2,

SNR =
Var(r × η(x))

σ2
. (4.17)
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The quantity Var(r × η(x)) is computed instead of Var(η(x)) to account for the

region of exploration R. Without this adjustment, the values of σ2 will be too large.

Since η(x) is known for (4.14) and (4.15), it is possible to compute Var(r × η(x))
empirically. Therefore, σ2 can be computed by rearranging (4.17) for various values

of SNR. Small SNR will produce large values of σ2, which will increase the difficulty

in finding the minimizer x∗.

4.4 New search direction for Phase I of BW with

large dimensions

4.4.1 Overview

Phase I of BW consists of performing a succession of moves towards the neighbour-

hood of x∗. The succession of moves is determined by steepest descent iterations

(4.5) which require a search direction s(k) and step length γ(k). In this section, a

new search direction for steepest descent iterations (4.5) is proposed to allow effi-

cient and accurate application of Phase I of BW for large dimensions. Specifically,

the new search direction has a simple form and can be easily computed, even if the

design matrix M = (mj,i)
N,d
j,i=1 has less observations N than dimension d.

Typically, the least-squares estimator θ̂(k) of the gradient ∇η(x(k)) is used as

the search direction s(k) for steepest descent iterations (4.5). Recall from (4.2) that

a design matrix M+ consists of the original design matrix M with an additional

first column of ones. A design matrix M+ is used to compute the least-squares

estimator, where M is a two level fractional factorial design with a larger number of

observationsN than dimension d. If d is large, deriving the least-squares estimator at

each iteration of Phase I of BW can be computationally expensive for the following

two reasons. Firstly, the response function will need to be evaluated at a large

number of observations to derive the response vector Y = (y(zj))
N
j=1. Secondly,

the inverse (MT
+M+)

−1 will need to be determined, which can significantly reduce

efficiency since the size of (MT
+M+) is q × q, where q = d+ 1.

The new search direction is proposed in Subsection 4.4.2 and employs the optimal

search direction outlined in [141, Chpt. 8] and [38, 39]. Since a design matrix M of

any size can be used to construct the new search direction, a strategy for generating

M with any number of observations N and dimension d is discussed and investigated

in Subsection 4.4.3.
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4.4.2 Motivation of new search direction

The least-squares estimator θ̂(k) of the gradient ∇η(x(k)) is frequently selected as

the choice of search direction s(k) for steepest descent iterations (4.5) within Phase

I of BW. In general, the main ingredients required for computing s(k) are a design

matrix M and a response vector Y = (y(zj))
N
j=1, where the response function (4.1)

is evaluated at each zj defined in (4.3). Since random variables are used to compute

the search directions, the true function value η(x) may increase rather than decrease

along some search directions. As a result, [141, Chpt. 8] proposes that the proba-

bility of decrease in η should be selected as the optimality criterion for choosing the

search direction. If a function η decreases in some direction s, then,

∂η

∂(−s)
(x(k)) = [∇η(x(k))]T (−s) = θT (−s) < 0.

Hence, the probability of decrease of η in the direction −s is

Pr{θT s > 0}. (4.18)

The problem of estimating the optimal direction in regression by maximizing the

probability (4.18) that the scalar product between the vector of unknown parameters

and the chosen direction is positive is considered in [141, Chpt. 8] and [38, 39]. If

M = (mj,i)
N,d
j,i=1 is a design matrix and Y ∼ N(0, σ2Id), then the statistic

θ̂∗ =MTY, (4.19)

maximizes (4.18) over all vectors s ∈ Rd. The optimal direction vector (4.19) has a

simple form and can be easily computed with a design matrix M of any size. The

following theorem and proof from [39, Thm. 2.1] verifies that the statistic (4.19)

maximizes (4.18) over all vectors s ∈ Rd.

Theorem 3. Consider the linear regression model Y =Mθ+ϵ, where ϵ ∼ N(0, σ2Id)

and σ2 > 0. Consider the following family of linear statistics

θ̂C = CY (4.20)

where C is a d×N matrix. Also consider the scalar product in Rd,

⟨a, b⟩ = aTSb, (4.21)

where a, b ∈ Rd and S is some positive definite matrix of size d × d. It is desirable

to find the set of d×N matrices C∗ such that,

Pr{⟨θ̂C∗ , θ⟩ > 0} = max
C

Pr{⟨θ̂C , θ⟩ > 0}. (4.22)

For any θ, it will be shown that C∗ = S−1MT .
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Proof.

Consider

t(C, θ) = ⟨θ̂C , θ⟩ = θTSCY.

Then

E t(C, θ) = θTSCMθ and Var[t(C, θ)] = σ2θTSCCTSθ.

Suppose that θ ̸= 0 and CTSθ ̸= 0 (see [39, Thm. 2.1] for more details). Then

Var[t(C, θ)] > 0 and the following random variable can be defined,

v(C, θ) =
σ[t(C, θ)− E t(C, θ)]√

Var[t(C, θ)]
=
t(C, θ)− θTSCMθ√

θTSCCTSθ
,

which is normally distributed with zero mean and variance σ2. For any matrix C,

Pr{⟨θ̂C , θ⟩ > 0} = Pr{v(C, θ) > −φ(C, θ)},

where

φ(C, θ) =
θTSCMθ√
θTSCCTSθ.

Hence, maximizing the probability Pr{⟨θ̂C , θ⟩ > 0} is equivalent to maximizing

φ(C, θ) with respect to C. Therefore, it is required to find,

C∗ = argmax
C

φ(C, θ). (4.23)

Recall the Cauchy-Schwartz inequality which states that for two non-zero vectors a

and b
√
aTa
√
bT b ≥ aT b. If a = CTSθ and b =Mθ, then

√
θTSCCTSθ

√
θTMTMθ ≥ θTSCMθ.

As a consequence,

φ(S−1MT , θ) =
√
θTMTMθ ≥ θTSCMθ√

θTSCCTSθ
= φ(C, θ),

for all θ. Hence, C∗ = S−1MT is one of the matrices that satisfies (4.23) and

C∗ =MT when S = Id. □

Analytical and numerical examples in [39] confirm the superiority of (4.19) over

other linear estimates, such as the least-squares estimator and the Lasso. The result

in (4.19) is utilized to derive the following new search direction,

s(k) =MTY, (4.24)

where M = (mj,i)
N,d
j,i=1 is a design matrix and Y = (y(zj))

N
j=1 is the response vector.

Optimization methods for model training within machine learning are discussed

in Section 2.6.4, and include batch gradient descent (BGD) and stochastic gradient
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descent (SGD). For high-dimensional problems, the number of observations N and

dimension d will be very large for a design matrix M . Hence, deriving the gradient

within BGD will be computationally expensive and result in slow convergence. To

reduce the computational cost, SGD is often applied and involves approximating the

true gradient by computing the gradient for a subset of observations selected at ran-

dom. However, for large dimensions, [140] outlines that the approximated gradient

in SGD may be improved by employing search directions of the form (4.24), where

M is the design matrix at chosen observations, which are updated at each iteration.

Nevertheless, the main focus of this chapter is to investigate the performance of

Phase I of BW for large dimensions with search directions of the form (4.24).

4.4.3 Choice of design matrix M

The new search direction proposed in (4.24) presents two immediate benefits in

comparison to the least-squares estimator θ̂(k) as the choice of search direction.

Firstly, the new search direction (4.24) can be computed with design matrices

M = (mj,i)
N,d
j,i=1, where the number of observations N is less than the dimension

d. Secondly, the computational complexity of constructing the new search direction

(4.24) is more efficient than the least-squares estimator as only matrix multiplication

is performed as opposed to matrix inversion and multiplication.

The response vector Y = (y(zj))
N
j=1 is used to construct the new search direction

(4.24) and as a result, N response function evaluations are required to compute s(k).

Suppose there is a bound on the number of response function evaluations performed

during Phase I of BW. In that case, selecting the number of observations N for a

design matrix M is determined by obtaining a suitable balance between the number

of iterations of Phase I of BW to perform, and the quality of search directions s(k)

constructed at each iteration. Specifically, if N is small, then many more iterations

of Phase I of BW are permitted but the quality of search directions s(k) may vary. On

the other hand, if N is relatively large, then fewer iterations of Phase I of BW will be

performed but search directions s(k) may be more accurate. Hence, the construction

of design matrices M with different N will need to be investigated when s(k) is

computed using (4.24). The purpose of this subsection is to outline a strategy to

generate design matrices M of any size that can be used for the computation of the

new search direction (4.24).

Strategy for constructing a design matrix M

Consider the following strategy to produce design matrices M = (mj,i)
N,d
j,i=1 for new

search directions (4.24). Entries mj,i are randomly selected as +1 or -1, with the
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condition that each column of M contains the same number of ±1’s. That is,

N∑
j=1

mj,i = 0, (4.25)

for all i = 1, . . . , d. Therefore, the number of observations N of the design matrix

M can be chosen accordingly. The only restriction is that the choice of N must be

even due to condition (4.25).

The following is an example of a possible choice of M ,

M =



−1 +1 +1 −1 + 1 −1 +1 −1
−1 −1 −1 +1 + 1 +1 +1 −1
−1 +1 −1 +1 + 1 −1 −1 +1

+1 −1 +1 −1− 1 +1 −1 −1
+1 +1 −1 −1− 1 −1 +1 +1

+1 −1 +1 +1− 1 +1 −1 +1


, (4.26)

where N = 6 and d = 8.

Investigation of the strategy for constructing a design matrix M

The purpose of including condition (4.25) to construct design matricesM is to reduce

the variation of the magnitude of entries within the new search direction (4.24). To

illustrate this concept, Figure 4.1 shows contour plots of the response function (4.14)

with minimizer x∗ = (0, 0)T and an initial point x(0). Specifically, the application

of two different search directions, s(0) = (−0.8,−0.7)T and s(0) = (−80,−0.7)T , for
steepest descent (4.5) are portrayed in Figures 4.1(a) and 4.1(b) to obtain different

x(1). The signs of entries in both search directions s(0) are the same. However, the

variation of the magnitude of entries within each s(0) differs significantly. Figure

4.1 highlights that applying steepest descent (4.5) with s(0) = (−80,−0.7)T results

in movement along the first coordinate s
(0)
1 , but no movement along the second

coordinate s
(0)
2 . Furthermore, suppose the signs of some entries of s(0) are incorrect,

and the magnitude of the entries vary greatly. In that case, minimal movement will

be made along the search direction during an iteration of steepest descent (4.5).

Numerical investigations are performed to demonstrate that applying condi-

tion (4.25) for the construction of design matrices M reduces the variation of en-

tries within the new search direction (4.24). That is, 100 response functions yi

(i = 1, . . . , 100) of the form (4.14) are generated, with smallest and largest eigen-

values λmin and λmax respectively. All other eigenvalues are sampled uniformly

from (λmin, λmax). For investigations, λmin = 1 and λmax = 1, 4, 8. Recall that

response functions (4.14) contain an error term ϵ ∼ N(0, σ2). The value of σ2 is
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(a) s(0) = (−0.8,−0.7)T (b) s(0) = (−80,−0.7)T

Figure 4.1: Contour plots of response function (4.14) with minimizer x∗ = (0, 0)T ,

ATΣA = Id and σ = 0.25 are displayed, along with x(0) (red) and x(1) (blue), which is

computed using an iteration of steepest descent (4.5) with the corresponding search

direction s(0).

obtained by rearranging (4.17) for SNR = 0.5, 2, 5. For each response function yi

(i = 1, . . . , 100), a random point x(0) ∼ N(0, Id) will also be generated. A small

neighbourhood R = (x
(0)
1 ± r, . . . , x

(0)
d ± r)T centred at x(0) with r = 0.1 is explored.

That is, ±1 in the design matrix represents a change of ±0.1 in the co-ordinates of

the centre point x(0). To construct s(0) of the form (4.24), design matrices M will

be generated with and without condition (4.25).

Figure 4.2 shows boxplots of Var(s(0)), where design matrices M are constructed

with and without condition (4.25). If design matrices M are constructed without

condition (4.25), then each column of M may contain an unequal number of ±1’s.

It can be observed in Figure 4.2 that the variation of entries of s(0) is largest

for design matrices M that have been generated without condition (4.25). Also,

Var(s(0)) increases as a function of λmax. For design matrices M generated with

condition (4.25), Var(s(0)) decreases as a function of SNR. However, such a trend is

not apparent for design matrices M generated without condition (4.25).

In general, suppose the magnitude of entries vary greatly within s(k) and in

the best case scenario, the entries of s(k) with the largest magnitude contain the

correct sign. In that case, only movement along the entries of s(k) with the largest

magnitude will be permitted to obtain x(k+1) in (4.5). Consequently, many iterations

may be required before finding a subregion of the optimum. However, if some entries
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Figure 4.2: Boxplots of Var(s(0)), where s(0) is computed using (4.24), with 100

functions of the form (4.14) with λmax = 1 (left), λmax = 4 (centre) and λmax = 8

(right) where M has been constructed without (green) and with (red) condition

(4.25), for N = 16, d = 100, r = 0.1 and SNR = 0.5, 2, 5.

of the search direction s(k) with the largest magnitude contain the incorrect sign,

then minimal movement will be made along s(k). Hence, design matrices M will be

generated with condition (4.25) when computing s(k) of the form (4.24) throughout

this chapter.

4.4.4 Phase I of BW with new search direction s(k) = MTY

(PI-MY)

An alternative stopping criterion for Phase I of BW will need to be applied when

s(k) is of the form (4.24). Recall that γ(k) and s(k) are computed for each iteration

of steepest descent (4.5) in Phase I of BW. Let cγ(k) be the total number of response

function evaluations to compute step size γ(k), cs(k) be the total number of response

function evaluations to compute the search direction s(k) and c be a bound on the

total number of response function evaluations used to compute s(k) and γ(k). Suppose

K is the total number of iterations of Phase I of BW computed so far. Phase I of

BW with s(k) of the form (4.24) terminates if

c ≤
K∑
k=0

(cγ(k) + cs(k) +N). (4.27)

Consider the following algorithm for Phase I of BW with new search direction

s(k) of form (4.24), abbreviated as PI-MY hereafter.
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PI-MY algorithm

Initialization: Select an initial point x(0) ∈ Rd, a value for c and set k ← 0, cγ(k) ← 0

and cs(k) ← 0.

I.1 (a) If stopping condition (4.27) is not satisfied, go to Step (b). Otherwise,

return x(k).

(b) Generate a design matrix M (see Subsection 4.4.3) and obtain Y =

(y(zj))
N
j=1 by evaluating the response function (4.1) at zj defined in (4.3).

(c) Compute s(k) of the form (4.24) and go to Step I.2.

I.2 Apply an iteration of steepest descent (4.5) to obtain x(k+1). Set k ← k + 1

and update the values of cγ(k) and cs(k) . Repeat Step I.1 with x(k).

4.4.5 Summary

This section proposes a new search direction s(k) of the form (4.24), which can be

used for steepest descent iterations (4.5) within Phase I of BW for large dimensions.

The least-squares estimator θ̂(k) of the gradient ∇η(x(k)) is routinely suggested as

the search direction s(k) for steepest descent iterations (4.5). However, applying

the new search direction (4.24) provides two key advantages compared to the least-

squares estimator θ̂(k). Firstly, the design matrix M can be of any size to compute

the new search direction (4.24). As a result, there is an opportunity to reduce the

number of observations N of a design matrix to allow more iterations of Phase I of

BW. This is not the case for the computation of the least-squares estimator since

a two-level fractional factorial design is required, where the number of observations

N is fixed and greater than d. Flexibility on the choice of N will increase the

likelihood of improving the accuracy and efficiency of Phase I of BW. Secondly,

the computational complexity of constructing the new search directions (4.24) is

far less than that of deriving the least-squares estimator. A strategy for computing

design matrices M is proposed to exploit the discussed advantages, and analysis is

conducted to justify the inclusion of condition (4.25). Furthermore, the algorithm

for Phase I of BW with new search direction s(k) of form (4.24), denoted PI-MY, is

also presented.
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4.5 Modified least-squares search direction for Phase

I of BW with large dimensions

4.5.1 Overview

The purpose of this section is to outline two modifications to the least-squares

estimator θ̂(k) of ∇η(x(k)) as the choice of search direction for Phase I of BW with

large dimensions. Recall from (4.2) that a design matrix M+ consists of the original

design matrixM with an additional first column of ones. A design matrixM+ is used

to compute the least-squares estimator, where M is typically a two-level fractional

factorial design with a larger number of observations N than dimension d. As

discussed in Subsection 4.2.2, a screening experiment can identify a subset of input

variables that influence the response function value, thus reducing the dimension

d. However, the new search direction (4.24) can be easily constructed for all input

variables d and this can potentially improve the accuracy of search directions s(k)

utilized in steepest descent iterations (4.5). Therefore, screening experiments will

not be performed during investigations of the new search direction (4.24) within

Phase I of BW.

It is desirable to compare the performance of Phase I of BW with the new search

direction (4.24) and the least-squares estimator θ̂(k) as the choice of search direction.

The following modifications to the least-squares estimator are proposed to ensure a

fair investigation with the new search direction (4.24) when the dimension is large.

Firstly, a small subset of input variables will be considered for the computation

of the least-squares estimator instead of all input variables. Therefore, a two-level

fractional factorial design with fewer variables and observations is required, and the

non-zero entries of the search direction correspond to the input variables chosen.

Hence, the discussed modification allows the application of Phase I of BW for large

d and small N since only a small subset of coordinates of x(k) is updated at each

iteration. Consequently, comparisons with the new search direction (4.24) can be

performed with design matricesM , where N < d. Secondly, application of the least-

squares estimator can be expanded by employing design matrices M , proposed in

Subsection 4.4.3, to replace the two-level fractional factorial designs. However, the

inverse (MT
+M+)

−1 will not exit if N < q, where q = d + 1. Therefore, the Moore-

Penrose pseudoinverse can be used instead of the multiplicative inverse to construct

the search direction within Phase I of BW. The performance of the proposed modifi-

cation and the new search direction (4.24) can be compared with different N and d,

since design matrices M are generated using the same strategy in Subsection 4.4.3.
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4.5.2 Phase I of BW with adjusted least-squares search di-

rection (PI-ALS)

The following adjustment is made to the BW algorithm in Subsection 4.2.2, to ensure

the least-squares estimator can be used as the search direction when the dimension is

large. Suppose d is considerably large (e.g. d = 100), then at k-th iteration of Phase

I of BW it is natural to choose several random coordinates in which the updating

(4.5) of x(k) is attempted. As a result, a two-level fractional factorial design matrix

with fewer variables and observations is required. Hence, fewer response function

evaluations (4.1) are used to construct the response vector Y = (y(zj))
N
j=1 and the

computational cost associated with deriving the multiplicative inverse is reduced.

The least-squares estimator is used to estimate the unknown parameters of the linear

model (4.4) corresponding to the chosen random coordinates of x(k). If the linear

model is significant, then the non-zero entries of the search direction correspond

to the estimated coefficients of the linear model, and the updating (4.5) of x(k) is

performed. Otherwise, if the linear regression model is insignificant for the chosen

coordinates, several other random coordinates are chosen, and the updating (4.5)

of x(k) is attempted again. Phase I of BW terminates when all d coordinates have

been explored at the k-th iteration, and no update has been made to x(k) due to

insignificant linear regression models for various sets of random coordinates.

Phase I of BW with the adjusted least-squares method for computing the search

direction s(k) will be denoted as PI-ALS hereafter. PI-ALS can be applied for large

d since a small subset of coordinates of x(k) is selected at each iteration to com-

pute the least-squares estimate. Furthermore, since N is chosen according to the

number of selected random coordinates instead of the dimension d, the computa-

tional complexity of deriving the least-squares estimator is significantly reduced.

Consequently, numerical experiments with PI-ALS and PI-MY can be compared for

N < d. Consider the following algorithm for PI-ALS.

PI-ALS algorithm

Initialization: Select an initial point x(0) ∈ Rd and a value L such that L < d. Set

k ← 0

I.1 (a) SetH = {1, . . . , d} and select a subset of random variables {p1, . . . , pL} ⊆
H.

(b) Select a fractional factorial design M̃ = (m̃j,l)
N,L
j,l=1 and let

mj,i =

m̃j,l, if i = pl, where l = 1, . . . , L

0, otherwise,
(4.28)
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for j = 1, . . . , N and i = 1, . . . , d. The response values Y = (y(zj))
N
j=1 are

computed using (4.1) and least-squares is used to obtain θ̂+ = (θ̂0, ..., θ̂L)
T .

(c) The significance of the linear regression model is tested by computing,

for example, the R2-statistic or F-test. If the linear regression model is

significant, let

s
(k)
i =

θ̂l, if i = pl, where l = 1, . . . , L

0, otherwise,
(4.29)

and go to Step I.2. If the linear regression model is insignificant, set

H ← H \ {p1, . . . , pL}.

If |H| ≥ L, select another random subset of variables {p1, . . . , pL} ⊆ H

and go to Step (b). Otherwise, return x(k).

I.2 Apply steepest descent iteration (4.5) to obtain x(k+1) and set k ← k + 1.

Repeat Step I.1 with x(k).

4.5.3 Phase I of BW with Moore-Penrose psuedoinverse for

computation of the search direction (PI-MPI)

Recall from (4.2) that a design matrix M+ consists of the original design matrix

M with an additional first column of ones. Hence, the size of M+ is N × q, where
q = d + 1. Typically, M is a two-level fractional factorial design with number

of observations N greater than the dimension d. However, to expand the use of

least-squares, design matrices M will be constructed according to the strategy in

Subsection 4.4.3.

If N < q, then (MT
+M+) will be of rank N and the inverse (MT

+M+) will not

exist. The Moore-Penrose pseudoinverse provides a generalized inverse when the

matrix is singular. Therefore, it is proposed that the Moore-Penrose pseudoinverse

is used to compute the least-squares estimator. Let (.)− denote the Moore-Penrose

pseudoinverse and let (.)−1 denote the standard multiplicative inverse. Suppose

that rank(MT
+M+) = q when N ≥ q and rank(M+M

T
+ ) = N when N < q. Then the

following equivalence forms for the Moore-Penrose pseudoinverse hold,

(M+)
− =

(MT
+M+)

−1MT
+ , if N ≥ q

MT
+ (M+M

T
+ )

−1, otherwise.

Suppose that θ̂
(k)
+ = (θ̂

(k)
0 , θ̂

(k)
1 , ..., θ̂

(k)
d )T . The least-squares estimator using the
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Moore-Penrose pseudoinverse with N < q finds

min ∥θ̂(k)+ ∥2,

which is favourable since large coefficients of θ̂
(k)
+ magnify errors.

Throughout this chapter, the numpy.linalg.pinv function from the Numpy li-

brary [47] in Python will be used to compute the Moore-Penrose pseudoinverse.

The numpy.linalg.pinv function returns the generalized inverse of the matrix us-

ing singular value decomposition (SVD), where relatively large singular values are

selected for the computation of SVD. The following details explain the computation

of the generalized inverse of a matrix using SVD. Suppose rank(M+) = p, where

p = min (N, q), and let (σ1, ..., σp) be the singular values of M+. The SVD of M+ is

M+ = UΣV T ,

where Σ is a diagonal matrix of size p× p containing the singular values, and U of

size N×p and V of size q×p contains the left and right singular vectors, respectively.

Suppose

σmax = max
i=1,...,p

(σi)

and,

σ̃i =

σi, if σi > σmax × τ

0, otherwise,
(4.30)

where τ > 0 is a very small constant and i = 1, . . . , p. Then Σ− is constructed as

follows,

Σ−
i,i =

1/σ̃i, if σ̃i > 0

0, otherwise.
(4.31)

The generalized inverse of M+ is

(M+)
− = V Σ−UT . (4.32)

The least-squares estimator can be computed using the generalized inverse to obtain

θ̂(k)+ = (M+)
−Y, (4.33)

where Y = (y(zj))
N
j=1 is the response vector. The following search direction can be

applied within Phase I of BW,

s(k) = (θ̂
(k)
1 , ..., θ̂

(k)
d )T , (4.34)

using coefficients of (4.33).

Phase I of BW with search directions s(k) of the form (4.34) will be abbreviated

as PI-MPI hereafter. An alternative stopping criterion is required for PI-MPI to
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that used in the original Phase I of BW in Subsection 4.2.2, since design matrices

M+ with N < q may be used to derive s(k) in (4.34). Therefore, the same stopping

criterion (4.27) as PI-MY is used for PI-MPI.

Numerical experiments with PI-MPI and PI-MY can be compared for various

N and d since design matrices M are constructed according to the strategy in

Subsection 4.4.3. Consider the following algorithm for PI-MPI.

PI-MPI algorithm

Initialization: Select an initial point x(0) ∈ Rd, a value for c and set k ← 0, cγ(k) ← 0

and cs(k) ← 0.

I.1 (a) If stopping condition (4.27) is not satisfied, go to Step (b). Otherwise,

return x(k).

(b) Generate a design matrix M (see Subsection 4.4.3) and obtain Y =

(y(zj))
N
j=1 by evaluating the response function (4.1) at zj in (4.3). Con-

struct M+ of the form (4.2) by adding an additional first column of ones

to M .

(c) Obtain s(k) of the form (4.34) by computing (4.33) and go to Step I.2.

I.2 Apply steepest descent iteration (4.5) to obtain x(k+1). Set k ← k + 1 and

update the values of cγ(k) and cs(k) . Repeat Step I.1 with x(k).

Investigation of the use of the SVD to compute the generalized inverse

Recall that the generalized inverse is computed using (4.32), where the diagonal

matrix Σ− is constructed using (4.31) and entries Σ−
i,i (i = 1, . . . , p) are determined

by σ̃i in (4.30). The selection of τ may influence the assignment of σ̃i in (4.30).

That is, if τ is too small, then some diagonal entries of Σ− may be very large.

As a consequence, large variation amongst the non-zero diagonal entries of Σ− will

increase the variance of the entries of s(k) in (4.34). Suppose that the magnitude of

entries vary greatly within s(k) of the form (4.34) and in the best case scenario, the

entries of s(k) with the largest magnitude contain the correct sign. In that case, only

movement along the entries of s(k) with the largest magnitude will be permitted to

obtain x(k+1) in (4.5). On the other hand, if τ is too large, then the pseudoinverse

may be less accurate. The default is τ = 1e−15 when the numpy.linalg.pinv

function is employed to compute the Moore-Penrose pseudoinverse.

The influence of τ on the assignment of σ̃i (i = 1, . . . , p) in (4.30) will be inves-

tigated for 100 design matrices M+ of the form (4.2), where M is constructed with
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N = 50, 100, 200 and d = 100. Consider

σ̃min = min
i=1,...,p;
σ̃i ̸=0

(σ̃i), (4.35)

where σ̃i (i = 1, . . . , p) is constructed in (4.30).

Figure 4.3 displays σ̃min, where τ = 1e−15, 0.001, 0.01, 0.15 has been applied in

(4.30). Also, Table 4.1 shows the mean number of diagonal entries of Σ− that are

non-zero.

Figure 4.3: Boxplots of σ̃min (4.35), where τ = 1e−15 (top left), τ = 0.001 (top

right), τ = 0.01 (bottom left) and τ = 0.15 (bottom right) has been applied in

(4.30), with 100 design matrices M+ of the form (4.2), where M is generated for

N = 50, 100, 200 and d = 100.

Figure 4.3 shows that the value of τ has no effect on σ̃min when the number

of observations of M+ is N = 50, 200. Recall that Σ− is of size p × p, where

p = min (N, q). Table 4.1 shows that for N = 50, the number of non-zero diagonal

entries of Σ− corresponds to rank(M+) = min(N, q) = 50. For N = 200, the number
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N
τ

1e− 15 0.001 0.01 0.15

50 50 50 50 50

100 100 99.98 99.12 82.06

200 101 101 101 101

Table 4.1: Mean number of diagonal entries of Σ− that are non-zero in (4.31) for

different values of τ with 100 design matrices M+ of the from (4.2), where M is

generated with N = (50, 100, 200) and d = 100.

of non-zero diagonal entries of Σ− is equivalent to rank(M+) = min(N, q) = 101.

Hence, the number of non-zero diagonal entries of Σ− is completely determined by

rank(M+) when N = 50, 200 as opposed to different τ . For N = 100 and d = 100,

Figure 4.3 shows that the value of σ̃min can differ depending on the value of τ . If

τ is very small, then σ̃min will be minimal, and the corresponding diagonal entry of

Σ− will be very large. As a result, there will be large variation amongst the non-zero

diagonal entries of Σ−.

The impact of different τ on search directions (4.34) with design matrices M+

of the form (4.2), where M is generated for N = 100 and d = 100 will be inves-

tigated. For numerical investigations, 100 response functions yi (i = 1, . . . , 100)

of the form (4.14) are generated, with smallest and largest eigenvalues λmin and

λmax respectively. All other eigenvalues are sampled uniformly from (λmin, λmax).

For investigations, λmin = 1 and λmax = 1, 4, 8. Recall that response functions

(4.14) contain an error term ϵ ∼ N(0, σ2). The value of σ2 is obtained by rear-

ranging (4.17) for SNR = 0.5, 2, 5. For each response function yi (i = 1, . . . , 100),

a random point x(0) ∼ N(0, Id) will also be generated. A small neighbourhood

R = (x
(0)
1 ± r, . . . , x

(0)
d ± r)T centred at x(0) with r = 0.1 is explored. Different

values of τ have been applied in (4.30) to determine the diagonal entries of Σ− for

computation of the generalized inverse for the least-squares estimator (4.33), and

consequently, to obtain search directions s(0) of the form (4.34). Figure 4.4 shows

boxplots of Var(s(0)), where s(0) is of the form (4.34).

Figures 4.3 and 4.4 show that small values of τ increase the variation amongst

the non-zero diagonal entries of Σ−, which increases the variance of s(0) when design

matricesM+ are of the form (4.2), whereM is generated with N = 100 and d = 100.

Suppose the magnitude of entries vary greatly within s(k) and in the best case

scenario, the entries of s(k) with the largest magnitude contain the correct sign.

In that case, only movement along the entries of s(k) with the largest magnitude

will be permitted to obtain x(k+1) in (4.5). Consequently, many iterations may
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Figure 4.4: Boxplots of Var(s(0)) for different τ , where s(0) is of the form (4.34) and

response functions (4.14) are used to compute Y = (y(zj))
N
j=1 with λmax = 1 (left),

λmax = 4 (centre) and λmax = 8 (left) for various SNR with r = 0.1 and 100 design

matrices M+ of the form (4.2), where M is generated with N = 100 and d = 100.

be required before finding a subregion of the optimum. However, if some entries

of the search direction s(k) with the largest magnitude contain the incorrect sign,

then minimal movement will be made along s(k). Hence, τ = 0.15 will be used

for numpy.linalg.pinv when N = d for numerical experiments in Section 4.7.3.

Otherwise, the default τ = 1e − 15 for numpy.linalg.pinv will be applied when

N ̸= d.

4.5.4 Summary

In this section, two modifications to the least-squares estimator θ̂(k) of ∇η(x(k))
as the choice of search direction are proposed for Phase I of BW. The purpose

of modifications is to allow numerical comparisons with the new search direction

proposed in (4.24) for large dimensions.

The first modification involves selecting a small subset of input variables for

the computation of the least-squares estimator as opposed to selecting all input

variables. Hence, a two-level fractional factorial design with fewer variables and ob-

servations is required, and non-zero entries of the search direction correspond to the

input variables chosen. This method is denoted as the adjusted least-squares search

direction. In addition, the algorithm for Phase I of BW with the adjusted least-

squares search direction (PI-ALS) is presented in Subsection 4.5.2. Consequently,

numerical experiments with PI-MY and PI-ALS will be conducted for large d and

small N .

The second modification employs design matricesM proposed in Subsection 4.4.3
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to replace the two-level fractional factorial designs for construction of M+ in (4.2).

In addition, the Moore-Penrose pseudoinverse is used instead of the multiplicative

inverse to determine entries of the search direction. The algorithm for Phase I of

BW with the Moore-Penrose psuedoinverse for computation of the search direction

(PI-MPI) is presented in Subsection 4.5.3. Numerical experiments with PI-MY and

PI-MPI will be conducted for large d and various N as design matrices M are

generated according to the strategy in Subsection 4.4.3.

4.6 Selection of step length γ(k) for PI-MY, PI-

ALS and PI-MPI

4.6.1 Overview

Throughout this chapter, a great deal of attention has been given to the choice

of search direction s(k) for steepest descent iterations (4.5) within Phase I of BW

for large dimensions. Recall that PI-MY, PI-ALS and PI-MPI are variations of

Phase I of BW for large dimensions outlined in Sections 4.4 and 4.5, where different

methods are used for computing the search direction s(k). A step length γ(k) is also

required to compute steepest descent iterations (4.5). Therefore, the purpose of this

section is to present the method that will be applied to compute γ(k) for steepest

descent iterations (4.5) within PI-MY, PI-ALS and PI-MPI. The same method for

computing γ(k) is applied to ensure a fair comparison with numerical experiments

of PI-MY, PI-ALS and PI-MPI in Section 4.7.

4.6.2 Line search strategy to determine γ(k)

The line search strategy for computing γ(k) consists of the following three steps

1. Divide all entries of the search direction s(k) by the largest entry.

The magnitude of the entries of s(k) produced within PI-MY, PI-ALS and

PI-MPI may differ significantly. Hence, the following update can be made to

ensure the magnitude of entries of s(k) are similar for PI-MY, PI-ALS and

PI-MPI,

s(k) =
s(k)

max
i=1,...,d

|s(k)i |
. (4.36)

To initialize a line search strategy, an initial guess γ of the step length γ(k)

is required. Since (4.36) is applied, the initial guess for the step length can be

set as γ = 1 for PI-MY, PI-ALS and PI-MPI as all entries of s(k) ∈ [−1, 1]d.
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If (4.36) is not applied, then the initial guess γ must be set according to the

magnitude of entries of s(k). For example, if entries of s(k) are very large then

a smaller value of γ is required. Otherwise, if entries of s(k) are very small,

then a larger value of γ is necessary.

Recall that the response function evaluated with the initial guess γ is de-

noted as y(γ) in (4.6), where y is a response function of the form (4.1). For

all line search strategies, the first step usually involves evaluating the response

function with γ = 0 and an initial guess γ > 0, to obtain y(0) and y(γ), re-

spectively. If the magnitude of entries of s(k) are relatively small and the initial

guess γ is also small, then the difference between response function values y(0)

and y(γ) will be dictated by the error term in (4.1). As a consequence, the

chosen step length γ(k) may result in limited movement along the search direc-

tion s(k), when in actual fact, additional movement along s(k) could improve

the response function further. Updating s(k) according to (4.36) and choosing

γ = 1 ensures that differences between response function values y(0) and y(γ)

are influenced by the behaviour of the true function η and not just the error

term in (4.1).

2. Perform either forward or backward tracking

Forward and backward tracking is briefly discussed in Subsection 4.2.3, and

involves repeatedly doubling or halving some initial guess γ of the step length

until some stopping criterion is met. Specifically, forward tracking is applied

if y(γ) < y(0) and backward tracking is applied if y(γ) ≥ y(0). Forward or

backward tracking is continued until two consecutive observations lead to an

increase in the response function value. This stopping criterion is known as

the two-in-a-row rule and is described in [89].

3. Fit a second-order polynomial [34]

Suppose γmin is the step length which produces the smallest response function

value from applying forward or backward tracking, and consider,

γ1 = 0

γ2 = γmin (4.37)

γ3 = 2γmin.

A second-order polynomial can be fitted with the following three points (γ1, y(γ1)),

(γ2, y(γ2)) and (γ3, y(γ3)) (see [34]). Suppose γ
∗ is the minimizer of the second-

order polynomial. Then the step length γ(k) is assigned as follows,

γ(k) =

γ∗, if y(γ∗) < y(γmin)

γmin, otherwise.
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Figure 4.5: Contour plot of response function (4.14) (left) where ϵ ∼ N(0, 0.0625),

λmin = 1 and λmax = 1, with application of forward tracking to determine various

γ (black). Optimal γ∗ (blue) is computed by optimizing the fitted second-order

polynomial. A plot of the fitted second-order polynomial with points (0, y(0)),

(2, y(2)) and (4, y(4)) is presented (right). The minimizer of the second-order

polynomial is highlighted in blue and the noisy response function values y(γ) are

plotted against various γ (green).

An example illustrating the proposed line search strategy for computing γ(k) is

presented in Figure 4.5. Specifically, Figure 4.5 shows the application of forward

tracking with a noisy response function (4.14) with ϵ ∼ N(0, 0.0625), λmin = 1

and λmax = 1. Once forward tracking is terminated, a second-order polynomial is

fitted with points (γj, y(γj)) for j = 1, 2, 3, where γj is assigned using (4.37). Figure

4.5 shows the second-order polynomial is fitted with points (0, y(0)), (2, y(2)) and

(4, y(4)), and minimized to obtain γ∗. The purpose of fitting the second-order

polynomial with points derived from forward or backward tracking is to allow the

opportunity to reduce the response function value further. This is portrayed in

Figure 4.5, where γ(k) is assigned the minimizer γ∗ of the second-order polynomial.

4.7 Numerical experiments

4.7.1 Overview

Phase I of BW consists of iteratively applying steepest descent iterations (4.5) until

a subregion of the optimum is reached. The search direction s(k) and step length

γ(k) will need to be computed at each iteration k. Recall that PI-MY, PI-ALS and
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PI-MPI are variations of Phase I of BW for large dimensions outlined in Sections

4.4 and 4.5, where different methods are used for computing the search direction

s(k). The strategy for computing the step length γ(k) is outlined in Section 4.6 and

applied for PI-MY, PI-ALS and PI-MPI. The purpose of this section is to investigate

the performance of PI-MY, PI-ALS and PI-MPI.

To compare PI-MY, PI-ALS and PI-MPI, 100 response functions yi (i = 1, . . . , 100)

of the form (4.14) and (4.15) are generated, with smallest and largest eigenval-

ues λmin and λmax respectively. All other eigenvalues are sampled uniformly from

(λmin, λmax). For numerical experiments, λmin = 1 and λmax = 1, 4, 8. The effect on

the performance of PI-MY, PI-ALS and PI-MPI with different λmax is investigated.

Recall that response functions (4.14) and (4.15) contain an error term ϵ ∼ N(0, σ2).

The value of σ2 is obtained by rearranging (4.17) for different values of SNR. For

each response function yi (i = 1, . . . , 100), a random point x(0) ∼ N(0, Id) will also

be generated. A small neighbourhood R = (x
(k)
1 ± r, . . . , x

(k)
d ± r)T centred at x(k)

with r = 0.1 is explored at each iteration k = 0, . . . , K.

In numerical experiments, x
(K)
MY , x

(K)
ALS, and x

(K)
MPI are the final points found by

applying PI-MY, PI-ALS and PI-MPI respectively. The performance of PI-MY, PI-

ALS and PI-MPI is measured by observing the distances ∥x(K)
MY−x∗∥, ∥x

(K)
ALS−x∗∥ and

∥x(K)
MPI − x∗∥. Furthermore, function values η(x

(K)
MY ) and η(x

(K)
ALS) are also observed

when comparing PI-MY and PI-ALS.

4.7.2 Comparison of PI-ALS and PI-MY

Design matrices are utilized at each iteration of PI-ALS and PI-MY to construct zj in

(4.3) and to obtain the response vector Y = (y(zj))
N
j=1. For numerical experiments,

the number of observations of a design matrix is set as N = 16. Thus, a 210−6

fractional factorial design matrix (see [12, p.272] and [84, p.353]) will be used at each

iteration of PI-ALS. To compute the least-squares estimator within PI-ALS, M+ of

the form (4.2) is constructed, where M is a 210−6 fractional factorial design matrix.

For each iteration of PI-MY, a design matrix M will be constructed according to

the strategy outlined in Subsection 4.4.3.

PI-ALS will be applied for each response function yi (i = 1, . . . , 100) with random

starting point x(0), and the total number of function evaluations to compute γ(k) and

s(k) for all k = 0, . . . , K will be observed for each yi. Recall that PI-ALS involves

selecting several random coordinates of x(k) and computing the least-squares esti-

mator to determine the corresponding coefficients of a linear regression model. The

significance of the linear regression model is tested by comparing the P-value of the

F-test with a significance level of 0.1. If the linear regression model is insignificant

128



4.7. NUMERICAL EXPERIMENTS

then several other random coordinates are selected and the least-squares estimator

is recomputed. PI-ALS terminates if all d co-ordinates have been explored and x(k)

has not been updated due to insignificant linear regression models.

A value of c will need to be specified for the stopping criterion (4.27) of PI-MY.

To ensure a fair comparison between PI-MY and PI-ALS, the value of c will be

set as the average total number of function evaluations taken to compute γ(k) and

s(k) for all k = 0, . . . , K within PI-ALS, subtracted by the number of observations

N of a design matrix. This ensures that an additional iteration of PI-MY is not

performed if the number of function evaluations remaining is inadequate to compute

the search direction s(k) in (4.24). Hence, function evaluations computed by PI-ALS

and PI-MY will be similar, and consequently, the comparison of the performance of

PI-MY and PI-ALS is fair. PI-MY will be applied with the same response functions

yi (i = 1, . . . , 100) and random starting points x(0) as PI-ALS.

The performance of PI-MY and PI-ALS will be compared for different response

functions yi (i = 1, . . . , 100) of the form (4.14) and (4.15), with d = 10, 100, λmax =

1, 4, 8 and SNR= 0.5, 1, 2, 3, 5, 10.

Results for d = 10

In this example, the performance of PI-MY and PI-ALS is compared for d = 10,

N = 16 and response functions yi (i = 1, . . . , 100) of the form (4.14) and (4.15), each

with an initial random point x(0) ∼ N(0, Id). Since d = 10 and a 210−6 fractional

factorial design is used within PI-ALS, all coordinates of x(k) will be explored. In

this case, PI-ALS is equivalent to the original Phase I of BW in Subsection 4.2.2.

Specifically, search directions s(k) = (θ̂1, ..., θ̂d)
T consist of coefficients of the least-

squares estimator.

SNR

Function λmax 0.5 1 2 3 5 10

(4.14)

1 0.66 0.47 0.33 0.27 0.21 0.15

4 1.84 1.3 0.92 0.75 0.58 0.41

8 3.51 2.48 1.76 1.43 1.11 0.79

(4.15)

1 0.1 0.07 0.05 0.04 0.03 0.02

4 0.17 0.12 0.09 0.07 0.06 0.04

8 0.25 0.17 0.12 0.1 0.08 0.06

Table 4.2: Corresponding σ for various SNR and λmax, with d = 10 and yi (i =

1, . . . , 100) of the form (4.14) and (4.15).

Table 4.2 contains values of σ corresponding to various SNR and λmax, with yi
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Figure 4.6: Proportion of points which satisfy ∥x(K)
MY − x∗∥ > ∥x

(K)
ALS − x∗∥ (left) and

η(x
(K)
MY ) > η(x

(K)
ALS) (right) for functions of the form (4.14) for various λmax and SNR,

with λmin = 1, N = 16 and d = 10.

Figure 4.7: Proportion of points which satisfy ∥x(K)
MY − x∗∥ > ∥x

(K)
ALS − x∗∥ (left) and

η(x
(K)
MY ) > η(x

(K)
ALS) (right) for functions of the form (4.15) for various λmax and SNR,

with λmin = 1, N = 16 and d = 10.

(i = 1, . . . , 100) of the form (4.14) and (4.15) respectively. Table 4.2 shows that σ is

largest for functions of the form (4.14) since values of η(x(0)) are larger for functions

(4.14) compared to functions (4.15). Figures 4.6 and 4.7 shows the proportion of

points which satisfy η(x
(K)
MY ) > η(x

(K)
ALS) and ∥x

(K)
MY − x∗∥ > ∥x

(K)
ALS − x∗∥ for functions

of the form (4.14) and (4.15), with λmin = 1, d = 10, N = 16 for various λmax and

SNR.

Figures 4.6 and 4.7 show that for functions (4.14) and (4.15), the proportion of

points which satisfy η(x
(K)
MY ) > η(x

(K)
ALS) and ∥x

(K)
MY − x∗∥ > ∥x

(K)
ALS − x∗∥ is greatest

for large SNR and small λmax. In this case, the least-squares estimator as the choice

of search direction in PI-ALS is more effective than s(k) of the form (4.24) in PI-MY.
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On the other hand, a smaller proportion of points satisfy η(x
(K)
MY ) > η(x

(K)
ALS) and

∥x(K)
MY − x∗∥ > ∥x

(K)
ALS − x∗∥ when λmax is large and SNR is small. However, search

directions s(k) of the form (4.24) do not significantly enhance the performance of

PI-MY in comparison to PI-ALS.

Results for d = 100

In this example, results of PI-MY and PI-ALS are compared with d = 100, N = 16

and response functions yi (i = 1, . . . , 100) of the form (4.14) and (4.15), each with

an initial random point x(0) ∼ N(0, Id). A subset containing L = 10 random

coordinates of x(k) will be explored at the first stage of each iteration of PI-ALS

since d = 100 and a 210−6 fractional factorial design is used. If the linear regression

model is significant, the search direction s(k) is of the form (4.29). Otherwise, if the

linear regression model is insignificant, another subset containing L = 10 random

coordinates of x(k) is selected and the process is repeated. Since L = 10 and d = 100,

PI-ALS terminates if 10 subsets of random coordinates have been explored and no

update has been made to x(k) due to insignificant linear regression models.

SNR

Function λmax 0.5 1 2 3 5 10

(4.14)

1 2.24 1.58 1.12 0.91 0.71 0.50

4 6.22 4.40 3.11 2.54 1.97 1.39

8 11.84 8.37 5.92 4.83 3.74 2.65

(4.15)

1 0.11 0.08 0.05 0.04 0.03 0.02

4 0.19 0.14 0.10 0.08 0.06 0.04

8 0.27 0.19 0.14 0.11 0.09 0.06

Table 4.3: Corresponding σ for various SNR and λmax, with d = 100 and yi (i =

1, . . . , 100) of the form (4.14) and (4.15).

Table 4.3 contains values of σ corresponding to various SNR and λmax, with yi

(i = 1, . . . , 100) of the form (4.14) and (4.15) respectively. Similar to Table 4.2,

values of σ are smallest for functions of the form (4.15).

Figures 4.8 and 4.10 show boxplots of the proportions ∥x(K)
ALS − x∗∥/∥x(0) − x∗∥

and ∥x(K)
MY − x∗∥/∥x(0) − x∗∥ for functions (4.14) and (4.15). Figures 4.9 and 4.11

show boxplots of the proportions η(x
(K)
ALS)/η(x

(0)) and η(x
(K)
MY )/η(x

(0)) for functions

(4.14) and (4.15). Tables 4.4 and 4.6 show the average number of times η(x(k)) >

η(x(k+1)) and the average total number of iterations K for PI-ALS and PI-MY with

functions (4.14) and (4.15). Tables 4.5 and 4.7 portray the average total number of

function evaluations and time taken (in seconds) by PI-ALS and PI-MY for functions
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(4.14) and (4.15). The time taken is measured by monitoring the start and end time

using time.time() within Python and taking the difference. Figures 4.8 - 4.11 and

Tables 4.4 - 4.7 display results for various SNR and λmax, with λmin = 1, N = 16

and d = 100.

Figure 4.8: Boxplots of
∥x(K)

ALS−x∗∥
∥x(0)−x∗∥ (blue) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1 (left),

λmax = 4 (centre) and λmax = 8 (right) for various SNR, λmin = 1, N = 16, d = 100

and yi (i = 1, . . . , 100) of the form (4.14).

Figure 4.9: Boxplots of
η(x

(K)
ALS)

η(x(0))
(blue) and

η(x
(K)
MY )

η(x(0))
(purple), for λmax = 1 (left),

λmax = 4 (centre) and λmax = 8 (right) for various SNR, λmin = 1, N = 16, d = 100

and yi (i = 1, . . . , 100) of the form (4.14).

Figures 4.8 - 4.11 show that the median of proportions for x
(K)
ALS is larger than

those for x
(K)
MY for all λmax and SNR. This highlights that PI-MY outperforms PI-

ALS for d = 100, N = 16 and response functions yi (i = 1, . . . , 100) of the form

(4.14) and (4.15).

The value of c for the stopping criterion (4.27) of PI-MY is set as the average
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Metric Type λmax SNR

0.5 1 2 3 5 10

Average

number of

times

η(x(k)) >

η(x(k+1))

PI-ALS

1 1.84 3.28 5.91 8.23 12.66 18.96

4 1.68 3.36 4.77 7.44 10.61 18.22

8 1.66 2.94 4.80 6.17 9.86 15.03

PI-MY

1 12.84 17.26 21.53 24.36 28.59 32.15

4 11.79 17.41 19.02 22.98 25.72 32.46

8 11.79 15.47 19.15 20.65 25.14 29.74

Average

total

number of

iterations

K

PI-ALS

1 3.70 5.17 7.52 9.74 14.41 21.25

4 3.54 5.74 6.36 9.22 12.44 20.52

8 3.73 5.05 6.50 7.65 11.36 17.11

PI-MY

1 15.45 20.17 25.17 29.58 37.37 44.95

4 14.55 21.61 22.38 28.79 33.35 46.74

8 15.09 19.34 22.96 24.81 30.91 39.64

Table 4.4: Assess the quality of s(k) in PI-ALS and s(k) in PI-MY which improves

the response function at each iteration k, for various λmax and SNR, with λmin = 1,

d = 100, N = 16 and yi (i = 1, ..., 100) of the form (4.14).

Metric Type λmax SNR

0.5 1 2 3 5 10

Average

total

number of

function

evaluations

PI-ALS

1 371.45 479.09 603.41 725.21 955.88 1187.75

4 358.99 536.28 537.82 717.70 847.99 1251.96

8 378.14 478.95 558.14 605.84 768.87 1026.75

PI-MY

1 371.87 479.93 602.34 725.84 957.32 1189.03

4 356.46 534.45 536.70 717.70 849.20 1252.53

8 378.08 478.51 558.16 603.57 768.26 1028.09

Average

time taken

(seconds)

PI-ALS

1 0.055 0.095 0.122 0.146 0.195 0.240

4 0.071 0.107 0.107 0.145 0.170 0.267

8 0.075 0.095 0.111 0.122 0.156 0.214

PI-MY

1 0.065 0.074 0.098 0.113 0.153 0.176

4 0.061 0.083 0.082 0.103 0.099 0.112

8 0.062 0.073 0.093 0.093 0.116 0.135

Table 4.5: Average total number of function evaluations and time taken (seconds)

by PI-ALS and PI-MY, for various λmax and SNR, with λmin = 1, d = 100, N = 16

and yi (i = 1, ..., 100) of the form (4.14).

number of function evaluations used within PI-ALS for each response function yi

(i = 1, . . . , 100), subtracted by the number of observations N of a design matrix.

As a result, it can be observed in Tables 4.5 and 4.7 that the average total number

of function evaluations for PI-ALS and PI-MY is closely aligned. Furthermore, the

average number of function evaluations decreases for small SNR values, which is

due to the early termination of PI-ALS. As a consequence, the value of c will be

small for the stopping criterion (4.27) and PI-MY will terminate early. Hence, an

additional benefit of PI-MY is that the value of c can be increased, which will further
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Figure 4.10: Boxplots of
∥x(K)

ALS−x∗∥
∥x(0)−x∗∥ (blue) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1 (left),

λmax = 4 (centre) and λmax = 8 (right) for various SNR, λmin = 1, N = 16, d = 100

and yi (i = 1, . . . , 100) of the form (4.15).

Figure 4.11: Boxplots of
η(x

(K)
ALS)

η(x(0))
(blue) and

η(x
(K)
MY )

η(x(0))
(purple), for λmax = 1 (left),

λmax = 4 (centre) and λmax = 8 (right) for various SNR, λmin = 1, N = 16, d = 100

and yi (i = 1, . . . , 100) of the form (4.15).

enhance the performance of PI-MY. Tables 4.5 and 4.7 show that the average time

taken by PI-MY is similar to PI-ALS for small SNR. However, the time taken by

PI-ALS appears to be greater than PI-MY when SNR increases. This is due to the

additional computations of the inverse within PI-ALS since the number of iterations

of PI-ALS increases for large SNR, particularly for functions (4.15).

Tables 4.4 and 4.6 show that on average, the total number of iterations K is far

larger for PI-MY than PI-ALS. This is due to the structure of the PI-ALS algorithm,

which consists of selecting several random coordinates of x(k) and computing the

least-squares estimator to obtain the coefficients of the linear regression model. If the

linear regression model is insignificant, several other random coordinates are selected
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Metric Type λmax SNR

0.5 1 2 3 5 10

Average

number of

times

η(x(k)) >

η(x(k+1))

PI-ALS

1 1.87 3.06 8.19 17.68 54.32 75.73

4 1.76 3.18 6.74 12.49 32.65 75.30

8 1.66 3.01 6.68 10.37 23.22 66.49

PI-MY

1 15.17 20.09 31.09 45.65 61.62 70.26

4 14.16 21.04 28.29 37.63 56.03 71.45

8 14.02 19.02 28.11 34.25 49.31 70.96

Average

total

number of

iterations

K

PI-ALS

1 3.74 4.83 9.71 19.94 84.95 238.15

4 3.66 5.25 8.38 14.06 38.88 172.69

8 3.83 4.93 8.46 11.97 26.31 109.76

PI-MY

1 16.52 20.72 32.37 52.94 152.75 369.31

4 15.78 22.16 29.35 40.44 82.77 279.37

8 16.12 20.51 29.48 36.39 62.03 187.04

Table 4.6: Assess the quality of s(k) in PI-ALS and s(k) in PI-MY which improves

the response function at each iteration k, for various λmax and SNR, with λmin = 1,

d = 100, N = 16 and yi (i = 1, ..., 100) of the form (4.15).

Metric Type λmax SNR

0.5 1 2 3 5 10

Average

total

number of

function

evaluations

PI-ALS

1 376.66 454.92 727.22 1304.55 4756.79 12494.55

4 367.74 496.70 656.26 939.42 2276.14 9230.81

8 381.03 463.06 667.11 837.33 1592.17 5905.33

PI-MY

1 373.71 450.11 723.96 1303.98 4759.26 12496.18

4 364.55 492.46 652.52 938.25 2277.32 9231.19

8 379.98 461.52 665.34 834.82 1593.30 5906.27

Average

time taken

(seconds)

PI-ALS

1 0.054 0.078 0.111 0.257 1.045 2.659

4 0.070 0.092 0.143 0.211 0.515 1.994

8 0.082 0.100 0.150 0.189 0.367 1.316

PI-MY

1 0.060 0.065 0.100 0.178 0.475 1.089

4 0.068 0.080 0.107 0.154 0.301 1.136

8 0.068 0.077 0.107 0.137 0.256 0.876

Table 4.7: Average total number of function evaluations and time taken (seconds)

by PI-ALS and PI-MY, for various λmax and SNR, with λmin = 1, d = 100, N = 16

and yi (i = 1, ..., 100) of the form (4.15).

until either the linear regression model is significant, or until all d variables have

been explored and no update has been made to x(k). Each time a linear regression

model is constructed for a subset of random coordinates, N function evaluations are

used. As a consequence, it is possible that a large number of function evaluations

may be used at the k-th iteration of PI-ALS to obtain s(k) or to determine that

s(k) cannot be constructed, which results in the termination of PI-ALS. For PI-MY,

computation of s(k) of the form (4.24) uses N function evaluations at each iteration

k. As a result, the total number of iterations K will be greater for PI-MY.
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Tables 4.4 and 4.6 demonstrate that on average, η(x(k)) > η(x(k+1)) is greatest

when PI-MY is applied for various λmax and SNR with functions (4.14) and (4.15),

with the exception of SNR = 10 and small λmax for functions of the form (4.15).

However, it can be observed in Figures 4.10 and 4.11 that PI-MY finds a reasonable

approximation of the minimizer x∗ for SNR = 10 and small λmax. Since the total

number of iterations K can be large for PI-MY, there may be some instances where

η(x(k)) = η(x(k+1)). This can occur when a reasonable approximation x(k) of x∗ has

already been discovered, and as a consequence, it may be difficult to improve η(x(k))

and ∥x(k) − x∗∥ any further.

4.7.3 Comparison of PI-MPI and PI-MY

The performance of PI-MPI and PI-MY will be compared for each response function

yi (i = 1, . . . , 100) of the form (4.14) and (4.15) with a random starting point x(0),

for N = 16, 32, 50, 100, 200, λmax = 1, 4, 8, SNR = 0.5, 2 and d = 100. To enhance

the difficulty of numerical experiments, smaller values of SNR are used to increase

the variance σ2 of the error for response function values (4.14) and (4.15). Design

matrices M are utilized at each iteration of PI-MPI and PI-MY to construct zj in

(4.3) and to obtain the response vector Y = (y(zj))
N
j=1. For each iteration of PI-

MPI and PI-MY, design matrices M will be constructed according to the strategy

outlined in Subsection 4.4.3.

Recall that a value of c is required for the stopping criterion (4.27) of PI-MPI

and PI-MY. The value of c can greatly effect the efficiency and accuracy of PI-MPI

and PI-MY. If c is set to a small number, it may be difficult to find a subregion

of the minimizer. Conversely, if c is set to a large value, progress may be limited

after a particular number of iterations, and efficiency may be compromised. The

value assigned to c may depend on the computational cost of response function

evaluations. That is, if response function evaluations are computationally expensive,

then a relatively small value for c will be selected. However, if the response function

evaluations are inexpensive to compute, then c may be set to a larger value. To

account for both scenarios, c = 500, 2000 is considered for numerical comparisons,

and the effect of N on the performance of PI-MPI and PI-MY will be investigated

for each value of c.

The PI-MPI algorithm, presented in Subsection 4.5.3, uses the Moore-Penrose

pseudoinverse to compute the least-squares estimator. The application of the Moore-

Penrose pseudoinverse is investigated for design matrices M+ of the form (4.2),

where M is constructed according to the strategy outlined in Subsection 4.4.3 with

different N and d. Specifically, singular values of M+ which are greater than some
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tolerance are selected in (4.30) for computation of the Moore-Penrose pseudoinverse.

Figure 4.3 shows the singular values selected in (4.30) for computation of the Moore-

Penrose pseudoinverse are not effected by the value of τ when N ̸= d. Conversely,

Figures 4.3 and 4.4 show that for N = d, the value of τ influences the selection of

singular values in (4.30) used for computation of the Moore-Penrose pseudoinverse.

Henceforth, it is proposed to set τ = 0.15 for N = d and τ = 1e − 15 for N ̸= d

when the Moore-Penrose pseudoinverse is used to compute s(k) of the form (4.34)

within PI-MPI.

Figures 4.12 - 4.19 show boxplots of the proportions ∥x(K)
MPI − x∗∥/∥x(0) − x∗∥

and ∥x(K)
MY − x∗∥/∥x(0) − x∗∥ for various c, N , SNR and λmax, with d = 100, λmin = 1

and yi (i = 1, . . . , 100) of the form (4.14) and (4.15). Tables 4.8 - 4.15 show the

average total number of function evaluations and time taken (seconds) by PI-MPI

and PI-MY to obtain x
(K)
MPI and x

(K)
MY in Figures 4.12 - 4.19. The time taken is

measured by monitoring the start and end time using time.time() within Python

and taking the difference.

Results for different c with functions (4.14)

Figure 4.12: Boxplots of
∥x(K)

MPI−x∗∥
∥x(0)−x∗∥ (green) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1

(left), λmax = 4 (centre) and λmax = 8 (right) for various N , λmin = 1, d = 100,

SNR = 0.5 and yi (i = 1, . . . , 100) of the form (4.14), where c = 500.

Figures 4.12 - 4.15 show that PI-MY performs better than PI-MPI with the

combinations, N = 50 with c = 500 and N = 200 with c = 2000, for all λmax

and SNR. Recall that N function evaluations are used to compute s(k) at each

iteration of steepest descent (4.5) within PI-MY and PI-MPI. Therefore, only a small

number of steepest descent iterations (4.5) will be permitted when N is large and c

is small. However, the search directions s(k) are likely to be more accurate when N
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Type SNR λmax

N

16 32 50 100 200

PI-MPI

0.5

1 498.99 489.79 484.30 417.12 408.99

4 499.16 490.63 480.80 417.53 408.79

8 498.59 490.85 481.05 417.76 408.78

2

1 496.57 486.64 487.61 417.55 409.09

4 497.58 486.47 487.22 417.58 409.02

8 497.52 488.30 485.56 417.79 409.01

PI-MY

0.5

1 499.22 490.71 485.30 417.05 409.00

4 498.88 490.09 483.82 417.73 408.89

8 499.47 488.81 482.56 417.99 408.82

2

1 498.37 485.81 490.87 417.12 409.12

4 499.18 487.46 490.13 417.08 408.99

8 497.91 487.62 490.32 417.21 408.96

Table 4.8: Average number of function evaluations for PI-MPI and PI-MY, with

various N , λmax and SNR for c = 500, d = 100, λmin = 1 and functions of the form

(4.14).

Type SNR λmax

N

16 32 50 100 200

PI-MPI

0.5

1 0.052 0.065 0.077 0.064 0.064

4 0.102 0.089 0.086 0.069 0.054

8 0.085 0.078 0.079 0.070 0.067

2

1 0.078 0.076 0.078 0.083 0.069

4 0.099 0.080 0.072 0.068 0.058

8 0.084 0.079 0.079 0.068 0.064

PI-MY

0.5

1 0.090 0.072 0.067 0.050 0.047

4 0.071 0.061 0.061 0.040 0.044

8 0.077 0.068 0.068 0.053 0.040

2

1 0.081 0.073 0.065 0.050 0.046

4 0.078 0.065 0.060 0.049 0.044

8 0.067 0.064 0.066 0.047 0.027

Table 4.9: Average time taken (seconds) by PI-MPI and PI-MY, with various N ,

λmax and SNR for c = 500, d = 100, λmin = 1 and functions of the form (4.14).

is large. Setting N = d/2 when c = 500 improves the performance of PI-MY since a

suitable balance between the number of steepest descent iterations (4.5) performed

and the quality of search directions s(k) is achieved. However, setting N > d when

c = 500 results in a similar or better performance of PI-MPI in comparison to setting

138



4.7. NUMERICAL EXPERIMENTS

Figure 4.13: Boxplots of
∥x(K)

MPI−x∗∥
∥x(0)−x∗∥ (green) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1

(left), λmax = 4 (centre) and λmax = 8 (right) for various N , λmin = 1, d = 100,

SNR = 2 and yi (i = 1, . . . , 100) of the form (4.14), where c = 500.

Figure 4.14: Boxplots of
∥x(K)

MPI−x∗∥
∥x(0)−x∗∥ (green) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1

(left), λmax = 4 (centre) and λmax = 8 (right) for various N , λmin = 1, d = 100,

SNR = 0.5 and yi (i = 1, . . . , 100) of the form (4.14), where c = 2000.

N = d/2. Generating design matrices M with N > d improves the performance

of PI-MY and PI-MPI when c = 2000. This is because a large number of steepest

descent iterations (4.5) are permitted when c = 2000, even for large N , which allows

the opportunity to find the subregion of the optimum.

Setting c to a small value provides a snapshot of the progress made during the

early stages of PI-MY in finding the subregion of the optimum. Figures 4.12 and

4.13 show that setting N = d/2 allows more progress in finding the subregion of the

optimum during the early stages of PI-MY. Therefore, it may be more effective to

generate design matrices M with N = d/2 at the beginning of PI-MY, and increase

N as the number of iterations grow. Adopting the discussed strategy appears to be
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Type SNR λmax

N

16 32 50 100 200

PI-MPI

0.5

1 2000.93 1991.84 1982.98 1966.49 1862.13

4 2000.17 1990.71 1982.29 1961.56 1863.85

8 1998.75 1990.02 1984.10 1958.07 1866.52

2

1 2002.29 1994.10 1983.16 1963.59 1876.29

4 2000.55 1991.78 1983.14 1965.43 1871.92

8 2000.91 1991.85 1981.86 1966.37 1871.99

PI-MY

0.5

1 2000.31 1993.55 1982.49 1961.80 1864.02

4 2001.72 1994.49 1978.73 1969.12 1866.68

8 2001.55 1993.98 1977.24 1968.96 1867.22

2

1 2004.59 1993.76 1985.02 1966.92 1870.07

4 2001.87 1991.42 1977.53 1966.25 1866.28

8 2000.91 1992.83 1978.21 1966.59 1867.12

Table 4.10: Average number of function evaluations for PI-MPI and PI-MY, with

various N , λmax and SNR for c = 2000, d = 100, λmin = 1 and functions of the form

(4.14).

Type SNR λmax

N

16 32 50 100 200

PI-MPI

0.5

1 0.260 0.296 0.315 0.307 0.275

4 0.322 0.315 0.328 0.357 0.260

8 0.332 0.308 0.356 0.383 0.321

2

1 0.329 0.309 0.307 0.315 0.271

4 0.314 0.432 0.429 0.446 0.289

8 0.319 0.301 0.326 0.338 0.287

PI-MY

0.5

1 0.305 0.274 0.260 0.253 0.232

4 0.305 0.272 0.249 0.225 0.212

8 0.287 0.266 0.253 0.231 0.218

2

1 0.302 0.272 0.255 0.232 0.227

4 0.256 0.255 0.236 0.220 0.201

8 0.306 0.290 0.239 0.224 0.201

Table 4.11: Average time taken (seconds) by PI-MPI and PI-MY, with various N ,

λmax and SNR for c = 2000, d = 100, λmin = 1 and functions of the form (4.14).

the most effective use of response function evaluations to improve the performance

of PI-MY.

Tables 4.8 and 4.10 show the close alignment of function evaluations used by

PI-MPI and PI-MY for various N , SNR and λmax. In addition, Tables 4.9 and 4.11
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Figure 4.15: Boxplots of
∥x(K)

MPI−x∗∥
∥x(0)−x∗∥ (green) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1

(left), λmax = 4 (centre) and λmax = 8 (right) for various N , λmin = 1, d = 100,

SNR = 2 and yi (i = 1, . . . , 100) of the form (4.14), where c = 2000.

show that the average time taken is similar for PI-MY and PI-MPI for various N ,

SNR and λmax.

Results for different c with functions (4.15)

Figure 4.16: Boxplots of
∥x(K)

MPI−x∗∥
∥x(0)−x∗∥ (green) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1

(left), λmax = 4 (centre) and λmax = 8 (right) for various N , λmin = 1, d = 100,

SNR = 0.5 and yi (i = 1, . . . , 100) of the form (4.15), where c = 500.

Figures 4.16 and 4.18 show that PI-MY performs better than PI-MPI with the

combinations, N = 50 with c = 500 and N = 200 with c = 2000, for all λmax and

SNR = 0.5. However, a different trend is apparent for SNR = 2. That is, Figure

4.17 illustrates that PI-MPI performs better than PI-MY for all N and λmax with

c = 500. On the other hand, Figure 4.19 shows the performance of PI-MPI and PI-
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Type SNR λmax

N

16 32 50 100 200

PI-MPI

0.5

1 497.12 478.14 489.37 416.51 409.24

4 498.36 483.36 488.93 416.60 408.99

8 497.10 484.14 487.31 416.69 408.90

2

1 493.39 477.38 490.92 417.40 409.13

4 495.13 477.92 490.56 417.15 409.07

8 496.04 479.28 491.02 417.11 409.03

PI-MY

0.5

1 497.25 479.23 489.34 416.67 409.15

4 496.27 481.80 489.03 416.63 408.96

8 496.91 484.86 488.61 416.67 408.89

2

1 493.46 476.29 489.85 417.10 409.20

4 493.99 477.03 489.97 416.98 409.02

8 494.23 478.43 490.51 416.96 408.97

Table 4.12: Average number of function evaluations for PI-MPI and PI-MY, with

various N , λmax and SNR for c = 500, d = 100, λmin = 1 and functions of the form

(4.15).

Type SNR λmax

N

16 32 50 100 200

PI-MPI

0.5

1 0.061 0.074 0.085 0.055 0.064

4 0.104 0.084 0.101 0.106 0.054

8 0.097 0.099 0.091 0.088 0.074

2

1 0.087 0.082 0.083 0.084 0.070

4 0.115 0.106 0.093 0.081 0.067

8 0.103 0.085 0.079 0.086 0.070

PI-MY

0.5

1 0.100 0.081 0.078 0.066 0.059

4 0.052 0.079 0.068 0.057 0.055

8 0.088 0.079 0.078 0.056 0.054

2

1 0.092 0.077 0.074 0.054 0.049

4 0.051 0.078 0.069 0.056 0.051

8 0.091 0.071 0.073 0.053 0.047

Table 4.13: Average time taken (seconds) by PI-MPI and PI-MY, with various N ,

λmax and SNR for c = 500, d = 100, λmin = 1 and functions of the form (4.15).

MY is very similar for all N when SNR = 2 and c = 2000. Therefore, the additional

steepest descent iterations (4.5) permitted when c = 2000 are extremely effective

during the latter stages of PI-MY, and ensures that the performance of PI-MY is

closely aligned with PI-MPI when SNR = 2.
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Figure 4.17: Boxplots of
∥x(K)

MPI−x∗∥
∥x(0)−x∗∥ (green) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1

(left), λmax = 4 (centre) and λmax = 8 (right) for various N , λmin = 1, d = 100,

SNR = 2 and yi (i = 1, . . . , 100) of the form (4.15), where c = 500.

Figure 4.18: Boxplots of
∥x(K)

MPI−x∗∥
∥x(0)−x∗∥ (green) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1

(left), λmax = 4 (centre) and λmax = 8 (right) for various N , λmin = 1, d = 100,

SNR = 0.5 and yi (i = 1, . . . , 100) of the form (4.15), where c = 2000.

Figures 4.16 - 4.19 illustrate that the most effective use of response function

evaluations is to construct design matricesM with number of observations N = d/2

during the early stages of PI-MY, and increase N as the number of iterations grow.

This trend is also portrayed in Figures 4.12 - 4.15.

The key trends in Tables 4.12 - 4.15 are similar to Tables 4.8 - 4.11. That is,

the total number of function evaluations and time taken by PI-MPI and PI-MY is

similar for various N , SNR and λmax.
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Type SNR λmax

N

16 32 50 100 200

PI-MPI

0.5

1 2000.46 1992.48 1982.33 1940.54 1848.16

4 2001.29 1993.54 1984.39 1939.84 1845.38

8 2002.07 1995.04 1982.59 1940.00 1846.26

2

1 2002.12 1994.16 1983.70 1971.93 1872.70

4 2001.31 1992.28 1985.26 1948.29 1860.91

8 2000.20 1993.15 1983.51 1941.33 1856.02

PI-MY

0.5

1 2000.57 1993.44 1983.53 1936.79 1849.63

4 1999.86 1991.76 1981.97 1939.75 1848.36

8 1999.19 1993.16 1982.09 1941.54 1848.20

2

1 1998.94 1991.90 1986.20 1951.35 1855.72

4 1999.81 1992.91 1983.66 1940.65 1851.91

8 2000.60 1991.31 1980.76 1936.29 1850.79

Table 4.14: Average number of function evaluations for PI-MPI and PI-MY, with

various N , λmax and SNR for c = 2000, d = 100, λmin = 1 and functions of the form

(4.15).

Type SNR λmax

N

16 32 50 100 200

PI-MPI

0.5

1 0.284 0.323 0.334 0.339 0.307

4 0.369 0.309 0.261 0.341 0.284

8 0.356 0.338 0.336 0.219 0.307

2

1 0.366 0.347 0.354 0.340 0.293

4 0.342 0.321 0.277 0.390 0.281

8 0.357 0.322 0.326 0.199 0.283

PI-MY

0.5

1 0.351 0.315 0.299 0.238 0.216

4 0.435 0.304 0.274 0.238 0.223

8 0.270 0.309 0.277 0.151 0.227

2

1 0.358 0.316 0.299 0.362 0.210

4 0.281 0.280 0.268 0.235 0.231

8 0.187 0.278 0.295 0.144 0.222

Table 4.15: Average time taken (seconds) by PI-MPI and PI-MY, with various N ,

λmax and SNR for c = 2000, d = 100, λmin = 1 and functions of the form (4.15).

4.7.4 Conclusions

Phase I of BW consists of iteratively applying steepest descent iterations (4.5) until

a subregion of the optimum is reached. The search direction s(k) and step length γ(k)

will need to be computed for each iteration of steepest descent (4.5). The strategy
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Figure 4.19: Boxplots of
∥x(K)

MPI−x∗∥
∥x(0)−x∗∥ (green) and

∥x(K)
MY −x∗∥

∥x(0)−x∗∥ (purple), for λmax = 1

(left), λmax = 4 (centre) and λmax = 8 (right) for various N , λmin = 1, d = 100,

SNR = 2 and yi (i = 1, . . . , 100) of the form (4.15), where c = 2000.

for computing the step length γ(k) in Phase I of BW is not challenged in this chapter.

The purpose of numerical experiments is to measure the performance of Phase I of

BW with different search directions s(k), namely, PI-MY, PI-ALS, and PI-MPI.

The performance of PI-MY and PI-ALS is compared with various SNR and

λmax, for functions (4.14) and (4.15). For numerical experiments with PI-MY and

PI-ALS , the number of observations of a design matrix is set as N = 16 and the

dimensions tested are d = 10, 100. Hence, a 210−6 fractional factorial design matrix

(see [12, p.272] and [84, p.353]) is used at each iteration of PI-ALS. To compute the

least-squares estimator within PI-ALS, M+ of the form (4.2) is constructed, where

M is a 210−6 fractional factorial design matrix. In addition, a design matrix M is

constructed according to the strategy outlined in Subsection 4.4.3 with N = 16 and

d = 10, 100 for each iteration of PI-MY. For d = 10, the performance of PI-ALS is

either comparable or better than PI-MY for functions (4.14) and (4.15). However,

the main focus throughout this chapter is to investigate the performance PI-MY

for large dimensions. Figures 4.12 - 4.19 and Tables 4.8 - 4.14 clearly show that

PI-MY outperforms PI-ALS for all SNR and λmax when d = 100. Hence, the choice

of search direction s(k) in (4.24) for PI-MY is far more effective than s(k) in (4.29)

for PI-ALS when the dimension is large.

The performance of PI-MY and PI-MPI is also compared for functions (4.14)

and (4.15), with various SNR and λmax. To enhance the difficulty of numerical

experiments, smaller values of SNR are used to increase the variance σ2 of the error

for response function values (4.14) and (4.15). Design matrices M for PI-MY and

PI-MPI are constructed according to the strategy outlined in Subsection 4.4.3 for

d = 100 and different values of N . For PI-MPI, an additional first column of ones
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is added to design matrices M to obtain M+ (4.2). Recall that a value c is required

for the stopping criterion (4.27) of PI-MY and PI-MPI. For numerical experiments,

c = 500, 2000 is considered and the effect of N on the performance of PI-MY and

PI-MPI is investigated for each value of c.

Two key trends are observed from the performance of PI-MY and PI-MPI for

different c and N . Firstly, if c is set to a relatively small value then selecting

N = d/2 improves the performance of PI-MY. Secondly, if c is set to a large value

then selecting N ≥ d enhances the performance of PI-MY and PI-MPI. Both trends

are observed for functions (4.14) and (4.15) with various SNR and λmax. The value

of N which improves the performance of PI-MPI for relatively small c depends on

the type of function (4.14) and (4.15). In addition, PI-MY with suitably chosen

N outperforms PI-MPI for functions (4.14) with different values of SNR, λmax and

c. Furthermore, PI-MY outperforms PI-MPI for functions (4.15) when N is chosen

appropriately for SNR = 0.5 with various λmax and c. A different trend is apparent

for functions (4.15) with SNR = 2. Nevertheless, PI-MPI and PI-MY perform

similarly provided c is relatively large when SNR = 2.

In conclusion, search directions of the form (4.24) within PI-MY can significantly

enhance the performance of Phase I of BW for large dimensions, particularly when

errors of the response are large.

4.8 Summary

RSM is a collection of methods for approximating a minimizer of a regression func-

tion. The most often used and cited RSM strategy is the so-called Box-Wilson (BW)

algorithm. The BW algorithm consists of two phases, and the focus of this chapter

is on Phase I of BW. Phase I of BW consists of iteratively applying steepest descent

iterations (4.5) until a subregion of the optimum is reached. The search direction s(k)

and step length γ(k) will need to be computed for each iteration of steepest descent

(4.5). In the RSM-related literature, the least-square estimator of the gradient of

the response function at a current point is routinely suggested as s(k). However, this

chapter presents a new search direction s(k) of the form (4.24). Two modifications to

the least-squares estimator as the choice of search direction are proposed for Phase

I of BW, to allow numerical comparisons with the new search direction (4.24) for

large dimensions. Numerical comparisons show that the new search direction (4.24)

can significantly improve Phase I of BW and RSM, in general, for high-dimensional

problems, especially when errors of the response are large.
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Chapter 5

Software Development

This chapter is summarized as follows.

• Section 5.1 demonstrates the importance of producing high-quality software.

In addition, an overview of the measures taken to ensure the development

of high-quality software for Chapters 3 and 4 are presented, where further

discussion of each measure is outlined in the following sections.

• Section 5.2 verifies that software employs a version control system and is ac-

cessible.

• In Section 5.3, measures taken to ensure reproducibility of results are pre-

sented.

• Section 5.4 outlines the purpose of testing software.

• In Section 5.5, the test coverage for software is presented.

• Section 5.6 describes how continuous integration has been employed for soft-

ware.

• In Section 5.7, the purpose of documentation is discussed, along with a variety

of rules to consider during the creation and development of documentation.

Full documentation is available for all software developed.

5.1 Overview

There have been significant advancements in technology and storage capabilities

in recent times, which has enabled considerable progression in a wide variety of

research fields. As a result, it has become increasingly important to use software as

a tool to carry out cumbersome operations accurately and promptly, to investigate

developments in a particular research area. Throughout this chapter, code refers
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to a collection of executable instructions, a program refers to a piece of code used

to carry out a particular task, and software refers to a collection of programs used

together to obtain outputs. The terms software, programs and code will be used

throughout when discussing best practices for software development.

It has become customary for researchers to develop research specific software that

involves high-level expertise and knowledge since available software may be irrele-

vant, impractical to apply or non-existent. However, many researchers who develop

software may have minimal programming experience and may not be aware of soft-

ware development best practices. Furthermore, if research outputs are required to

meet a deadline, time may not be spent ensuring accurate or well-documented soft-

ware. However, producing high-quality software provides many benefits, which are

outlined as follows. Software that can be successfully executed and tested provides

confidence that outputs generated are accurate. Furthermore, other researchers may

be inclined to use the software, which may present opportunities for collaboration,

resulting in possible improvements in the capabilities and efficiency of the software.

The inclusion of comments and documentation allows simple modifications to be

made by the developer and other researchers. As a result, more time can be spent

on the inspection and analysis of results to facilitate advancements in a specific

research area.

A great deal of literature is devoted to providing advice and recommendations to

improve software [7, 55, 69, 100, 111, 136]. Specifically, [7] highlights the following

key requirements which should be adopted for software to contribute towards science.

• Re-runnable

Developers must be able to repeatedly run code, which may not be possible

if upgrades are made to the system, programming language, libraries and

software.

• Repeatable

The developer should be able to regenerate the same results each time the

code is executed.

• Reproducible

Other researchers should be able to run the code and reproduce the same

results.

• Reusable

If programs are readable, structured and documented, other researchers are

able to inspect, run and modify programs.

• Replicable

The description of software within literature should be complemented by the
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code, documentation and implementation details to replicate results. This

provides other researchers with enough information to re-write the software

and obtain the same results.

Measures Description

Version control

and accessibility

[7, 55, 100, 111,

136]

A repository is a location where software can be developed,

maintained and made publicly available through a hosting

website. A version control system allows changes to be

tracked and displayed on a hosting website.

Reproduce results

[7, 111]

The ability to repeatedly run code and obtain the same

outputs provides confidence in the software’s functionality.

Testing

[7, 100, 136]

It is vital that testing is undertaken to confirm the accu-

racy of code.

Coverage [100]

Although testing is an essential part of developing soft-

ware, it must be ensured that tests check all lines of code

used to generate outputs. The number of lines of code ex-

ecuted by tests is checked using a coverage tool.

Continuous

integration [100]

A continuous integration engine verifies that software can

be built successfully from a list of requirements. This is

essential for other researchers to be able to install and use

the software. Furthermore, continuous integration can be

integrated with other services to display a variety of key

benchmarks that evaluate aspects of the software, includ-

ing the percentage of test coverage and status of documen-

tation.

Documentation

[7, 69, 100, 136]

Clear and descriptive documentation explaining how the

software works will encourage other people to inspect, ap-

ply and even modify the software. This can be in the form

of comments within the code or embedded documentation

explaining full details on installing and running the soft-

ware.

Table 5.1: Measures taken during the development of software.

Table 5.1 contains a hybrid of recommendations from [7, 55, 69, 100, 111, 136]

that have been implemented during the development of software to meet the re-

runnable, repeatable, reproducible, reusable and replicable requirements in [7]. Fur-

ther details on measures taken to meet each consideration in Table 5.1 are presented

in Sections 5.2 - 5.7.
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All software has been developed using Python, which is a clear and powerful

programming language [130]. The following Python libraries are widely used within

the software.

• NumPy [47] facilitates efficient scientific computations with multidimensional

arrays.

• SciPy [134] is a scientific computing library containing a variety of algorithms,

data structures and mathematical formulas.

• Matplotlib [53] enables the creation of high-quality static or animated plots.

• SALib [50] contains implementations of sensitivity analysis methods.

• statsmodels [114] is used to conduct statistical tests and to estimate a variety

of statistical models.

• pandas [82] is utilized to perform data analysis.

PEP8 [133] guidelines should be adopted during the development of Python

code to improve the readability, structure and consistency of code. Areas where

PEP8 guidelines are applicable include the layout of code, the use of comments and

naming conventions of variables, functions, modules and classes [133]. In some cases,

a particular guideline may not be adopted if the code’s readability is reduced or the

code’s functionality is affected. Flake8 [142] is a Python library that checks code

for errors and compliance with various PEP8 guidelines. Throughout the software

development stage, Flake8 has been invoked to identify errors and ensure compliance

with various PEP8 guidelines where possible.

Software has been developed for multistart with early termination of descents

(METOD) in Chapter 3 and the choice of direction in high-dimensional response

surface methodology (RSM) within Chapter 4. All software is contained in publicly

accessible repositories hosted on GitHub [41], and the locations of each repository

are presented in Table 5.2. The motivation for developing software for Chapters

3 and 4 is twofold. Firstly, ensuring high-quality software will instil confidence

that numerical comparisons in Chapters 3 and 4 are accurate and valid. Secondly,

examples applying the software are included within each repository to allow other

researchers to implement and use the software for a specified problem. Furthermore,

the software can be modified to provide a foundation for further research.

5.2 Version control and accessibility

During the course of research, it is vital that different conjectures are explored

and tested. For example, modified versions of a program may be applied, and
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Repository name URL

METOD algorithm

[112] (Chapter 3)

https://github.com/Megscammell/METOD-

Algorithm

Estimate of direction

in RSM [113]

(Chapter 4)

https://github.com/Megscammell/Estimate-of-

direction-in-RSM

Table 5.2: Name and location of the repositories containing the software used for

Chapters 3 and 4. Repositories contain source code, tests, examples and numerical

experiments.

outputs may be stored to investigate the influence of the modifications on results.

However, different versions of programs may be saved under other names within

a directory, which may result in programs being deleted by mistake. Also, the

differences between various versions of a program may be forgotten. Fortunately,

a version control system can be used to combat these problems. A version control

system tracks changes of files from a repository and ensures that previous versions

of files are accessible. Also, a message explaining the reason for a change within a

file can be specified to identify the key differences between each program version.

Using a version control system is an important requirement for software development

within [7, 55, 100, 111, 136].

The version control system for all software is Git [40] and the online hosting site

is GitHub [41]. GitHub is a platform that enables developers to explore a broad

range of repositories, share software publicly and collaborate with other researchers,

all of which provide the opportunity to enhance software quality. In order to use Git

and GitHub, a directory is initialized as a Git repository. Files within the directory

can be altered, and once the developer is satisfied with the alternations, files are

added, committed and pushed to the remote repository on GitHub. A valuable

aspect of GitHub is that a screenshot of each file is available after each commit,

and the deletions and additions made are highlighted in red and green. Therefore,

changes made to files are transparent and can be easily observed by other researchers

inspecting the repository. Further details explaining how to use Git and GitHub are

provided in [9].

In addition to version control, GitHub also provides the option for repositories

to be made publicly accessible. Various advantages of publicly accessible software

are outlined in [55] and include, the ability to reproduce results since all software

versions are made available and promotion of software. Both advantages support

the reproducibility and reusable requirements in [7]. All code, data, plots and doc-
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umentation for software are available in GitHub repositories within Table 5.2. In

addition, the description of parameters and respective values used to execute the

software are provided within comments of the code or documentation. Therefore,

other researchers will have enough information to re-write the software and obtain

the same results, which supports the replicable requirement in [7].

A licence is required to instruct other researchers on how to use the software.

The importance of software licences is discussed in [85] and include ensuring owners

have control over how software is used, mitigate the risk of any legal claims and

encouraging other researchers to use the software. An MIT licence is employed,

which allows the use, modification and distribution of code whilst ensuring the owner

receives recognition [85]. Providing an open-source licence is recommended in [55] to

promote best practices in research software. Since an open-source licence encourages

other researchers to use and modify the software, opportunities for collaboration and

further development of the software may arise.

Both repositories in Table 5.2 contain a Digital Object Identifier (DOI), pro-

duced using Zenodo [30]. The purpose of a DOI is to allow other researchers to cite

the software easily. By [100], the benefits of citable software are that developers can

receive recognition for their code, and results can be reproduced since previous ver-

sions of the software are available. In addition, [55] states that if the developer and

other researchers have utilized the software to publish research, then acknowledge-

ment from citations will increase visibility, and other researchers may be inclined

to use the software. Releases within GitHub capture a particular instance of the

repository. Each time a new release is made, a new DOI link is produced, and copies

of each released version are available in Zenodo. Hence, any results produced using

different software versions can be easily reproduced. Therefore, providing a DOI

link supports the reproducible and reusable requirements in [7].

5.3 Reproducible results

A variety of measures are carried out to ensure that results can be reproduced. Some

measures include environments to run code, initializing the pseudo-random number

generator, and storing results used to generate summary plots. All three measures

will be discussed, focusing on how each measure has been considered for software

development.

The environment used to run any code should be stored and contain dependencies

of the system, software and libraries. An environment is required to meet the re-

runnable and reproducible requirements in [7]. Furthermore, ensuring dependencies
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of the software are documented is outlined as a rule for reproducible research in

[111]. Code may not run if an environment is not stored since the system, software,

or libraries may be updated. In addition, results may differ from those previously

obtained. Therefore, environments are contained within the GitHub repositories in

Table 5.2 and can be easily accessed, which allows other researchers the opportunity

to re-run the code and obtain the same results.

A pseudo-random number generator can be used to produce pseudo-random

numbers. A simulation may be used to investigate the performance of the soft-

ware with a variety of different input parameters and starting points, which may

be generated using pseudo-random numbers. Seeds for the pseudo-random number

generator are used to generate the same pseudo-random numbers. Therefore, sim-

ulations should be repeated with different pseudo-random numbers to ensure that

the initialization of a seed does not influence the results. This can be done by either

initializing a seed for several simulations or changing the seed for each simulation.

The pseudo-random number generator seed must be recorded to acquire the same

results. Otherwise, results will differ each time the software is executed. Hence, the

importance of initializing and recording seeds of the pseudo-random number gen-

erator is discussed in [7, 111] to ensure repeatability and reproducibility of results.

All numerical experiments in Chapters 3 and 4 involve generating random starting

points and function parameters to compare existing and proposed methods. There-

fore, a seed for the pseudo-random number generator is specified for all programs

used to generate numerical experiments to reproduce results.

Plots are used to describe the general trends of results. Storing data and pro-

grams to generate plots is considered an essential aspect of reproducibility in [7, 111].

The availability of data and programs to create plots provides confidence that the

main trends of the data are captured accurately. The advantages of storing data

and programs to generate plots are discussed in [111]. They include the ability to

improve plots by making simple modifications to programs rather than re-running

all software, and the opportunity for closer inspection of results by allowing all data

to be accessible. All results of numerical experiments and analysis have been stored

within each repository in Table 5.2, along with programs used to generate various

plots to summarize the main trends of results.

5.4 Testing

During the development of software, it is common that some errors occur. How-

ever, understanding how errors can be addressed is essential for developing software.

Therefore, it is vital that testing is undertaken to identify elements of the code where
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errors or unexpected outputs may occur. Testing code is considered a best practice

for developing software [100, 136] and ensuring reproducibility of research [7].

The following layers of defence, outlined in [136], are effective actions to reduce

the risk of mistakes within programs. The first layer of defence against mistakes is

defensive programming. To ensure simple errors are caught early, assertions can be

used. Assertions check whether a particular statement holds within a program. If

the assertion is not true, then an error will be produced. For example, an assertion

within code may check that the shape of an array is of the expected dimension. By

[136], assertions simplify debugging and explain the functionality of a program by

providing information on the expected behaviour. Assertions are used within all

developed software to identify any mistakes early on.

The second layer of defence outlined in [136] is automated testing. A wide range

of testing needs to be conducted to ensure the accuracy of software and outputs.

Python contains libraries that can be used for automated testing, and the testing

framework used for all source code is pytest [67]. Advantages of pytest over other

testing frameworks can be found in [95] and include the simplicity of creating and

reading tests. Testing can be split into two parts: example based and property

based testing. Example based testing asserts that outputs match a given solution.

For instance, if an example based test was applied for a function that calculates the

sum of two numbers, we could assert that 4 + 5 = 9. Alternatively, property based

testing ensures that outputs have a particular form. For instance, if a property based

test was applied for the previous example discussed, a function that calculates the

sum of two numbers, the test will assert that a number is returned. The hypothesis

library [79] can be used for property based testing and works by generating a wide

range of input parameters used by the code to ensure outputs are of a particular

form. In addition, the hypothesis library can also be useful in generating a set of

input parameters that may cause errors in the software. This is beneficial since the

software can be amended accordingly to rectify errors.

All tests pass for the source code in each repository within Table 5.2, which

can be observed in Figures 5.1 and 5.2. The warnings which appear in Figure 5.1

are inbuilt warning messages within the METOD algorithm and are not a concern.

The warning presented in Figure 5.2 is generated from a program used within the

statsmodels library. The warning message is not a concern provided that the envi-

ronment containing all dependencies of the system, software and libraries is used.
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$ pytest

collected 268 items

tests/test_all_comparisons_both.py .. [ 0%]

tests/test_apply_sd_until_stopping_criteria.py ...... [ 2%]

tests/test_apply_sd_until_warm_up.py ... [ 4%]

tests/test_calc_minimizer_qing.py .. [ 4%]

tests/test_calc_minimizer_shekel.py .. [ 5%]

tests/test_calc_minimizer_styb.py .. [ 6%]

tests/test_check_alg_cond.py ... [ 7%]

tests/test_check_alg_cond_all_possibilities.py .... [ 8%]

tests/test_check_classification_sd_metod.py . [ 9%]

tests/test_check_des_points.py .... [ 10%]

tests/test_check_grad_starting_point.py .... [ 12%]

tests/test_check_if_new_minimizer.py .. [ 13%]

tests/test_check_matchings.py ... [ 14%]

tests/test_check_non_matchings.py ... [ 15%]

tests/test_check_outputs.py .. [ 16%]

tests/test_check_quantities.py . [ 16%]

tests/test_check_unique_minimizers.py ... [ 17%]

tests/test_compute_trajectories.py .. [ 18%]

tests/test_create_sobol_sequence_points.py .. [ 19%]

tests/test_distances.py ....... [ 21%]

tests/test_evaluate_quantities_with_points.py .. [ 22%]

tests/test_forward_backward_tracking.py .............. [ 27%]

tests/test_function_parameters_several_quad.py ...... [ 29%]

tests/test_function_parameters_shekel.py ...... [ 32%]

tests/test_function_parameters_sog.py ..... [ 33%]

tests/test_griewank.py ... [ 35%]

tests/test_hartmann6.py ...... [ 37%]

tests/test_individual_comparisons.py ...... [ 39%]

tests/test_main_analysis_other.py ... [ 40%]

tests/test_main_analysis_quad.py .... [ 42%]

tests/test_main_analysis_shekel.py ... [ 43%]

tests/test_main_analysis_sog.py ... [ 44%]

tests/test_metod.py ............................. [ 55%]

tests/test_metod_class.py .......................... [ 64%]

tests/test_metod_without_class.py .......................... [ 74%]

tests/test_minimize_function.py . [ 75%]

tests/test_multistart.py .. [ 75%]

tests/test_partner_point_each_sd.py ... [ 76%]

tests/test_qing_function.py .. [ 77%]

tests/test_qing_gradient.py .. [ 78%]

tests/test_quad_function.py ...... [ 80%]

tests/test_quantities.py . [ 80%]

tests/test_regions_greater_than_2.py .. [ 81%]

tests/test_rotation.py .. [ 82%]

tests/test_sd_iteration.py ............ [ 86%]

tests/test_several_quad_func.py .. [ 87%]

tests/test_several_quad_grad.py .. [ 88%]

tests/test_shekel_func.py . [ 88%]

tests/test_shekel_grad.py . [ 89%]

tests/test_single_quad_func.py .. [ 89%]

tests/test_single_quad_grad.py .. [ 90%]

tests/test_sog_function.py ...... [ 92%]

tests/test_sog_gradient.py ........ [ 95%]

tests/test_styblinski_tang_function.py .. [ 96%]

tests/test_styblinski_tang_gradient.py .. [ 97%]

tests/test_trid.py ... [ 98%]

tests/test_version.py . [ 98%]

tests/test_zakharov.py ... [100%]

========================================== warnings summary ==========================================

tests/test_check_grad_starting_point.py:: test_1

tests/test_metod.py:: test_22

tests/test_metod.py:: test_23

tests/test_metod.py:: test_28

/Users/megscammell/OneDrive - Cardiff University/Megs Work/Python/METOD Algorithm Project/GitHub/METOD/METOD -

Algorithm/src/metod_alg/metod_algorithm_functions/check_grad_starting_point.py:74: RuntimeWarning: Norm

of gradient at starting point is too small. A new starting point will be used , RuntimeWarning)

-- Docs: https :// docs.pytest.org/en/stable/warnings.html

============================ 268 passed , 4 warnings in 3352.25s (0:55:52) ============================

Figure 5.1: Applying pytest for the METOD algorithm source code.
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$ pytest

collected 98 items

tests/test_alternative_search_direction.py ......... [ 9%]

tests/test_calc_first_phase_RSM.py ............... [ 24%]

tests/test_calc_its_until_sc_LS.py ... [ 27%]

tests/test_calc_its_until_sc_MP.py ... [ 30%]

tests/test_calc_its_until_sc_XY.py ... [ 33%]

tests/test_create_design_matrix.py ....... [ 40%]

tests/test_forward_backward_tracking.py ....................... [ 64%]

tests/test_num_exp_SNR.py .......................... [ 90%]

tests/test_quad_func_params.py .. [ 92%]

tests/test_quad_function.py .. [ 94%]

tests/test_sqr_quad_function.py .. [ 96%]

tests/test_sqrt_quad_function.py .. [ 98%]

tests/test_version.py . [100%]

=============================== warnings summary =====================================

../../../../../../../../ opt/anaconda3/envs/est_dir_env/lib/python3 .8/site -packages/patsy/constraint.py:13

/Users/megscammell/opt/anaconda3/envs/est_dir_env/lib/python3 .8/site -packages/patsy/constraint.py:13:

DeprecationWarning: Using or importing the ABCs from 'collections ' instead of from 'collections.abc' is

deprecated since Python 3.3, and in 3.9 it will stop working

from collections import Mapping

-- Docs: https :// docs.pytest.org/en/stable/warnings.html

======================== 98 passed , 1 warning in 53.58s ==============================

Figure 5.2: Applying pytest for the Estimate of Direction in RSM source code.

5.5 Coverage

Testing is an essential aspect of software development when implemented correctly.

In some cases, tests may not check all code within a program, and as a result, errors

and unexpected outputs may still occur when programs are executed. Therefore,

the developer must be able to assess the quality of testing. This can be achieved by

observing test coverage.

A test coverage tool works by monitoring which lines of code within a program

have been executed by a test. The percentage of test coverage will reduce according

to the number of lines of code that have not been executed. Test coverage is proposed

as best practice in [100] since it can give general information on whether code outputs

depict expected behaviour. Also, information from the test coverage can highlight

where improvements are needed to ensure the accuracy and reliability of code. It is

desirable to have a high percentage of coverage since this indicates that a test has

executed each line within a program. The pytest-cov tool [103] is used to check the

coverage percentage of source code. The coverage is 100% for source code in each

repository within Table 5.2, and details of the coverage can be observed in Figures

5.3 and 5.4.
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$ pytest --cov -report term --cov=src

collected 268 items

---------- coverage: platform darwin , python 3.6.8-final -0 -----------

Name Stmts Miss Cover

-------------------------------------------------------------------------------------------------

src/metod_alg/__init__.py 3 0 100%

src/metod_alg/check_metod_class/__init__.py 12 0 100%

src/metod_alg/check_metod_class/check_alg_cond_all_possibilities.py 15 0 100%

src/metod_alg/check_metod_class/check_classification_sd_metod.py 7 0 100%

src/metod_alg/check_metod_class/check_des_points.py 17 0 100%

src/metod_alg/check_metod_class/check_if_new_minimizer.py 8 0 100%

src/metod_alg/check_metod_class/metod_with_classification.py 135 0 100%

src/metod_alg/check_metod_class/metod_without_classification.py 110 0 100%

src/metod_alg/check_metod_class/quad_obj_func.py 19 0 100%

src/metod_alg/check_metod_class/regions_greater_than_2.py 8 0 100%

src/metod_alg/check_metod_class/sog_obj_func.py 13 0 100%

src/metod_alg/metod.py 100 0 100%

src/metod_alg/metod_algorithm_functions/__init__.py 16 0 100%

src/metod_alg/metod_algorithm_functions/apply_sd_until_stopping_criteria.py 32 0 100%

src/metod_alg/metod_algorithm_functions/apply_sd_until_warm_up.py 18 0 100%

src/metod_alg/metod_algorithm_functions/check_alg_cond.py 16 0 100%

src/metod_alg/metod_algorithm_functions/check_grad_starting_point.py 14 0 100%

src/metod_alg/metod_algorithm_functions/check_unique_minimizers.py 12 0 100%

src/metod_alg/metod_algorithm_functions/create_sobol_sequence_points.py 9 0 100%

src/metod_alg/metod_algorithm_functions/distances.py 10 0 100%

src/metod_alg/metod_algorithm_functions/forward_backward_tracking.py 70 0 100%

src/metod_alg/metod_algorithm_functions/minimize_function.py 3 0 100%

src/metod_alg/metod_algorithm_functions/partner_point_each_sd.py 3 0 100%

src/metod_alg/metod_algorithm_functions/sd_iteration.py 38 0 100%

src/metod_alg/metod_analysis/__init__.py 16 0 100%

src/metod_alg/metod_analysis/all_comparisons_matches_both.py 33 0 100%

src/metod_alg/metod_analysis/check_matchings.py 7 0 100%

src/metod_alg/metod_analysis/check_non_matchings.py 7 0 100%

src/metod_alg/metod_analysis/check_quantities.py 5 0 100%

src/metod_alg/metod_analysis/compute_trajectories.py 25 0 100%

src/metod_alg/metod_analysis/evaluate_quantities_with_points.py 17 0 100%

src/metod_alg/metod_analysis/evaluate_quantities_with_points_quad.py 15 0 100%

src/metod_alg/metod_analysis/individual_comparisons.py 27 0 100%

src/metod_alg/metod_analysis/main_analysis_other.py 46 0 100%

src/metod_alg/metod_analysis/main_analysis_quad.py 55 0 100%

src/metod_alg/metod_analysis/main_analysis_shekel.py 44 0 100%

src/metod_alg/metod_analysis/main_analysis_sog.py 44 0 100%

src/metod_alg/metod_analysis/quantities.py 11 0 100%

src/metod_alg/multistart.py 20 0 100%

src/metod_alg/objective_functions/__init__.py 33 0 100%

src/metod_alg/objective_functions/calc_minimizer_hartmann6.py 9 0 100%

src/metod_alg/objective_functions/calc_minimizer_qing.py 13 0 100%

src/metod_alg/objective_functions/calc_minimizer_sev_quad.py 9 0 100%

src/metod_alg/objective_functions/calc_minimizer_shekel.py 8 0 100%

src/metod_alg/objective_functions/calc_minimizer_sog.py 8 0 100%

src/metod_alg/objective_functions/calc_minimizer_styb.py 17 0 100%

src/metod_alg/objective_functions/check_outputs.py 16 0 100%

src/metod_alg/objective_functions/function_parameters_several_quad.py 23 0 100%

src/metod_alg/objective_functions/function_parameters_shekel.py 22 0 100%

src/metod_alg/objective_functions/function_parameters_sog.py 25 0 100%

src/metod_alg/objective_functions/griewank.py 17 0 100%

src/metod_alg/objective_functions/hartmann6.py 16 0 100%

src/metod_alg/objective_functions/qing.py 5 0 100%

src/metod_alg/objective_functions/rotation.py 27 0 100%

src/metod_alg/objective_functions/several_quad.py 12 0 100%

src/metod_alg/objective_functions/shekel.py 12 0 100%

src/metod_alg/objective_functions/single_quad.py 4 0 100%

src/metod_alg/objective_functions/sog.py 13 0 100%

src/metod_alg/objective_functions/styblinski_tang.py 6 0 100%

src/metod_alg/objective_functions/trid.py 15 0 100%

src/metod_alg/objective_functions/zakharov.py 9 0 100%

src/metod_alg/version.py 1 0 100%

-------------------------------------------------------------------------------------------------

TOTAL 1380 0 100%

================= 268 passed , 4 warnings in 3308.13s (0:55:08) =================

Figure 5.3: Test coverage for the METOD algorithm.
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$ pytest --cov -report term --cov=src

collected 98 items

---------- coverage: platform darwin , python 3.8.5 -final -0 -----------

Name Stmts Miss Cover

------------------------------------------------------------------------------------------------

src/est_dir/PI_LS.py 82 0 100%

src/est_dir/PI_MPI.py 52 0 100%

src/est_dir/PI_XY.py 47 0 100%

src/est_dir/__init__.py 38 0 100%

src/est_dir/alternative_search_direction.py 38 0 100%

src/est_dir/compute_random_design.py 18 0 100%

src/est_dir/compute_y.py 10 0 100%

src/est_dir/divide_abs_max_value.py 4 0 100%

src/est_dir/forward_backward_tracking.py 123 0 100%

src/est_dir/numerical_exp_SNR.py 222 0 100%

src/est_dir/quad_f.py 7 0 100%

src/est_dir/quad_func_params.py 13 0 100%

src/est_dir/sqrt_quad_f.py 7 0 100%

src/est_dir/square_quad_f.py 7 0 100%

src/est_dir/version.py 1 0 100%

------------------------------------------------------------------------------------------------

TOTAL 669 0 100%

========================== 98 passed , 1 warning in 76.03s (0:01:16) ============================

Figure 5.4: Test coverage for the Estimate of Direction in RSM.

5.6 Continuous integration

Continuous integration engines check that software can be built successfully from

a list of requirements. The list of requirements may include dependencies of the

libraries needed for the software to run. GitHub Actions [42] incorporate contin-

uous integration for a repository and continuously checks the build and testing of

the software after each committed change. The following objectives of continuous

integration are outlined in [100]. Firstly, continuous integration ensures software is

executable on different machines and configurations. Secondly, other services can

be integrated with continuous integration to run performance metrics such as test

coverage and status of documentation, which are reported to GitHub. Continuous

integration is considered as best practice in [100]. Therefore, GitHub Actions has

been set up for each repository in Table 5.2 to ensure that the build and test cov-

erage remains successful after updates have been made to files within each GitHub

repository. The testing coverage is performed using Codevcov [21], which reports

the percentage of test coverage after each committed change within a repository and

the status of documentation is checked using Read the Docs [106].

5.7 Documentation

Providing detailed documentation enables the developer and other researchers to

understand, apply and modify the software. Including documentation for software

is considered as best practice in [100, 136], and suggested to meet the reusable
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requirement in [7]. Consider the following benefits of documentation, which are

discussed in [7].

✓ The developer of the software understands and remembers the purpose of

creating and updating the software. For example, the functionality of a pro-

gram can easily be forgotten if details are not documented, and it may take

a considerable amount of time to regain understanding on the purpose of the

program. Therefore, including documentation ensures that key information is

captured and the developer can quickly refamiliarise themselves with aspects

of the software.

✓ Other researchers can apply and modify the software which may aid further

study in a research area. Furthermore, recommendations may be made to

enhance the software’s adaptability and efficiency.

The full documentation for each repository in Table 5.2 is hosted on Read the

Docs [106]. The full documentation for the METOD algorithm can be found at

https://metod-algorithm.readthedocs.io/ and full documentation for the Estimate of

Direction in RSM can be found at https://estimate-of-direction-in-rsm.readthedocs.io/.

To ensure software documentation is of a high standard, the following contains a

selection of rules from [69] that have been considered during the creation and devel-

opment of documentation.

• Write comments as you code

It is essential to write comments explaining the purpose and functionality of

code. This ensures that code can be readily understood and improves read-

ability for the developer and other researchers. Source code for each repository

in Table 5.2 contains detailed comments on code functionality, various input

parameters and expected outputs. In addition, all tests contain comments

explaining the purpose of each test.

• Include examples

Including informative and coherent examples will encourage other researchers

to use the software for a specified problem. Examples are included for each

repository in Table 5.2 and have an intuitive layout and structure, allowing

other researchers to understand and modify the application of the software.

• Include a README file

An online hosting site such as GitHub includes a README file within a repos-

itory. A README file should be self-contained and provide brief details on

using the software. It is recommended in [69] that a README file should
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include information on the installation process, the location of complete docu-

mentation, the licence of the software, the process of testing the functionality

of the software and a quickstart example that can be easily followed.

Badges can also be displayed on README files, summarising various key

benchmarks to evaluate the software. Badges include the status of the build,

which can be obtained by GitHub Actions [42], the percentage of coverage by

integrating GitHub Actions with Codecov [21], the status of documentation

within Read the Docs [106] and the DOI of the software.

• Include a quickstart guide

The process for installing and running software must be clear and straight-

forward. If the process is complicated, other researchers may not use the

software or make mistakes during the installation or execution stage. Hence,

an informative quickstart guide explaining the installation and application of

the software is provided for both repositories in Table 5.2. Furthermore, addi-

tional details on the quickstart guide are provided in the full documentation.

• Version control documentation

As discussed in Section 5.2, the version control system used is Git [40] and

the online hosting site is GitHub [41]. Consequently, changes made to the

documentation are tracked, and details explaining the changes are provided.

• Use automated tools

Documentation is written using Sphinx [122] which is a Python documentation

generator that uses reStructuredText to create clear and informative HTML

web pages. Each GitHub repository within Table 5.2 is coupled with Read

the Docs, which allows any committed changes in the documentation to be

automatically reflected in Read the Docs.

• Write error messages that provide solutions or point to documentation

Various errors can occur during the development and execution of software.

It can be beneficial to embed informative messages explaining the reason for

errors. For example, a function may require a float variable to run successfully.

However, if a boolean variable is given, it would be helpful to provide an error

message explaining that a float variable is required for the function to run

successfully. A variety of informative error and warning messages have been

embedded within some source code programs, to explain errors and possible

solutions to consider for the software to run successfully.
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5.8 Summary

Various measures from [7, 55, 69, 100, 111, 136] have been followed to ensure that

all software for Chapters 3 and 4 incorporate the re-runnable, repeatable, repro-

ducible, reusable and replicable requirements from [7]. The purpose of abiding by

the requirements is to create, develop and maintain high-quality software, which is

essential for the following reasons. Firstly, to reduce the risk of errors occurring dur-

ing the execution of the software, which may result in the termination of software

or inaccurate results. Secondly, to produce accurate research outputs efficiently.

Finally, it is extremely important that other researchers can apply and modify the

software, as this can allow the opportunity for discussion on enhancements of the

software and further developments in a research area. Throughout this section, it

is evident that the implementation of all measures discussed ensure high-quality

software is used to generate results for Chapters 3 and 4.
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Chapter 6

Conclusion

This chapter summarises the research contributions within this thesis and outlines

potential further research.

6.1 Overview of research contributions

A summary of the main research contributions of this thesis are outlined in Section

1.3. The first research contribution is addressed in Chapter 3, where multistart with

early termination of descents (METOD) [144] is presented, which reduces the num-

ber of repeated local descents to the same local minimizer. The early termination

of descents in METOD is achieved through repeatedly evaluating the fundamental

inequality (3.17). A variety of enhancements to the original METOD algorithm in

[144] have been implemented to improve the performance. In addition, numerical

examples show the high efficiency and accuracy of the METOD algorithm compared

to multistart with various test functions.

The second research contribution is discussed in Chapter 4, where the choice of

search direction s(k) for the iterative update (4.5) within the first phase of BW is in-

vestigated. In the RSM-related literature, the least-square estimator of the gradient

of the response function at a current point is routinely suggested as s(k). However,

a new search direction s(k) of the form (4.24) is presented, which is inspired by the

work in [141, Chpt. 8] and [38, 39]. The new search direction (4.24) can significantly

improve the first phase of BW and RSM, in general, for high-dimensional problems,

especially when errors of the response are large.

High-quality software used for analysis and results in Chapters 3 and 4 has been

made available on GitHub, which addresses the third research contribution. Chapter

5 illustrates the best practices adopted during the development stage to ensure

reliability and accuracy of software. Examples are also available to demonstrate the
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application of the software, allowing other researchers to employ the software for

high-dimensional optimization problems.

General applications of multistart and RSM for machine learning have been

outlined in Chapters 3 and 4, which supports the final research contribution. In

addition, potential enhancements to stochastic gradient descent (SGD) are outlined

in Section 6.2, which is a celebrated optimization method utilized for various opti-

mization problems within machine learning.

6.2 Potential further research

The purpose of this section is to discuss potential further research areas for the

contributions outlined in Chapters 3 and 4. That is, multistart with early termina-

tion of descents (METOD) and the choice of direction in high-dimensional response

surface optimization.

6.2.1 Multistart with early termination of descents (METOD)

The METOD algorithm is presented in Chapter 3, where the early termination of de-

scents is achieved through repeatedly evaluating the fundamental inequality (3.17).

As a result, the efficiency of multistart can be significantly improved, especially

when the dimension of the problem is very large. Recall that the fundamental in-

equality (3.17) uses partner points x̃i = xi−β∇f(xi) (i = 1, 2), where ∇f(xi) is the
gradient of the objective function at point xi. Hence, an investigation into different

first-order search directions (see Section 2.3) may be conducted to observe whether

the efficiency of the METOD algorithm can be further improved whilst maintaining

high accuracy.

The computation of function evaluations and derivatives is assumed to be inex-

pensive in Chapter 3. However, computing function evaluations and derivatives can

be expensive in many practical high-dimensional global optimization problems. In

that case, [144, Sect. 2.3] illustrates that inequality (3.17) can be altered so that

the full gradient ∇f(xi) is replaced with derivatives computed for a few directions

only. Suppose I = {i1, ..., ip} is the set of indices representing the direction index

to compute the derivative, where p is the total number of directions explored. As

discussed in [144, Sect. 2.3], the same set of indices I = {i1, ..., ip} must be selected

to compute the derivatives of f at points xi (i = 1, 2) when applying inequality

(3.17). This approach can further improve the efficiency of the METOD algorithm

by reducing the computational cost since full gradients are not required. In addition,

this approach may improve the efficiency of stochastic gradient descent (SGD) when
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applied with highly non-convex objective functions (i.e. deep neural networks).

6.2.2 The choice of direction in high-dimensional response

surface optimization

A new search direction (4.24) is presented in Chapter 4 for the first phase of the

BW algorithm, which is the most often used and cited RSM strategy. Numerical

comparisons show that the new search direction (4.24) can significantly improve

the first phase of BW for high-dimensional problems, especially when errors of the

response are large. Recall that design matrices for the new search direction are

constructed according to the strategy outlined in Section 4.4.3. Hence, investigations

on different design matrices may be conducted to determine whether the efficiency

and accuracy of the new search directions (4.24) can be further improved.

The total number of function evaluations permitted during the first phase of

BW with search directions (4.24) is required by the stopping condition (4.27) and

must be set before applying the first phase of BW. However, it can be difficult to

determine the total number of function evaluations required to find the subregion of

the optimum in practical situations. Hence, an alternative stopping condition that

considers the progress made in finding a subregion of the optimum would be more

beneficial. For example, the first phase of BW may be stopped if the movement

toward a subregion is minimal or the difference between response function values is

marginal for a predefined number of iterations.

As discussed in [140], SGD may be improved by utilizing search directions of the

form (4.24), whereM represents the design matrix at chosen observations, which are

updated at each iteration. Since search directions (4.24) can significantly improve

the first Phase of BW and RSM, in general, it will be beneficial to investigate the

use of search directions (4.24) within SGD.
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R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas,

D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Har-

ris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, et al. SciPy

1.0: Fundamental Algorithms for Scientific Computing in Python. Nature

Methods, 17:261–272, 2020. doi: https://doi.org/10.1038/s41592-019-0686-2.

177

https://wiki.python.org/
https://wiki.python.org/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/


BIBLIOGRAPHY

[135] D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel. A
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