
����������
�������

Citation: Li, P.; Wang, X.; Huang, K.;

Huang, Y.; Li, S.; Iqbal, M.

Multi-Model Running Latency

Optimization in an Edge Computing

Paradigm. Sensors 2022, 22, 6097.

https://doi.org/10.3390/s22166097

Academic Editor: Arturo de la

Escalera Hueso

Received: 22 July 2022

Accepted: 11 August 2022

Published: 15 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Model Running Latency Optimization in an Edge
Computing Paradigm

Peisong Li 1 , Xinheng Wang 1,* , Kaizhu Huang 2, Yi Huang 3 , Shancang Li 4 and Muddesar Iqbal 5

1 School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
2 Data Science Research Center, Division of Natural and Applied Sciences, Duke Kunshan University,

Suzhou 215316, China
3 Department of Electrical and Computer Engineering, University of Liverpool, Liverpool L69 3BX, UK
4 School of Computer Science and Informatics, Cardiff University, Cardiff CF10 3AT, UK
5 Renewable Energy Laboratory, Communications and Networks Engineering Department, College of

Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
* Correspondence: xinheng.wang@xjtlu.edu.cn

Abstract: Recent advances in both lightweight deep learning algorithms and edge computing increas-
ingly enable multiple model inference tasks to be conducted concurrently on resource-constrained
edge devices, allowing us to achieve one goal collaboratively rather than getting high quality in each
standalone task. However, the high overall running latency for performing multi-model inferences
always negatively affects the real-time applications. To combat latency, the algorithms should be opti-
mized to minimize the latency for multi-model deployment without compromising the safety-critical
situation. This work focuses on the real-time task scheduling strategy for multi-model deployment
and investigating the model inference using an open neural network exchange (ONNX) runtime
engine. Then, an application deployment strategy is proposed based on the container technology and
inference tasks are scheduled to different containers based on the scheduling strategies. Experimental
results show that the proposed solution is able to significantly reduce the overall running latency in
real-time applications.

Keywords: edge computing; latency optimization; multi-model; task scheduling; autonomous
driving; AI

1. Introduction

The bandwidth congestion and heavy load on the core network always make tradi-
tional cloud computing unable to process data instantly and cause extra energy consump-
tion. In order to combat latency in a real-time computing environment, a new dubbed edge
computing paradigm is proposed, which is able to relocate the services originally hosted in
the cloud server to the proximity of end devices [1].

Nowadays, Internet of Things (IoT) devices are usually equipped with abundant
sensors and generate a large volume of data at the network edge [2]. However, it is often
infeasible to transfer these massive data to the cloud because of the restricted network
bandwidth and constraint reaction time [3]. As a result, there is a demand for artificial
intelligence (AI) services to be deployed at the network edge, near where the data is
generated. This demand has resulted in the convergence of edge computing and AI,
culminating in a new paradigm—AI at the edge, also known as edge AI [4].

Edge AI is widely employed in the automotive industry [5]. For example, in Autonomous
Driving (AD), AI in automotive can recognize dangerous situations by monitoring different
sensors such as camera, light detection and ranging (LiDAR), and radio detection and
ranging (RADAR) [6]. In this process, there are multiple tasks from different sensors that
need different AI algorithms to run concurrently [7]. However, some problems hindering
the development of autonomous driving must be addressed:

Sensors 2022, 22, 6097. https://doi.org/10.3390/s22166097 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6697-4041
https://orcid.org/0000-0001-8771-8901
https://orcid.org/0000-0001-7774-1024
https://doi.org/10.3390/s22166097
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166097?type=check_update&version=1


Sensors 2022, 22, 6097 2 of 17

Firstly, much of the current autonomous driving technology development is focusing
on improving target detection capabilities while ignoring considering how to reduce the
overall system latency [8]. Autonomous driving systems must meet strict safety require-
ments and the vehicles should have the ability to control themselves autonomously as soon
as possible [9]. So, one of the main challenges is that the task completion time must be
low enough.

Secondly, the vehicles are typically equipped with heterogeneous computing hard-
ware in order to achieve more processing capabilities and offer increasingly computation-
intensive services at a lower cost [10]. For example, a system with traditional CPU el-
ements can execute general computations; Graphics Processing Unit (GPU) and Field
Programmable Gate Array (FPGA) can provide much more powerful computing capa-
bilities for certain kinds of workloads in a cost-efficient way [11]. In this context, how
to be compatible with heterogeneous platforms when deploying diverse AI models is
challenging.

Thirdly, recent advances in deep learning techniques allowed significant improve-
ments in the detection accuracy and running time of computer vision algorithms, accel-
erating their deployment in autonomous driving and industrial embedded systems [12].
Compared to cloud servers, embedded edge devices provide advantages such as low la-
tency, low power consumption, low price, ease of deployment, etc. [13]. However, how
to run multiple models concurrently on a single embedded device is still a new paradigm
that is being explored.

In summary, the following challenges must be addressed:

(1) Running latency. In many cases, the tasks are related and aim to collaboratively reach
one goal instead of obtaining high quality in each standalone task. Therefore, one
critical question in autonomous systems is how to reduce the overall running latency
to meet the safety requirement.

(2) Hardware heterogeneity. The computing devices are heterogeneous, consisting of CPUs,
GPUs, FPGAs, and dedicated accelerators [14]. Therefore, the portability of AI models
across different platforms is crucial.

(3) AI on embedded edge. The DL model inference requires high memory and computational
requirements. Fitting these algorithms onto embedded devices is a challenge in itself.

In order to address the aforementioned challenges, in this paper, we propose a schedul-
ing strategy-based multi-model task execution system. Firstly, a runtime optimizer is
designed to reduce the overall running latency by running multiple model inferences in
a collaborative way. Secondly, the models trained on cloud servers are compressed and
converted to ONNX, a cross-platform, high-performance inference engine for AI models
trained from a variety of frameworks. Finally, a set of separately trained methods are held
on embedded devices. Multiple apps are concurrently deployed on an embedded device
using container technology and select an appropriate model to execute, respectively, based
on the proposed runtime optimizer.

The main contributions are summarised as follows:

(1) A real-time tasks scheduling strategy is proposed, in which multi-model tasks can
be scheduled using a collaborative decision-making algorithm aiming to reduce the
overall running latency without compromising the performance.

(2) A DL model convert solution is proposed that can convert trained models from
Tensorflow/Pytorch to ONNX to make an edge device able to concurrently run
multiple DL workloads.

(3) To address the heterogeneity of the edge computing system, a concurrent container-
ization scheme over the ONNX architecture is introduced for application.

In the next Section, we will introduce the related work.

2. Related Work

In this section, we reviewed the pioneer works on the development of running AI
models on edge devices.



Sensors 2022, 22, 6097 3 of 17

2.1. AI Inference from Cloud to Edge

Recently, in order to fully realize the potential of big data, there has been an urgent
need to deploy AI services to the network edge [15]. To address this demand, edge AI
has emerged as a promising solution, appearing in an increasing number of application
scenarios [16–18].

Chen et al. [19] designed a Deep Learning-based Distributed Intelligent Video Surveil-
lance (DIVS) system using an edge computing architecture. Gong et al. [20] proposed an
intelligent cooperative edge (ICE) computing that combines AI and edge computing to
build a smart IoT. In this paper, the generated data and AI model are distributed among
IoT devices, edge and cloud.

However, in order to further improve the accuracy, Deep Neural Networks (DNNs)
become deeper and with huge parameters to be processed [21]. The existing works focus
mostly on higher accuracy, however, do not consider the hardware requirements. This
causes a schism between software and hardware designs, resulting in algorithms that
are highly accurate yet impossible to be implemented on embedded edge platforms with
limited resources.

2.2. The Deployment of AI Model on Embedded System

Techniques for reducing the size and connectivity of AI model network architec-
ture are attractive for deploying these models on embedded systems. Pruning [22] and
quantization [23] are the two basic ways for reducing model memory footprint.

Minakova et al. [24] proposed using both task-level and data-level parallelism simul-
taneously for running Convolutional Neural Networks (CNN) inference on embedded
devices. In this way, a high-throughput execution of CNN inference can be ensured and the
restricted processing capabilities of embedded SoCs (Systems on Chip) can be fully used.
Dey et al. [25] proposed using a partial execution strategy and partitioning algorithm for
embedded systems to support scenarios that need to deal with heavy input data and huge
model inferences in a short period of time.

Furthermore, TensorFlow Lite and TensorRT are considered cutting-edge inference
compilers that incorporate most of the compiler optimization approaches offered for em-
bedded devices. In [26], a detailed performance comparison of two recent compilers,
TensorFlow Lite (TFLite) and TensorRT, is performed using commonly-used AI models on
various edge devices.

However, the computing platform is heterogeneous and composed of various hard-
ware components. In an autonomous vehicle, for example, the computing platform typically
includes GPUs, CPUs, FPGAs and other dedicated deep learning accelerators [27]. Different
frameworks for deploying AI models on hardware platforms can result in significantly
different results.

2.3. Multi-Model Data Fusion

Nowadays, the fusion of multiple AI models has become a new paradigm. In [28],
Mujica et al. introduced a novel messaging system-based edge computing platform to
address the problem of how to efficiently fuse various data generated on heterogeneous
hardware platforms. In [29], Fu et al. proposed fusing multiple roadside sensors, such as
cameras and radar, on the edge of IoT networks to provide environment perception services
for autonomous driving. In [30], an effective fusing approach for fusing the LiDAR and
camera features is described, which is then processed for target detection and trajectory
prediction. Mendez et al. [31] also designed a sensor fusion method integrating LiDAR and
camera sensors for object detection that takes into account the vehicle’s limited computing
capabilities while simultaneously reducing running latency by using edge computing
architecture.

However, these methods only focus on precision while they did not consider how to
reduce the processing latency.



Sensors 2022, 22, 6097 4 of 17

2.4. Optimization of Latency

Edgent, proposed by Li et al. [4], employs edge computing for DNN model inference
by collaborating device and edge. Model partitioning is utilized in this framework to
separate computing tasks, and model right-sizing is used to further reduce latency by
exiting inference at an appropriate intermediate DNN layer. In order to eliminate the time
difference between data collection of sensors and approximately synchronize the data,
Warakagoda et al. [32] only gather the data, including steering angle, LiDAR reading,
and camera image, which are generated almost simultaneously. This approach solves the
problem of the sensors operating at different frequencies. In [8], a multi-task environment
detection framework is applied to autonomous driving with reduced time and power
consumption. In this study, the vehicle detection model and lane detection model are
combined to sense the vehicles’ surroundings and the weight pruning technique based
on the Alternate Direction Method of Multipliers (ADMM) is utilized to decrease the
running latency.

However, these studies focus on optimizing the inference time of a single AI model;
time optimization for running multiple models on a single edge device is still a new
paradigm that needs to be investigated.

This paper provides an effective solution to a difficult industrial challenge: Optimizing
the edge computing architecture to reduce the latency when executing multiple model
inferences on one edge device.

3. Problem Formulation
3.1. The Scenario

In the case of autonomous driving, for example, in order to better understand its
surrounding environment, a vehicle must have multiple cameras mounted [33]. Depending
on its function, each camera generates images at different frequencies, which can subse-
quently be processed and analyzed simultaneously by the vehicle’s object detection and
recognition application. The architecture of the multi-model-based object detection system
for autonomous driving is shown in Figure 1.

7/31/2022 17

Camera_1

Camera_2

Camera_3

Sensory Equipment Edge Device Cloud Server

App_1

App_2

App_3

Models Database
Images 

Trained
models 

Images 

Jetson Nano

Figure 1. The architecture of the multi-model-based object detection system for autonomous driving.

As indicated in Figure 1, appropriate deep learning models are selected for training in
the Cloud server based on the vehicle’s object detection requirements as the cloud server
has adequate computing capacity. The models trained in various frameworks are then
converted to ONNX format. Each model is packaged into a container and deployed in the
vehicle once it has been trained and converted into the cloud.

The procedure of object detection, as shown in Figure 2, can be divided into three
stages: data collecting, data processing and information fusion. Firstly, three sensors
(cameras) installed on the vehicle take pictures at a fixed frequency to acquire image
data; then three different instances of the application (App)–one process for each camera–
perform image-based object detection tasks independently with different AI models to
detect vehicles, traffic lights and pedestrians in the images; finally, the system fuses the



Sensors 2022, 22, 6097 5 of 17

detection results to obtain the final execution instructions, which we call the collaborative
decision making.

Images 

12/22/2021 15

Sensor_1

Sensor_2

Sensor_3

App_1

App_2

App_3

Vehicles 

Traffic 
lights

Pedestrian

Model_2

Model_1

Model_3

Collaborative 
decision 
making

Figure 2. Data processing procedure of object detection and surrounding environment perception in
autonomous driving.

3.2. Problem Formulation

The executive duration of the task in each application (App) can be formulated as
Equation (1).

Ttask = Tin + Tpro + Tin f + Tout (1)

where Tin, Tpro, Tin f , and Tout denote the time for inputting images, image processing,
model inference and outputting result, respectively. Among them, the model inference
accounts for the main part.

The running time of each App after the n rounds of tasks allocation can be formulated
as Equation (2).

TA =
n

∑
i=1

Ttaski
(2)

In this paper, we aim to reduce the accumulated overall multi-model running time.
Because the collaborative decision-making occurs only after all the three tasks in three
Apps in each batch have been completed, the overall running time is determined by the
App that is the last to complete the n rounds of the task. In this case, the overall running
time T can be calculated by Equation (3). The parameters are illustrated in Figure 3, the
arrow with different colors represents different object detection tasks, and the length of the
arrow denotes the task’s executive duration. In Figure 3, after the first three rounds of tasks
allocation, the overall running latency T is TA3 .

T = max
{

TA1 , TA2 , TA3

}
(3)

App_1

App_2

App_3

...

Time

TA1

TA2

TA3

Ttask

Collaborative 
decision making

Figure 3. Schematic of tasks execution on the embedded edge device.

However, this process does not easily allow for fast synchronization across multiple
cameras. In order to make a final decision fast, we introduced the following scheduling
strategies in Section 4.



Sensors 2022, 22, 6097 6 of 17

4. System Design

This section introduces a typical scenario to apply the proposed method. Then, the
designed two kinds of scheduling strategies are presented. The target is to minimize
the average data fusion latency when multiple model inference workloads are running
simultaneously on one edge device.

4.1. Optimal Selection Method

The first allocation strategy we have designed is the Optimal Solution Selection Method
(OSSM). By the method, the optimal allocation solution is chosen each time, so that the
overall latency can be guaranteed to be minimal. The method is described in detail as fol-
lows:

Firstly, there are n sensor inputs connected to one embedded edge device.

S = {s1, s2, · · · , si, · · · , sn} (4)

where si represents the ith sensor input, n denotes the number of sensors.
Moreover, there are n Apps deployed at each edge device.

A = {a1, a2, · · · , ai, · · · , an} (5)

where ai represents the ith App.
For n inputs, each input task requires different processing and inference latency.

L = {l1, l2, · · · , li, · · · , ln} (6)

where li represents the inference latency of si. The latency to complete a single inference
task on a specific device is a basically fixed value.

Since the n tasks need to be assigned to n Apps, so there are n! assigning choices. the
assigning matric is shown in Equation (8).

C = {c1, c2, · · · , ci, · · · , cn!} (7)

where ci represents the ith allocation policy.

a1 a2 · · · an
c1
c2
...

cn!


s1 s2 · · · sn
s2 s1 · · · sn
· · · · · · · · · · · ·
sn! sn−1 · · · s1


Tc1

Tc2
...

Tcn!

(8)

As shown in Equation (8), in each round of requests the n tasks will be assigned to
different apps. Firstly, we can try each assigning choice and obtain the Tai ,ck by Equation (9).

Tai ,ck = Tai (r− 1) + lj, i, j = 1, 2, · · · , n; k = 1, 2, · · · , n! (9)

where r represents the rth round of tasks assigning, Tai ,ck is the accumulated running time
of App ai under the allocation policy ck.

Then, we can obtain the accumulated latency of each app under one specific choice by
Equation (9). The data fusion latency depends on the app with maximum latency, so the
data fusion latency of each assigning choice can be calculated using Equation (10).

Tck = max{Ta1 , Ta2 , · · · , Tan | ck} (10)

in which Tck represents the accumulated running time under the kth allocation policy in
the rth round of request.



Sensors 2022, 22, 6097 7 of 17

In order to minimize the running latency, we choose the assigning cx with the mini-
mum latency by Equation (11).

cx = min{Tc1 , Tc2 , · · · , Tcn!} (11)

All n tasks can be allocated to n different apps based on the assigning choice cx, and
the accumulated latency of each app can be calculated by Equation (12).

Tai (r) = Tai (r− 1) + lk | cx ,ai
(12)

Tai (r) =
r

∑
m=1

lk|m (13)

in which Tai (r) represents the accumulated running time of ith application at the rth round
of request.

The pseudocode of this process is shown in Algorithm 1:

Algorithm 1 Scheduling strategy 1

Input: Initialization: L, A, Tai
Output: Selection of scheduling combination cx

r ← 1
for i← 1 to n do

Tai (r)← li
end for
repeat

r ← r + 1
for k← 1 to n! do

for i← 1 to n do
Update Tai ,ck based on Equation (9)

end for
Update Tck based on Equation (10)

end for
Update cx based on Equation (11)
for j← 1 to n do

Update Taj(r) based on Equation (12)
end for

until Scheduling finished

As shown in Algorithm 1, in this case, the time complexity is:

T(n) = O(n!) (14)

The space complexity is:
S(n) = O(1) (15)

At each allocation, this strategy compares all the allocation solutions and selects the
one that results in the minimal running latency; therefore, this strategy can definitely obtain
the optimal solution and minimize the running latency of multi-model inference tasks.
However, the disadvantage of this strategy is that it takes a long execution time for alloca-
tion strategy-making when running a large number of model inferences simultaneously. In
order to tradeoff between the execution time of the allocation strategy and the execution
time of multi-model inference tasks, a second strategy is proposed in Section 4.2.

4.2. Simplest Allocation Method

The second allocation strategy we have devised is the Simplest Allocation Method
(SAM). This method ensures that both the overall latency and the complexity of the algo-
rithm can be reduced. The method is described in detail as follows:



Sensors 2022, 22, 6097 8 of 17

Firstly, the n sensor inputs are ranked from the maximum to the minimum:

Srank = Rank{s1, s2, · · · , si, · · · , sn | descending} (16)

At each round, the accumulated running latency of n apps is ranked from the minimum
to the maximum:

Trank = Rank{Ta1 , Ta2 , · · · , Tan | ascending} (17)

At last, the ith task in the Srank is assigned to the ith app in the Trank:

Trank(r) = Trank(r− 1) + Srank (18)

The pseudocode of this process is shown in Algorithm 2:

Algorithm 2 Scheduling strategy 2

Input: Initialization: L, A, Tai
Output: Selection of scheduling combination cx

r ← 1
for i← 1 to n do

Tai (r)← li
end for
Update Srank based on Equation (16)
repeat

r ← r + 1
Update Trank based on Equation (17)
for i← 1 to n do

Tai (r)← Tai (r− 1) + Srank{i}
end for

until Scheduling finished

As shown in Algorithm 2, in this case, the time complexity is:

T(n) = O(n log n) (19)

The space complexity is:
S(n) = O(1) (20)

The mathematical modeling of the strategy is shown in Figure 4. As shown in the
figure, at each allocation, the task requiring the longest execution time is assigned to the
currently idle application, until the task requiring the least execution time is assigned
to the currently occupied application. This strategy can effectively reduce the overall
running delay.

App_1

App_2

App_3

...

Time

...

...

(1) (2) (3) (r-1) (r)

Ascending Descending

Figure 4. The mathematical modeling of the Simplest Allocation Method.

4.3. Overall System Description

The proposed optimized multi-model task scheduling and execution mechanism, as
well as the schematic, are shown in Figure 5 and Figure 6, respectively.



Sensors 2022, 22, 6097 9 of 17

Sensor_1

Sensor_2

Sensor_3

App_1

App_2

App_3

Vehicles 

Traffic 
lights

Pedestria
n

Model_2

Model_1

Model_3

Collaborative
decision 
making

On-board sensors Embedded edge device

Figure 5. Optimized multi-model tasks scheduling-based object detection procedure.

As shown in Figure 5, images captured by various sensors are buffered on the edge
device. Based on the proposed allocation strategy, each application (App) dynamically
invokes a different AI model, which then conducts an object detection task on the input
image and outputs the detection result. Finally, the collaborative decision is made based on
the fusion of the detection results.

Camera

LiDAR

RADAR

APP_1

APP_2

APP_3

Sensory equipment Embedded edge node Cloud data center

Model_C

Model_L

Model_R

collaborative 
decision making

Object 

Distance 

Speed 

Camera

LiDAR

RADAR

APP_1

APP_2

APP_3

Model_C

Model_L

Model_R

collaborative 
decision making

Object 

Distance 

Speed 

APP_1

APP_2

APP_3

Data fusion

Data fusion

Fusion

Task schaduling strategy

Sensory equipment Embedded edge node Cloud data center

... ...

APP_1

APP_2

APP_3

Fusion

...

Processing and Inference Latency (PIL) 
of camera images

PIL of LiDAR images

PIL of RADAR data

Latency of data fusion

Camera

LiDAR

RADAR

APP_1

APP_2

APP_3

Model_C

Model_L

Model_R

collaborative 
decision making

Object 

Distance 

Speed 

Data fusion

Task schaduling strategy

Sensory equipment Embedded edge node Cloud data center

APP_1

APP_2

APP_3

Decision making

...

APP_1

APP_2

APP_3

Decision making

...

Before After
Time Time

Figure 6. Comparison of the running time before and after the implementation of scheduling strategy.

Figure 6 compares the running time before and after the tasks scheduling strategy
is implemented. Before adopting the scheduling strategy, each application continuously
invokes a fixed model to perform a fixed object detection task. The collaborative decision-
making (gray area in the figure) is performed only when all the tasks in three applications in
each batch have been completed. Following the implementation of the scheduling strategy,
each application dynamically performs different tasks based on the allocation decision. As
shown in the figure, distributing multiple tasks to different applications at the same time
based on the current state of each application efficiently reduces the time interval between
two decision-making, achieving the goal of lowering the overall running time.

Figure 7 shows the optimized system architecture, which can be divided into four
stages: sensing, scheduling, detection and final decision-making. At first, the cameras mounted
on the vehicle capture images of the surrounding environment; Secondly, the images
are assigned to different applications based on the scheduling strategy and the status of
each application (App), this process is deployed on the Runtime Optimizer; Then, each
application invokes a different AI model to process the image, perform the AI-based target
detection task, and output the detection results; Finally, the detection results from each
application are forwarded to the final decision-making block, where they are fused and
being post-processed for decision making.

The role of the Runtime Optimizer is to receive requests, perform a scheduling strategy,
and then allocate the requests to each application for inference. Since the inference time
for each model differs, once all three models have been executed, the detection results are
then fused. So the overall running latency (execution time) for final decision-making is
determined by the model that has the longest inference time.



Sensors 2022, 22, 6097 10 of 17

12/22/2021 17

Runtime
Optimizer

Camera_1

Camera_2

Camera_3

Sensory Equipment Edge Device Cloud Server

Container Engine

App_1 App_2

App_3 …
Models DatabaseRequests 

Scheduling
decision 

Trained
models 

Images 

Raspberry Pi Jetson Nano

Figure 7. The edge computing architecture of the multi-model-based object detection system for
autonomous driving.

5. Experiment

In this section, we describe the experimental setup in detail and demonstrate the
latency advantages of our approaches.

5.1. Experimental Setup

In order to measure the performance of concurrent workloads execution at edge
devices, in our test-bed, MobileNet, ShuffleNet and SqueezeNet are deployed on NVIDIA
Jetson nano 2 GB.

5.1.1. Hardware

The Nvidia Jetson nano is chosen in the experiments as an embedded edge device.
Technical Specifications (SPECS) of Jetson nano 2 GB is shown in Table 1.

Table 1. Technical Specifications.

Technical Specifications

GPU 128-core NVIDIA Maxwell
CPU Quad-core ARM A57 @ 1.43 GHz

Memory 2 GB 64-bit LPDDR4 25.6 GB/s
Storage 64 GB

5.1.2. Software

Three deep learning models, including MobileNet, ShuffleNet and SqueezeNet, are
used in the experiment to evaluate the performance of the proposed scheduling strategies.

(1) MobileNet: As a lightweight deep neural network, MobileNet models are very ef-
ficient in terms of speed and size and hence are ideal for embedded and mobile
applications.

(2) ShuffleNet: An extremely computation-efficient CNN model designed specifically for
mobile devices with very limited computing power.

(3) SqueezeNet: SqueezeNet models are highly efficient in terms of size and speed while
providing good accuracy. This makes them ideal for platforms with strict constraints
on size.

5.1.3. Model Deployment

(1) Model inference is executed based on ONNX Runtime Environment. ONNX Runtime is
a cross-platform inference and training machine-learning accelerator, which supports
models from various deep learning frameworks and is compatible with different
hardware [34].



Sensors 2022, 22, 6097 11 of 17

(2) Containerized app deployment. Each application served for model inference on
edge devices is packaged and run as containers. Containerization technology can
naturally shield hardware heterogeneity and bring great convenience to deployment
and management.

(3) In this experiment, only the CPU is used to perform the model inference task. On the
one hand, CPUs are ubiquitous and can be more cost-effective than GPUs for running
AI-based tasks on resource-constrained embedded edge devices. On the other hand,
we proposed using the ONNX runtime framework for model inference, which uses
CPU and can speed up the model inference and result in lower costs, faster response
times, and a more portable algorithm.

In addition, the image acquisition and analysis tasks were executed 1000 times. In
order to validate the benefits of our proposed method, we implement and compare two
proposed strategies against the system without scheduling.

5.2. Performance Evaluation

For this experiment, the main evaluation metric is overall running time, while the
CPU usage and memory usage are also monitored during task execution.

5.2.1. Overall Running Time

Before applying the strategy, the inference time of each model is shown in Figure 8.

0 200 400 600 800 1000
Number of sampling

50

100

150

200

250

300

350

400

In
fe

re
nc

e 
tim

e 
(m

s)

MobileNet
ShuffleNet
SqueezeNet

Figure 8. Inference time of each model without scheduling.

The overall running latency of each application is shown in Figure 9.

0 200 400 600 800 1000
Number of sampling

0

50,000

100,000

150,000

200,000

250,000

Ov
er

al
l r

un
ni

ng
 ti

m
e 

(m
s)

267,848

81,285

157,499

App_1
App_2
App_3

Figure 9. Overall running time of each App without scheduling.

The overall running latency of performing data fusion is determined by the App with
the longest running time. As shown in Figure 8, MobileNet inference takes the longest



Sensors 2022, 22, 6097 12 of 17

running time, so the latency of data fusion is determined by MobileNet. According to
Figure 9, MobileNet takes a total of 267,848 ms to conduct 1000-times inference tasks, hence
the overall running latency after executing 1000 tasks is 267,848 ms.

The overall running time of the three Apps based on strategy 1 and strategy 2 are
shown in Figures 10 and 11, respectively.

Figure 10. Overall running time of each App based on strategy 1.

Figure 11. Overall running time of each App based on strategy 2.

As can be seen from Figure 9, before the implementation of the scheduling strategy,
the time gap among the three applications becomes increasingly bigger as the tasks were
executed, which resulted in time wasting. After the scheduling strategy is implemented, the



Sensors 2022, 22, 6097 13 of 17

time gap between the three Apps is basically not much different. In addition, as shown in
Figures 10 and 11, the overall runtime latency is significantly reduced after the scheduling
strategy is applied.

The comparison of the overall running time under the three conditions, without
scheduling and two strategies, is shown in Figure 12.

0 200 400 600 800 1000
Number of sampling

0

50,000

100,000

150,000

200,000

250,000

Ov
er

al
l r

un
ni

ng
 ti

m
e 

(m
s)

267,848

223,255

229,617

Without scheduling
Strategy_1
Strategy_2

Figure 12. Comparison of overall running time under the three conditions.

As can be seen in Figure 12, compared to without scheduling strategy, Strategy 1
and Strategy 2 reduce the runtime latency by 16.7% and 14.3%, respectively. It can thus
be demonstrated that adopting the scheduling mechanism efficiently reduces the overall
running time of the system, resulting in a faster reaction time for vehicles.

5.2.2. Model Inference Time

The inference time is one of the most crucial metrics when deploying an AI model in a
commercial setting. Most real-world applications necessitate lightning-fast inference time,
ranging from a few milliseconds to one second. Inference time is measured as the time
difference between the arrival time of an image and the completion time of object detection.
The inference time of the three models in three situations is shown in Figure 13.

0 200 400 600 800 1000
Number of sampling

150

200

250

300

350

400

450

500

550

In
fe

re
nc

e 
tim

e 
(m

s)

Without scheduling
Strategy_1
Strategy_2

(a) MobileNet

0 200 400 600 800 1000
Number of sampling

40

60

80

100

120

140

160

180

In
fe

re
nc

e 
tim

e 
(m

s)

Without scheduling
Strategy_1
Strategy_2

(b) ShuffleNet

0 200 400 600 800 1000
Number of sampling

50

100

150

200

250

300

In
fe

re
nc

e 
tim

e 
(m

s)

Without scheduling
Strategy_1
Strategy_2

(c) SqueezeNet

Figure 13. The inference time of the three models.



Sensors 2022, 22, 6097 14 of 17

As can be seen from Figure 7, due to the implementation of Runtime Optimizer, tasks
need to be allocated based on the state of the applications before being executed, and then
the application will then invoke the corresponding AI model to perform model inference
based on the task’s requirements. Therefore, as shown in Figure 13, the inference time of a
single task is slightly increased as compared to without scheduling.

5.2.3. Cpu Usage

We use Docker stats to display a live stream of container(s) resource usage statistics,
including CPU and memory usage.

CPU usage in three situations is shown in Figure 14.

0 20 40 60 80 100 120
Time

50

75

100

125

150

175

200

CP
U 

us
ag

e 
(%

)

App_1
App_2
App_3

(a) Without scheduling

0 20 40 60 80 100 120
Time

80

100

120

140

160

180

CP
U 

us
ag

e 
(%

)

App_1
App_2
App_3

(b) Based on the strategy 1

0 20 40 60 80 100 120
Time

115

120

125

130

CP
U 

us
ag

e 
(%

)

App_1
App_2
App_3

(c) Based on the strategy 2

Figure 14. CPU usage of each App.

As shown from Figure 14a–c, each of the three applications takes up approximately
one-third of the CPU resources, indicating that the proposed system can make full use of
the resources of the embedded hardware system.

5.2.4. Memory Usage

Memory usage in three situations is shown in Figure 15.
As illustrated in Figure 15a–c, the memory usage varies between the different appli-

cations, which is related to the size of the model. As can be seen from Figure 15b,c, the
memory footprint of all three applications is roughly the same at around 7%. We attribute
these results to the fact that each application has essentially the same functionality and each
application can call one of the three models. On the other hand, the memory footprint of
the models has increased compared to before the scheduling strategy was adopted because
each application has more functionality than before, and each application has to have the
ability to perform reasoning for all three models.



Sensors 2022, 22, 6097 15 of 17

0 20 40 60 80 100 120
Time

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
em

or
y 

us
ag

e 
(%

)

App_1
App_2
App_3

(a) Without scheduling

0 20 40 60 80 100 120
Time

2

3

4

5

6

7

M
em

or
y 

us
ag

e 
(%

)

App_1
App_2
App_3

(b) Based on the strategy 1

0 20 40 60 80 100 120
Time

5.0

5.5

6.0

6.5

7.0

M
em

or
y 

us
ag

e 
(%

)

App_1
App_2
App_3

(c) Based on the strategy 2

Figure 15. Memory usage of each App.

5.2.5. Inference Accuracy

The size and accuracy of models are crucial for deploying multiple models on resource-
limited edge devices in an edge computing architecture. The model size and inference
accuracy of the three models are shown in Table 2.

Table 2. Performance of the three models.

Model Size Top-1 Accuracy (%) Top-5 Accuracy (%)

MobileNet 13.6 MB 70.94 89.99

ShuffleNet 9.2 MB 69.36 88.32

SqueezeNet 9 MB 56.34 79.12

5.2.6. Overhead Analysis

In summary, by adopting the scheduling strategy, the memory footprint is increased
slightly but the runtime latency is reduced significantly.

6. Conclusions

This paper presents an overall running latency optimization solution for multi-model
fusion. By adopting a task scheduling strategy, time-consuming tasks are assigned to
applications with light workloads, thereby minimizing the overall latency of the system
when handling multi-model data fusion. At the same time, the constrained platform
resources for service deployment and the heterogeneity of hardware platforms can be better
addressed by using the ONNX architecture and containerization technology. Experimental
results also show that the approach can significantly reduce reaction time and hence
improve system security. For future trends, the Deep Learning methods can be used to
optimize the multiple model inference tasks allocation in Edge computing architecture. For
future work, we plan to use the Reinforcement Learning (RL) method to optimize the multi-
model tasks allocation strategy, which could dynamically allocate model inference tasks



Sensors 2022, 22, 6097 16 of 17

to different applications based on the application state and task characteristics through
autonomous learning.

Author Contributions: Methodology, validation, formal analysis, investigation and writing—original
draft preparation, P.L.; writing—review and editing, S.L. and M.I.; funding acquisition and supervi-
sion, X.W.; project administration, K.H. and Y.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by: Key Program Special Fund in XJTLU under project KSF-E-64;
XJTLU Research Development Funding under projects RDF-19-01-14 and RDF-20-01-15; the National
Natural Science Foundation of China (NSFC) under grant 52175030.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Xi’an Jiaotong-Liverpool University for her
financial support to conduct this research by Key Program Special Fund in XJTLU under project
KSF-E-64, XJTLU Research Development Funding under projects RDF-19-01-14 and RDF-20-01-15,
and the National Natural Science Foundation of China (NSFC) under grant 52175030.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. Resource scheduling in edge computing: A survey. IEEE Commun. Surv. Tutor. 2021, 23,

2131–2165. [CrossRef]
2. Holler, J.; Tsiatsis, V.; Mulligan, C.; Karnouskos, S.; Avesand, S.; Boyle, D. Internet of Things; Academic Press: Waltham, MA, USA,

2014.
3. Munir, A.; Blasch, E.; Kwon, J.; Kong, J.; Aved, A. Artificial intelligence and data fusion at the edge. IEEE Aerosp. Electron. Syst.

Mag. 2021, 36, 62–78. [CrossRef]
4. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE

Trans. Wirel. Commun. 2019, 19, 447–457. [CrossRef]
5. Brandalero, M.; Ali, M.; Le Jeune, L.; Hernandez, H.G.M.; Veleski, M.; da Silva, B.; Lemeire, J.; Van Beeck, K.; Touhafi, A.;

Goedemé, T.; et al. AITIA: Embedded AI Techniques for Embedded Industrial Applications. In Proceedings of the International
Conference on Omni-layer Intelligent Systems (COINS), Barcelona, Spain, 23–25 August 2020; pp. 1–7.

6. Sleight, M. How Do Self-Driving Cars Work? Available online: https://www.bankrate.com/insurance/car/how-do-self-driving-
cars-work/ (accessed on 22 June 2021).

7. Gupta, A. Machine Learning Algorithms in Autonomous Driving. Available online: https://www.iiot-world.com/artificial-
intelligence-ml/machine-learning/machine-learning-algorithms-in-autonomous-driving/ (accessed on 4 April 2021).

8. Zhou, S.; Xie, M.; Jin, Y.; Miao, F.; Ding, C. An End-to-end Multi-task Object Detection using Embedded GPU in Autonomous
Driving. In Proceedings of the 22nd International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA,
7–8 April 2021; pp. 122–128.

9. Liu, L.; Lu, S.; Zhong, R.; Wu, B.; Yao, Y.; Zhang, Q.; Shi, W. Computing Systems for Autonomous Driving: State of the Art and
Challenges. IEEE Internet Things J. 2020, 8, 6469–6486. [CrossRef]

10. Collin, A.; Siddiqi, A.; Imanishi, Y.; Rebentisch, E.; Tanimichi, T.; de Weck, O.L. Autonomous driving systems hardware and
software architecture exploration: Optimizing latency and cost under safety constraints. Syst. Eng. 2020, 23, 327–337. [CrossRef]

11. Dong, Z.; Shi, W.; Tong, G.; Yang, K. Collaborative autonomous driving: Vision and challenges. In Proceedings of the International
Conference on Connected and Autonomous Driving (MetroCAD), Detroit, MI, USA, 27–28 February 2020; pp. 17–26.

12. Verucchi, M.; Brilli, G.; Sapienza, D.; Verasani, M.; Arena, M.; Gatti, F.; Capotondi, A.; Cavicchioli, R.; Bertogna, M.; Solieri,
M. A systematic assessment of embedded neural networks for object detection. In Proceedings of the 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1,
pp. 937–944.

13. Lin, C.; Zhang, Z.; Li, H.; Liu, J. ECSRL: A Learning-Based Scheduling Framework for AI Workloads in Heterogeneous Edge-
Cloud Systems. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, Coimbra, Portugal,
15–17 November 2021; pp. 386–387.

14. Hao, C.; Chen, D. Software/Hardware Co-design for Multi-modal Multi-task Learning in Autonomous Systems. In Proceedings
of the IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), Washington, DC, USA,
6–9 June 2021; pp. 1–5.

15. Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Edge AI: Convergence of Edge Computing and Artificial Intelligence;
Springer Nature: Singapore, 2020.

http://doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1109/MAES.2020.3043072
http://dx.doi.org/10.1109/TWC.2019.2946140
https://www.bankrate.com/insurance/car/how-do-self-driving-cars-work/
https://www.bankrate.com/insurance/car/how-do-self-driving-cars-work/
https://www.iiot-world.com/artificial-intelligence-ml/machine-learning/machine-learning-algorithms-in-autonomous-driving/
https://www.iiot-world.com/artificial-intelligence-ml/machine-learning/machine-learning-algorithms-in-autonomous-driving/
http://dx.doi.org/10.1109/JIOT.2020.3043716
http://dx.doi.org/10.1002/sys.21528


Sensors 2022, 22, 6097 17 of 17

16. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]

17. Calo, S.B.; Touna, M.; Verma, D.C.; Cullen, A. Edge computing architecture for applying AI to IoT. In Proceedings of the IEEE
International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 3012–3016.

18. Campolo, C.; Genovese, G.; Iera, A.; Molinaro, A. Virtualizing AI at the distributed edge towards intelligent IoT applications. J.
Sens. Actuator Netw. 2021, 10, 13. [CrossRef]

19. Chen, J.; Li, K.; Deng, Q.; Li, K.; Philip, S.Y. Distributed deep learning model for intelligent video surveillance systems with edge
computing. IEEE Trans. Ind. Inform. 2019. [CrossRef]

20. Gong, C.; Lin, F.; Gong, X.; Lu, Y. Intelligent cooperative edge computing in internet of things. IEEE Internet Things J. 2020,
7, 9372–9382. [CrossRef]

21. Bi, J. Improving Training and Inference for Embedded Machine Learning. Ph.D. Thesis, University of Southampton, Southampton,
UK, 2020.

22. Wu, R.T.; Singla, A.; Jahanshahi, M.R.; Bertino, E.; Ko, B.J.; Verma, D. Pruning deep convolutional neural networks for efficient
edge computing in condition assessment of infrastructures. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 774–789. [CrossRef]

23. Tonellotto, N.; Gotta, A.; Nardini, F.M.; Gadler, D.; Silvestri, F. Neural network quantization in federated learning at the edge. Inf.
Sci. 2021, 575, 417–436. [CrossRef]

24. Minakova, S.; Tang, E.; Stefanov, T. Combining task-and data-level parallelism for high-throughput cnn inference on embedded
cpus-gpus mpsocs. In Proceedings of the International Conference on Embedded Computer Systems, Samos, Greece, 5–9 October
2020; Springer: Cham, Switzerland, 2020; pp. 18–35.

25. Dey, S.; Mukherjee, A.; Pal, A. Embedded Deep Inference in Practice: Case for Model Partitioning. In Proceedings of the 1st
Workshop on Machine Learning on Edge in Sensor Systems, 2019, New York, NY, USA, 10 November 2019; pp. 25–30.

26. Verma, G.; Gupta, Y.; Malik, A.M.; Chapman, B. Performance evaluation of deep learning compilers for edge inference. In
Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA,
17–21 June 2021; pp. 858–865.

27. Hao, C.; Sarwari, A.; Jin, Z.; Abu-Haimed, H.; Sew, D.; Li, Y.; Liu, X.; Wu, B.; Fu, D.; Gu, J.; et al. A hybrid GPU+ FPGA system
design for autonomous driving cars. In Proceedings o the IEEE International Workshop on Signal Processing Systems (SiPS),
Nanjing, China, 20–23 October 2019; pp. 121–126.

28. Mujica, G.; Rodriguez-Zurrunero, R.; Wilby, M.R.; Portilla, J.; Rodríguez González, A.B.; Araujo, A.; Riesgo, T.; Vinagre Diaz, J.J.
Edge and fog computing platform for data fusion of complex heterogeneous sensors. Sensors 2018, 18, 3630. [CrossRef] [PubMed]

29. Fu, Y.; Tian, D.; Duan, X.; Zhou, J.; Lang, P.; Lin, C.; You, X. A Camera–Radar Fusion Method Based on Edge Computing. In
Proceedings of the IEEE International Conference on Edge Computing (EDGE), Beijing, China, 19–23 October 2020; pp. 9–14.

30. Fadadu, S.; Pandey, S.; Hegde, D.; Shi, Y.; Chou, F.C.; Djuric, N.; Vallespi-Gonzalez, C. Multi-view fusion of sensor data for
improved perception and prediction in autonomous driving. arXiv 2020, arXiv:2008.11901.

31. Mendez, J.; Molina, M.; Rodriguez, N.; Cuellar, M.P.; Morales, D.P. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection
at the Network Edge. Sensors 2021, 21, 3992. [CrossRef]

32. Warakagoda, N.; Dirdal, J.; Faxvaag, E. Fusion of lidar and camera images in end-to-end deep learning for steering an off-road
unmanned ground vehicle. In Proceedings of the 22th International Conference on Information Fusion (FUSION), Ottawa, ON,
Canada, 2–5 July 2019; pp. 1–8.

33. Yang, M.; Wang, S.; Bakita, J.; Vu, T.; Smith, F.D.; Anderson, J.H.; Frahm, J.M. Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Montreal, QC, Canada, 16–18 April 2019; pp. 305–317.

34. Microsoft. ONNX Runtime. Available online: https://microsoft.github.io/onnxruntime/ (accessed on 21 July 2022).

http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.3390/jsan10010013
http://dx.doi.org/10.1109/TII.2019.2909473
http://dx.doi.org/10.1109/JIOT.2020.2986015
http://dx.doi.org/10.1111/mice.12449
http://dx.doi.org/10.1016/j.ins.2021.06.039
http://dx.doi.org/10.3390/s18113630
http://www.ncbi.nlm.nih.gov/pubmed/30366462
http://dx.doi.org/10.3390/s21123992
https://microsoft.github.io/onnxruntime/

	Introduction
	Related Work
	AI Inference from Cloud to Edge
	The Deployment of AI Model on Embedded System
	Multi-Model Data Fusion
	Optimization of Latency

	Problem Formulation
	The Scenario
	Problem Formulation

	System Design
	Optimal Selection Method
	Simplest Allocation Method
	Overall System Description

	Experiment
	Experimental Setup
	Hardware
	Software
	Model Deployment

	Performance Evaluation
	Overall Running Time
	Model Inference Time
	Cpu Usage
	Memory Usage
	Inference Accuracy
	Overhead Analysis


	Conclusions
	References

