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Abstract We study a homogeneous linear second-order difference equation with nonconstant and noncommuting
operator coefficients in a vector space. We build its exact resolutive formula consisting of the explicit noniterative
expression of a generic term of the unknown sequence of vectors. Some nontrivial applications are reported in order
to show the usefulness and the broad applicability of the result.

Keywords Cauchy problem · Noncommuting operators · Operator difference equations

1 Introduction

Difference equations naturally occur and play a central role whenever the problem under scrutiny or the phenomenon
under investigation allows a mathematical formulation traceable to the set of natural numbers. A broad variety of
situations in biology, economics, dynamical systems, electrical circuit analysis, and other fields [1, Chap. 1] are
indeed modeled by difference equations often demanding, however, quite different resolution methods due to
peculiar aspects of their mathematical nature. Thus, as in the case of differential equations, a useful classification
of difference equations has emerged.

The classical field of difference equations deals with linear or nonlinear equations where the unknown is a real
or complex-valued function defined on a countable domain, which in turn may be thought of as coincident with
N

∗ without loss of generality. These equations are conveniently classified as scalar difference equations [2, Chaps.
2–4]–[6] to discriminate them from the so-called matrix difference equations [7,8], where the unknowns constitute
a sequence of d × d matrices with entries in C as well as possibly all the given coefficients.

Quite recently a new class of difference equations has been introduced, namely, the class of linear operator
difference equations [9]. The peculiarity of such equations with respect to matrix difference equations is that in this
case the unknowns are elements of a given abstract vector space V , whereas the “coefficients” are linear operators
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acting on V . We clarify this important point by introducing the following linear second-order operator difference
equation, which we will investigate and solve in this paper:

Yn+2 = L0(n)Yn + L1(n)Yn+1, n ∈ N
∗. (1)

This equation lives in a vector space V over a field F, and the nature will not be further specified. The null vector
of V is denoted by 0, whereas L0(n) and L1(n), n ∈ N, are two families of linear operators acting in V . To keep
the investigation at the most general level possible, we introduce no constraints concerning the commutability of
these operators in and between the two classes.

The aim of this paper is to build a general solution of Eq. (1) when its coefficients are nonconstant and noncom-
mutative. This means giving a noniterative expression of Yn , for a generic n, in terms of an appropriate ordered
sequence of operators L0(n) and L1(n). Of course, this expression will contain two “summation constants” to be
specified starting from given initial conditions.

The main result will be derived by mathematical induction in Sect. 3, and some applications will be presented
in the two subsequent sections.

2 Mathematical preliminaries

We start by recalling that when ∀n ∈ N
∗, L0(n) ≡ L0 and L1(n) ≡ L1 the notation {L(u)

0 L(v)
1 } with u, v ∈ N

∗

expresses the sum of all the

(
u + v

m

)
possible distinct permutations of u, L0-factors and v, L1-factors, where

m := min(u, v) [10]. For example, {L(1)
0 L(1)

1 } = L0L1 + L1L0, and we define {L(0)
0 L(0)

1 } := I setting consistently(
0
0

)
= 1. It is possible to convince ourselves that any additive contribution to {L(u)

0 L(v)
1 } may be represented as a

formal product of r(r ≥ 1) powers of L0 alternated with r powers of L1, of the form

Lτ1
0 Ls1

1 Lτ2
0 Ls2

1 . . . Lτr
0 Lsr

1 . (2)

The parameter r , henceforth called the length of the expression (2), is an integer number running from 1 to
m + 1 ≡ rM . The 2r integer exponents τ1, . . . , τr and s1, . . . , sr are numbers fulfilling the following conditions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r∑
i=1

τi = u,

r∑
i=1

si = v,

s1 ≥ 1, τ1 ≥ 0, τr ≥ 1, sr ≥ 0,

τi ≥ 1, si ≥ 1, i = 2, . . . , r − 1.

(3)

Hereafter the symbol Sr
u,v represents the set of all the possible pairs of r -tuples τ̄ = (τ1, . . . , τr ) and s̄ = (s1, . . . , sr )

satisfying Eq. (3). Expanding the symbol {L(u)
0 L(v)

1 } in accordance with its definition we obtain contributions pos-
sessing all the compatible lengths and for any length all the possible terms obtained in accordance with Eq. (3).
It is possible to show that the number of additive contributions of equal length r to {L(u)

0 L(v)
1 } is given by(

u
r − 1

)(
v

r − 1

)
, so that using the Vandermonde identity [11]

m+1∑
i=1

(
u

i − 1

)(
v

m + 1 − i

)
=

(
u + v

m

)
(4)

we derive the following length-based representation of {L(u)
0 L(v)

1 }

{L(u)
0 L(v)

1 } =
m+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

u,v

Lτ1
0 Ls1

1 Lτ2
0 Ls2

1 . . . Lτr
0 Lsr

1 , (5)
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where the summation∑
(τ̄ ,s̄)∈Sr

u,v

Lτ1
0 Ls1

1 Lτ2
0 Ls2

1 . . . Lτr
0 Lsr

1 (6)

runs over all the pairs (τ̄ , s̄) compatible with the conditions (3).
The operator coefficients appearing in Eq. (1) depend on n and do not commute with each other in general. In

such a case, powers like Lτi
0 and Ls j

1 become ambiguous as soon as τi or s j exceeds 1. Thus, to retain as much as
possible the advantages of the notation adopted in expression (2), we introduce the following descending products
of operators:

pr∐
p=p1

X p := X (pr ) . . . X (p j−1) . . . X (p1), p1 ∈ N
∗, (7)

postulating that
pr∐

p=p1

X p = I when pr < p1. For the sake of clarity, we stress that the symbol introduced on the

left-hand side of Eq. (7) singles out the inverted ordered product of the noncommuting pr operators X p1 , . . . , X pr .
Exploiting Eq. (7) we get rid of the ambiguity possessed by expression (2) due to the noncommutativity of

Li , i ∈ {0, 1} by substituting it with the ordered operator

[
Lτ1

0 Ls1
1 Lτ2

0 Ls2
1 . . . Lτr

0 Lsr
1

]
q

defined as follows:

s

[
Lτ1

0 Ls1
1 Lτ2

0 Ls2
1 . . . Lτr

0 Lsr
1

]
q

(8)

:=
⎡
⎣τ1−1∐

i1=0

L0

(
kq − 2i1

)⎤
⎦

⎡
⎣s1−1∐

j1=0

L1

(
kq − 2τ1 − j1

)⎤
⎦ . . .

×
⎡
⎣τ2−1∐

i2=0

L0

(
kq − 2τ1 − s1 − 2i2

)⎤
⎦

⎡
⎣s2−1∐

j2=0

L1

(
kq − 2(τ1 + τ2) − s1 − j2

)⎤
⎦ . . .

×
⎡
⎣τr −1∐

ir =0

L0

(
kq − 2

τr−1∑
l=1

τl −
sr−1∑
l=1

sl − 2ir

)⎤
⎦

⎡
⎣sr −1∐

jr =0

L1

(
kq − 2

τr∑
l=1

τl −
sr−1∑
l=1

sl − jr

)⎤
⎦ ,

where

kq := 2u + v − q, q = 1, 2. (9)

In the next section we shall see that the peculiar “order explosion”of Eq. (2) as given by Eq. (8) provides a
very useful tool to write down the solution of a generic Cauchy problem associated to Eq. (1). In what follows

the symbol
{
L(u)

0 L(v)
1

}
q

represents the sum (5), where each additive contribution {L(u)
0 L(v)

1 } is replaced by the

associated ordered operator, that is,
{
L(u)

0 L(v)
1

}
q

=
m+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

u,v

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
q
. (10)

To clarify the notation, we develop, for example,
{L2

0L1
1

}
1:

{
L(2)

0 L(1)
1

}
1

=
2∑

r=1

∑
(τ̄ ,s̄)∈Sr

2,1

[
Lτ1

0 Ls1
1 Lτ2

0 Ls2
1 . . . Lτr

0 Lsr
1

]
1

=
∑

(τ̄ ,s̄)∈S1
2,1

[
Lτ1

0 Ls1
1

]
1
+

∑
(τ̄ ,s̄)∈S2

2,1

[
Lτ1

0 Ls1
1 L′τ2Ls2

1

]
1

=
[
L2

0L1

]
1
+

[
L0

0L1
1L2

0L0
1

]
1
+

[
L1

0L1
1L1

0L0
1

]
1
. (11)
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Since k1 = 4, the three terms acquire the following explicit form:

[
L2

0L1
1

]
1

=
⎡
⎣ 1∐

i1=0

L0

(
4 − 2i1

)⎤
⎦

⎡
⎣ 0∐

j1=0

L1

(
j1

)⎤
⎦ = L0(4)L0(2)L1(0),

[
L0

0L1
1L2

0L0
1

]
1

=
⎡
⎣ 0∐

j1=0

L1

(
4 − j1

)⎤
⎦

⎡
⎣ 1∐

i2=0

L0

(
3 − 2i2

)⎤
⎦ I = L1(4)L0(3)L0(1),

[
L1

0L1
1L1

0L0
1

]
1

= L0(4)L1(2)L0(1).

We thus conclude that{
L2

0L1
1

}
1

= L0(4)L0(2)L1(0) + L1(4)L0(3)L0(1) + L0(4)L1(2)L0(1).

3 Resolution of a Cauchy problem associated with Eq. (1)

It is convenient to extend the definition of the operator
{
L(u)

0 L(v)
1

}
q

to negative integer values of u and v, simply

setting, when u or v is a negative integer,
{
L(u)

0 L(v)
1

}
q

Y = 0, for any Y that L0, L1 can legitimately act on. We

are now ready to prove the following theorem constituting the main result of the paper.

Theorem 1 The solution of Eq. (1), given that Y0 = 0 and Y1 = B, may be written down as

Yn =
[ |n−1|

2 ]∑
t=0

{
Lt

0Ln−1−2t
1

}
1

B. (12)

Proof We prove (12) by mathematical induction. For n = 0 and n = 1, Eq. (12) gives Y0 = 0 and Y1 = B, as
expected. It is immediate to deduce Y2 = B from both Eqs. (1) and (12).

Let us suppose now that the first (n + 1) terms of the sequence solution of Eq. (1) are representable by Eq. (12).
We must prove that whatever n > 0 is,

Yn+2 =
[ n+1

2 ]∑
t=0

{
Lt

0Ln+1−2t
1

}
1

B

=
[ n+1

2 ]∑
t=0

m′+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

t,n+1−2t

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

B, (13)

where m′ = min{t, n + 1 − 2t} satisfies Eq. (1). To this end, we start by appropriately transforming

L0(n)Yn = L0(n)

[ n−1
2 ]∑

t=0

{
Lt

0Ln−1−2t
1

}
1

B

= L0(n)

[ n−1
2 ]+1∑
t=1

{
Lt−1

0 Ln+1−2t
1

}
1

B

= L0(n)

[ n+1
2 ]∑

t=1

m′′+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

t−1,n+1−2t

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

B, (14)
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where m′′ = min{t − 1, n + 1 − 2t} ≤ m′, and we have used the fact that [ n−1
2 ] + 1 = [ n+1

2 ]. In what follows we
will show that for every r, 1 ≤ r ≤ m′′ + 1 the following operator relation holds:

L0(n)
∑

(τ̄ ,s̄)∈Sr
t−1,n+1−2t

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

=
∑

(τ̄ ,s̄)∈Sr
t,n+1−2t/τ1>0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1
, (15)

where the right-hand-side summation symbol means that the ordered operators
[
L0

0Ls1
1 . . . Lτr

0 Lsr
1

]
1

are not included.

We point out that L0(n)[Lτ1
0 Ls1

1 . . . Lτr
0 Lsr

1 ]1 generates permutations of the same length r as Lτ1
0 Ls1

1 . . . Lτr
0 Lsr

1 , with
τ1 at least 1 necessarily. In addition, we stress that the range {1, 2, . . . , m′′ + 1} of r is compatible with the pair
u = t, v = n + 1 − 2t . First, using Eq. (8) and taking into account that in this case k1 = n − 2, the left-hand-side
term of Eq. (15) may be developed as follows:

L0(n)
∑

(τ̄ ,s̄)∈Sr
t−1,n+1−2t

⎡
⎣τ1−1∐

i1=0

L0

(
n − 2 − 2i1

)⎤
⎦

⎡
⎣s1−1∐

j1=0

L1

(
n − 2 − 2τ1 − j1

)⎤
⎦

×
⎡
⎣τ2−1∐

i2=0

L0

(
n − 2 − 2τ1 − s1 − 2i2

)⎤
⎦

⎡
⎣s2−1∐

j2=0

L1

(
n − 2 − 2(τ1 + τ2) − s1 − j2

)⎤
⎦ . . .

×
⎡
⎣τr −1∐

ir =0

L0

(
n − 2 − 2

τr−1∑
l=1

τl −
sr−1∑
l=1

sl − 2ir

)⎤
⎦

⎡
⎣sr −1∐

jr =0

L1

(
n − 2 − 2

τr∑
l=1

τl −
sr−1∑
l=1

sl − jr

)⎤
⎦ . (16)

Shifting up the running index i1 by 1, that is, setting I1 =: i1 + 1, we transform the first L0-segment[
τ1−1∐
i1=0

L0

(
n − 2 − 2i1

)]
appearing in Eq. (16) into

τ1∐
I1=1

L0

(
n − 2I1

)
, which in turn may be rewritten as

τ1∐
I1=0

L0

(
n − 2I1

)
through multiplication by L0(n).

Introducing the positive index T1 =: τ1 + 1 the previous expression (16) may be cast in the following form:

∑
(τ̄ ,s̄)∈Sr

t,n+1−2t/τ1=T1

⎡
⎣T1−1∐

I1=0

L0

(
n − 2I1

)⎤
⎦

⎡
⎣s1−1∐

j1=0

L1

(
n − 2T1 − j1

)⎤
⎦

×
⎡
⎣τ2−1∐

i2=0

L0

(
n − 2T1 − s1 − 2i2

)⎤
⎦

⎡
⎣s2−1∐

j2=0

L1

(
n − 2(T1 + τ2) − s1 − j2

)⎤
⎦ . . . (17)

×
⎡
⎣τr −1∐

ir =0

L0

(
n − 2T1 − 2

τr−1∑
l=2

τl −
sq−1∑
r=1

sr − 2ir

)⎤
⎦

⎡
⎣sr −1∐

jr =0

L1

(
n − 2T1 − 2

τr∑
l=2

τl −
sr−1∑
l=1

sl − jr

)⎤
⎦ ,

where each ordered contribution still has length r and the passage from t − 1 to t arises from the “absorbtion”of
L0(n). Equation (17) is exactly the development of the right-hand-side term of Eq. (15), where T1 plays the role of
τ1 and then Eq. (14) may be given the following aspect:

L0(n)Yn =
[ n+1

2 ]∑
t=1

m′′+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

t,n+1−2t/τ1>0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

B. (18)

To establish a connection between Eqs. (18) and (13), we extract from the latter expression the ordered operators
beginning with Lτ1

0 , with τ1 > 0

[ n+1
2 ]∑

t=1

m′+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

t,n+1−2t/τ1>0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1
. (19)

123

Author's personal copy



M. A. Jivulescu, A. Messina

Here t = 0 is excluded since it implies m′ = 0, and then necessarily τ1 = 0. If m′ = min(t, n +1−2t) = t , then the
corresponding highest length rM = t + 1 is indeed incompatible with the condition τ1 > 0. Thus we are justified in
substituting m′ with m′′ = min(t − 1, n + 1 − 2t) in expression (19). These arguments prove that L0(n)Yn captures
all the ordered operators appearing in Eq. (13) effectively beginning with an L0-segment (τ1 > 0).

In what follows, in view of Eq. (1), we will prove that L1(n)Yn+1 coincides with the sum of all the other
contributions in Eq. (13), namely, all those ordered operators beginning with Lτ1

0 (n) with τ1 = 0. To this end, we
exploit the inductive hypothesis writing the action of L1(n) on Yn+1 as follows:

L1(n)Yn+1 = L1(n)

[ n
2 ]∑

t=0

{
Lt

0Ln−2t
1

}
1

B

= L1(n)

[ n
2 ]∑

t=0

m′′′+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

t,n−2t

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

B, (20)

where m′′′ = min{t, n − 2t}.
We first consider the terms of increasing length r in Yn+1, having τ1 = 0. Taking into account that k1 = n − 1

when r = 1 we get from Eq. (8) the unique contribution (t = 0)

L1(n)
∑

(τ̄ ,s̄)∈S1
0,n/τ1=0

[
Lτ1

0 Ls1
1

]
1

= L1(n)
[
L0

0Ln
1

]
1

= L1(n)

⎡
⎣ n−1∐

j1=0

L1

(
n − 1 − j1

)⎤
⎦ = L1(n)

⎡
⎣ n∐

J1=1

L1

(
n − J1

)⎤
⎦

=
⎡
⎣ n∐

J1=0

L1

(
n − J1

)⎤
⎦ =

{
L0

0Ln+1
1

}
1
, (21)

where we replaced j1 by J1 − 1. This operator applied to B is present in Eq. (13), (t = 0).
Now we will prove that a generic term of Yn+1 having length r > 1 and still with τ1 = 0 satisfies the property

L1(n)
∑

(τ̄ ,s̄)∈Sr
t,n−2t/τ1=0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

=
∑

(τ̄ ,s̄)∈Sr
t,n+1−2t/τ1=0,s1>1

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1
. (22)

Expanding the left-hand side of Eq. (22) we indeed get

L1(n)
∑

(τ̄ ,s̄)∈Sr
t,n−2t/τ1=0

⎡
⎣τ1−1∐

i1=0

L0

(
n − 1 − 2i1

)⎤
⎦

⎡
⎣s1−1∐

j1=0

L1

(
n − 1 − 2τ1 − j1

)⎤
⎦

×
⎡
⎣τ2−1∐

i2=0

L0

(
n − 1 − 2τ1 − s1 − 2i2

)⎤
⎦

⎡
⎣s2−1∐

j2=0

L1

(
n − 1 − 2(τ1 + τ2) − s1 − j2

)⎤
⎦ . . .

×
⎡
⎣τr −1∐

ir =0

L0

(
n − 1 − 2

τr−1∑
l=1

τl −
sr−1∑
l=1

sl − 2ir

)⎤
⎦

⎡
⎣sr −1∐

jr =0

L1

(
n − 1 − 2

τr∑
l=1

τl −
sr−1∑
l=1

sl − jr

)⎤
⎦ (23)
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which, setting j1 + 1 = J1, s1 + 1 = S1, yields

∑
(τ̄ ,s̄)∈Sr

t,n−2t/τ1=0,s1=S1>1

⎡
⎣τ1−1∐

i1=0

L0

(
n − 2i1

)⎤
⎦

⎡
⎣S1−1∐

J1=0

L1

(
n − 2τ1 − J1

)⎤
⎦

×
⎡
⎣τ2−1∐

i2=0

L0

(
n − 2τ1 − S1 − 2i2

)⎤
⎦

⎡
⎣s2−1∐

j2=0

L1

(
n − 2(τ1 + τ2) − S1 − j2

)⎤
⎦ . . .

×
⎡
⎣τm−1∐

im=0

L0

(
n − 2

τr−1∑
l=1

τl − S1 −
sr−1∑
l=2

sl − 2ir

)⎤
⎦

⎡
⎣sr −1∐

jr =0

L1

(
n − 2

τr∑
l=1

τl − S1 −
sr−1∑
q=2

sl − jr

)⎤
⎦ . (24)

Equation (24) is the expansion of the right-hand side of Eq. (22), where the increase from (n − 2t) to (n + 1 − 2t)

is due to the “absorbtion”of L1(n) as given by Eq. (24), and the condition s1 > 1 stems directly from the fact that
by construction r > 1 in Eq. (22). Summing both members Eq. (22) in view of Eq. (20) over r > 1 and t > 1
(t = 0 ⇒ r = 1) yields

L1(n)

[ n
2 ]∑

t=1

m′′′+1∑
r=2

∑
(τ̄ ,s̄)∈Sr

t,n−2t/τ1=0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

=
[ n

2 ]∑
t=1

m′′′+1∑
r=2

∑
(τ̄ ,s̄)∈Sr

t,n+1−2t/τ1=0,s1>1

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1
. (25)

Note that since m′′′ < m′, each ordered operator of length r > 1 compatible with {u = t, v = n − 2t} generates
an ordered operator compatible with {u = t, v = n + 1 − 2t}, increasing s1 by 1, thereby rendering in the latter
case s1 > 1. This circumstance means that all the ordered operators appearing in Eq. (25) determine only the set
of all ordered operators that have r > 1 and are compatible with the maximum length m′ + 1 under the constraints
τ1 = 0 and s1 > 1. Thus putting together Eqs. (21) and (20) we claim to have proved that

L1(n)

[ n
2 ]∑

t=0

m′′′+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

t,n−2t/τ1=0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

=
[ n+1

2 ]∑
t=0

m′+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

t,n+1−2t/τ1=0,s1>1

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1
, (26)

where [ n
2 ] may be substituted with [ n+1

2 ] exploiting the fact that for any n odd the highest value of t gives rise to a
contribution for which τ1 > 0. We concentrate now on the action of L1(n) on the generic terms of Yn+1 in Eq. (20)
for which τ1 > 0, that is,

L1(n)
∑

(τ̄ ,s̄)∈Sr
t,n−2t/τ1>0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1
. (27)

To this end, we observe that under the constraint τ1 > 0 the ordered operators as given by Eq. (20) in the length-
based expansion of Yn+1 do not contribute to the first member of Eq. (27) for rM = t + 1, (m′′′ = t) in accordance
with Eq. (12). When instead m′′′ < t , then m′′′ + 2 = (n + 1 − 2t) + 1 = m′ + 1 since in such a condition
m′ = min(t, n + 1 − 2t) = n + 1 − 2t . Considering that when τ0 = 0 and s0 = 1 the operator L1(n) may be
represented as

L1(n) = L0
0(n)L1

1(n) =
⎡
⎣τ0−1∐

i0=0

L0

(
n − 2i0

)⎤
⎦

⎡
⎣s0−1∐

j0=0

L1

(
n − 2τ0 − j0

)⎤
⎦ (28)

Equation 27 may be rewritten as follows:

L1(n)
∑

(τ̄ ,s̄)∈Sr
t,n−2t/τ1>0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

=
∑

(τ̄ ,s̄)∈Sr
t,n−2t/τ1>0

[
L0

0L1
1 . . . Lτr

0 Lsr
1

]
1
, (29)
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where r runs from 1 to m′′′ + 1 in accordance with Eq. (20). We are interested in summing on r both members of
Eq. (29), getting

m′′′+1∑
r=1

∑
(τ̄ ,s̄)∈Sr

t,n−2t/τ1>0

[
L0

0L1
1Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

=
m′′′+2∑
r=2

∑
(τ̄ ,s̄)∈Sr

t,n+1−2t/τ1=0,s1=1

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1
. (30)

As was already discussed just before Eq. (28), if m′′′ = t , then r may be stopped at m′′′ + 1 = m′ + 1, whereas if
m′′′ < t , then m′′′ + 2 = m′ + 1 as well. Thus we are justified in writing

[ n
2 ]∑

t=0

m′′′+1∑
r=1

L1(n)
∑

(τ̄ ,s̄)∈Sr
t,n−2t/τ1>0

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1

=
[ n+1

2 ]∑
t=1

m′+1∑
r=2

∑
(τ̄ ,s̄)∈Sr

t,n+1−2t/τ1=0,s1=1

[
Lτ1

0 Ls1
1 . . . Lτr

0 Lsr
1

]
1
. (31)

We have thus completed the demonstration of Theorem 1 since we have shown that L0(n)Yn (L1(n)Yn+1), when
Yn, (Yn+1) is expressed by Eq. (12), generates all and only the ordered operators of Yn+2 as given by the same
equation beginning with Lτ1

0 (n) with τ1 > 0, (τ1 = 0).

Remark 1 Using a treatment analogous to that used to demonstrate Theorem 1, it is possible to prove that the
solution of Eq. (1) given that Y0 = A and Y1 = 0 may be written, for any n ≥ 2, as follows:

Yn =
⎡
⎢⎣

[ n−2
2 ]∑

t=0

{
Lt+1

0 Ln−2−2t
1

}
2/τr =1,sr =0

⎤
⎥⎦ A, (32)

where all the ordered contributions to be considered in the summation are those finishing with L1
0L0

1.

To clarify the notation, we give the expression of Y5:

Y5 =
[{

L1
0L3

1

}
2/τr =1,sr =0

+
{
L2

0L1
1

}
2/τr =1,sr =0

]
A.

The constraints extract from the first term only one ordered operator of length 2, and from the second one, two
ordered contributions only, of the same length 2:

Y5 = [L1(3)L1(2)L1(1)L0(0) + L0(3)L1(1)L0(0) + L1(3)L0(2)L0(0)] A.

Since the two Cauchy problems we solved give rise to two independent solutions of Eq. (1), its general solution,
for any n ≥ 2, may be written using Eqs. (12) and (32):

Yn =
⎡
⎣[ n−2

2 ]∑
t=0

{
Lt+1

0 Ln−2−2t
1

}
2/τr =1,sr =0

⎤
⎦ A +

[ |n−1|
2 ]∑

t=0

{
Lt

0Ln−1−2t
1

}
1

B. (33)

4 Applications

In this section we show the effectiveness of Eqs. (12) and (32) by exactly solving a nontrivial example of Eq. (1)
formulated in a complex vectorial space V of even dimension N . Following Dirac, denote by |v〉 a generic vector of V
and by 〈v|w〉 := 〈w|v〉∗ the scalar product between the two vectors |v〉 and |w〉 belonging to V . If an orthonormal
basis B of V is composed of the N vectors |1〉, |2〉, . . . , |i〉, . . . , | j〉, . . . , |N 〉 such that 〈i | j〉 = δi j , then let us
introduce the transition operator Ti j := |i〉〈 j | acting upon a generic vector |i ′〉 of B as follows: Ti j |i ′〉 = δ j i ′ |i〉. We
define the following linear operators acting on V where the N/2 coefficients {ci , i = 1, 2, . . . , N/2} are complex
numbers:

M+ =
N/2∑
i=1

ci Ti,N−i+1 =
N/2∑
i=1

ci |i〉〈N − i + 1|, (34a)
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M− = (M+)† =
N/2∑
i=1

c∗
i |N − i + 1〉〈i |, (34b)

D+ =
N/2∑
i=1

|ci |2|i〉〈i |, (35a)

D− =
N∑

i=N/2+1

|cN−i+1|2|i〉〈i |, (35b)

M0 = D+ − D−, (36a)

DN = D+ + D−. (36b)

When |ci | = ρi = ρ, whatever i is, it is easy to check the following properties:

M2±|v〉 = 0, ∀|v〉 ∈ V, (37a)

[M+, M−] = M0, (37b)

M±M∓ = D±, (37c)

M−D+ = ρ2 M− ⇒ D+M+ = ρ2 M+, (38a)

M+D+|v〉 = 0 ⇒ D+M−|v〉 = 0, ∀|v〉 ∈ V, (38b)

M−D−|v〉 = 0 ⇒ D−M+|v〉 = 0, ∀|v〉 ∈ V, (38c)

M+D− = ρ2 M+ ⇒ D−M− = ρ2 M−. (38d)

We point out that Eqs. (37a–37c) and (38b–38c) hold without any restriction on the coefficients cn and that when
N = 2 and the corresponding unique coefficient c1 = 1, M+, M− and M0 may be traced back to the well-known
Pauli matrices. In the following analysis, we will make use only of properties (37a)–(38d) rather than use the explicit
representation given by Eqs. (34b–36b). It is therefore worthwhile to underline that, generally speaking, other sets
of M− and D− matrices fulfilling properties (34b)–(38d) exist.

The purpose of this section is to use Eqs. (12) and (32) to provide the closed form of the following general
Cauchy problem:

Yn+2 = L0(n)Yn + L1(n)Yn+1, n ∈ N
∗, (39a)

Y0 = Y 0, Y1 = Y 1, (39b)

where Yn is a vector of V , Y 0 and Y 1 are initial conditions fixed at will in V , and the generally noncommuting
coefficient operators L0(n) and L1(n), n ∈ N

∗, are defined as functions of n as follows:

L0(n) =
{

M+ n even,

M− n odd,
(40)

L1(n) =
{

M− n even,

M+ n odd.
(41)

To this end, it is enough to consider the two initial conditions

(I) Y0 = 0, Y1 = Y 1, (42)

(II) Y0 = Y 0, Y1 = 0. (43)

4.1 Solving the Cauchy problem (I)

Consider the operator
[
Lτ1

0 Ls1
1 Lτ2

0 Ls2
1 . . . Lτr

0 Lsr
1

]
1
, and observe that as a consequence of Eqs. (37a), (40), and (41)

it vanishes as soon as one of the r integer exponents τi is greater than 1. In this case, Eq. (12) indeed exhibits
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“L0-segments”containing M2±. Moreover, if r > 1, then s1τ1 > 1, and the operator
[
Lτ1

0 Ls1
1 Lτ2

0 Ls2
1 . . . Lτr

0 Lsr
1

]
1

vanishes because it includes the product

. . . L1(k − 2τ1 − s1 + 1)L0(k − 2τ1 − s1) . . . , (44)

which coincides with M2± in view of Eqs. (40) and (41). Summing up, when the length r of the operator[
Lτ1

0 Ls1
1 Lτ2

0 Ls2
1 . . . Lτr

0 Lsr
1

]
1

exceeds 1, its ordered expression given by Eq. (8) vanishes. This property, of course,

strictly related to the operators L0 and L1, greatly simplifies Eq. (12) where the ordered values of t of interest
become t = 0 (for any n) and t = 1 (for n ≥ 4). The reason is that t > 1 and r = 1 requires τ1 > 1 and then leads
to a vanishing operator, as previously discussed.

We thus focus on the evaluation of the expression of the two operators {L0
0Ln−1

1 }1 and {L1
0Ln−3

1 }1. For the first
one we have r = 1 and{

L0
0Ln−1

1

}
1

=
[
L0

0Ln−1
1

]
1

= L1(n − 2) . . . L1(0) = M∗ . . . M+M−, (45)

where ∗ is −(+) if n is even (odd). The second and third equalities stem from the application of Eqs. (8) and (41),
respectively. Taking into account Eq. (37c) and the constraints on the complex entries ci , we finally get{

L0
0Ln−1

1

}
1

=
{

ρn−3 D+ n odd,

ρn−2 M− n even.
(46)

When t = 1(n ≥ 4), the maximal length rM compatible with t is rM = 2 and{
L1

0Ln−3
1

}
1

=
[
L1

0Ln−3
1

]
1
. (47)

Then it is easy to verify that[
L1

0Ln−3
1

]
1

= L0(n − 2)L1(n − 4) . . . L1(0) =
{

ρn−4 D+ n even,

ρn−3 M− n odd.
(48)

Substituting Eqs. (46) and (47) into Eq. (12), and taking into account that all the contributions from any t > 1
vanish, the solution of the Cauchy problem (15) may be cast in the following closed and explicit form:

Y (I )
n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 n = 0,

Y 1 n = 1,

M−Y 1 n = 2,

(ρn−4 D+ + ρn−2 M−)Y 1 n > 2, even,

ρn−3(D+ + M−)Y 1 n > 2, odd.

(49)

In passing we note that when ρi = ρ = 1 for any i, Yn = (D+ + M−)Y 1, whatever n > 2 is, which means that we
obtain a very simple constant solution in this case.

4.2 Solving the Cauchy problem (II)

We make use of Eq. (32) observing that since for n > 2{
L1

0Ln−2
1

}
2/τr =1,sr =0

=
[
Ln−2

1 L1
0 = L1(n − 2) . . . L1(1)L0(0)

]
2

= 0. (50)

In addition we have for any n ≥ 4{
L2

0Ln−4
1

}
2/τr =1,sr =0

=
[
L1

0Ln−4
1 L1

0

]
2

= L0(n − 2)L1(n − 4) . . . L1(1)L0(0) = 0. (51)

Thus the solution of the Cauchy problem (II) under scrutiny assumes the following form:

Y (I I )
n =

⎧⎪⎪⎨
⎪⎪⎩

Y 0 n = 0,

0 n = 1,

L0Y 0 n = 2,

0 n > 2.

(52)
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By direct substitution it is easy to check that this very simple sequence of vectors of V is the (unique) solution of the
Cauchy problem (II). Using Eqs. (49) and (52), we write the solution Yn of the general Cauchy problem as follows:

Yn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y 0 n = 0,

Y 1 n = 1,

L0(0)Y 0 + M−Y 1 n = 2,

(ρn−4 D+ + ρn−2 M−)Y 1 n > 2, even,

ρn−3(D+ + M−)Y 1 n > 2, odd.

(53)

Of course, if we interpret the initial conditions Y 0 and Y 1 as playing the role of “summation constants”, then we
may refer to Eq. (53) as the general solution of difference Eq. (39a).

In conclusion, we stress that the object of this section was to find the general solution of a selected difference
equation using Eqs. (12) and (32) and was reached by Eq. (53). We do believe that solving this nontrivial toy
difference equation represents a good test to appreciate the potential and practical value of the theory we have
reported in previous sections of the paper.

5 Concluding remarks

The applicative potentialities of Eq. (1) go beyond the already broad context of operator difference equations. We
indeed emphasize that the treatment does not exclude that the unknowns might depend on some continuous variables
and that the operator coefficients L0(n) and L1(n) may act also upon the single components of Yn . To appreciate
the value of this observation, consider the following difference–differential equation:

Yn+2(t) = L̃0(n)Ẏn(t) + L̃1(n)Yn+1, (54)

where the dot denotes the first time derivative of Yn(t), which in turn means deriving each component of Yn . The
two generally noncommuting operators L̃0 and L̃1 are supposed, for simplicity, to linearly mix only the component
of Yn . Let us then introduce the following operator:

L0(n) = L̃0(n)
d

dt
; L1(n) = L̃1(n). (55)

By definition L̃0(n) and d/dt commute, and if L̃0(n) is represented by a matrix, then L0(n) is a formal matrix as
well, whose entries (L0(n))i j are differential operators defined as follows:

(L0(n))i j = [L̃0(n)]i j
d

dt
, (56)

where [L̃0(n)]i j are the L̃0(n) entries. With the help of this notation, Eq. (54) formally coincides with Eq. (1),
whose resolutive formula given by Eq. (53) applies also to difference–differential Eq. (54), provided that the initial
conditions are appropriately reinterpreted (each component of Y 0, Y 1 must be thought of as functions of t). When
L̃0(n) and L̃1(n) are defined in accordance with Eqs. (40) and (41), respectively, where the constant ρ = 1 is further
adopted, the solution of the Cauchy problem (I) [Y 0(t) = 0, Y 1 = Y (t)] can be cast as follows:

Y I
n (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M−Y1(t) n = 2,

D+
d

dt
+ M− n > 2, even,

D+ + M−
d

dt
n > 2, odd.

(57)

As a final remark, we wish to emphasize that the strategic and far-reaching value of the treatment of Eq. (1) leads

to a resolutive formula achieved without requiring a priori the “mathematical nature” of the unknown “object” Yn .
Since, in the formal framework of a linear second-order difference equation, Eq. (1) incorporates further ingredients
such as noncommutativity and is in addition compatible with a possible dependence of Yn on continuous variables,
we believe that out treatment of Eq. (1) should attract the interest of researchers in many fields from, for example,
physical mathematics and engineering to economics, biology, and the social sciences, where discrete- or continuous-
variable-based mathematical modeling plays a central investigational role.
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