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Abstract. The paper is devoted to a quite general versionthef multicriteria optimal
(minimum volume) design of axisymmetric circulaat@s. The constitutive material is
considered as elastic perfectly plastic without dugtility limit and the actions are assumed
as quasi-statically variable within a given loadndain. In the design problem formulation
different resistance criteria are considered, irder to investigate all the possible structural
limit responses, and for each one a suitably chosaflety factor is chosen. The optimal
design problem is formulated as the search fomtii@mum structure volume according with
a statical approach. The features of the optimalctres will be studied through the
relevant Euler-Lagrange equations. A numerical &milon is presented utilizing an
appropriate discretization of the minimum volumelgem.

Sommario. Si presenta una formulazione generale del progettonale multicriterio di
minimo volume di piastre circolari assialsimmetgch Al materiale si assegna un
comportamento costitutivo elastico perfettamensgsgdo e non si impone alcun limite sulla
sua duttilita. Le azioni si assumono come variainilmodo quasi-statico e ci si riferisce ad
un opportuno dominio dei carichi all'interno del @e trovano definizione le loro varie
possibili combinazioni. Nella formulazione del pettp compaiono vincoli relativi a diversi
criteri di resistenza in modo tale che la struttustimale verifichi la sicurezza per diverse
opportunamente scelte condizioni limite; per ciascudi esse si sceglie un adeguato
coefficiente di sicurezza. La formulazione del ettg ottimale e rivolta alla ricerca del
minimo volume della struttura sulla base di un agmio statico. Le proprieta della struttura
ottimale sono determinate attraverso la deduzionkingerpretazione delle equazioni di
Eulero-Lagrange. In ambito computazionale il probke di minimo volume viene
discretizzato ed applicato ad una semplice strattur
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1 INTRODUCTION

As it is well known, more and more the interesttlué designers is devoted to the use of
structure constituted by materials exhibiting goawd comparable elastic properties in

traction and compression, exhibiting adequate t@si® reserve capacity after reaching the
yield stress and possessing suitably wide ductiryperties. Actually, in such a case, even
exhibiting different behaviours, the structure t@noptimally designed for the different load

conditions which can occur during its lifetime afuithermore, the mechanical problem can
be easily formulated.

The definition of appropriate models able to démerthe real load conditions for the
structure is a fundamental topic in order to ob&igood design. In general, it is possible to
assume that the load can be represented as a @imbiof fixed and variable load, and such
position is certainly adequate to the structuresatered in the present paper. In particular, it
can be assumed that the variable actions doesrdivie the dynamic behaviour and, as a
consequence, they reduce to be quasi staticalightar so, even if the load history is usually
unknown, it is possible to define a suitable adibisdoad domain. Furthermore, in the great
part of engineering applications, the variable o@dn be modelled as cyclic loads. As a
consequence, in the following we will refer to canations of fixed and cyclic loads.

Under such conditions, if the elastic limit is gvassed but the load intensities doesn’t
exceed suitable limits, the elastic shakedown thewovides useful tools in studying the
behaviour of the relevant structulé On the contrary, if the load multiplier exceetie t
elastic shakedown limit, then the structure is edsked towards a collapse condition, either
due to a plastic shakedown behaviour (alternatiagtigity) or to a ratchetting behaviour
(incremental collapse). Finally, for further incseay values of the loads, the structure is
eventually addressed towards an instantaneougselleondition.

The above defined structure behaviours can be gepted in the so called Bree-like
diagram, whose knowledge is of crucial importangeorder to establish if the assigned
structure/load system safely operates with potiptigfferent load conditions. On denoting
with &, and . two appropriate multipliers of the fixed and theclec load respectively, in

the plane &, £.) the relevant diagram has the form plotted in Fegu

A A
éc é.C
= R
I
S
E
$o b) $o

E: elastic behaviour
S: elastic shakedown behaviourF: plastic shakedown behaviour
R: incremental collapse I: instantaneous collapse

Figure 1: Typical Bree-like diagrams: a) mechangatllic load; b) thermal cyclic load.
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Imposing suitable limit values for the loads mulaps, depending on the special chosen
resistance criterion, several authors have forradléte optimal design problem for structures
constituted by elastic plastic material and sulei@db loads variable inside a given domain
and they have investigated both theoretical andpciational aspecfs’.

In all the cases each optimal structure shows e kahaviour just with regard to the
special limit state accounted by the chosen resistariterion, but no information can be
deduced in order to ascertain the safety requisitibsrespect to the other possible limit states
of the designed structure.

Such an occurrence can be avoided by making useitaible multicriteria optimal design
formulations, in which the optimal structure is strained to simultaneously satisfy different
criteria with appropriate safety factdfs™

The present paper is mainly devoted to the formaradf a complete multicriteria optimal
design problem imposing simultaneously constraintshe purely elastic limit, on the elastic
shakedown limit, on the plastic shakedown limit amd the instantaneous collapse limit,
obviously accounting for different suitably seletteafety factor values. In particular, the
optimal design of axisymmetric circular plates enlding will be formulated according with
the described criteria.

In this way it is possible to take into account stoaint on the purely elastic behaviour and
on the elastic shakedown of the structure subjgcigdo the fixed load and limited variable
actions (with appropriate different amplifiers) arder to ensure a good performance in
serviceability conditions, to investigate the stanal behaviour above the elastic shakedown
region considering simultaneously plastic shakedbwmit conditions and the instantaneous
collapse limit conditions for exceptional intensiigriable loads.

A continuous elastic perfectly plastic model wid Bdopted for the plate; the loads will be
treated as arbitrarily and quasi-statically vagaibkside a given load domain and in particular,
the acting loads will be described as the comlonatf fixed and cyclic loads; furthermore,
the restrictive hypothesis that the cyclic loacaiperfect one, namely for each basic load
condition an opposite one exists in the load spadepe accepted. In author’'s opinion, the
relevant formulation devoted to the case of cincplates possesses a practical interest cause
the frequent use of such a structure in indusaral civil engineering.

The optimal design problem is formulated as thecbefor the minimum volume design
whose elastic limit load multiplier, elastic shakech limit load multiplier, plastic shakedown
limit load multiplier and ultimate limit load mufilier are not smaller than suitably assigned
values. A statical approach is utilized. The Eullagrange equations related to the
optimization problem are deduced and interpretearder to point out the special features of
the optimal design.

The minimum volume design can also be formulatedtren grounds of a kinematical
approach and it is possible to prove that it presithe same solutidfi*’. Such formulation
is here skipped for the sake of brevity.

At the same way the optimal design, under the de=trbehavioural constraints can be
formulated as the search for the maximum load piiéti for the structure of assigned volume
and performed following a statical or a kinematiagproach. Even in this case it can be
proved that under adequate conditions the two tiaguybroblem provide the same solution as
in the case of the minimum volume destgn’.

In order to utilize the optimal design formulatifor computational aims it is necessary to
introduce a suitable discretization. In particulam, the present paper a discretization
procedure, applied to the minimum volume desigrbl@m formulated utilizing the statical
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approach, is proposed. Even this last formulatenréated as problem in the calculus of
variations and the related Kuhn-Tucker equatioesdécussed.

A simple numerical application concludes the papeparticular, a steel plate is designed
taking into account an elastic shakedown behavimigerviceability conditions and a limit
state of impending collapse in the cases of exaegtivery high loads. The obtained results
allow us to confirm the theoretical expectationstémms of behavioural features of the
obtained optimal design.

2 THEELASTIC PLASTIC MODEL

Let us consider an axisymmetric solid circular @laf radiusR, referred to a cylindrical
co-ordinate system,,z with the origin in the centre of the plate midglane and with the
z-axis normal to this plane and oriented downward (FigBje The plate has variable
thicknessH(r) and let us suppose that it is subjected to a llpdsgmmetric, transverse,

mechanical, variable loaB(r,t), beingt > Othe time variable.

c)

4 L N r
d) z
Figure 2: Circular plate a) reference system; h)drgeometry and acting load.

The classical Love-Kirchhoff plate kinematical mbde adopted, together with the
assumption of small displacements and negligiblertim and viscous forces; as a

consequencet is not a physical time but just a pseudo-time &?{dt) IS a quasi-statical
load. Furthermore, the material exhibits an elgstidectly plastic behaviour and no ductility
limit are considered.

Let us assume now the simplifying hypothesis thathbelastic and plastic strains are
linearly distributed through the plate thickness;hsthat the total (bending) curvatures can be
decomposed into an elastic and a plastic part, yame
K p

r

KJ

Kr
Kz9

Ke
Ks

K = +

=K®+KP in[oR], t=0 (1)

The equations governing the plate response aralas/f
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- compatibility
K,=-w' in[0,R], t=0 (2a)
1 .
Kg===w in [oR], t=0 (2b)
- equilibrium
(M,) =(M,) +rP=0 in[0R], t=0 (2c)
- constitutive law
M=1BK® in[0,R], t=0 (2d)
#(M)=NM -M, 7<0 in[0OR], t=0 (2e)
£20, #£=0 in[oR], t=0 (2f)
KP=N£& in[oR], t=0 (20)
together with the following mechanical and kinermoaitboundary conditions (BCs):
atr = 0: w(0)=0 and Q(O)z[(rM r)'—Mﬁ} =0 (3a)
r=0
atr =R: w(R)=0 and either (3b)
Mr(R) =0 and V\/(R) is free (simply supported plate) or (3¢)
w(R)=0 and M, (R) is free (clamped plate). (3d)

In Eqns. (2-3)w is the deflection M :|Mr Ml9| the bending moment vector aig@l the

shear force] = EH3/12(1—|/2) the plate-bending stiffness, with Young’'s modulus ana
Poisson’s ratio, while matrix

1 v
v 1

B = 4)

represents the specific stiffness. Furthermavk, =ayH2/4 is the plate yield bending
moment, ands, the material yield stress. Assuming, for the saksimplicity, the Tresca

yield criterion, the matrixN of the unit external normals to the yield surfassumes the
form:

N,
N,

1 -10 0 12 -142
0 0 1 -1 -1/4/2 142

N =

(5a)

while
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P=l111 142 Y42 (5b)

is the vector of the specific plastic resistan€@sally, @ is the plastic potential vector arfé
the plastic activation vector.

As already stated, the Ioala(r,t) is a function of the parametérand usually it is an
unknown variable action, namely the real load mst@mn’t be expected. On the other side it
Is possible to establish reasonable limits for libed intensity during the lifetime of the
structure (such a criterion is largely used by maofsthe structural international codes).
Furthermore, we are interested to evaluate thetsiial behaviour for increasing load values.
As a consequence, let us denote oy 0 a suitable load multiplier and let us indicate by
&P(r,t) the relevant amplified load as a function of timelLet us assume thafP(r,t) is

represented as a path arbitrarily shaped withilvengdomain®Q of the load space, namely,
any chosen path withi® is an admissible load history. Taking into accotlat the load
function is a suitable combination of different gl load conditions potentially
simultaneously acting (basic load conditions), tlmmain Q can be shaped as a convex

hyperpolyhedron, whose vertice®(r), i01(b)={12....b}, are the basic load¥. As a

consequence, any load inside can be modelled as a linear combination of thecbasids,
namely:

Pr)=c3AORE) in0R, t=0 (62)
i=1
where the coefficientg, must satisfy the following conditions:
B (t)=0, S5 (t)=1 in[o,R], t=0 (6b,c)
i=1

Due to the presence of the load multipligr the load domain? just possess a constant
shape, while it can expand or shrink homothetically increasing or decreasing,
respectively.

The above position extremely simplify the probleatuson; actually, by virtue of Eqns.
(6), it is sufficient to satisfy Eqns. (2) in thescrete spacd (b) of the basic loads, instead of
in the continuous spade

3 CYCLIC LOADS AND STEADY-STATE ELASTIC PLASTIC STRUCTURAL
RESPONSE

Let us introduce now a further simplifying hypotises.e. that the acting load is defined as
a combination of fixed mechanical load and cycliecmanical load. According to the
previously introduced loading scheme, let us demdth P,(r) and P,(r), OiOI(b), the
reference fixed mechanical load and the referenegicc mechanical load, respectively.
Furthermore, let us assume the hypothesis thatybkc load is a perfect one, namely for
each basic load condition an opposite one existearioad space (actually, a generic cyclic
load can be always decomposed in the sum of a foatland a perfect cyclic load).

Finally, according to the previously defined synshaf, P,(r) and &, P,(r), 0iO1(b),
represent the amplified fixed and perfect cycliads, beingé, = Cand ¢, = Othe fixed and
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the cyclic load multipliers, respectively.

Due to such a load combination, after a transiéatsp which also depends on the initial
conditions and on the special real loading path sthucture eventually exhibits a steady-state
response which is characterized by the same peitpdieatures as the loads and it is
independent of the above referred initial condaiti’

Actually, for the described load conditions theagdigstate response of the plate, in terms
of generalized stresses and strains, just depentteecsequence of tHe amplified basic load
conditions P (r)=&, P,(r)+ &, P,(r), JiO1(b), obtained as combination of the amplified

reference fixed and cyclic loads. As a consequeiheeglastic plastic steady-state response of
the plate in the cycle can be obtained by an aisalgected just for theb basic load
conditions.

For the purposes of the present paper it can bg wssful to consider the steady-state

elastic plastic response of the plate subjectedtquihe amplified perfect cyclic loads P, ,
OiO1(b), where&, is a selected cyclic load multiplier such titet &, < &, results, being
Eé the ultimate purely cyclic load multiplier (Figugg.

5“

Figure 3: Selected cyclic load multiplier on theeBdiagram.

According to the previously described hypothedss elastic plastic steady-state behaviour
of the plate to the cyclic loading is describedligy following equations:

KE+ (WCEi ) =0 in(0,R) +BCsonw;, Oidl(b) (7a)
Kgci+%(w§)' =0 in(0,R) +BCsonws, OiOl(b) (7b)

(r|v| s ) - (|v| S ) +rP; =0 in(O,R) +BCsonM§, OiOI(b) (7c)
ME=I1BKE in[0R] (7d)
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Zy=-@, =M, n-ENM5+sA, in[oR], DiOI(b) (8a)
Z;20, A,=20, 20A,=0 in[0,R], TiOI(b) (8b)
KP=NA; in[0R] (8c)

In Eqns. (7)KS, w5 and M are the purely elastic response to the refereydicdoads

ci?
in terms of (bending) curvatures, deflection andd¥xg moment field vector, respectively. In
Eqgns. (8)Z, represents the opposite of the plastic pote@jaland S is a time independent

symmetric structural matrix which transforms thaspic activation intensitied ; into plastic
potentials.

If 0<é& <& is assumed, being? (Figure 4a) the elastic shakedown limit load
multiplier, Eqns. (7)-(8) admit the vanishing sadmt A, =0, Oi O I(b), and in the steady-
state phase the whole structure behaves elastitblff < &, < & is assumed (Figure 4b),

Eqgns. (7)-(8) admit a non-vanishing solutiel); and the plate exhibits an elastic plastic
behaviour.

Figure 4: Load multipliers at the limit state of:edastic shakedown; b) plastic shakedown.

Taking into account Eqgns. (7)-(8), for a selectatug of the cyclic load multiplie€,, the

fixed load multiplier related to the elastic/plasshakedown Iimit,f('), can be determined
solving the following probler?:

KE+ (WOE ) =0 in(0O,R) + BCs onwf (92)

K§0+F1(WOE)' =0 in(0,R) + BCs onw§ (9b)
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(rM rEo)" —(M 50)' +rP, =0 in(0,R) + BCsonM& (9¢)
ME=1BKE in[0R] (9d)

&(&)= (r}:%({o subject to: (10a)
Z,(&)-&NMG+SA20 in[oR], DiDI(b) (10b)
A;20 in[OR] (10c)

In Egns. (9)-(10)K¢&, w; and MOE are the purely elastic response to the refereimed f
loads in terms of (bending) curvatures, deflectimmd bending moment field vector,
respectively; A, represents a fictitious plastic activation inténsiector related to the
elastic/plastic shakedown limit. If Egns. (10) podes the vanishing solutiond =0,

0i01(b), they become a classic elastic shakedown limid iwaultiplier problem, otherwise

the elastic plastic response to the purely cydadlis involved and the problem becomes a
plastic shakedown limit load multiplier one.

4 MULTICRITERIA OPTIMAL DESIGN OF MINIMUM VOLUME

Let us consider the plate described at the prevemesion and let us choose the plate
thicknessH (r) as design variable. A typical design of the refdvalate can be performed

for any choice of the functiom (r) defined in[0,R]. With the plate subjected to a loading
scheme as previously described, we are interesteétermine the/a special desighr) of
minimum volume and whose elastic limit load, elasshakedown limit load, plastic
shakedown limit load and ultimate limit load aré samaller than appropriate assigned values,
i.e. the structure basic loads (combinations oédixand perfect cyclic loads) alternatively
amplified by £&F and £&F, &&; and &&°, &€& and &&), &&; and &&/, where &,

EE, &, &3, &5, &5, &, & and & are positive assigned parameters, behaves
elastically, eventually shakes down, exhibits aerahting plasticity behaviour or prevents
the instantaneous collapse, respectively.

On the ground of the statical approach the mininmatame multicriteria optimal design
can be formulated as follows:

. 1
min —V =
(e WF o K5 KEMEME RS AE A 23) 201 (112)
. R
min rH(r)dr
(HE W5 W6 KEKEMEMEAS AT A xsi)jo )
subject to:
H(r)=0 in[0R] (11b)
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&£-¢<0 (11c)

KE+ (WOE ) =0 in(0O,R) + BCs onwf (11d)
K§0+F1(WOE)' =0 in(0,R) + BCsonw§ (11e)

(rM ,Eo)" —(M 50)' +rP, =0 in(0,R) + BCsonM§ (11)
ME=1BKE in[0R] (11g)

KE+WE) =0 in(0.R) +BCsonwE, DiDI(b) (11h)
K50i+?1(w§)’ =0 in(0,R) +BCsonwE, Oi0I(b) (L1i)
(ME) ~(ME,) +rP,=0 in(0.R) +BCsonME, TidI(o) (11)
ME=1BKE in[oR], DiOl(b) (11K)

~@®F =M, n-N(EZEME +EEEME)=0 in[0R], DidI(b) (110)

-@° =M, n- WM T+, M) +81,20 in[oR], TiOIb)  (11m)

2520 in[oR] (11n)

Zg=-@ =M, n-NEEMG+sA; in[oR], OiOI(b) (110)
72520, AL =0, 2025 =0 in[o,R], DiOI(b) (11p)
~o" =7, -E&FME+sA5 =0 in[o,R], DiOI(b) (11q)
Af =20 in[oR] (11r)

@' =M, n-M{eGME +&Z ME)+SA, 20 in[oR], OiDIb)  (11s)

A z0 in[oR], TiOl(b) (11t)

where, besides the already defined symbdlss the plate volume@®, @°, @, @™ and
@', Till(b), are the plastic potentials related to the elabgbaviour, to the elastic
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shakedown behaviour, to the plastic shakedown farelp cyclic load, to the plastic
shakedown for a combination of fixed and cyclicdsaand to the instantaneous collapse,

respectively. Finally,A5, OiO I(b), are plastic activation intensities related to tyelic

loads in the region of the plastic shakedown agd AS , A}, DiO1(b), are fictitious plastic

activation intensities related to the elastic skdaken limit, to the plastic shakedown limit and
to the instantaneous collapse, respectively.

Any solution to the constraint Eqns. (11b-t) spesifa feasible desigth-l(r) admitting
elastic, shakedown and ultimate statical load mligtis not smaller than the above mentioned
values. The equatioti=¢ holds for the optimal design, as it will be showater on.

The Euler-Lagrange equations related to problen gidvide necessary conditions for the
optimal design and useful information about theawoi®d design features. Applying the

Lagrange multiplier method, denoting byx=0, &o(r)=¢&lte oo, Euolr)r,
f)?o(r)zfl)(ro X190|’ fﬁci(r)zflﬂrci ﬂaci|’ 5Uci(r)/r’ aci(r)zfl)(rci Xﬁci|’
AE(r)=0, A3(r)=0, %<0, vy, 20, a, A7 (r)20, fF<0, A'(r)=0 and f' <0 the

Lagrange multipliers (withé a scaling factor not subjected to variations), ltlagrangian
reads:

W = yIRrH (r)dr+c (8 - ¢) (12)
+j§{(€tﬂro)[KrEo+(Wg )"}+(<rﬂ,90){K19EO+%(W§ )' }}r dr
+15(& Uo)[(f'\/l e} -(mE) + rPo}dr + [} IME -1 BKE]r dr
+éf0{gﬂru |: rei W|) } E,uﬁm |:Kl9Eci+?1(W§)'}}rdr

+
+ zfo EUCI [ I‘CI 79ECI )' + rP(;i }dl’

+§j§(5)~(c, [lvl E BKE]rdr

i=1

b ~ ~f — _
“SRAEM, p-N(EZEME + ZZEME |rar

i=1
b ~ ~( _ _

- RASM, - N (EZSME + &25ME )+ sAS]rar
i=1
+X PBASrdr
b R= J cEF M E F
-3 ,(M, 7 - NEEFME + SA7 Jrdr

b ~ ~
+ a_zleR/lciF (M yN=NEFME + S/]CFi)r dr
|=

Meccanica dei Materiali e delle Strutture | 1 (2010), 3, PP. 101-122 111



L. Palizzolo and A. Caffarelli

b _
—_zljg*/?@ (2, ~NEETME +SA [rar
1=
+EPBA rdr
_bR‘“l[ _‘“(—l E, 77l E) |]
21.[0 Ai My” N ggoMO +4t£c Mci +S/‘Oi rdr
b
+3 [R PO rdr
i=1
where y = 1is a dimensional constant.
With the assumption that the unknown functions ase smooth as necessary, with
integration by parts where appropriate and rememdpethat ¥ is required to take a

minimum with respect to the variables of probler)(And a maximum with respect to the
Lagrange multipliers, the Euler-Lagrange equatinesas follows:

£-£<0, ¢20, ¢(&-¢)=0 (13a)

Ko+ (WOE ) =0 in(0O,R) + BCs onwf (13b)
K19EO+F1(W(I)E ) =0 in(0,R) + BCsonw§ (13c)

(rM ,Eo)" —(M 50)' +rP, =0 in(0,R) + BCsonM§ (13d)
ME=1BKE in[0R] (13e)

KE + (W(E) =0 in(0,R) +BCsonw;, OiOl(b) (13f)
K50i+?1(w§)’ =0 in(0,R) +BCsonwE, Oi0I(b) (13g)
(ME) -(ME,) +rP, =0 in(OR) +BCsonME, DiOII(b) (13h)
ME=1BKE in[oR], DiOlI(b) (13i)

~@F =M, n-N(EZEME +EEEME)=0 in[0R], DidI(b) (13))
-®F >0, AF20, ®AF=0 in[0,R], TiOI(b) (13h)

_qs=Myn_,&/c(ggSMoE+ga%\/|dE)+s/loszo in[o.R], DiOIb) (130
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-®°20, A°20, ®°A°=0 in[0,R], TiOI(b) (13m)

- 520, A$20, f5A$=0 in[0R] (13n)

—@5 =M, n-N& ME+sAf in[oR], DiOI(b) (130)
-@f 20, vy, 20, &5y, =0 in[0,R], OiOI(b) (13p)

~@f =z, -NEEFME+sAl in[oR], OiOI(b) (13q)

-@F 20, AT 20, @7 AF =0 in[oR], DiOI(b) (13r)
-tF 20, AF 20, f*AF =0 in[0R] (13s)

@' =M, n-MeZME + &2 ME)+sA, 20 in[oR], DiOIb) (13
-@' 20, A' 20, @'A' =0 in[o,R], OiOI(b) (13u)
-f'20, A}, 20, #Pa, =0 in[oO,R], OiOI(b) (13v)

b oo, ~ - e~ e~ -
ZIOR[%EMC?N/ME +EEMEINAS + ESMINAS + ESMINAS + ET M NAT
i=1

(13w)

+&F (I\ﬁf}Nyi —aMENAL + I\ﬁ(ﬁN/]iF)u?o' MENA' + & MENA ]r dr=c
(r tteo) (1) =0 in(OR) (13%)
(r 2, ) ~ (54 ) =0 in(0,R), OiOI(b) (13y)
U-1By,=0 in[0R] (132)
Ui—1Bx, =0 in[o,R], OiOl(b) (13a)
Yoo+ N, é(?oE/\iE FEASHEEAF +EA )+ (U,) =0 in(OR) (13b')

Xso + Nﬁzb:(_oE/]iE +EAS+E AT+ & A )+%(Uo)' =0 in(OR) (13c’)

i=1
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Xer t Nr[chAiE +ESAS+ES (Yi -aA§ "'/]iF)"' & A ]"‘ (Ui )" =0

0.R), diOl(b)

(13d")

I

Xeoi + N&[C?cE/]iE +ESAS+ES (yi -aAf +AiF)+<?clAil ]+%(Ui) =0
0.R), diOl(b)

-f5+sSA%20 in(0,R) (13f)

(13¢))

-fF+sAF 20 in(0R) (139’
aM7-aN&SM§ +2asSAt -y, 20 in(0,R), DiOlI(b) (13h")

A 20, Af[aM p-aN&FME +2as) -5y )=0 in(0.R), DiOI(b) (130)

-f'+sA' 20 in(0,R), OiOI(b) (135)

di (13k’)

E b E
g(r)=—y+f(%>BKo + _z;%qBKcij—
1=1 dH

+7 (/liE +AS+y —aAl +AT + A/ )%so in [0,R]

ie

H=0, Hg=0 in[OR] (130)
The physical meaning of the Lagrange multipliers &g easily recognized, namely:
y, =A%, 0i01(b), as results by the comparison of Eqns. (130,p)Ems. (13h',i") with, as

usual, a=1. In addition, with the above position fa, Eqgns. (13w,d’,e’,k’) transform,
respectively:

b ofep - . . - 14a
5 PG NENAE + EMENAE + EMENAS + ENENAS + rNENAF (199
i=

+EFMENAT + & MENA +EMENA Jrdr=c

Xei + N JEEAE+ZSAS +EFAF + 2 A |+(u) =0 in(OR), DiDI() (14b)

!

Xesi + N&[E:E/]iE +ESAS+EFAT +§?c|/]il]+%(ui) =0 in (OR)’ bid |(b) (14c)
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14d
g(r):—y+g(jg/@3|< +z,%q|3K ij (14d)

+7 (/liE+AiS+/liF+/li')%so in[0,R], DiOI(b)

e

1

Furthermore A=, A5, AF andA', OiO1(b), are plastic coefficients related to the elastic

limit, the elastic shakedown Ilimit, the plastic kbdown limit and instantaneous collapse,
respectively, compatible with the plastic curvatueetors:

b [ _ _ _
X5 =N El(foE/‘iE +E AT+ E AT+ E A ) (15a)

XE=NEEAE+ESAS+EFAT +E/A') DI (o) (15b)

In Egns. (13b’-€e’);u, andu;, Ui I(b), are deflections, while, in Eqns. (13z,a), and
X..» 0i0I(b), are elastic curvature vectors associated to émelihg moment vectorg,
and g, JiO1(b).

The constantc, that has the role of scaling factor for all theeknatical Lagrange
multipliers, cannot vanish because it equals thereal work in Egns. (13w), and thus, by
Eqgns. (9a) it result§ = ¢ and, as usuak =1 can be stated.

In Egns. (13n,s,v,f,g,j)) f5, 7 and fiI , i I(b), represent plastic potentials related

to the optimal design at the limit state of elassicakedown, plastic shakedown and
instantaneous collapse, respectively.

Finally, Egns. (13k%’) provide the relevant optimality conditions fdret design; actually
they describe the featuring properties of the ogtimlesign. They take into account the
interaction between the different behavioural caists through the common argumemit.

In the particular case that the solution to prob(@d) implies thatH = Owithin a plate ring,

then the behavioural constraint interaction is active g(r) <0; otherwise, in the relevant
case ofH > Owithin the ring, then, ir[O,R], the following equation holds:

H(r)>0, g(r)=0 (16a,b)

di (16c¢)
dH

where the first member in Egn. (16c) representsstesitivity, with respect to the design
variable H , of the plastic dissipation density and the seamednber in the same equation is
the analogous sensitivity of the modified cost peit area of the plate middle surface, the
latter being the sum of the standard unit costamddditional energy term accounting for the

interaction between the primary elastic curvatuke§ and K5, and the conjugate elastic
curvaturesy, and x, . Equations (17) turn out to be a generalizatiothtopresent contest of
the well known theorem of Drucker-Prager-Shield-®uo®/ % of optimal plastic design.

B8 (A% + A% +AT A ) =y e pemcs |
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5 APPLICATION

Let us consider the simply supported steel circyl@ate of Figure 5 subjected to an
axisymmetric load condition constituted by a conrd fixed loadQ applied on the centre

of the plate and to a perfectly cyclic ring radialiplek, —k < k< + k, applied on the outer
edge of the plate.

Figure 5: Assigned circular plate and relevant loaddition.

In order to numerically obtain an optimal desigrtlad above described circular plate with
the constraints considered at the previous seciiors necessary to perform a suitable
discretization of the structure and, consequewntifthe problem itself. Actually, the solution
of the minimum volume problem (11) or of the rethteuler-Lagrange equations (13) is a
very hard task. In the following, a discretizatiohnthe relevant minimum volume problem is
developed and it represents an extension at theemrecase of previously proposed
discretization models.

First of all, the plate is discretized indoring finite elements identified by the valuesof
selected radii; consequently, the design variabtesrepresented by the thicknesses of the
relevant rings. In the typical ring the thickness vary according to suitably chosen shape
functions. Therefore, the plate thickness can Ipgesssed in a discrete form by:

H(r)=0,(r)yy in[oR] (17)
where @, is the suitably chosen shape function vector and
Y~H = [YH,l Yo K YH,)\] (18)

is the vector of thickness evaluated\aselected radii (design variables).
At the same time, the deflection fields relatedh® fixed and the cyclic basic loads must

be discretized by choosing suitable vectém‘zbE ,WciE), the components of which represent

the relevant deflections evaluated at tipenodes of the discretized structufe =1 +1).

Therefore, the compatible deflection field in Eq(isld,e,h,i) related to the fixed and cyclic
loads, respectively, can be expressed as:

wE(r)=e,fWE in[oR]| (19a)
we(r)=e,WE in[oR], CiOI(b) (19b)
where @,, is the suitably chosen shape function vector and

VVOE = hNol,El Wol,zz K WoEqJ (20a)
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Wcliz :chlil WCEZ K WcIiE,qJ (ZOb)

are the defined deflection vectors.
Finally, even the plastic activation vectdf, related to the plastic response of the plate

just to the amplified cyclic loads and the fictitoplastic activationgly, A, Ay . Ji 0 1(b),
related to the elastic shakedown limit, to the gptashakedown limit and to the instantaneous
collapse, all functions of radius must be represented as functions of discretenpeeas;
following the same criteria as before, they camXgressed, respectively, as:

Ai()=0,0)A5 Tioib) (21a)

A(r)=0e,(r) A (21b)

A (r)=0,(r)A (21c)

A (r)=0,(r) Ay 0idl(b) (21d)

being®@, =0, (r) the suitable chose®x 6q shape function matrix and

A5 =|Af A5, kAR oioi) (22a)

K=/, A, K Ag] (22b)

A=/ Moy KAy (22c)

A=Ay Aus K Agg| DiOIDb) (22d)

the chosen discrete parameter vectors.
Making use of the virtual work principle, takingtanaccount Egns. (19), the continuous
equilibrium Eqgns. (11f,)) transform into algebrdicystems composed by equations for

each basic load condition, namely:

jORéW[(rM e) -(mE) + rPO} rdr =0 (23a)

s éw[(rM e) —(ms) +rp, } rdr=0 Oi0I(b) (23b)

With the above positions, problem (11) transformgoithe following mathematical
programming problem:
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1

( E EErEninE ESFFI)Z_V:
\{ ,c,‘,VVO W Kg Kg Mg Mg A A AN Ay T (24a)
: R
(1 £ WE KE KB ME M E /6 /A )U0 Our)rer
subject to:
Y, 20 (24b)
&£-¢<0 (24¢)
KE+(@,) WE=0 in(0R) (24d)
K §o+%(a )WE =0 in(0.R) (24€)
jgéw[(rM rEO) - (M ﬂEO) + rPO}rdr =0 (24f)
ME=I1BKE in[0R] (249)
KE+(@,)WE=0 in(0R), OiOI(b) (24h)
Kgci+%(eaw)'wciE =0 in(0,R), TiOI(b) (24i)
jg*éw[(rlvl r'ii) —(M Eci) + rpci}rdr =0 Oidl(p) (24))
ME=1BKE in[oR], TiOI(b) (24k)
~ o =[FG,M, 7 -N(ZEME + ZEME |rar=0  DiOI(b) (240)
~@%=[RG,|M,n-N(EZSME +EESME )+ s@,8rdr =0 DidlI(0)  (24m)
AS20 (24n)
28 =-° = 7@, (M, n-N&ZFME +s0,/ )rar  DiO(b) (240)
z220, Af 20, Z2A =0 0iOI(b) (24p)
~@ =[75,|z2 - N&&FME + 50,4 rdr =0 DiD1(b) (240)
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AF >0 (24r)
_@P :jg*ég)[My,;— & M + ) M§)+S@AA'Oi}rdr >0 Oiol() (24s)

;=20 Oinl(b) (24t)

where ®°, @%°, @, @™ and @, 0iO1(b), represent the discretized forms of the

relevant plastic potentials expressed in an ap@atepintegrated form.

As it is possible to observe, even if discretizbée, above reported search problem (24) is a
strongly non-linear mathematical programming problactually it involves the steady state
elastic plastic response of the structure undeliccymading. As a consequence, a suitable
linearization must be adopted and an appropri@etive technique must be utilized for
reaching the solution.

Therefore, reference will be made to a special rtiegle, already utilized by the same
authors in previous papets based on the main assumption that all the qiesitilepending
on the design variables can be expressed at e@gphastlinear functions of these variables,
l.e., in particular, as the sum of their valueghett previous step plus the product of their
partial derivatives with respect to the design afales times the increments of the design
variables.

At each step, the computational procedure coneisteur different phases characterized
by the circumstance that in each phase some vasiablthe original problem are assumed as
known values, while in the same phase other vaiabllues are brought up to date. In
particular, the first phase is related to a sugadsumption for the design variable values, the
second one is devoted to the determination of tlrelp elastic response of the structure to
fixed and cyclic loads, the third one is devotedhite® computation of the increments of the
design variables, while in the last fourth phase dlesign variables are brought up to date.
Obviously, when all the described phases have leffected all the variable values are
brought up to date and, therefore, a new step taah $he procedure is stopped when the
design variable values computed at two success$eps sliffer less than a suitably prefixed
tolerance.

Even the described iterative technique implies so&ution of linear and non linear
problems, but it results much less onerous thansttetion of problem (24), in terms of
computational cost. It is worth noticing that tleusion obtained by means of the described
iterative procedure fulfil all the Kuhn-Tucker cotioins of problem (24), as it is possible to
prove, but this procedure is skipped for the sdkeevity.

In order to apply the described technique at thgobi supported circular plate plotted in
Figure 5, let us discretized it into five ring elents (Figure 6) with constant thicknegg

(j=1K 5). The following data have been considered for thenerical computation:
R=15cm, o, =4OkN/cm2 , E= 2100(]<N/cm2 , v=03. For computational purposes the

concentrated fixed load) applied on the centre of the plate has been stedilay an
uniformly distributed equivalent load acting on wfigiently small circular area, and it has
been assumedQ = 8kN Furthermore, for the perfect cyclic ring radiabuplek,
-k <ks+k, applied on the outer edge of the plate=0.5308 kNcni cn has been
assumed.
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AN\

~RI5~= R[5~ R[5~ R/5 = R/5~
Figure 6: Discretized circular plate and load ctindi

Although in the described problem (24) constramtsall the different possible structure
limit behaviours have been considered, in the mptespplication, constraints just on the
elastic shakedown limit and on the instantaneoutapse limit will be simultaneously
imposed, in order to take into account the elast@baviour of the plate in serviceability
conditions and, at the same time, to utilize itstdity features and for preventing the collapse
in the cases of exceptional very high loads. THeweng values have been assigned to the

load multipliers:&>° =&° =1, & =1, &/ =2 and¢& =1.2.
The optimal thicknesses of the elements deducethéysolution to problem (25) are:
Yy, =1.310cm,, Y, , =0.591cm, Y, ; =0.452cm, Y, , =0.478cm, Y, ; =0.486cm.

6 CONCLUSIONS

The optimal design of minimum volume of circulaisgxnmetric steel plates subjected to
loads, suitable combinations of fixed and perfgaiic ones, varying inside a given domain
has been studied, taking contemporaneously intoumtcthe different resistance criteria
related to all the possible structure limit behavjas described in the space of the fixed and
cyclic load multipliers (Bree diagram). A continoalastic perfectly plastic model has been
considered for the plate and the loads have bermghtit as quasi statically variable inside the
given domain. The classical Love-Kirchhoff plate deb has been employed and the
hypothesis of small displacements and strains leas lassumed. Furthermore, no ductility
limits have here been considered. The optimal depi@blem has been formulated as the
search for the minimum volume design whose eldistit load multiplier, elastic shakedown
limit load multiplier, plastic shakedown limit loachultiplier and instantaneous limit load
multiplier be not smaller than suitably assignetl&sa. For each criterion, a corresponding
suitably selected safety factor has been imposkd.Eluler-Lagrange equations related to the
optimization problems have been found and integokeso that the special features of the
optimal design have been pointed out. In particuls optimality condition for the plate turn
out to be a generalization to the present conteatwell known theorem of optimal plastic
design.

For computational purposes, a discretization ofréhe@vant minimum volume problem has
been developed. It utilizes suitable shape funstimndescribe the plate thickness field, the
compatible deflection field and the plastic activat fields. The discretized minimum
problem has the form of a non-linear mathematicabmmming one, and its solution has
been reached by using an iterative approach, basede linear programming. It is possible
to prove that the design and behavioural varialilzstively obtained satisfy the Kuhn-
Tucker conditions related to the original discretizproblem, i.e. the obtained solution
satisfies the original problem.
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A simple application has been worked out; the ole@iresults confirmed the theoretical
expectations in terms of behavioural features efdhtained optimal designs.
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