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Abstract. Extending the main result of [12], we classify globally generated
vector bundles on Pn with first Chern class equal to three.

1. Main result

The main result of the paper is the following:

Theorem 1.1. Let E be a globally generated vector bundle of rank k on Pn. If
c1(E) = 3 and c2(E) ≤ 4 then one of the following holds:

(i) c2(E) = 0 and E = OPn(3);
(ii) c2(E) = 2 and E = OPn(2)⊕OPn(1);
(iii) c2(E) = 3 and E = OPn(2)⊕ TPn(−1);
(iv) c2(E) = 3 and E = OPn(1)⊕OPn(1)⊕OPn(1);
(v) c2(E) = 4 and E = OPn(1)⊕OPn(1)⊕ TPn(−1);
(vi) c2(E) = 4 and E = OP3(1)⊕ ΩP3(2);

(vii) c2(E) = 4 and E = ΩP4(2);
(viii) E is given by an exact sequence 0 → O⊕sPn → G ⊕ O⊕rPn → E → 0, where

h0(E∗) = r, h1(E∗) = s and G is a bundle as above.

Theorem 1.1 immediately implies the following:

Corollary 1.2. Let E be a globally generated vector bundle of rank k on Pn. If
c1(E) = 3 then E is either as in Theorem 1.1, or one of the following holds:

(i) c2(E) = 5 and E = Ω2
P4(2)∗;

(ii) c2(E) = 5 and E = TP3(−1)⊕ ΩP3(2);
(iii) c2(E) = 5 and E = TPn(−1)⊕ TPn(−1)⊕OPn(1);
(iv) c2(E) = 6 and E = TPn(−1)⊕ TPn(−1)⊕ TPn(−1);

(v) c2(E) = 6 and 0→ OPn(−2)⊕ ΩPn(1)→ O⊕k+n+1
Pn → E → 0;

(vi) c2(E) = 7 and 0→ OPn(−2)⊕OPn(−1)→ O⊕k+2
Pn → E → 0;

(vii) c2(E) = 9 and 0→ OPn(−3)→ O⊕k+1
Pn → E → 0;

(viii) E is given by 0→ O⊕sPn → G⊕O⊕rPn → E → 0, where h0(E∗) = r, h1(E∗) = s
and G is a bundle as above.

This note is a natural extension of [12]. Therefore, we still want to thank the
referee of that paper for his help.

Globally generated vector bundles E on Pn with c1(E) = 3 have also been studied
independently, and using a different approach, in [10] and [1] (cf. Remark 2).

* Research supported by the “Ramón y Cajal” contract RYC-2009-04999, the project
MTM2009-06964 of MICINN and the ICMAT “Severo Ochoa” project SEV-2011-0087 of
MINECO.
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2. Proof of Theorem 1.1

We work over the field of complex numbers. Let E be a globally generated vector
bundle on Pn of rank k, and let E∗ denote its dual bundle. In view of the following
result, we will assume throughout the paper that h0(E∗) = h1(E∗) = 0.

Lemma 1 (First reduction). Let E be a globally generated vector bundle on Pn. If
h0(E∗) = r and h1(E∗) = s then there exists a globally generated vector bundle G
such that h0(G∗) = h1(G∗) = 0, and an exact sequence

0→ O⊕sPn → G ⊕O⊕rPn → E → 0.

Proof. Just put together [12, Lemmas 3 and 4]. �

Let c1 := c1(E) and c2 := c2(E) denote the first and second Chern class of
E , respectively. We point out that c21 − c2 ≥ 0 since E is globally generated.
Furthermore, in order to classify globally generated vector bundles one can assume

c2 ≤ c21
2 thanks to the following:

Lemma 2 (Second reduction). Let E be a globally generated vector bundle with

Chern classes c1, c2. If c2 >
c21
2 then there exists a globally generated vector bundle

K∗, whose dual K is given by the exact sequence

0→ K → O⊕h
0(E)

Pn → E → 0.

In particular, c1(K∗) = c1 and c2(K∗) = c21 − c2 <
c21
2 .

Proof. Consider the kernel K of the epimorphism O⊕h
0(E)

Pn → E → 0. �

Globally generated vector bundles with c1 ≤ 2 were classified in [12]. From now
on we concentrate on the case c1 = 3. We start by considering the cases in which
E admits a global section whose zero locus is a hypersurface in Pn:

Proposition 2.1. If h0(E(−3)) 6= 0 then E = OPn(3). Moreover, if h0(E(−3)) = 0
then h0(EK(−3)) = 0 for every linear subspace K ⊂ Pn of dimension greater than
one.

Proof. The first statement was shown in [12, Lemma 5]. On the other hand, if

h0(EK(−3)) 6= 0 then EK = OK(3) ⊕ O⊕k−1
K by the first assertion and Lemma 1.

Therefore E = OPn(3)⊕O⊕k−1
Pn (see for instance [11, Ch. I, Theorem 2.3.2]), whence

h0(E(−3)) 6= 0. �

Proposition 2.2. Assume h0(E(−3)) = 0.

(i) If h0(E(−2)) 6= 0 then either E = OPn(2) ⊕ OPn(1), or E = OPn(2) ⊕
TPn(−1).

(ii) If h0(E(−2)) = 0 then h0(EK(−2)) = 0 for every linear subspace K ⊂ Pn

of dimension greater than one.

Proof. To prove (i), we essentially argue as in [12, Proposition 3.2]. If n = 1 the
result is trivial, so we assume n ≥ 2. Let s ∈ H0(E(−2)) be a non-zero section.
Consider the corresponding exact sequence of sheaves

0→ OPn → E(−2)→ F → 0,

and let Z ⊂ Pn be the zero locus of s. We claim that Z is a finite scheme of length
at most one. To get a contradiction, let P,Q be two points (maybe infinitely close)
where s vanishes and let L ⊂ Pn be the line joining P and Q. Restricting to L and
twisting, we get

0→ OL(2)→ EL → FL(2)→ 0.
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Since E is globally generated and FL(2) is a quotient of EL, we deduce that FL(2)
is also globally generated. Furthermore

3 = c1(EL) = c1(OL(2)) + c1(FL(2)) = 2 + c1(FL(2))

and P,Q ∈ Z, so s vanishes on L. Let P2 ⊂ Pn be a general plane containing L.
Then s does not vanish identically on P2 as otherwise s ∈ H0(E(−2)) would be the
zero section. Let V ⊂ Pn be the hypersurface of degree 2 where s vanishes (consi-
dered as a section of E). Then s vanishes on L and V ∩P2, whence h0(EP2(−3)) 6= 0
contradicting Proposition 2.1. This proves the claim. Consider the restriction
sequence

0→ OH → EH(−2)→ FH → 0

to a hyperplane H ⊂ Pn not meeting Z. Then FH is a vector bundle such that
FH(2) is globally generated and c1(FH(2)) = 1. Therefore FH(2) is either OH(1)⊕
O⊕k−2

H or TH(−1)⊕O⊕k−nH by [12, Proposition 3.1]. As

EH(−2) ∈ Ext1(FH ,OH) = Hn−2(FH(−n)) = 0,

we deduce that EH is either OH(2)⊕OH(1)⊕O⊕k−2
H or OH(2)⊕TH(−1)⊕O⊕k−nH .

We claim that hn−1(F(−n− 1)) = 0. Assume the claim proved. Then

E(−2) ∈ Ext1(F ,OPn) = Hn−1(F(−n− 1)) = 0,

whence E(−2) = OPn ⊕ F and F is a vector bundle such that F(2) is globally
generated and c1(F(2)) = 1, so E is either OPn(2)⊕OPn(1) or OPn(2)⊕TPn(−1) by
[12, Proposition 3.1] and Lemma 1. Let us prove the claim. Consider the restriction
sequence

0→ E∗ → E∗(1)→ E∗H(1)→ 0.

Since h1(E∗) = 0 by assumption and h1(E∗H(1)) = 0, we get h1(E∗(1)) = 0. Now
consider the restriction sequence

0→ F(−n− 1)→ F(−n)→ FH(−n)→ 0.

As hn−2(FH(−n)) = 0 and hn−1(F(−n)) = hn−1(E(−n− 2)) = h1(E∗(1)) = 0, we
deduce hn−1(F(−n− 1)) = 0.

We now prove (ii). It suffices to show it for every hyperplane H ⊂ Pn. If
h0(EH(−2)) 6= 0 for some hyperplane H ⊂ Pn, we deduce from (i) and Lemma 1

that either EH = OH(2)⊕OH(1)⊕O⊕k−2
H , or EH fits in an exact sequence

0→ O⊕sH → OH(2)⊕ TH(−1)⊕O⊕k+s−n
H → EH → 0

Assume first n ≥ 4. Then hi(EH(−j)) = 0 for i = 0, 1 and every j ≥ 3. Consider
the restriction sequence 0→ E(−j − 1)→ E(−j)→ EH(−j)→ 0. We deduce from
Serre’s vanishing theorem that h0(E(−3)) = h1(E(−3)) = 0, whence h0(E(−2)) =
h0(EH(−2)) 6= 0. Now assume n = 3. The Hirzebruch-Riemann-Roch theorem
yields χ(E) = 1

6 (c31 − 3c1c2 + 3c3) + c21 − 2c2 + 22
12c1 + k. Since c1 = c2 = 3 we

deduce χ(E) = 8 + k + 1
2 (c3 + 1). To get a contradiction, assume h0(E(−2)) = 0.

Then the restriction sequence gives h0(E(−1)) ≤ 3 and h0(E) ≤ 9 + k. We deduce
h3(E) = h0(E∗(−4)) = 0 and h2(E) = h1(E∗(−4)) = 0 from Serre duality and
the exact sequence 0 → E∗(−j − 1) → E∗(−j) → E∗H(−j) → 0. Hence −h1(E) ≥
(c3 − 1)/2, that is, c3 = 1 since c3 is odd (see for instance [11, p. 113]). Therefore
E = OP3(1)⊕3, and we get a contradiction. �

Remark 1. We would like to thank Edoardo Ballico for pointing out the follow-
ing gap in the proof of [12, Proposition 3.2]. The natural isomorphism between
Hn−1(F(−n− 1)) and the dual of H1(F∗) holds if the quotient F is a locally free
sheaf, so we just have E(−1) ∈ Ext1(F ,OPn) = Hn−1(F(−n − 1)). In order to
show that hn−1(F(−n − 1)) = 0, and hence E(−1) = F ⊕ OPn , just note that
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hn−1(F(−n)) = hn−1(E(−n − 1)) = h1(E∗) = 0 and that hn−2(FH(−n)) = 0 (cf.
Lemma 3 below).

The cases h0(E(−3)) 6= 0 and h0(E(−2)) 6= 0 were described in Propositions
2.1 and 2.2, respectively. Now we study in detail the case h0(E(−1)) 6= 0. The
following lemma, that somehow appeared in the proof of Proposition 2.2, will be
used in the sequel:

Lemma 3. Let s ∈ H0(E(−1)) be a non-zero section, and let 0→ OPn → E(−1)→
F → 0 be the corresponding exact sequence of sheaves. If hn−2(FH(−n)) = 0 for
some hyperplane H ⊂ Pn then E = OPn(1)⊕F(1). In particular, F(1) is a globally
generated vector bundle with c1(F(1)) = 2.

Proof. We deduce hn−1(F(−n)) = hn−1(E(−n − 1)) = h1(E∗) = 0 from the exact
sequence 0 → OPn(−n) → E(−n − 1) → F(−n) → 0, Serre duality, and the
assumption h1(E∗) = 0 throughout the paper. Therefore, we get hn−1(F(−n−1)) =
0 from the restriction sequence 0 → F(−n − 1) → F(−n) → FH(−n) → 0. As
E(−1) ∈ Ext1(F ,OPn) = Hn−1(F(−n− 1)) = 0, we deduce E(−1) = OPn ⊕F . �

From now on we also assume c2 ≤ 4 (cf. Lemma 2).

Proposition 2.3. If h0(E(−2)) = 0 and h0(E(−1)) 6= 0 then one of the following
holds:

• E = OPn(1)⊕OPn(1)⊕OPn(1);
• E = OPn(1)⊕OPn(1)⊕ TPn(−1);
• E = OP3(1)⊕ ΩP3(2).

Proof. For n = 1 the result is obvious, so we assume n ≥ 2. Let s ∈ H0(E(−1)) be
a non-zero section, and consider the exact sequence of sheaves

0→ OPn → E(−1)→ F → 0.

Let Z ⊂ Pn be the zero locus of s. We claim that Z is a finite scheme of length at
most two. To get a contradiction, let T ⊂ Z be a subscheme of length three and
let Π ⊂ Pn be a plane containing T . Consider the restriction EΠ and the quotient

0→ O⊕k−2
Π → EΠ → Q→ 0

(cf. [11, Ch. I, Lemma 4.3.1]). Then Q is a globally generated vector bundle of
rank two, c1(Q) = c1(EΠ) = 3 and c2(Q) = c2(EΠ) ≤ 4. The restriction to Π of
the non-zero section s ∈ H0(E(−1)) yields a non-zero section in H0(EΠ(−1)) by
Proposition 2.2(ii). Therefore, since H0(EΠ(−1)) ∼= H0(Q(−1)), we get a non-zero
section σ ∈ H0(Q(−1)) vanishing on T ⊂ Π. Since the zero locus of σ is finite as
otherwise σ ∈ H0(Q(−2)) ∼= H0(EΠ(−2)) = 0, we get c2(Q(−1)) ≥ 3 contradicting
the fact

c2(Q(−1)) = (−1)2 − c1(Q) + c2(Q) = c2(Q)− 2 ≤ 2,

and hence proving the claim. Now consider the restriction

0→ OH → EH(−1)→ FH → 0

to a hyperplane H ⊂ Pn such that Z ∩H = ∅. Then FH(1) is a globally generated
vector bundle, c1(FH(1)) = 2 and c2(FH(1)) ≤ 2. Therefore FH(1) can be as in

[12, Theorem 1.1], cases (i)-(iv). In case (i) we have FH(1) = OH(2) ⊕ O⊕k−2
H ,

so hn−2(FH(−n)) = 0 and hence E = OPn(1) ⊕ OPn(2) by Lemma 3, giving a

contradiction. In case (ii) we have FH(1) = OH(1)⊕2⊕O⊕k−3
H , so hn−2(FH(−n)) =

0 and therefore E = OPn(1) ⊕ OPn(1) ⊕ OPn(1) by Lemma 3. In case (iv) we also
have hn−2(FH(−n)) = 0. Therefore F(1) is a globally generated vector bundle by

Lemma 3 such that FH(1) is either ΩP3(2)⊕O⊕k−4
P3 or N (1)⊕O⊕k−3

P3 , and we get
a contradiction by [12, Theorem 1.1]. If FH(1) is as in case (iii), we remark that
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FH(1) is either TH(−1)⊕OH(1)⊕Ok−n−1
H or G⊕Ok−n

H , where G is a vector bundle
of rank n− 1 obtained as a quotient

0→ OH → OH(1)⊕ TH(−1)→ G → 0

(cf. [12, Remark 3]). If FH(1) = TH(−1)⊕OH(1)⊕Ok−n−1
H then hn−2(FH(−n)) =

0, and hence E = OPn(1) ⊕ F(1) by Lemma 3. Therefore, F(1) is either T (−1) ⊕
OPn(1) or ΩP3(2) by [12, Theorem 1.1]. Let us see now that FH(1) = G ⊕ Ok−n

H

yields a contradiction. Assume first n = 3. Then h1(FH(−3)) = h1(G(−4)) =
h1(G∗(−2)) = 0, as G∗(−2) ∼= G(−4) since G is of rank two and c1(G(−4)) = −6.

Therefore E = OP3(1) ⊕ F(1) by Lemma 3, and hence F(1) = NP3(1) ⊕ O⊕k−3
P3

by [12, Theorem 1.1]. This contradicts the assumption h1(E∗) = 0. Assume now
n ≥ 4. To get a contradiction, we point out that h1(F∗H(−1)) = h1(G∗) = 1. Then
it follows from the exact sequence

0→ F∗H(−1)→ E∗H → OH(−1)→ 0

that h1(E∗H) = 1. Hence the exact sequence

0→ E∗(−1)→ E∗ → E∗H → 0

yields h2(E∗(−1)) 6= 0, as we assume h1(E∗) = 0. Let us see that h2(E∗(−2)) = 0.
Consider the exact sequence

0→ F∗H(−1− j)→ E∗H(−j)→ OH(−1− j)→ 0.

Then hi(E∗H(−j)) = hi(F∗H(−1 − j)) = hi(G∗(−j)) = 0 for i ∈ {1, 2} and every
integer j ≥ 2 (here we use n ≥ 4). So we deduce from the exact sequence

0→ E∗(−1− j)→ E∗(−j)→ E∗H(−j)→ 0

and Serre’s vanishing theorem that h2(E∗(−2)) = 0. Therefore, h2(E∗(−2)) = 0 and
h2(E∗(−1)) 6= 0 yields h2(E∗H(−1)) 6= 0, which is a contradiction as h2(E∗H(−1)) =
h2(F∗H(−2)) = h2(G∗(−1)) = 0. �

Finally, we consider the case h0(E(−1)) = 0.

Corollary 2.4. Assume n ≥ 3. If h0(E(−1)) = 0 but h0(EH(−1)) 6= 0 for some
hyperplane H ⊂ Pn, then n = 4 and EP3 is either OP3(1) ⊕ ΩP3(2), or a quotient
0→ OP3 → OP3(1)⊕ ΩP3(2)→ EP3 → 0 of rank three.

Proof. Suppose first n ≥ 4. If h0(EH(−1)) 6= 0 then it follows from Lemma 1 and
Proposition 2.3 that EH fits in an exact sequence 0→ O⊕sH → G ⊕O⊕rH → EH → 0,
where r = h0(E∗H), s = h1(E∗H) and either

(i) G = OH(1)⊕3, or
(ii) G = OH(1)⊕2 ⊕ TH(−1), or
(iii) G = OP3(1)⊕ ΩP3(2).

In cases (i) and (ii) we get hi(EH(−j)) = hi(G(−j)) = 0 for i ∈ {0, 1} and every
integer j ≥ 2 (here we use n ≥ 4). Hence we deduce from the exact sequence

0→ E(−j − 1)→ E(−j)→ EH(−j)→ 0

and Serre’s vanishing theorem that h0(E(−2)) = h1(E(−2)) = 0. Therefore

h0(E(−1)) = h0(EH(−1)) 6= 0,

yielding a contradiction. Hence case (iii) holds and n = 4. Furthermore, we claim
that h0(E∗H) = 0. From the dual sequence 0 → E∗H → G∗ ⊕ O

⊕r
H → O⊕sH → 0 we

deduce that hi(E∗H(−j)) = hi(G∗(−j)) = 0 for i ∈ {0, 1} and every integer j ≥ 1.
From the exact sequence

0→ E∗(−1− j)→ E∗(−j)→ E∗H(−j)→ 0
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and Serre’s vanishing theorem we get h0(E∗(−1)) = h1(E∗(−1)) = 0, and hence
h0(E∗H) = h0(E∗) = 0. Therefore EH is either OP3(1) ⊕ ΩP3(2), or a quotient
0→ O⊕sP3 → OP3(1)⊕ ΩP3(2)→ EH → 0 where, in the latter, s = 1 as c3(OP3(1)⊕
ΩP3(2)) 6= 0.

Assume now n = 3. We argue as in Proposition 2.2. To get a contradiction,
assume h0(E(−1)) = 0 and h0(EH(−1)) 6= 0. Then we deduce from Proposition 2.3
that EH is given by an exact sequence

0→ O⊕sH → OH(1)⊕2 ⊕ TH(−1)⊕O⊕k+s−4
H → EH → 0

As h0(E(−1)) = 0, we deduce from the restriction sequence that h0(E) ≤ k + 5.
We deduce h3(E) = h0(E∗(−4)) = 0 and h2(E) = h1(E∗(−4)) = 0 from Serre
duality and the exact sequence 0→ E∗(−1− j)→ E∗(−j)→ E∗H(−j)→ 0. By the
Hirzebruch-Riemann-Roch theorem we get χ(E) = 1

6 (c31 − 3c1c2 + 3c3) + c21 − 2c2 +
22
12c1 + k, and hence h0(E)− h1(E) = k + 5 + c3/2 ≤ k + 5− h1(E), that is, c3 = 0
giving a contradiction (see for instance [5, Theorem 1.1]). �

Let us see that only the first case in Corollary 2.4 actually occurs:

Proposition 2.5. Assume h0(E(−1)) = 0 but h0(EH(−1)) 6= 0 for some hyperplane
H ⊂ P4. Then E ∼= ΩP4(2).

Proof. It follows from Corollary 2.4 that EP3 is either OP3(1)⊕ΩP3(2), or a quotient
0→ OP3 → OP3(1)⊕ ΩP3(2)→ EP3 → 0 of rank three.

If EH = OP3(1) ⊕ ΩP3(2) then we see from Serre’s vanishing theorem and the
restriction sequence

0→ E(−j − 1)→ E(−j)→ EH(−j)→ 0

that h1(E(−2)) = h1(EH(−2)) = 1. Therefore we have a non-trivial extension

0→ OP4 → G → E∗(2)→ 0

We claim that G = OP4(1)⊕5. In view of [11, Ch. I, Theorem 2.3.2], it is enough
to show that GH = OH(1)⊕5. Let us see that GH has no intermediate cohomology.
From the exact sequence

0→ OH → GH → OH(1)⊕ TH → 0,

we deduce that h1(GH(j)) = 0 for every integer j and that h2(GH(j)) = 0 for every
integer j 6= −4. For j = −4, we have h2(GH(−4)) = h1(G∗H). It follows from the
exact sequence

0→ OH(−1− j)⊕ ΩH(−j)→ G∗H(−j)→ OH(−j)→ 0

that h0(G∗H(−j)) = h1(G∗H(−j)) = h2(G∗H(−j)) = 0 for every j ≥ 1. Therefore
Serre’s vanishing theorem applied to the restriction sequence

0→ G∗(−j − 1)→ G∗(−j)→ G∗H(−j)→ 0

yields h1(G∗(−1)) = h2(G∗(−1)) = 0, and hence h1(G∗H) = h1(G∗) = 0. Then
Horrocks’ theorem (see for instance [11, Ch. I, Theorem 2.3.1]) implies that GH
splits. Finally c1(GH) = 5 and h0(GH(−2)) = 0, so we get GH = OH(1)⊕5. Then
E = ΩP4(2).

Assume now that EH is given by a quotient

0→ OP3 → OP3(1)⊕ ΩP3(2)→ EP3 → 0

Then ct(E) = ct(EH) = 1 + 3t+ 4t2 + 2t3. Therefore, we get a contradiction by the
Schwarzenberger condition (S3

4) [11, p.113] for s = 4. �

We can now prove Theorem 1.1.
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Proof of Theorem 1.1. We can assume h0(E∗) = h1(E∗) = 0 by Lemma 1, otherwise
we get case (viii). If h0(E(−3)) 6= 0 then we get case (i) by Proposition 2.1. If
h0(E(−3)) = 0 but h0(E(−2)) 6= 0 then we get cases (ii) and (iii) by Proposition
2.2. If h0(E(−2)) = 0 but h0(E(−1)) 6= 0 then we get cases (iv), (v) and (vi)
by Proposition 2.3. If h0(E(−1)) = 0 but h0(EH(−1)) 6= 0 for some hyperplane
H ⊂ Pn then we get case (vii) by Corollary 2.4 and Proposition 2.5. Furthermore,

we claim that there is no vector bundle E on P5 such that EH = ΩP4(2) ⊕O⊕k−4
P4 .

As hi(E∗H(−j)) = 0 for i ∈ {0, 1} and every integer j ≥ 1, we deduce from Serre’s
vanishing theorem and the restriction sequence

0→ E∗(−1− j)→ E∗(−j)→ E∗H(−j)→ 0

that hi(E∗(−1)) = 0 for i ∈ {0, 1}. Therefore h0(E∗) = h0(E∗H) = k − 4 and hence

there exists a rank-4 vector bundle G such that E = G ⊕ O⊕k−4
P5 . Then ct(G) =

ct(EH) = 1 + 3t+ 4t2 + 2t3 + t4 and we get a contradiction by the Schwarzenberger
condition (S4

5) [11, p.113] for s = 5. This proves the claim. Finally, if h0(E(−1)) = 0
and h0(EH(−1)) = 0 for every hyperplane H ⊂ Pn then we get

h0(E) ≤ h0(EH) ≤ · · · ≤ h0(EP2) ≤ h0(EP1) = k + 3.

Let us see that this is impossible. Consider the exact sequence

0→ K → O⊕h
0(EP2 )

P2 → EP2 → 0

where K is a vector bundle on P2 with h0(K) = h1(K) = 0, c1(K) = −3 and
c2(K) = c2(K∗) = 9− c2 ≥ 5. Then the Hirzebruch-Riemann-Roch theorem

χ(K) =
1

2
(c1(K)2 − 2c2(K) + 3c1(K)) + rk(K)

for vector bundles on P2 yields

0 ≤ h2(K) = −c2(K) + h0(EP2)− k ≤ −5 + h0(EP2)− k

i.e. h0(EP2) ≥ k + 5, so we get a contradiction. �

As a consequence, we obtain the classification of globally generated vector bun-
dles E on Pn with c1 = 3 and no restriction on c2.

Proof of Corollary 1.2. It follows from Theorem 1.1 and Lemmas 1 and 2. �

Remark 2. Some well-known globally generated vector bundles seem to be hidden
in Theorem 1.1(viii) (e.g. TP2) and Corollary 1.2(viii) (e.g. the Tango bundle T
given by the exact sequence 0 → TP4(−2) → O⊕7

P4 → T → 0, see for instance
[11, Ch. I, §4]). They can be easily detected in our classification by means of [11,
Ch. I, Lemmas 4.3.1 and 4.3.2]. In this context, we point out that the only globally
generated vector bundle of rank k on Pn with c1 = 3 and k < n which does not split
is the Tango bundle T of rank 3 on P4, as one immediately deduces from Theorem
1.1 and Corollary 1.2 that cn(E) = 0 if and only if E = Ω2

P4(2)∗ ∼= ∧2TP4(−2), giving
the diagram:
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0

��

0

��
O⊕3

P4

��

O⊕3
P4

��
0 // TP4(−2) // O⊕10

P4
//

��

∧2TP4(−2) //

��

0

0 // TP4(−2) // O⊕7
P4

//

��

T //

��

0

0 0

Remark 3. As in [12], one can easily deduce the classification of triple Veronese em-
beddings of Pr in a Grassmannian of (k−1)-planes from Theorem 1.1 and Corollary
1.2. The case k = 2 has been studied in [8]. Globally generated vector bundles and
embeddings in Grassmannians are closely related to matrices of constant rank on
projective spaces (see [9] and [7]), but we will not consider this matter in this note.

Remark 4. Following the research initiated in [12], globally generated vector bun-
dles and reflexive sheaves with low first Chern class on projective spaces and quadric
hypersurfaces have been recently studied by several authors (see [5], [6], [10], [1],
[2], [3] and [4]).
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[12] J.C. Sierra, L. Ugaglia: On globally generated vector bundles on projective spaces. J. Pure

Appl. Algebra 213 (2009) 2141–2146.
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