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Abstract. In this work we develop an analytical approach for calculation of the all-order interspike
interval density (AOISID), show its connection with the autocorrelation function, and try to explain
the discovered resemblance of AOISID to the power spectrum of the same spike train.
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Introduction. As it is well-known, the Fourier transformation allows imaging a signal
as a sum of sinusoidal components. In case of a spike train, it seems to be not consequent
to consider a sequence of sharp pulses as a sum of smooth sinusoids. Apparently, this
is one of the reasons why neurophysiologists use the histogram of interspike intervals,
in particular, all-order interspike interval density (AOISID), more often, then the power
spectrum density (PSD). The power spectrum of a short in time pulse inevitably contains
high frequency components, which do not have anything to do with interspike intervals.
So, the spectrum provides just the redundant information about a pulse shape, which
does not play a role in an inter-neuron communication. Actually, in the past, before the
fast Fourier transformation algorithm invention and its wide applications, the usual tool
for the signal analysis was a correlometer providing the autocorrelation function (ACF),
which is stated [1] to be directly connected with AOISID.

In the presented work we describe a quite unexpected connection between ACF and
PSD observed in the auditory system models. The connection between ACF and AOISID
is also rigorously derived here.

The presented study has been motivated by the discovery of the resemblance of the
PSD at the output of a simple neural model [2] to the AOISID at the output of much more
complex model [1] of the same auditory system of mammals with similar parameters of
input signals (Fig. 1A). The problem of the analysis of this resemblance was that we
had analytical expressions for the PSD of the simple model, but did not have ones for
the AOISID. As per the complex model, here we had only AOISID plots and a not clear
enough statement about the direct correspondence between AOISID and ACF.

Model description. The mentioned PSD has been calculated for the model, which is
described in details in the paper [2]. It consists of three Leaky Integrate-and-Fire neu-
rons, two of which are the input (sensory) elements and are driven by sinusoidal signals,
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FIGURE 1. Resemblance of PSD to AOISID: A) PSD from Ref. [3] vs. AOISID from Ref. [1]; B) PSD
and analytical AOISID from Eq. (2) for the same spike train.

and the third one is the output element receiving spikes from the sensory ones. Each
neuron is also influenced by white Gaussian noise. In the previous studies, the charac-
teristics of an output spike train of the model were analyzed at various combinations
of input sinusoids’ frequencies Ω1,Ω2, namely, the combinations, which are typical for
harmonious and dissonant musical chords. It was shown [2, 3] that in a case of com-
mensurable input frequencies, the system may be described by the hidden Markov chain
with the finite number of states and the transition matrix {πi j}. At the moment of the
output spike generation, the system switches between the states. If the target ith state is
known, then the distribution ρ(i)(t) of a time interval until the next output spike is also
known. In the paper [3] the deriving procedure for the PSD formula is provided, given
the matrix {πi j} and the distributions ρ(i)(t).

AOISID and ACF. In the paper [1], the following AOISID calculation procedure is
proposed. First, all the first-order interspike intervals (ISIs) are extracted from the set of
a number of parallel output spike trains. Then, the second-order ISIs are extracted, i.e.,
the sums of all pairs of consequent intervals. These second-order ISIs are added to the
same array as the first-order ones. In the same way, the third-, fourth-, etc. order ISIs are
collected in one place and then distributed into histogram bins. Despite the name of the
characteristics, surely, this is not the “All-order” ISI distribution, because the maximal
order of a considered ISI is always limited.

Let us consider some sequence of random intervals. The rigorous mathematical ap-
proach to the All-Order ISI Distribution requires understanding of the nature of the ran-
dom quantity, which is being distributed. It is not hard to make sure that in our case the
random quantity is the sum of random number N of random intervals t1, t2, t3, . . .:

τ = ∑N
n=1tn, (1)

where N ∈ {1,2,3, . . . ,Nmax} and tn ∈ (0,+∞). For example, defining Nmax = 2 and
using the formula of the total probability, one can obtain the probability density of τ
as Ψ2(t) = P(H1)ρ1(t) + P(H2)ρ2(t), where H1,H2 are the mutually exclusive events
of having one or two addends in the sum Eq. (1), respectively; P(H1),P(H2) are their



probabilities; ρ1(t) is the probability density of one interspike interval t1 to be in the
delta-neighbourhood of t; and ρ2(t) is the same probability density for the sum of
two consequent intervals t1 + t2. Assuming P(H1) = P(H2), what, at least, is not in
contradiction with the procedure of Ref. [1], we obtain Ψ2(t) = [ρ1(t)+ρ2(t)]/2. In
the general case, this formula allows inducing the following one:

ΨNmax(t) =
1

Nmax

Nmax

∑
n=1

ρn(t). (2)

Here, the probability density ρ2(t) is calculated as the integral:
∫ t

0 ρ(t1, t− t1)dt1, where
ρ(t1, t2) is the joint probability density for the consequent intervals t1 and t2. Analo-
gously, ρ3(t) =

∫ t
0 dt1

∫ t−t1
0 ρ(t1, t2, t− t1− t2)dt2, etc.

In order to find a connection with the autocorrelation function, one should refer to the
paper [4], where the following expression is proposed for ACF:

K(τ) = f 2 [
δ (τ)+∑∞

n=1Wtn(|τ|)−1/T
]
/T. (3)

Here, f and T are some constants; δ (t) is the Dirac delta-function; and the quantity
Wtn(|τ|) is just the same as ρn(τ) in the Eq. (2). Hence, one may assert the proportionality
between ACF and AOISID, but not the identity.

AOISID and PSD. The problem of ρn(t) calculation in the Eq. (2) has been solved
in the aforementioned case (see “Model description”) with the same approach as in
Refs. [3, 5], resulting in the AOISID depicted in Fig. 1B. Obviously, there is a resem-
blance between the top panel and bottom panel plots. Actually, generation of input fre-
quencies’ multiples (here Ω1/Ω2 = 5/4) in the power spectrum of the output signal of a
nonlinear system is a well-known phenomenon in physics. So, it is interesting to under-
stand, why the temporal characteristics Ψ(τ) behaves in the same manner with respect
to the periods T1,2 = 2π/Ω1,2? The other interesting question arises, if one remembers
about the direct connection between ACF and PSD through the Fourier transformation.
Indeed, is there any advantage in usage of a system with a signal having similar PSD
and ACF? However, first of all: is this similarity typical for the brain subsystems, or
this is just the negligible particular case? The theoretical research is in progress, and the
experimental contribution is welcome and will be much appreciated.
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