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Abstract. We present two Gaussian approximations for the time-dependent probability density function
(PDF) of an overdamped Brownian particle moving in a tilted periodic potential. We assume high potential
barriers in comparison with the noise intensity. The accuracy of the proposed approximated expressions
for the time-dependent PDF is checked with numerical simulations of the Langevin dynamics. We found a
quite good agreement between theoretical and numerical results at all times.

1 Introduction

The model of the one-dimensional overdamped Brownian
motion in tilted periodic structures appears in the analy-
sis of different systems [1–5], like Josephson junction [6,7],
phase-locked loop (PLL) systems [8,9], protein transport,
Brownian motors [10–12] and others. Specifically, the un-
derdamped regime of the Brownian particle in a titled
washboard potential at intermediate and low friction was
investigated in references [1,4,5]. In reference [4], an excess
diffusion of the travelling particle due to the trapped-to-
running transition was revealed.

The main characteristic of the model under inves-
tigation is the non-stationary probability density func-
tion (PDF) of the Brownian particle coordinate, which
has been subject of theoretical and numerical investiga-
tions [2,10,13–15] and it is unknown up to now.

The asymptotic expression (t → ∞) of the time de-
pendent PDF, for an arbitrary tilted periodic potential,
was introduced in reference [14]. It consists of two factors:
the Gaussian envelope and the intrawell distribution. The
Gaussian envelope represents the coarse grained density of
the Brownian particles, diffusing in the flat potential with
constant tilt. While, intrawell distribution, together with
the average drift and the effective diffusion coefficient, de-
pend on the detailed structure of the periodical potential
with barriers and wells.

Nevertheless, the exact non-stationary distribution is
not obtained yet due to the mathematical difficulties,
which are connected with the solution of the Fokker-
Planck equation (FPE). In particular, in reference [15] a
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new approximated expression for the time-dependent PDF
is introduced. There, it was shown that the proposed ex-
pression can well describe the time-dependent probability
density function of overdamped Brownian particles, mov-
ing in tilted periodic potentials, for large and intermediate
times. The parametric functions of the proposed expres-
sion of PDF were obtained self-consistently, through quite
cumbersome calculations. This is not always useful, es-
pecially when one needs to get an analytical expression
of other characteristics starting from the time-dependent
PDF. This is the case of the autocorrelation function and
the spectrum of the phase noise in PLL systems [16].
Therefore, simple approximate models for the PDF are
also necessary.

In this paper we introduce two modelling functions
(modelling distributions), describing the time dependent
probability density of overdamped Brownian particles
moving in a tilted periodic potential, in the limit of high
potential barriers. These modelling distributions have a
simple analytical expression, and are more useful for fur-
ther theoretical calculations, estimations and analysis ap-
plied to specific problems. Simplification is obtained for
the case of high potential barriers in comparison with the
noise intensity. This case has been well studied for bistable
and metastable systems [1,17,18]. Similar approaches can
be used for tilted periodical potentials. Moreover, the limit
of high potential barriers is often one of the most prac-
tical cases which describes the main running regimes of
various systems (e.g. lock-in regime of PLL, duffusion in
solids, etc.). The proposed model distributions are shown
to have a good agreement with the results of numerical
simulations of the Langevin dynamics.
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Fig. 1. Tilted periodic potential profile.

2 Overdamped Brownian motion
and asymptotic distribution

The physical system considered is an overdamped one-
dimensional Brownian particle moving in a tilted periodic
potential, and whose dynamics is described by the follow-
ing Langevin equation

dx

dt
= a − F (x) + ξ(t), x(0) = x0, (1)

where x(t) is the Brownian particle coordinate, a is an
homogeneous static force, causing drift of particles, F (x) is
a periodic function (F (x) = F (x+2π)), ξ(t) is a randomly
fluctuating force, that is a Gaussian white noise with zero
mean 〈ξ(t)〉 = 0, and correlation 〈ξ(t)ξ(t + τ)〉 = 2Dδ(τ),
with D the noise intensity. The titled periodic potential
u(x) is

u(x) = −ax +
∫ x

0

F (x′)dx′. (2)

Such potential is shown in Figure 1. Further we assume
that the minima of the potential profile are situated in
points mi, where i = ±1,±2, . . . and 2π(i−1) < mi < 2πi.

In the absence of fluctuations (ξ(t) = 0), the particle
will stay at the local potential minimum forever. In the
presence of the random force ξ(t) �= 0 and D > 0, the
particle can overcome the potential barriers and, due to
the drifting force, moves in average to the right.

The Fokker-Planck equation (FPE) for the probability
density function of the Brownian particle, corresponding
to the Langevin equation (1), is [1,19]

∂W (x, t)
∂t

=
∂

∂x

(
du

dx
+ D

∂

∂x

)
W (x, t), (3)

with initial condition W (x, 0) = δ(x − x0) and boundary
conditions W (±∞, t) = 0. This probability distribution
W (x, t) contains full information about Markov proccess
x(t). But up to now the non-stationary solution of the FPE
for any periodic function F (x) is not known. The time-
dependent PDF, for large times (t → ∞), tends asymp-
totically to [2,14,15]

Was(x, t) = Wst(x)
e
− (x−x0−νt)2

4Deff t√
4πDeff t

, (4)

W (x,t)

u(x) x

�

Fig. 2. The asymptotic PDF of equation (4). The thick line
is the Gaussian coarse grained envelope. The potential profile
without the tilt force is shown in the bottom of the figure.

where the average drift ν and the effective diffusion coef-
ficient Deff are defined as follows

ν = 〈dx

dt
〉 = lim

t→∞
〈x(t) − x0〉

t
, (5)

Deff =
1
2

lim
t→∞

[x(t) − 〈x(t)〉]2
t

. (6)

Equation (4) consists of two factors. The Gaussian factor
and the function Wst(x), which is the periodically contin-
ued stationary distribution with special normalization 2π

2πk∫

2π(k−1)

Wst(x)dx = 2π. (7)

The distribution Wst(x) is the stationary solution of the
FPE (3) with periodic boundary conditions: Wst(x) =
Wst(x+2π). For an arbitrary tilted periodic potential pro-
file (2), the stationary distribution is known and has the
following expression [1,13,20]

Wst(x) = ce−u(x)/D

x+2π∫

x

eu(z)/Ddz, (8)

where c is a normalization factor.
Thus, in the limit of t → ∞, the distribution W (x, t)

has the Gaussian coarse grained envelope, spreading and
moving in the direction of the potential profile slope with
the drift velocity ν. The distribution Wst(x) defines the
local structure, with minima and maxima of the PDF,
corresponding to the maxima and minima of the periodic
potential profile (see Fig. 2).

The exact analytical expressions for the average drift
velocity and the effective diffusion coefficient are known
for an arbitrary function F (x) [2,10,14,21]. Nevertheless,
the expression (4) does not describe correctly the real dis-
tribution for short times. This was shown in reference [15],
by comparing the PDF calculated form equation (4) with
that obtained from numerical simulations of the Langevin
equation (1) with a harmonic function F (x).
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In this work we aim to get the model expressions for
the time-dependent PDF, in the case of high potential
barriers E/D � 1. Therefore, we can use appropriate ex-
pressions for ν and Deff obtained for the same case. In
particular, we consider the harmonic function

F (x) = R sin x, (9)

with the coordinate of the first minimum of the potential
profile at x1 = arcsin(a/R). Therefore, the expressions for
the mean drift velocity and the effective diffusion coeffi-
cient are (see [21,22])

ν = D
sinh(π a

D )
x

[
Ii a

D

(
R

D

)]−2

≈ 2π
(1 − e−

2πa
D )

τk
, (10)

and

Deff ≈ 2π2

τk
(1 + e−

2πa
D ), (11)

where Iij(x) is the modified Bessel function of first kind
and τk is the time to escape over the potential barrier,
that is the Kramers time [17,18]

τk = τ0e
E
D =

2π√
R2 − a2

e
E
D . (12)

The height of the potential barrier E for the harmonic
function (9) is defined by the expression

E = 2
√

R2 − a2 − 2a arccos
a

R
. (13)

3 Model functions

In this section we propose two functions W1(x, t) and
W2(x, t) as model functions for the time-dependent PDF,
throughout the time scale 0 ≤ t ≤ ∞ in the case of high
potential barriers E/D � 1. As it was pointed out in ref-
erence [17], in this case there are two time scales in the
Brownian motion. These are the intrawell relaxation time
τr and the time to escape over the potential barrier τk,
that is the Kramers time. Our approach is based on two
assumptions. First, the quasi-stationary distribution in-
side the potential well is established long time before an
appreciable number of particles have escaped over the po-
tential barrier, that is [17]

τr � τk. (14)

Therefore, for high barriers (E/D � 1) we can neglect the
short relaxation time τr and consider the intrawell distri-
bution in equation (4) as stationary not only for t → ∞
but also starting from t = 0. Secondly, the distribution
of the interwell transitions (from a well to the neighbor-
ing wells) obeys the Gaussian coarse grained PDF at any
time 0 ≤ t ≤ ∞. This is our Gaussian approximation.
The above assumptions lead to the same asymptotic dis-
tribution of equation (4), when t → ∞, but the model

distribution should be different from (4) for t → 0. We
can write the model distributions in the general form

Wi(x, t) = Wst(x)WGi(x, t), (15)

where Wst(x) is the periodically continued stationary in-
trawell distribution (7) and WGi(x, t), with i = 1, 2 are the
proposed Gaussian envelope model functions. In asymp-
totics (t → ∞), we should have

WGi(x, t) −→
t→∞

e
− (x−x0−νt)2

4Deff t√
4πDeff t

. (16)

When t → 0, if initially the system was in an arbitrary
point x0 between two potential barriers, 2π(k−1) < x0 <
2πk, we can consider that the stationary distribution in-
side the potential well near to the minimum at x = mk

is set immediately. This property leads to the following
condition

Wi(x, t)−→
t→0

Wst(x; mk)/2π, (17)

where Wst(x; mk) is the stationary distribution inside the
mk-th well. The stationary distribution is already included
in (15). Then, in order to satisfy the condition (17), the
Gaussian factor in equation (15) should tend to the uni-
form distribution W0(x) in the region between the two
potential barriers [2π(k − 1), 2πk], when t → 0. There-
fore, by applying both assumptions we get the expression
for the first model function WG1(x, t) valid at any time
(0 ≤ t ≤ ∞)

WG1(x, t) =
∫ ∞

−∞
W0(x0)

e
− (x−x0−νt)2

4Deff t

4πDeff t
dx0

=
1
2π

2πk∫

2π(k−1)

e
− (x−x0−νt)2

4Deff t

4πDeff t
dx0

=
1
4π

[
Erf

(
x−νt+2πk

2
√

Deff t

)
−Erf

(
(x−νt)+2π(k−1)

2
√

Deff t

)]
,

(18)

where Erf(x) is the error function.
For high barriers (E/D � 1), the stationary distri-

bution is localized near the bottom of the potential well.
Therefore, we can simplify the expression of Wst(x) given
by equation (8). By Taylor expansion of the potential u(x)
around its k-th minimum (mk) and k-th maximum (Lk),
we get

e
±u(x)

D ≈ e±(
u(xextr)

D +
u′′(xextr)

2D (x−xextr)2), (19)

where xextr = Lk, mk. The main contribution to the inte-
gral in equation (8) comes from a small neighborhood of
the maximum Lk next to the minimum mk (see Fig. 1). By
using Taylor expansion (19) and taking into account that
for the harmonic potential u′′(Lk) = −u′′(mk), we obtain
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the following stationary distribution in the k-th potential
well (2π(k − 1) < x < 2πk) for high barriers

Wst(x; mk) =

√
2π

σ2
e−

(x−mk)2

2σ2 , (20)

where the variance of the distribution is σ2 = D/u′′(mk).
When E/D � 1, the tails of this distribution decrease
so fast that in points where the potential is maximum,
the distribution (20) is almost zero (σ � 2π). The peri-
odically continued stationary distribution will consist of
Gaussian peaks (20) located in all the wells of the poten-
tial profile. Analytically it can be written as the following
Fourier series [23]

Wst(x) = 1 + 2
∞∑

n=1

e−
n2
2 σ2

cos(nx). (21)

The expressions of equations (18) and (21) define the first
model distribution W1(x, t)

W1(x, t) = Wst(x)WG1(x, t). (22)

It has a quite simple expression in comparison with that
proposed in reference [15].

Nevertheless, to avoid the special function and make
the expression (18) more simple, we propose another
model distribution by replacing WG1(x, t) with the fol-
lowing Gaussian function with two parameters β1 and β2

WG2(x, t) =
e
− (x−mk−νt)2

4Deff (t+β2)√
4πDeff (t + β1)

. (23)

This second Gaussian model distribution is an ansatz,
which we will check in the next section. In order to satisfy
condition (17) we should choose β1 = π/Deff . Using the
parameter β2 we can make the function (23) closer to the
uniform distribution (18) at t = 0. From this viewpoint
the parameter β2 should satisfy the following condition
σ2 � 2Deff β2 � (4π)2, which corresponds to the condi-
tion E/D � 1, when σ2 → 0. Particularly, in the present
paper we choose β2 = π/2Deff and further we consider
the following second model function

W2(x, t) = Wst(x)WG2(x, t), (24)

which does not include special functions. However, we
should notice that the model function (24) has not correct
normalization, when β1 �= β2. The normalization value is
equal to 1 only for t → 0 and t → ∞, and it deviates
from 1 for intermediate times t ≈ βi. Therefore, W2(x, t)
is less adequate comparing to W1(x, t), but its form is
simpler. Particularly, if we consider the harmonic periodic
function (9) it reads

W2(x, t) = (1 + 2
∞∑

n=1

e−
n2
2 σ2

cos(nx))
e
− (x−mk−νt)2

4Deff t+2π√
4πDeff t + 4π2

.

(25)
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Fig. 3. (Color online) Model time-dependent PDFs, W1(x, t)
(black tick line) and W2(x, t) (red dotted lines), compared with
the time-dependent PDF obtained from numerical simulations
of the Langevin equation (1) (black circles). Parameters: simu-
lation time t = 0.01τk, E/D = 10. Notice the good agreement
between the model PDFs and simulations.
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Fig. 4. (Color online) Model time-dependent PDFs, W1(x, t)
(black tick line) and W2(x, t) (red dotted lines), compared with
the time-dependent PDF obtained from numerical simulations
of the Langevin equation (1) (black circles). Parameters: sim-
ulation time t = τk, E/D = 10.

4 Results

For the verification of the introduced model distributions
W1(x, t) and W2(x, t), we compare them with the PDF ob-
tained from numerical simulations of the Langevin equa-
tion (1). The numerical integration of equation (1) has
been performed using the Runge-Kutta method of 4-th
order [24,25]. The PDFs shown in Figures 3–8 have been
obtained by calculating 200 values of W (x, t), averaged
over 2000 realizations for high barriers (E/D = 10) and on
20000 realizations for low barriers E/D = 3. We consider
harmonic periodical function (see Eq. (9)) with R = 10
and slope a = 0.2. Two noise intensity values are used,
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Fig. 5. (Color online) Model time-dependent PDFs, W1(x, t)
(black tick line) and W2(x, t) (red dotted lines), compared with
the time-dependent PDF obtained from numerical simulations
of the Langevin equation (1) (black circles). Parameters: sim-
ulation time t = 10τk, E/D = 10.
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Fig. 6. (Color online) Model time-dependent PDFs, W1(x, t)
(black tick line) and W2(x, t) (red dotted lines), compared with
the time-dependent PDF obtained from numerical simulations
of the Langevin equation (1) (black circles). Parameters: sim-
ulation time t = 0.01τk , E/D = 3.

namely D = 2 and D = 6.6, corresponding to the case of
high and low barrier respectively.

The initial conditions for both cases are the same, that
is x0 = 0. This point is shifted from the minimum of the
potential profile, which is located at the point m1 = 0.02.
The appropriate model distributions W1(x, t) (thick black
line) and W2(x, t) (red dotted lines) together with the sim-
ulation results for the PDF (black circles) are shown in
Figures 3–8.

First of all we note that there is no big difference be-
tween both the model distributions W1(x, t) and W2(x, t).
The maximal difference is visible at t = τk. The model dis-
tributions are close each other at t = 0.01τk and t = 10τk,
because at t → 0 and t → ∞ they coincide.
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Fig. 7. (Color online) Model time-dependent PDFs, W1(x, t)
(black tick line) and W2(x, t) (red dotted lines), time-
dependent PDF obtained from numerical simulations of the
Langevin equation (1) (black circles). Parameters: simulation
time t = τk, E/D = 3.
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Fig. 8. (Color online) Model time-dependent PDFs, W1(x, t)
(black tick line) and W2(x, t) (red dotted lines), compared with
the time-dependent PDF obtained from numerical simulations
of the Langevin equation (1) (black circles). Parameters: sim-
ulation time t = 10τk, E/D = 3.

As it was expected, the simulation results correspond
better to the model PDFs, when the barriers are high
E/D = 10, because W1(x, t) and W2(x, t) are obtained
for the case E/D � 1. When E/D = 3, the differences
between the model distributions and simulation results are
slightly greater.

The most visible differences between models and sim-
ulations are also at t = τk, the characteristic time of
Brownian particles to cross the potential barrier. This is
the time when the initial single-peak distribution starts
to spread and some neighboring peaks arise. Both model
distributions show a slightly wider spreading compared to
the simulations, especially for the left diffusion, which is
in the opposite direction with respect to the average drift.
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Fig. 9. (Color online) Comparison between the average drift
values of the coordinate of the Brownian particle obtained by
the second model PDF (25) and those obtained from simulation
of the Langevin equation (1) (red circles), in the case of high
(E/D = 10, black line) and low (E/D = 3, black dashed line)
potential barriers. In both axes are reported the logarithms of
the values.
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Fig. 10. (Color online) Comparison between the values of the
variance of the Brownian particle coordinate obtained by the
second model PDF (25) and those obtained from simulation
of the Langevin equation (1) (red circles), in the case of high
(E/D = 10, black line) and low (E/D = 3, black dashed line)
potential barriers. In both axes are reported the logarithms of
the values.

As a result, according to the normalization property, the
main maximum of simulated PDF is higher than that of
model distributions. However, this difference is very small,
especially when E/D = 10.

To further investigate this point we analyze the average
drift of the Brownian particle coordinate and its variance.
The black bold lines in Figures 9 and 10 show the aver-
age coordinate and its variance obtained from the second
model PDF (25) in the case of high (E/D = 10) and low
(E/D = 3) potential barriers. The circles represent the
same values calculated with numerical simulations of the

Langevin equation (1). The theoretical model results coin-
cide with those obtained by simulation, at the time t = τk

as well as for all other times. Concerning the variance, we
can see that many points obtained from simulation of the
Langevin equation lie slightly below the curves obtained
from the second model. The difference is small and for
the same curves obtained from the first model PDF, not
reported here, is smaller. We can conclude that the small
qualitative difference between the model PDFs and that
obtained by simulations does not give rise to the consid-
erable quantitative difference in the average drift of the
particle coordinate and its variance. Finally, the numeri-
cal simulations of variance differ more when the ratio E/D
decreases, which is in accordance with the approximations
used in this paper. This is also visible in Figures 3–8.

5 Conclusions

The proposed model expressions for the PDF of the
Brownian particles diffusing in tilted periodical potentials
have shown to be in a quite good agreement with the
results obtained by numerical simulations in the case of
high potential barriers, compared with the noise intensity.
Particularly, we can conclude that with noise intensities
smaller than 0.3E both models describe well the actual
non-stationary distribution of the Brownian particles.

The most relevant advantage of the presented model
distributions is their simple form, so it can be used for
different analytical applications such as the calculation of
the spectrum for phase-locked loop systems.

In the present paper we have considered only harmonic
function. This particular case of the periodical function
leads to the Gaussian stationary intrawell distribution. In
an arbitrary case the stationary distribution can be non-
Gaussian. However, the same approach for the model PDF
construction can be used for an arbitrary form of a peri-
odical functions as well.

Finally, we note that our analytical Gaussian ap-
proximations to the time-dependent probability density
function in titled periodic potentials were derived in the
overdamped regime. For smaller friction constants, inertial
effects become important and a possible extension of this
approach to the intermediate and low frequency regimes is
not straightforward. This is because the dynamics is char-
acterized by random transitions between the trapped state
(the particle is trapped in one of the potential wells) and
the running state (the particle moves along the potential
profile without the trapping phenomenon) [1,4,5,26,27].
Only for moderately strong friction we expect that our ap-
proach could work. In the intermediate and low frequency
regimes, due to the contribution of the running state, we
expect non-Gaussian distributions with long tails. These
underdamped dynamical regimes will be subject of our
future investigations.
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della Ricerca (MIUR).



D.A. Kulikov et al.: Gaussian models for the distribution of Brownian particles in tilted periodic potentials 269

References

1. H. Risken, The Fokker-Planck Equation: Methods of
Solution and Applications (Springer-Verlag, Berlin, 1984)

2. P. Reimann, Phys. Rep. 361, 57 (2002)
3. A.A. Dubkov, B. Spagnolo, Phys. Rev. E 72, 041104(8)

(2005)
4. G. Costantini, F. Marchesoni, Europhys. Lett. 48, 491

(1999)
5. M. Borromeo, F. Marchesoni, Phys. Rev. Lett. 84, 203

(2000)
6. A.L. Pankratov, B. Spagnolo, Phys. Rev. Lett. 93, 177001

(2004)
7. G. Augello, D. Valenti, B. Spagnolo, Eur. Phys. J. B 78,

225 (2010)
8. V. Lindsey, Synchronization Systems in Communications

and Control (Moscow, Sov. radio, 1978)
9. V.I. Tihonov, N.K. Kulman, Non-linear filtration and

quasi-coherent signal receiving (Moscow, Sov. radio, 1975)
10. P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J.M.

Rubi, A. Perez-Madrid, Phys. Rev. E 65, 031104 (2002)
11. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)
12. M.L. Dekhtyar, T.Ye. Korochova, V.M. Rozenbaum, Int.

J. Quantum Chem. 110, 67 (2010)
13. R.L. Stratonovich, Topics in the Theory of Random Noise

(Gordon and Breach Science Publishers Ltd, 1981), Vols. I
and II

14. B. Lindner, M. Kostur, L. Schimansky-Geier, Fluct. Noise
Lett. 1, R25 (2001)

15. R. Salgado-Garcia, F. Leyvraz, G. Martinez-Mekler, Phys.
Rev. E 78, 061101 (2008)

16. A.N. Malakhov, Fluctuations in self-oscillatory systems
(Moscow, Nauka, 1968)

17. H. Kramers, Physica, 7, 284 (1940)
18. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62,

251 (1990)
19. A.N. Malakhov, Cumulative analysis of random non-

gaussian processes and their transformations (Moscow:
Sov. radio, 1978)

20. W. Gardiner, Handbook of stochastic methods (Springer,
Berlin, 1990)

21. N.V. Agudov, A.V. Safonov, Fluct. Noise Lett. 5, L283
(2005)

22. P. Reimann, Phys. Rev. Lett. 86, 4992 (2001)
23. G.P. Tolstov, Fourier series (Publications, New York,

London, 1976)
24. N.N. Nikitin , S.V. Pervachev, V.D. Razevig, Avtomatika

and Telemehanica (in Russian) 4, 133 (1975)
25. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic

Differential Equations (Springer-Verlag, Berlin, 1999)
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