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Abstract The object of the paper concerns a consistent for-
mulation of the classical Signorini’s theory regarding the fric-
tionless contact problem between two elastic bodies in the
hypothesis of small displacements and strains. The employ-
ment of the symmetric Galerkin boundary element method,
based on boundary discrete quantities, makes it possible to
distinguish two different boundary types, one in contact as
the zone of potential detachment, called the real boundary,
the other detached as the zone of potential contact, called
the virtual boundary. The contact-detachment problem is
decomposed into two sub-problems: one is purely elastic,
the other regards the contact condition. Following this meth-
odology, the contact problem, dealt with using the symmetric
boundary element method, is characterized by symmetry and
in sign definiteness of the matrix coefficients, thus admit-
ting a unique solution. The solution of the frictionless con-
tact-detachment problem can be obtained: (i) through an
iterative analysis by a strategy based on a linear complemen-
tarity problem by using boundary nodal quantities as check
quantities in the zones of potential contact or detachment;
(ii) through a quadratic programming problem, based on a
boundary min-max principle for elastic solids, expressed in
terms of nodal relative displacements of the virtual boundary
and nodal forces of the real one.
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1 Introduction

After the pioneering work of Signorini [1], the problems
of unilateral contact between an elastic body and a rigid
obstacle, or between two (impenetrable) elastic bodies,
also received great interest within the boundary element
approaches [2] at the beginning of the last decade of the
past century.

The main difficulty in solving the Signorini problem arises
from the fact that the position, where the change takes place
from one type of boundary condition to another, is undeter-
mined in advance, with the result that this problem proves
to be geometrically non-linear. The solution to this problem
can be obtained either through an indirect approach of an
iterative kind dealt with using the linear complementarity
problem (LCP) [3–6] or through a direct approach as the
min-max solution of appropriate discrete functionals whose
solution requires the employment of quadratic programming
problem (QPP) techniques [7–12].

The symmetric Galerkin boundary element method
(SGBEM) has been applied to unilateral contact problems
by utilizing variational formulations in elasticity and in elas-
toplasticity [9,10], by using iterative procedures to solve the
quadratic programming problem [13], by linear complemen-
tarity in an iterative procedure [6,14], by a penalty approxi-
mation of the Coulomb law of friction through a symmetric
discretization of the Stelklov–Poincaré operator [15] and by
putting together the SGBEM and the collocation approach
[16].

In this paper a strategy is shown for the solution to
the coupled contact-detachment problem using the mixed
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variable multidomain SGBEM approach. The idea is based
on the classical subdivision of the domain into substructures
introduced in the SGBEM by some authors [15–22], where
a mixed variable approach is utilized.

The multidomain strategy employed here is the same as
that in [22], where the governing equation system is obtained
by imposing the regularity conditions between substructures
regarding the kinematical and mechanical quantities both in
terms of nodal variables (strong regularity) and in terms of
generalized ones (weak regularity). Through this strategy a
single solving equation is obtained in order to solve engineer-
ing problems in elasticity. Indeed, in the bodies in contact,
considered as substructures, a preliminary boundary discret-
ization is made and a distinction is performed between the
boundary in contact but considered as the zone of poten-
tial detachment, called the real boundary, and another one,
detached, considered as the zone of potential contact, called
the virtual boundary. The regularity condition, previously
described, gives rise to appropriate algebraic operators able
to be utilized for both an indirect approach like the iterative
LCP, and a direct approach like the QPP.

Let us now introduce a brief description of the two strat-
egies employed here to solve the contact-detachment prob-
lems:

– The first strategy is based on an iterative procedure, start-
ing from the Signorini equations written in an appropriate
form in order that the LCP could be applied. In this way
the writing of the aforesaid equations is performed by
using nodal mechanical and kinematical variables, con-
sidered as check quantities on the real and virtual bound-
aries. This gives rise to an efficient and high-performance
strategy able to give a good final response but also a lot
of information during the whole contact-detachment pro-
cess but through a path which is computationally more
onerous, because it is based on an iterative procedure, in
comparison with direct strategies. The main advantage of
this iterative formulation is that the algebraic operators
governing the contact-detachment problem, symmetric
and in sign definite, does not need to be re-computed
when the contact and detached boundaries change typo-
logically since some row and column blocks modify their
collocation in the iterative process.

– The second one is based on the solution obtained through
a QPP as a min-max problem of a reduced functional
having only nodal mechanical and kinematical interface
variables or of two independent subproblems of min and
of max of two functionals able to perform separately
the contact and detachment solution with very low com-
putational burdens and CPU times. The QPP approach
proves to be very advantageous in terms of computational
burdens but unable to furnish information during the
contact-detachment process.

These approaches show a more rational and innovatory
strategy regarding both the iterative LCP and the QPP proce-
dures obtained using the multidomain symmetric BEM, like
using the same algebraic operators in both the procedures in
the analysis process.

Some examples regarding the contact-detachment phe-
nomenon are considered and some comparisons between the
solutions with the iterative LCP analysis and the direct QPP
approach will be shown, and also comparisons with other
authors.

2 Mixed variable multidomain approach

This section shows the procedure utilized to obtain, using
the mixed variable multidomain approach of the symmet-
ric BEM, an equation connecting mechanical and kinemati-
cal weighted quantities in the boundaries to mechanical and
kinematical nodal quantities defined in the same boundaries,
and to the known boundary (forces and imposed displace-
ments) and domain (body forces) actions. This expression is
characterized by elastic operators containing the geometry
and constitutive data.

Consider the classical Somigliana Identities (S.Is.) i.e.:

u =
∫

�

Guufd� +
∫

�

Gut (−u)d� +
∫

�

Guu b d� (1a)

t =
∫

�

Gtufd� +
∫

�

Gt t (−u) d� +
∫

�

Gtub d� (1b)

These provide the displacements and tractions in � caused
by layered mechanical jumps f and double-layered kinemat-
ical ones −u, both known and unknown boundary vectors,
as well as by body forces b in the � domain. The operators
Gpq are the Fundamental Solution matrices in which, on the
basis of the symbology introduced by Maier and Polizzotto
[23], the subscripts p = u, t, σ and q = u, t, σ indicate the
effect (u displacement, t traction) and the dual quantity in an
energetic sense (u force, t displacement) associated with the
cause, respectively.

The analysis process concerns two bodies in contact sub-
jected to external actions, constant or variable in time in a
quasi-static way (Fig. 1). The problem appears nonlinear
because the external actions modify the contact area that
characterizes the boundaries of the two bodies, modifying
the free boundary into a contact one and vice versa.

To this aim, in this paper, a strategy has been developed
to use two types of analysis, i.e. the LCP and QPP, through
the use of the same algebraic operators that govern the con-
tact-detachment phenomenon.

Let the homogeneous elastic two-dimensional bodies A
and B of domains �A and �B , supposed to be in contact
with one another along a portion of boundary, be subjected
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Fig. 1 System subdivided into the BEM-elements A and B

to external actions (Fig. 1). Let the boundary of each body be
distinguished into constrained �1, free �2, real interface �0r

and virtual interface �0v, �0 = �0r ∪�0v being the boundary
where the contact-detachment phenomenon takes place [13].
In detail the real interface boundary �0r is the real contact
zone between the solids A and B characterized by the pos-
sibility of changing typologically into a free type boundary
after the detachment analysis. Vice versa the virtual inter-
face boundary �0v is a free type boundary that can change
typologically into a contact one. The subdivision between
these two boundary types of the elastic solids is performed
beforehand.

Each of the two bodies A and B is subjected to in-plane
actions: forces f̄2 at the portion �2 of the free boundary, dis-
placements u1 imposed at the portion �1 of the constrained
boundary, and body force b in �.

The contact-detachment between the two bodies involves
the presence of the boundary �0 = �0r ∪ �0v in each of
them, but no action can be applied.

We want to obtain the length of the boundary which has
modified its status (in contact or detached) and, for each body,
the elastic response to the external actions in terms of dis-
placements u2 on �2 and reactive forces f1 on �1, but also
in terms of the displacements u0v and tractions t0v (the latter
vector null by definition) on the virtual boundary �0v , dis-
placements u0r and tractions t0r at the real boundary �0r and
in terms of stresses σ in the domain of each body by using
the mixed variable multidomain SGBEM approach [16–22].

2.1 Elastic equation of each body

Consider a body, here called BEM-element (BEM-e), char-
acterized by the boundary � distinguished into four parts,
free �2, constrained �1, virtual interface �0v and real inter-

face �0r boundaries. For this BEM-e the following Dirichlet
and Neumann conditions can be written:

u1 = u1 on �1

t2 = f2 on �2 (2a, b)

If in the latter equations we introduce the S.Is. of the displace-
ments and tractions of Eqs. (1a, b), the following boundary
integral equations can be written:

u1 [f1,−u2, f0r ,−u0r , f0v,−u0v] + u1

[
f2,−uC PV

1 , b
]

+1

2
u1 = u1

t2 [f1,−u2, f0r ,−u0r , f0v,−u0v] + t2

[
f

C PV
2 ,−u1, b

]

+1

2
f2 = f2 (3a, b)

where the symbolic form u [. . .] and t [. . .] has been used for
simplicity. For a more detailed description of these equations,
the reader can refer to Panzeca et al. [4].

In Eqs. (3a, b) the typologies of the boundary are char-
acterized by the subscripts introduced in the displacement
and traction vectors. The apices C PV, present in the terms
u1 [−uC PV

1 ] and t2 [fC PV
2 ], mean that the related integrals

have to be considered as the Cauchy Principal Value, whereas
the coefficients where 1/2 occurs are the free terms shown
in explicit form.

To analyze the contact-detachment problem, it is neces-
sary to define the unknowns u0v and t0v , related to the virtual
boundary �0v

u0v = u0v

[
f1,−u2, f0v,−uC PV

0v , f0r ,−u0r

]

+1

2
u0v + u0v

[
f2,−u1, b

]
︸ ︷︷ ︸

û0v

t0v = t0v

[
f1,−u2, fC PV

0v ,−u0v, f0r ,−u0r

]

+1

2
t0v + t0v

[
f2,−u1, b

]
︸ ︷︷ ︸

t̂0v

(4a, b)

and the unknowns u0r and t0r , related to the real boundary
�0r

u0r = u0r

[
f1,−u2, f0v,−u0v, f0r ,−uC PV

0r

]

+1

2
u0r + u0r

[
f2,−u1, b

]
︸ ︷︷ ︸

û0r

t0r = t0r

[
f1,−u2, f0v,−u0v, fC PV

0r ,−u0r

]

+1

2
t0r + t0r

[
f2,−u1, b

]
︸ ︷︷ ︸

t̂0r

(5a, b)
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Eqs. (3a, b) can be rewritten in a different way

u1 [f1,−u2, f0v,−u0v, f0r ,−u0r ]

+ u1

[
f2,−uC PV

1 , b
]

− 1

2
u1︸ ︷︷ ︸

û1

= 0

t2 [f1,−u2, f0v,−u0v, f0r ,−u0r ]

+ t2

[
f

C PV
2 ,−u1, b

]
− 1

2
f2︸ ︷︷ ︸

t̂2

= 0 (6a, b)

whereas Eqs. (4a, b) and Eqs. (5a, b) remain unchanged.
We introduce the boundary discretization into boundary

elements and perform the following modelling of all the
known and unknown quantities:

f1 =� f F1, f2 =� f F2, t0v = � f F0v, t0r = � f F0r ,

u1 =�u U1, u2 =�u U2, u0v =�u U0v, u0r = �u U0r

(7a–h)

where � t and �u are appropriate matrices of linear shape
functions modelling the boundary quantities. Further, the
capital letters indicate the nodal vectors of the forces
(F1, F2, F0v and F0r ) and of the displacements (U1, U2, U0v

and U0r ) defined at the boundary nodes.
We now perform the weighting of all the coefficients of

Eqs. (4–6). For this purpose, the same shape functions as
those modelling the causes (see Eqs. (7a–h)) are employed,
but introduced in an energetically dual way according to the
Galerkin approach [24], thus obtaining the following equa-
tions whose coefficients symbolize generalized quantities:

W1 =
∫

�1

�T
f u1, P2 =

∫

�2

�T
u t2,

W0v =
∫

�0v

�T
f u0v, P0v =

∫

�0v

�T
u t0v,

W0r =
∫

�0r

�T
f u0r , P0r =

∫

�0r

�T
u t0r (8a–f)

As a consequence, these equations are rewritten in the fol-
lowing symbolic form:

W1 [F1,−U2, F0v,−U0v, F0r ,−U0r ] + Ŵ1 = 0

P2 [F1,−U2, F0v,−U0v, F0r ,−U0r ] + P̂2 = 0

W0v = W0v [F1,−U2, F0v,−U0v, F0r ,−U0r ] + Ŵ0v

P0v = P0v [F1,−U2, F0v,−U0v, F0r ,−U0r ] + P̂0v

W0r = W0r [F1,−U2, F0v,−U0v, F0r ,−U0r ] + Ŵ0r

P0r =P0r [F1,−U2, F0v,−U0v, F0r ,−U0r ]+P̂0r (9a–f)

or in the following equivalent block system:

∣∣∣∣∣∣∣∣∣∣∣∣

0
0
W0v

P0v

W0r

P0r

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

Au1u1 Au1f2 Au1uv Au1fv Au1ur Au1fr

Af2u1 Af2f2 Af2uv Af2fv Af2ur Af2fr

Auvu1 Auvf2 Auvuv Auvfv Auvur Auvfr

Afvu1 Afvf2 Afvuv Afvfv Afvur Afvfr

Auru1 Aurf2 Auruv Aurfv Aurur Aurfr

Afru1 Afrf2 Afruv Afrfv Afrur Afrfr

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

F1

−U2

F0v

−U0v

F0r

−U0r

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ŵ1

P̂2

Ŵ0v

P̂0v

Ŵ0r

P̂0r

∣∣∣∣∣∣∣∣∣∣∣∣∣

(10)

where the load terms are the following:

Ŵ1 =
∫

�1

ψT
f û1 =

∫

�1

ψT
f

(
u1

[
f2,−uC PV

1 , b
]

− 1

2
u1

)

P̂2 =
∫

�2

ψT
u f̂2 =

∫

�2

ψT
u

(
t2

[
f

CPV
2 ,−u1, b

]
− 1

2
f2

)

Ŵ0v =
∫

�0v

ψT
f û0v =

∫

�0v

ψT
f u0v

[
f2,−u1, b

]

P̂0v =
∫

�0v

ψT
u t̂0v =

∫

�0v

ψT
u t0v

[
f2,−u1, b

]

Ŵ0r =
∫

�0r

ψT
f û0r =

∫

�0r

ψT
f u0r

[
f2,−u1, b

]

P̂0r =
∫

�0r

ψT
u t̂0r =

∫

�0r

ψT
u t0r

[
f2,−u1, b

]
(10a, f)

It is to be noted that in the latter block equation the matrix
A, where the subscripts 0 have been omitted for simplic-
ity, is symmetric. Moreover, the submatrices and the load
subvectors Ŵ, P̂ are made by coefficients obtained through
a double integration according to the SGBEM strategy. In
detail, the first and second rows represent the Dirichlet and
Neumann conditions (Eqs. 2a, b) written in weighted form
W1 −W1 = 0 on �1 and P2 −P2 = 0 on �2. The remaining
rows regard the weighting of the displacements and tractions
in the real and virtual contact zones defined on the boundary

�0 = �0r ∪ �0v . The terms Aurfr = A
T
frur and Auvfv = A

T
fvuv

include the weighting of the CPV integrals and of the related
free terms.

In Eq. (10) some coefficients show singular or hyper-
singular kernels. These difficulties were overcome within the
SGBEM approach by using different techniques. The reader
can refer to Terravecchia [25] for a more detailed discussion
of the computational aspects and for the related references.
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Eq. (10) can be expressed in compact form in the following
way:

0 = A X + A0X0 + L̂

Z0 = AT
0 X + A00X0 + L̂0 (11a, b)

where the following positions are set

Z0 =

∣∣∣∣∣∣∣∣

W0v

P0v

W0r

P0r

∣∣∣∣∣∣∣∣
, X =

∣∣∣∣ F1

−U2

∣∣∣∣ , X0 =

∣∣∣∣∣∣∣∣

F0v

−U0v

F0r

−U0r

∣∣∣∣∣∣∣∣
,

L̂ =
∣∣∣∣∣
Ŵ1

P̂2

∣∣∣∣∣ , L̂0 =

∣∣∣∣∣∣∣∣∣

Ŵ0v

P̂0v

Ŵ0r

P̂0r

∣∣∣∣∣∣∣∣∣
(12a–e)

The vector Z0 collects the generalized (or weighted) dis-
placement W0 and traction P0 subvectors defined at the
real and virtual boundaries, obtained as the response to all
the known and unknown actions, regarding the boundary
and domain quantities. By performing variable condensa-
tion through the replacement of the vector X extracted from
Eq. (11a) into Eq. (11b), one obtains:

Z0 = D00 X0 + Z0 (13a)

or in extensive form∣∣∣∣∣∣∣∣

W0v

P0v

W0r

P0r

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

Duvuv Duv f v Duvur Duv f r

D f vuv D f v f v D f vur D f v f r

Duruv Dur f v Durur Dur f r

D f ruv D f r f v D f rur D f r f r

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

F0v

−U0v

F0r

−U0r

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣

W0v

P0v

W0r

P0r

∣∣∣∣∣∣∣∣
(13b)

In Eq. (13a), one has set

D00 = AT
0 A−1 A0 − A00, Z0 = −AT

0 A−1 L̂ + L̂0 (14a, b)

Eq. (13a) is the elastic equation written for each of two BEM-
elements. It relates the generalized (or weighted) displace-
ment and traction vectors, collected in Z0 at the real and
virtual boundary �0, to the force and displacement nodal
vector X0 of the same boundary and to the load vector Z0.
Moreover, D00 is an appropriate pseudo-stiffness matrix of
the BEM-e being examined.

2.2 BEM-element assembly

We want to obtain an equation system able to give an elas-
tic solution for an assigned configuration during a loading
process which for two bodies in contact contemplates the
possibility of modifying the contact zone. The strategy is
based on the approach of multi-connected bodies handled

using the symmetric BEM. For each BEM-e, equations like
Eq. (13) can be written, i.e.:

ZA
0 = DA

00 XA
0 + Z

A
0 for body A (15a)

ZB
0 = DB

00 XB
0 + Z

B
0 for bodyB (15b)

Now we impose the regularity conditions (or coupling con-
ditions) between the BEM-elements in order to guarantee
the kinematical and mechanical regularity conditions both in
terms of nodal variables (strong regularity) and in terms of
generalized quantities (weak regularity) at the nodes of the
real interface zone �0r , i.e.:

WA
0r = WB

0r weak compatibility on �0r (16a)

PA
0r = −PB

0r weak equilibrium on �0r (16b)

UA
0r = UB

0r = U0r strong compatibility on �0r (17a)

FA
0r = −FB

0r = F0r strong equilibrium on �0r (17b)

Moreover, �0v being a Neumann type boundary, we can
write:

PA
0v = PB

0v = 0 , FA
0v = FB

0v = 0 on �0v (18a, b)

Eqs. (15–17) give rise to the following block system:
∣∣∣∣∣∣∣∣∣∣∣∣∣

WA
0v

WB
0v

PA
0v = 0

PB
0v = 0

WA
0r − WB

0r = 0
PA

0r + PB
0r = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

DA
uv f v

0 DA
uvur DA

uv f r
0 DB

uv f v
−DB

uvur DB
uv f r

DA
f v f v

0 DA
f vur DA

f v f r
0 DB

f v f v
−DB

f vur DB
f v f r

DA
ur f v

−DB
ur f v

(
DA

urur + DB
urur

) (
DA

ur f r − DB
ur f r

)

DA
f r f v

DB
f r f v

(
DA

f rur − DB
f rur

) (
DA

f r f r + DB
f r f r

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

−UA
0v

−UB
0v

F0r
−U0r

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W
A
0v

W
B
0v

P
A
0v

P
B
0v(
W

A
0r − W

B
0r

)
(

P
A
0r + P

B
0r

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(19)

In this block system, the first four rows regard the virtual
boundary �0v and represent the response in terms of weighted
displacements and weighted tractions (the latter null by def-
inition) related to two bodies A and B in contact. The fifth
and sixth rows represent the weighted regularity conditions
related to the real boundary �0r , that is to say they are the
expressions characterizing the weak compatibility of the dis-
placements and the weak equilibrium of the tractions satis-
fying conditions (16a, b).

Eq. (19) is now reduced by removing the first and the
second block rows regarding the weighted displacements
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WA
0v, WB

0v on the boundary �0v , thus obtaining the following
block equation:

∣∣∣∣∣∣∣∣∣∣

DA
f v f v

0 DA
f vur DA

f v f r
0 DB

f v f v
−DB

f vur DB
f v f r

DA
ur f v

−DB
ur f v

(
DA

urur + DB
urur

) (
DA

ur f r − DB
ur f r

)

DA
f r f v

DB
f r f v

(
DA

f rur − DB
f rur

) (
DA

f r f r + DB
f r f r

)

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

−UA
0v

−UB
0v

F0r
−U0r

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

P
A
0v

P
B
0v(
W

A
0r − W

B
0r

)
(

P
A
0r + P

B
0r

)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

0
0
0
0

∣∣∣∣∣∣∣∣
(20)

The two block rows WA
0v and WB

0v of the system (19) have
been used for the solution of the contact-detachment problem
through iterative LCP with the use of generalized variables
as described by Panzeca et al. in [5].

Eq. (20) can be expressed in compact form in the following
way:

Ht t Y0 + Htr (−U0r ) + Gt = 0

Hr t Y0 + Hrr (−U0r ) + Gr = 0 (21a,b)

where the index t = 2v + r , with v the node number of
the virtual boundary �0v and r the node number of the real
boundary �0r .

The following positions were set for the vectors

Y0 =
∣∣∣∣∣∣
−UA

0v

−UB
0v

F0r

∣∣∣∣∣∣ , Gt =

∣∣∣∣∣∣∣∣

P
A
0v

P
B
0v(
W

A
0r − W

B
0r

)

∣∣∣∣∣∣∣∣
,

Gr =
∣∣∣
(

P
A
0r + P

A
0r

) ∣∣∣ (22a–c)

and for the matrices

Ht t =

∣∣∣∣∣∣∣
DA

f v f v 0 DA
f vur

0 DB
f v f v −DB

f vur
DA

ur f v −DB
ur f v

(
DA

urur + DB
urur

)

∣∣∣∣∣∣∣
,

Htr = HT
rt =

∣∣∣∣∣∣∣

DA
f v f r

DB
f v f r(

DA
ur f r − DB

ur f r

)
∣∣∣∣∣∣∣
,

Hrr =
∣∣∣
(

DA
f r f r + DB

f r f r

)∣∣∣ (22d–f)

By performing a variable condensation through the replace-
ment of the vector (−U0r ) extracted from Eq. (21b) into
Eq. (21a), one obtains:

∣∣∣∣∣∣∣
KAA

f v f v KAB
f v f v KA

f vur
KB A

f v f v KB B
f v f v KB

f vur
KA

ur f v KB
ur f v Kurur

∣∣∣∣∣∣∣

∣∣∣∣∣∣
−UA

0v

−UB
0v

F0r

∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
L

A
f v

L
B
f v

Lur

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
0
0
0

∣∣∣∣∣∣
i.e. K00 Y0 + L0 = 0 (23)

with

K00 = Ht t − Htr H−1
rr Hr t , L0 = Gt − Htr H−1

rr Gr (24a, b)

The sub-matrices of K00 show double indices, the first char-
acterizing the weighted quantities P along the virtual bound-
aries of A and B and W along the real one, and the second
the nodal quantity associated with the node in dual form on
the same boundaries, considered as causes.

In order to distinguish the variables related to the virtual
and real boundaries, equation (23) can be written in a more
compact form:
∣∣∣∣ K f v f v K f vur

Kur f v Kurur

∣∣∣∣
∣∣∣∣−U0v

F0r

∣∣∣∣ +
∣∣∣∣ L f v

Lur

∣∣∣∣ =
∣∣∣∣ 0
0

∣∣∣∣
i.e. K00 Y0 + L0 = 0 (25)

where the subvectors (−U0v) =
[(−UA

0v

)T (−UB
0v

)T
]T

and L f v =
[(

L
A
f v

)T (
L

B
f v

)T
]T

have been introduced and

where the submatrices assume an obvious meaning.
The four sub-matrices that define the matrix K00 have the

following meaning:

– The submatrix K f v f v relates the weighted tractions P0v

on the virtual boundary elements �0v of the two bodies
A and B to the nodal displacements (−U0v) of the same
boundaries. This matrix is symmetric and negative defi-
nite; it takes on the meaning of a stiffness matrix.

– The submatrix K f vur relates the weighted tractions P0v

on the virtual boundary elements �0v of the two bodies
A and B to the nodal forces F0r of the real boundary
�0r . This matrix takes on the meaning of an equilibrium
matrix.

– The submatrix Kur f v relates the weighted displacements
W0r on the real boundary elements �0r to the nodal
diplacements (−U0v) of the virtual boundary �0v . This
matrix therefore takes on the meaning of a compatibility
matrix.

– The submatrix Kurur relates the weighted displacements
W0r on the real boundary elements �0r to the nodal forces
F0r of the same boundary. This matrix is symmetric and
positive definite; it therefore takes on the meaning of a
flexibility matrix.

The load vector L0 collects the response in terms of weighted
mechanical and kinematical quantities to all the external
actions i.e.:
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– the sub-vector L f v collects the weighted tractions on the
virtual boundary elements �0v given by all the known
mechanical and kinematical actions of the assembling
system.

– the sub-vector Lur collects the weighted displacements
on the real boundary elements �0r given by all the known
mechanical and kinematical actions.

By performing a diagonalization process of Eq. (25), one
obtains

∣∣∣∣ K̃ f v f v 0
0 K̃urur

∣∣∣∣
∣∣∣∣−U0v

F0r

∣∣∣∣ +
∣∣∣∣ L̃ f v

L̃ur

∣∣∣∣ =
∣∣∣∣ 0
0

∣∣∣∣
i.e. K̃00Y0 + L̃0 = 0 (26)

where one has set

K̃urur = Kurur − Kur f v

(
K f v f v

)−1 K f vur ,

L̃ur = Lur − Kur f v

(
K f v f v

)−1 L f v,

K̃ f v f v = K f v f v − K f vur (Kurur )
−1 Kur f v,

L̃ f v = L f v − K f vur (Kurur )
−1 Lur . (27)

The two equations extracted from Eq. (26) K̃ f v f v (−U0v) +
L̃ f v = 0 and K̃urur F0r + L̃ur = 0 give the displacements of
the virtual boundary and the forces of the real one, respec-
tively, both based on the mixed variable approach of the mul-
tidomain SGBEM. These equations can be used to obtain the
solution in a contact-detachment process through the LCP,
following an iterative procedure, or solving a min-max prob-
lem of an appropriate functional through the QPP.

The algebraic operators in Eq. (25), or alternatively in
Eq. (26) obtained by Eq. (10), are the basis of the two strate-
gies that will be shown in the following sections and involve
high computational advantages in the solution of the contact-
detachment problem. Indeed:

– in the LCP strategy, when a part the real interface bound-
ary �0r changes into a virtual interface boundary �0v

(detachment) or, vice versa, when a part of the boundary
�0v changes into a boundary �0r (contact), the operator
dimensions do not change, but some blocks of rows and
columns simply exchange their collocation without the
need to be re-computed;

– in the QPP strategy, the same operators are used because
they take on an essential role in defining the nonlinear
problem.

The flexibility of the algebraic operators gives high perfor-
mance to the proposed methodologies in order to reduce the
computational burdens.

3 The contact-detachment problem

Once all the operators governing the elastic analysis phase
based on the multidomain SGBEM approach have been
determined, it is possible to define the strategies that allow
us to get the solution to the contact-detachment problem. In
detail two alternative strategies are shown:

– The first strategy, shown in Sect. 3.1, is an analysis in
which the solution to the contact-detachment problem is
obtained iteratively as the solution to a LCP approach.
This is made possible by coupling the elastic solution
given in Eq. (25) with the contact-detachment conditions
introduced by Signorini [1], rewritten in terms of nodal
quantities. This strategy proves to be onerous from the
computational point of view but has high performance,
since it is able to give a lot of information during the
contact-detachment process.

– The second strategy shown in Sect. 3.2 is an analy-
sis based on the solution to a min-max problem of a
reduced functional whose solution is obtained through
the QPP approach. This min-max problem may be de-cou-
pled into two independent sub-problems of min and max,
able to analyse the contact and detachment separately,
thus reducing the computational burdens of the quadratic
programming. The solution to this problem is very advan-
tageous in terms of CPU times, but it shows loss of con-
sistency since it is unable to give information regarding,
for instance, the stress and strain states during the con-
tact-detachment process.

Both these strategies have been implemented inside the
Karnak.sGbem [26] calculus code, integrated by the Math-
Lab 7.6 program for the solution of the QPP.

The Karnak program, based on the SGBEM formulation,
actually permits one in a sub-structuring process to evaluate
the elastic and elastoplastic response (displacements, trac-
tions, stresses, strains) of the 2D structures subjected to exter-
nal actions like body forces and inelastic strains, both in the
domain, and also to imposed displacements and to forces at
the constrained and free boundary, respectively.

3.1 Contact-detachment by iterative LCP

Let the homogeneous elastic two-dimensional bodies A and
B in Fig. 1 both be subjected to imposed displacements u1

on �1, to boundary forces f2 on �2 and to body forces b in
�. We suppose that friction does not occur between the two
bodies and that simple contact or detachment is possible.

Let us introduce the coefficient c ≥ 0 characterizing the
cohesion between the boundaries in contact �A

0r and �B
0r ,

in the zone of potential detachment, and the vector modulus
|h| ≥ 0 representing the distances between the corresponding
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points (reference gap) on the boundary nodes of �A
0v and �B

0v ,
in the zone of potential contact.

3.1.1 Continuum approach

Let us denote

– by tA
0r = −tB

0r the stress vector acting between the contact
points on the real boundaries �A

0r and �B
0r respectively,

tA
0v = tB

0v = 0 being verified on the virtual boundaries
�A

0v and �B
0v ,

– by uA
0v �= uB

0v the displacement vectors at the virtual
boundaries �A

0v and �B
0v, uA

0r = uB
0r being equal quan-

tities between the displacements of the contact points on
the common boundaries �A

0r and �B
0r .

The boundary conditions of the contact-detachment problem
are the following:

nA
((

uA
0v − uB

0v

)
− h

)
≤ 0 c = 0 gap condition (28a)

nA tA
0r − c ≤ 0 , h = 0 contact condition (28b)[

nA
((

uA
0v − uB

0v

)
− h

)] [
nA tA

0v

]
= 0

complementarity condition on �0v (28c)[
nA

(
uA

0r − uB
0r

)] [
nA tA

0r − c
]

= 0

complementarity condition on �0r (28d)

valid at every point on the boundary, where nA is the trans-
pose of the normal vector associated with the boundary
�A

0 = �A
0r ∪ �A

0v of the body A.
We show the detachment process:
In the boundary zone marked by �0r , where the contact

between the two bodies occurs (c>0, |h| =0), the follow-
ing conditions must be verified: nA

(
uA

0r − uB
0r

) = 0 and
nA tA

0r ≤ c. The detachment phenomenon is checked through
the value assumed by the traction tA

0r . Indeed, it occurs when
the external action change produces a traction tA

0r whose
value satisfies the condition nA tA

0r ≥ c, c being the limit
value. Therefore the latter condition must be considered as
the beginning of the detachment process. In this case the
point in contact is divided into two points belonging to the
bodies A and B and, as a consequence, it causes the rise of
the virtual boundaries �A

0v and �B
0v .

We show the contact process:
Vice versa, in the boundary zone marked by �0v , where

the contact between the two bodies (c = 0, |h| > 0) does not
exist, the following conditions have to be verified: nA

(
uA

0v−
uB

0v

) ≤ nAh and nA tA
0v = 0. The contact phenomenon

is checked through the values assumed by the displacements
uA

0v and uB
0v of the boundaries �A

0v and �B
0v of both the bodies:

indeed, it occurs when the external action change causes val-
ues of the displacements uA

0v and uB
0v to satisfy the following

condition: nA
(
uA

0v − uB
0v

) ≥ nAh, h being the limit vec-
tor. Therefore the latter condition must be considered as the
beginning of the contact process. In this case the points on
�A

0v and �B
0v become connected at a single point and, as a con-

sequence, this causes the rise of the common contact zone
�0r .

3.1.2 Discrete approach

Within the topic of the SGBEM, to reach the analytical solu-
tion to this frictionless contact-detachment problem, an itera-
tive LCP procedure can be employed once the elastic analysis
has been performed using Eq. (23).

To this aim we remember that the unknown vectors F0r ,

UA
0v and UB

0v are referred to the nodes of the in-contact bound-
ary and to the nodes of the detached one. The vector F0r rep-
resents the nodal forces of the body A, computed in the real
boundary zone �0r and the vectors UA

0v and UB
0v represent

the nodal displacements of the virtual boundaries of �A
0v and

�B
0v .
With reference to the system of the two in-contact bodies,

whose boundaries are discretized into boundary elements,
Eqs. (28a–d) characterizing the boundary conditions of the
phenomenon being examined can be rewritten in a very sim-
ilar way. Indeed, the nodal boundary vectors F0r = FA

0r =
−FB

0r ,
(−UA

0v

)
and

(−UB
0v

)
(changed in sign) must substitute

the vectors tA
0r , uA

0v and uB
0v , the latter being defined at each

point on the boundary. Therefore:

NA
v

((
UA

0v − UB
0v

)
− H

)
≤ 0 , C = 0 gap condition

(29a)

NA
r F0r − C ≤ 0 , H = 0 contact condition (29b)[
NA

v

((
UA

0v − UB
0v

)
− H

)] [
NA

v F0v

]
= 0

complementarity condition on �0v (29c)[
NA

r

(
UA

0r − UB
0r

)] [
NA

r F0r − C
]

= 0

complementarity condition on�0r (29d)

where NA
r =diag

(· · · nA
i · · ·) and NA

v = diag
(
· · · nA

j · · ·
)

with i = 1, ...r and j = 1, ...v.
The vector H collects all the nodal gaps between the cor-

responding nodes of the boundaries �A
0v and �B

0v , in the zone
of potential contact, whereas the vector C collects the cohe-
sion between the nodes which are in contact, in the zone of
potential detachment �0r .

3.2 Contact-detachment by QPP

The solution to the contact-detachment problem can be
obtained as the solution to a min-max problem of the func-
tional Πrv [F0r , (−U0v)] reduced to the nodal interface vari-
ables only, as shown by Polizzotto [9] and Polizzotto and Zito
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[10]. In detail, let us consider the following quadratic prob-
lem, whose saddle-point solution is given in the following
form:

min
F0r

− max
(−U0v)

Πrv [F0r , (−U0v)]

s.t. NA
r F0r − C ≤ 0 , NA

v

((
UA

0v − UB
0v

)
− H

)
≤ 0

(30)

with

Πrv

[
Fn

0r ,
(−Un

0v

)] = 1

2
YT

0 K00Y0 + YT
0 L0

= 1

2
(F0r )

T Kurur F0r + (F0r )
T Kur f v (−U0v)

+1

2
(−U0v)

T K f v f v (−U0v)

+ (F0r )
T Lur + (−U0v)

T L f v (31)

The QPP problem of Eq. (30) is presented in the classical
form of a quadratic objective functional subjected to linear
constraints. The saddle-point of this functional provides the
complete solution (25) to the contact-detachment problem.

Alternatively, the use of Eq. (26) can modify the min-max
problem (30) into two separate sub-problems of min and max
of two functionals Πv and Πr in order to perform the contact
and detachment analysis, independently, as a function of the
phenomenon type expected, i.e.

– for the contact problem

max
(−Un

0v)
Πv [(−U0v)]

s.t. NA
v

((
UA

0v − UB
0v

)
− H

)
≤ 0 (32a)

– for the detachment problem

min
F0r

Πr [F0r ]

s.t. NA
r F0r − C ≤ 0 (32b)

Πv and Πr being two discrete energy forms written in terms
of kinematical (−U0v) and mechanical F0r nodal variables
on �0v and �0r respectively, i.e.

Πv [(−U0v)]= 1

2
(−U0v)

T K̃ f v f v (−U0v)+(−U0v)
T L̃ f v

(33a)

Πr [F0r ] = 1

2
(F0r )

T K̃urur F0r + (F0r )
T L̃ur (33b)

These two functionals are alternative to the mixed one given
by Eq. (31). Indeed, they are the consequence of the change in
Eq. (25), which is modified through variable division, leading
to Eq. (26).

In detail, through the maximum problem (32a), all the
nodes of the virtual boundary �0v , where the condition NA

v((
UA

0v − UB
0v

) − H
) = 0 occurs, change into the real bound-

ary �0r , thus defining a new contact zone. Vice versa through
the minimum problem (32b), all the nodes of the real bound-
ary �0r , where the condition NA

r F0r − C = 0 occurs,
change into the virtual boundary �0v , thus defining a new
detachment zone.

The strategies leading to the solution of the saddle-point
of the min-max functional (30), of the min of the functional
(32a) or of the max of the functional (32b) do not make it
possible to obtain information regarding the evolution of the
contact-detachment problem, but only knowledge of the final
detachment or contact zones. The advantage is that the func-
tionals have reduced dimensions, thus reducing the compu-
tational burden. Once the contact and detached zones are
known, it is possible to perform a classical analysis on two
bodies whose contact zone is known.

The QP of Eq. (30), or alternatively those of Eqs. (32a, b)
are quadratic programming problems not involving compu-
tational or mathematic difficulties, because they show a clas-
sical form having quadratic objective functions subjected to
linear constraints. A strong variable condensation process
leads to the writing of algebraic operators only reduced to dis-
crete quantities related to the contact-detachment phenome-
non, in a similar way to what was done by Polizzotto [9] and
Polizzotto and Zito [10] inside the SGBEM formulation. As
a consequence, it was possible to develop the QPP methodol-
ogy showing a clear mathematic form, because the algebraic
operators present in Eqs. (31, 33a, 33b) are symmetric and
in sign definite and have reduced dimension. These types of
mathematical problems do not need to have solvers and fully-
developed quadratic programming techniques like those to
be utilized in semi-definite programming. The used imple-
mentation strategy coupled the Karnak.sGbem [26] code to
obtain the K matrices and the load vectors L with MathLab
7.6, which provides the solution of the QPP Eqs. (30, 32a,
32b). The QPP (32a,b) can be utilized singularly in cases
of detachment or contact only, or in the alternative strategy
where these two phenomena coexist.

The present paper works in the ambit of the matching
mesh, but some explanations regarding the implementation
strategy used to transfom an imperfectly matching mesh into
a perfectly matching mesh have to be shown. Indeed, when
the phenomenon regards the potential detachment �0r , cer-
tainly we are in the presence of a perfectly matching mesh.
Vice versa, when the phenomenon contemplates contact pres-
ence on �0v the nodes would not guarantee a perfectly
matching mesh during the contact phase. To this aim a sim-
ple recursive strategy was implemented which modifies the
discretization to very few iterations (2 or 3) and leads to a
perfectly matching mesh, by changing the position of the
nodes belonging to only one of the two bodies.
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Fig. 2 Beam supported on elastic blocks: a geometric description, b strained shape obtained by iterative LCP analysis

Table 1 Comparison of detachment lengths and CPU times

Method Detachment length (cm) CPU times (s)

SGBEM iterative LCP 8.4 237.7

BEM (R. Vodička [14]) 8.3 //

SGBEM QPP 8.2 4.3

4 Numerical applications

To show the efficiency of the proposed methods, some
structures were analyzed. These were subjected to external
actions, constant in time. In the first two examples, the detach-
ment phenomenon is treated by iterative LCP and QPP pro-
cedures in the absence of cohesion between the substructures
and in the absence of friction and sliding, and a comparison
is made between these two different approaches. The last
example was treated in the presence of different cohesion
values, but only through an LCP analysis.

4.1 Example 1

Let us consider the detachment problem regarding a beam
A supported by two elastic blocks B, without friction and

sliding, and symmetrically loaded. The analysis is performed
on half the structure, as shown in Fig. 2a.

The geometrical and mechanical characteristics of the str-
ucture are the same as those utilized by Vodička [14]. Thus
the beam A, having unitary thickness, is characterized by
the Young modulus Ea = 30.6 × 104 MPa and Poisson
ratio υ = 0.3 and is subjected to vertical force distribution
q = 1020 daN/m. The body B is characterized by the Young
modulus Eb = 30.6 × 106 MPa and by the same thickness
and Poisson coefficient.

To discretize the free and constrained boundaries of the
solids A and B, a step p = 2 cm was introduced on �2 and
�1, whereas to discretize the contact boundary �0r the step
p = 0.1 cm was utilized. Figure 2b shows the final strained
shape obtained by the iterative LCP.

In Table 1 the detachment length is shown, computed
using the strategies in Sects. 3.1 and 3.2. These results were
compared with the solution obtained by Vodička [14]. In all
the cases shown in Table 1 the detachment length proves to
be very similar. The same table also shows the CPU times
employed by the two strategies, proving that the QPP meth-
odology gives a drastic reduction in CPU times.

Figure 3a, b show the normal and shear stress distri-
butions in the transversal sections of the bodies A and

2

(a) (b)

max =-24.21

max =-4.85

max =-6.56

max =4.96

Fig. 3 a Normal and b shear stress distributions.
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Fig. 4 Double constrained beam: a geometric description, b strained shape by elastic analysis without detachment, c strained shape by iterative
LCP analysis considering the detachment phenomenon

B, distant 1 cm from the inner corner between A and B,
obtained at the end of the iterative LCP analysis. This
stress state, but also other kinematical and mechanical
characteristics, such as displacements, relative displace-
ments, strains and support reactions, can be known by
utilizing the peculiarities of the Karnak program. The latter
information is not obtainable when we use the QPP method-
ology, which is an alternative to LCP.

4.2 Example 2

In Fig. 4a a double constrained beam, having unitary thick-
ness, is subjected to a vertical load q = 1000 daN/m. The
material characteristics are: Young’s modulus E =5000 MPa
and Poisson’s ratio υ = 0.2. To discretize the free �2 and
constrained �1 boundaries of the solids A and B, nodes with
step p = 4 cm were introduced everywhere, whereas to dis-
cretize the contact boundary �0r the step p = 0.38 cm was
utilized, thus introducing 104 nodes along the interface.

For this beam, three analyses were performed:

– an elastic analysis, carried out with the Karnak program,
considering the beam as continuous without possibility
of detachment and comparing the elastic response with
the analytical solution to the monodimensional solid;

– a nonlinear analysis, carried out with the Karnak pro-
gram, to evaluate the detachment length through an iter-
ative LCP approach, following the strategy introduced in
Sect. 3.1;

Table 2 Comparison of detachment lengths and CPU times

Method Detachment length (cm) CPU Times (s)

SGBEM iterative LCP 33.85 984.4
SGBEM QPP 33.08 16.2

– a nonlinear analysis, carried out with the Karnak pro-
gram and coupled with the MathLab code, to evaluate the
detachment length through a QPP approach, following
the strategy shown in Sect. 3.2.

In Fig. 4 the strained shapes obtained by elastic analysis
(Fig. 4b) and by the iterative LCP (Fig. 4c) are shown.

In Table 2 the detachment length is shown, which was
computed using the strategies of the Sects. 3.1 and 3.2. In
both cases the detachment lengths prove to be similar and
show an error equal to 2.27 %. The same table also shows the
CPU times employed by the two strategies, proving that the
QPP methodology leads to a drastic reduction in CPU times.

In Fig. 5 the normal stress σx and the shear stress τxy,
obtained at the section a–a distant 100 cm from the left built-
in end section, are compared by considering three analy-
sis types, i.e. continuum beam theory, continuum beam by
Karnak program and iterative analysis by Karnak program
with detachment at the final step.

It is possible to show the development of the phenomenon
through LCP iterative analysis using the Karnak program.
For instance, we want to evaluate the normal stress in the
section a–a when the detached boundary takes on the value
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-8 -6 -4 -2 2 4 6 0.5 1 1.5 2.0 2.5 3.0 3.5
x xy

(a) (b)

Continuum beam theory

Continuum beam by Karnak program

Iterative LCP with detachment at the
final step by Karnak program

a

a

a

a

0 0

Continuum beam theory

Continuum beam by Karnak program

Iterative LCP with detachment at the
final step by Karnak program

Fig. 5 Stress distribution at the section a–a: a normal stress σx and b shear stress τxy

-8 -6 -4 -2 2 4 6
x

0

d = 0d = 8.46d = 16.92d = 25.38d = 33.85

Fig. 6 Normal stress distribution σx at section a–a during the detached
phenomenon

expressed in cm, i.e. d = 0.00, 8.46, 16.92, 25.38, 33.85.

It can be noticed that the detachment modifies the response
in terms of normal stress σx, losing its linearity and reaching
only negative values when the detachment length takes on
the value d= 16.92, as shown in Fig. 6. Vice versa the shear
stress τxy remains unchanged because, in this case, the shear
is not influenced by the detachment process (Fig. 5b).

As a conclusion to the two examples, some observations
have to be introduced.

In analyzing the differences found in the two applications
between the LCP and QPP solutions, the percentage error
(2.3 % in the first example, 2.2 % in the second one) are
acceptable, but it is necessary to explain these differences.
In this connection, the QPP strategy shows a direct approach
where the solution of a stationary problem is performed, all
the data being known at the beginning through the knowledge
of the algebraic operators. By contrast, the LCP strategy is
an indirect approach, based on the search of the solution of
an evolutive problem, in which at every iteration of the con-
tact-detachment process the problem is modified as we move
towards the stationary solution.

As a consequence the solutions obtained through a direct
(QQP) and an indirect (LCP) approach are not perfectly coin-
cident, mainly for three reasons:

– the first one is connected to the check type introduced in
deciding to proceed with or exit from the iterative process.
This check defines an error range involving a response
variation and modifies the conditions of the beginning of
the new iterative step with new modified operators;

– the second one is connected to the modelling of the bound-
ary quantities in the contact-detachment zone. Indeed,
at the end of the iterative process, the presence of high
stress concentrations means that the tractions, as well as
the relative displacements, are not fairly represented by
the linear shape functions, which are introduced both to
perform the cause modelling and the effect weighting;

– the third one regards the strategy employed during the
contact process. In this connection, the direct QQP proce-
dure does not modify the mesh during the characterization
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35°
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400

150
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Fig. 7 Geometry of a vault supported by quasi-rigid blocks
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(a)

(b)
c = 0 MPa

c = 0.4 MPa

Fig. 8 Strained shapes by iterative LCP analysis: a with cohesion
c = 0.4, b with cohesion c = 0

Table 3 Detachment lengths by iterative LCP for different coesion
values c = 0.4, . . . , 0 MPa

Detachment length (cm) with different cohesion values
(MPa)

Sections c = 0.4 c = 0.3 c = 0.2 c = 0.1 c = 0

1–5 0 35.29 35.29 35.29 35.29
2–4 0 0 0 0 11.76
3 0 0 0 38.24 38.24

of the contact zone, as instead it happens in the iterative
LCP procedure.

4.3 Example 3

Let us consider the frictionless detachment phenomenon,
without sliding, in Fig. 7, where a depressed vault is
supported on two quasi-rigid masonries. The vault/masonry
system was discretized by 6 substructures, 4 of which BEM-e
ones for the vault and 2 BEM-e ones for the support masonry.
The system is subjected to its own weight. The vault, having

Table 4 Maximum stress values by iterative LCP for cohesion values
c = 0.4, 0.0 MPa

Maximum stress values (MPa)

Sections c = 0.4 c = 0

1–5 −0.39674 −0.49140

2–4 −0.16843 −0.16372

3 −0.20383 −0.33641

Young modulus E = 7500 MPa, Poisson ratio υ = 0.3
and thickness s = 100 cm, is subjected to the body force
γ = 1800 daN/m3. The support masonries, constrained at
the bases, are characterized by the same thickness, Poisson
ratio and body force as the vault, but have a different Young
modulus E = 25000 MPa.

Five sections (Fig. 7) characterizing the interface bound-
aries between substructures were introduced to simulate the
separation phenomenon through the use of the iterative LCP
strategy shown in Sect. 3.1 with different cohesion values
c = 0.4, 0.3, 0.2, 0.1, 0.0 MPa. Each section contains 18
interface nodes.

By the analysis performed through the strategy developed
in Sect. 3.1, it is shown that for the cohesion value equal
to c = 0.4 MPa no section is subjected to the detachment
phenomenon. By contrast, when the cohesion is null, all the
sections are subjected to a separation process, but having
different detachment lengths. In Fig. 8 the strained shapes
related to the two limit values of cohesion c = 0.4 and c = 0
are shown.

In Table 3 the detachment lengths obtained by the
employed cohesion values are indicated.

In the presence (c = 0.4 MPa) and in the absence of cohe-
sion, the detachment process involves the compression stress
being concentrated in the in-contact zone, and at the same
time the traction stress disappears near the detached inter-
face boundary. These results are shown in Fig. 9, where the
normal stress distribution has been drawn near the sections

sect. 1

sect. 2

sect. 3

(a)

sect. 1

sect. 2

sect. 3

(b)
c = 0 MPac = 0.4 MPa

Fig. 9 Normal stress distributions by iterative LCP analysis for cohesion values c = 0.4, 0.0 MPa
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introduced to study the detachment phenomenon. At the end,
Table 4 shows the maximum stress values in the presence
(c = 0.4 MPa) and in the absence of cohesion.

5 Conclusions

In the hypothesis of absence of friction and sliding, the
contact-detachment phenomenon between two elastic bodies
was obtained through an iterative LCP strategy and through
a QPP procedure, using the SGBEM for multidomain prob-
lems. A boundary discretization was made, producing a sym-
metric formulation where the displacements and the tractions
are introduced in terms of discrete quantities (nodal displace-
ments and forces). In both the strategies used, the minimum
reference gap and the cohesion have to be known.

The iterative LCP strategy is computationally disadvanta-
geous, but allows one to have a lot of information regarding
the status of the body, that is regarding displacements, normal
and shear stresses, normal and shear strains, distribution of
displacements and stresses along prefixed lines, in any phase
of the contact-detachment phenomenon.

By contrast, the QPP procedure uses reduced function-
als in terms of nodal displacements and reactions along the
interface boundary. It is computationally advantageous, but
one only obtains the final value of the contact or detachment
boundary and no other information on the status of the bodies.

These two strategies made it possible to activate a mod-
ulus in the Karnak.sGbem program through the formulation
of appropriate procedures.
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