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1 Introduction

Convergence analysis is typically envisaged from a macroeconomic standpoint where tests are performed at

the desired aggregate level of interest, such as countries or regions.1 However, to the extent that macro

dynamics result from the underlying microeconomic activity, further information on macro convergence

may also be hidden in the micro-level. Indeed, convergence at the disaggregate industrial and firm level is

attracting increasing interest in empirical economic growth (see, among the others, Egger and Pfaffermayr,

2009; Hausmann et al., 2007; Huber and Pfaffermayr, 2010). Further, the evidence of convergence seems to

be stronger at the disaggregate level, as recently highlighted by Rodrik (2011).

Choosing the appropriate level for the analysis of convergence is important from both the theoretical

and empirical standpoint. On one hand, aggregate analysis can be problematic. Relationships estimated at

the aggregate level cannot always be interpreted as representative of micro-level relationships.2 Also, in the

determination of the appropriate aggregate level of analysis, problems of ecological fallacy or aggregation bias

may emerge.3 Disaggregate analysis, on the other hand, does not allow drawing inference about convergence

at the macro level, often the main level of interest, and it may yield biased estimates under the likely violation

of the assumption of within cluster independence. Finally, and importantly, the separate analysis of each

level does not consider the interactions between levels.

In this direction, multilevel analysis can provide a useful reference methodology, providing a toolbox that

allows the estimation of convergence at both the micro and macro levels, without ignoring their interaction.4

Hence, in this paper, we propose an approach that, based on multilevel growth models, allows looking

at the same time at the growth trajectories and their convergence for both the micro-level and the macro

aggregates of interest. Our approach is directly comparable to the traditional parametric β and σ convergence

analysis. However, it allows obtaining two β like convergence parameters for both the micro, i, and macro

s, level considered. We call these parameters µi and µs and name this approach µ convergence analysis.

Similarly, this approach returns a σ like convergence parameter for each level. Further, while in the traditional

analysis tests of β and σ convergence are performed separately, in this approach it is possible to perform

them in one estimation procedure.

Compared to the traditional analysis, this methodology presents a number of benefits. First, it allows

exploiting the increasing availability and greater statistical power of large microeconomic datasets. Second,
1See Islam (2003) for a survey.
2For example, the use of aggregate production functions is actually the subject of a long standing controversy (see Cohen

and Harcourt, 2003, for a retrospective).
3See Robinson (1950).
4As discussed by Goldstein (2003), a multilevel approach can be useful even when the aggregate level is the main level of

interest.
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while traditional approaches test for convergence only at the desired macro level, our approach allows the

contemporaneous testing of convergence at more levels, e.g. micro and macro. Third, it allows conditioning

the growth regressions on control variables observed at both the micro and macro level, while controlling for

unobserved micro and macro effects.

The next section discusses the proposed approach in relation to the traditional β and σ convergence.

Section 3 provides an empirical example that tests for convergence in labour productivity using Italian data.

Section 4 concludes.

2 Methodology

β and σ convergence.

Both parametric and non-parametric methods are used to analyse convergence.5 Within the parametric

framework adopted here, the most commonly employed approach is, probably, the β convergence approach

proposed by Barro and Sala-i-Martin (BSM, 1991, 1992), who estimate a reduced form equation of the

neoclassical growth model due to Solow (1956, 1957). Briefly, after assuming the same steady state for all

economies, BSM measure absolute convergence looking at the estimate of β from the following regression:

(yit − yit−1) = α+ β · yit−1 + uit , (1)

where yit is the natural log of per capita income, α and β are parameters and uit is a disturbance term.

The BSM equation is then usually estimated in the purely cross-sectional framework:

1
T
· (yiT − yi0) = ∆ȳi = α+ β · yi0 + ui , (2)

where yiT and yi0 represent the natural log of per capita income of unit i in the final and initial period

of the interval t = [0, ..., T ], respectively. Clearly, convergence requires economies with lower initial levels of

per capita income to grow faster than economies with higher initial levels of per capital income, i.e.

β̂ =
cov(∆ȳi, yi0)
var(yi0)

< 0 .

The σ convergence approach, instead, looks at the variance of per capita incomes over time, with a

reduction of dispersion denoting convergence. β and σ convergence are clearly related, and, as shown by
5The most popular non-parametric alternative is the distributional approach due to Quah (1993).
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Sala-i-Martin (1996), β convergence is a necessary, albeit not sufficient, condition for σ convergence. Under

no β convergence, there cannot be σ convergence, but under β convergence, σ convergence further requires

the initial level of σ2 to lie above its steady state and diminish over time. Hence, it is in principle possible

to conclude for β convergence, while the dispersion actually increases over time. In this case, concluding for

convergence would lead to committing Galton’s fallacy (see Egger and Pfaffermayr, 2009, and Huber and

Pfaffermayr, 2010, for a recent discussion).

Multilevel µ convergence

Convergence at the micro level

Our µ convergence approach recognizes that data can be hierarchically structured in more levels, e.g.

micro and macro, and that convergence can occur differently over the two levels. Hence, it allows different

growth trajectories for the levels in the hierarchy. In order to illustrate this approach, consider, as standard

in growth empirics, the simple compound growth process:

Yt = Y0(1 + g)t , (3)

where Yt and Y0 are, respectively, per capita income at time t and 0. Taking natural logs, we obtain a

standard log-linear growth process:6

ln(Yt) = ln(Y0) + t · ln(1 + g). (4)

We can define ln(Yt) = yt, ln(Y0) = γ0 and ln(1 + g) = γ1, and recognize in the above equation the

familiar linear-trend model:

yt = γ0 + γ1t+ ut , (5)

where

γ1 =
dy

dt
=
d ln(Y )
dt

=
1
Y

dY

dt
=
dY/Y

dt
.

and ut is the usual disturbance term. The estimate of γ1, γ̂1, can be interpreted as the estimated growth of y

over the period tT − t0, and can be compared to the average growth rate considered by BSM, i.e. γ̂1 ' ∆ȳt.

In order to obtain different growth trajectories for each individual, equation (5) can be estimated in a
6Here, a simple log-linear growth process is assumed, but the approach is easily extended to the non-linear case.
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multilevel framework. To this end, given N units observed over period T , we can denote by yti the realization

of the variable of interest for unit i (i = 1, . . . , N) at time t (t = 1, . . . , T ) and by tti the point in time when

yti is recorded. In multilevel growth models, this is a simple hierarchical structure, where the recording time

represents the first level and the realization of y for unit i is the second level. In our case, responses are

recorded continuously and contemporaneously, i.e. tti = tt. Then, following Steele (2008), a linear trajectory

can be fitted for each individual unit estimating the following system of equations:

yti =γ0i + γ1itt + εti

γ0i =γ0 + η0i (6)

γ1i =γ1 + η1i

The above can be expressed in reduced form, as follows:

yti = γ0 + γ1tt︸ ︷︷ ︸
determimistic

+ η0i + η1itt + εti︸ ︷︷ ︸
stochastic

, (7)

where γ0i is an individual-specific intercept composed by a fixed part, γ0, and a random part, η0i. γ1i is

an individual-specific slope with respect to time, again composed by the fixed part γ1 and the random part

η1i . The final term εti is the random component related to time. While the term γ0 + γ1tt represents the

common initial level and trend in the relationship between y and t, η0i and η1i are the individual departures,

respectively, in terms of intercept and slope, i.e. the growth rate. Residuals are assumed to be normally

distributed, i.e. εti ∼ N(0, σ2
ε ), and may be level-correlated.7 The following variance/covariance matrix can

be obtained:

Ωη =

 σ2
η0

ση01 σ2
η1

 ,

where σ2
η0and σ

2
η1are respectively the variance of individual intercepts and slopes (growth rates). Here, t

is centered around the first observed year so that the intercept will represent the initial period and σ2
η0 the

variance of per capita income between-individuals at the initial period.8

7Within multilevel growth models it is also possible to allow for AR(1) residuals. Here, we have considered a general structure
for the correlation for the level residuals, because it is the one more directly comparable to the traditional cross-sectional analysis
of convergence.

8In the multilevel literature, the time variable t is usually centered around the mid-point, so that σ2
η0

is interpreted as the
between-individual variance in y at the mid-point.
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The covariance between intercepts and slopes, ση01 , provides a measure of convergence in the β conver-

gence sense. A statistically significant negative (positive) covariance will imply convergence (divergence):

individual units with lower (higher) values of y at the initial period experience higher (lower) growth rates

over the observed period.

Since ση01 = cov(γ̂0i, γ̂1i) ' cov(yi0,∆ȳi), µ convergence can be compared to β convergence if we take

the covariance between intercepts and slopes as a share of the variance of the intercepts, i.e. for level i:

β̂ =
cov(yi0,∆ȳi)
var(yi0)

' cov(γ̂0i, γ̂1i)
var(γ̂0i)

= µ̂

Convergence at the micro and macro level

This approach allows testing for convergence also for higher levels in the hierarchy, such as a macro level,

s, that is added to equation (7). In multilevel terms, the new representation becomes a three level model,

as follows:

ytis =γ0is + γ1istt + εtis

γ0is =γ0 + ν0s + η0is (8)

γ1is =γ1 + ν1s + η1is

or in reduced form:

ytis = γ0 + γ1tt + η0is + ν0s + η1istt + ν1stt + εtis . (9)

In equation (9), the growth rate is now allowed to vary both across micro-level units, i, and across

macro-level units, s. Estimation of equation (9) yields two variance-covariance matrices:

Ωη =

 σ2
η0

ση01 σ2
η1

 ; Ων =

 σ2
ν0

σν01 σ2
ν1


where ση01 can be interpreted, as before, as a measure of convergence among micro-level units and σν01now

represents a measure of convergence among macro-level units. While in the β convergence framework, we

would have run separate regressions on different data levels to obtain βi and βs, in µ convergence we

simultaneously obtain two µi,s parameters, corresponding to the two levels:
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µi =
ση01
σ2
η0

; µs =
σν01
σ2
ν0

.

This can be particularly important as it allows the researcher to disentangle at which level of the hierarchy

convergence really occurs.

A σ type convergence can also be obtained looking at the dispersion of the data for both the intercepts of

the individual units, σ2
η0 , and the macro units, σ2

v0 , over time. Recursively centering the model around each

t in the sample, we can look at the dispersion of per capita income at each point in time and for each level.

Confidence intervals can be constructed to look at the statistical significance of the σ convergence process,

i.e. whether we observe a statistically significant reduction of the level variance over the observed period.

Such σ convergence analysis can be useful in order to validate the µ convergence approach in terms of the

above mentioned Galton’s fallacy.

Conditioning on exogenous variables.

Since multilevel analysis uses random effects estimation, it can easily accommodate, similarly to the

conventional conditional convergence analysis, for the starting values of growth determinants at both the

micro and the macro level.9 This allows conditioning the initial level γ0is to growth determinants at both

the i and the s levels.

We can, then, easily incorporate starting values of growth determinants:

ytis =γ0is + γ1istt + εtis

γ0is =γ0 + ν0s + αiX0i + αsX0s + η0is (10)

γ1is =γ1 + ν1s + η1is

or in reduced form:

ytis = γ0 + γ1tt + αiX0i + αsX0s + η0is + ν0s + η1istt + ν1stt + εtis, (11)

where X0i and X0s are set of first and second level variables at the beginning of period. This allows

interpreting the estimated variances and covariances as conditional on growth determinants.
9The inclusion of micro and macro level fixed effects also allows overcoming potential mispecification issues in the random

effects estimator under non-random cross-sectional differences.
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3 Convergence of labour productivity in Italy

Next, we propose an empirical investigation based on the estimation of labour productivity convergence in

Italy. Given the well known spatial disparities in Italy (see, among the others, Byrne et al., 2009; Fazio

and Piacentino, 2010), we believe this a suitable case study to illustrate our method. Specifically, we

investigate labour productivity convergence over the period 1999-2005 across a sample of Italian firms in the

manufacturing and services sectors (public utilities and state monopolies excluded). Labour productivity at

the firm level is calculated as the ratio between the series of value added and the number of employees,10

both drawn from the Italian section of the Bureau Van Dijk Database (AIDA), which reports balance sheet

data covering more than 90 percent of Italian companies with a value of production above 100.000 Euros.

However, the reported balance sheets may be consolidated accounts, which means that in those instances

when the company has subsidiaries and plants in more locations, we would be incorrectly considering their

value added as generated in one unique location. The best way to limit this issue is not to consider large firms,

which are the most likely to have a multi-plant organization. Hence, we concentrate on Small and Medium

Enterprises (SMEs), here selected using standard criteria (more than 10 and less than 250 employees; more

than 2 and less than 43 million Euros of Total Asset Value). This choice seems also more in line with the

need to capture the underlying characteristics of the Italian productive system. After some data mining, the

data query returns 9,284 observations, our individual units, i, distributed across the national territory. As

a macro-level, s, we consider the 103 Italian provinces. This level of disaggregation is mostly dictated by

the need to ensure sufficient degrees of freedom to estimate the macro level in our multilevel structure (see

Appendix A for the relevant summary statistics).

We can now turn our attention to the estimation stage. Following the discussion in the previous section, in

figure 1 we present the results of the traditional β convergence analysis. Since we have chosen the provinces as

our macro level of interest, we can estimate BSM type regressions using aggregate data for provincial labour

productivity. This could be obtained from the national accounting data of the Italian National Statistics

Office (ISTAT). The upper left quadrant of figure 1 plots the period average growth, ∆ȳ , against the initial

level of productivity in 1999 and reports the estimated β regression. Results show a negative relationship

between initial levels and average productivity growth, i.e. province-level convergence.

In order to see the agreement between the national accounting and our micro data, we have aggregated,

summing or averaging, the micro-level data from AIDA. The β convergence analysis on these aggregations

shown in the upper right and lower left diagrams, respectively, of figure 1, highlight stronger β convergence
10Value added has been deflated using sectoral prices from the OECD.
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compared to the ISTAT data (2 percent against 5 and 8 respectively). These results seems in line with the

stylised evidence highlighted by Rodrik (2011).11

FIGURE 1
β convergence (Labour Productivity)

a) Province-level - ISTAT data b) Province-level - AIDA aggregate data 1

β = -0.023***; Adj − R2 = 0.07 β= -0.051***; Adj − R2= 0.26

c) Province-level - AIDA aggregate data 2 d) Firm-level data - AIDA

β = -0.086***; Adj − R2= 0.54 β= -0.087***; Adj − R2 = 0.38

Notes: These figures plot the period average growth, ∆ȳ , against the beginning of period productivity, y1999,

and report the estimated β convergence; Panel a) uses national accounting data from ISTAT-SITIS database at

the provincial level. Panel b) uses firm level data from AIDA aggregated at the provincial level by sum. Panel c)

uses firm level data from AIDA averaged at the provincial level. Panel d) uses disaggregated firm level data.

***denotes statistical significance at the 1% level

Alternatively, if we were interested in the convergence among firms, we could estimate β convergence

at the firm level. The lower right quadrant of figure 1 shows the presence of convergence also at this level

of analysis. Overall these results seem to indicate that the convergence we observe at the micro firm level

in panel d) of figure 1 is reflected in the convergence at the macro province level of panels a) to c), and

viceversa. However, the β convergence tests at the macro and micro levels are performed separately.
11A possible explanation for this results may be that while AIDA data only includes the productivity of the private sector,

ISTAT data will also include the productivity of the public sector, so that a more proper mix of industries is probably present
in our sample.
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TABLE 1
µ convergence (Labour Productivity)

(1) (2) (3) (4) (5) (6) (7)

γ0 10.861

(0.004)

10.862

(0.005)

10.861

(0.005)

10.830

(0.008)

10.830

(0.008)

10.838

(0.007)

10.838

(0.007)

γ1 -0.008

(0.001)

-0.008

(0.001)

-0.008

(0.001)

-0.008

(0.001)

-0.007

(0.001)

-0.010

(0.001)

-0.010

(0.001)

σ2
ε 0.298

(0.002)

0.186

(0.001)

0.176

(0.001)

0.186

(0.001)

0.176

(0.001)

0.186

(0.001)

0.176

(0.001)

σ2
η0 0.112

(0.002)

0.141

(0.003)

0.109

(0.002)

0.139

(0.003)

0.109

(0.002)

0.139

(0.003)

ση01 -0.008

(0.001)

-0.008

(0.001)

-0.008

(0.001)

σ2
η1 0.002

(0.000)

0.002

(0.000)

0.002

(0.000)

σ2
v0 0.003

(0.001)

0.003

(0.001)

0.002

(0.001)

0.001

(0.001)

σv01 0.000

(0.000)

0.000

(0.000)

σ2
v1 0.000

(0.000)

0.000

(0.000)

−2Log(L) 105209.6 90048.0 89716.4 89909.3 89572.6 89884.2 89553.5

Notes: Estimation by Restricted Iterative Generalized Least Squares; Standard

Errors in parentheses. All variables are in logs

Next, we apply the µ convergence approach described above.12 Table 1, in particular, presents results for

alternative specifications of µ−convergence in columns (1) to (7), where we first estimate the simplest linear

trend model and then start adding random effects at the micro (firm) and macro (province) levels both in

the intercepts and trends.

Some results are worth mentioning. First, a significant negative trend in labour productivity emerges quite

clearly from all models, indicating that Italian firms in general have experienced a productivity decrease.

Secondly, for the firm-level our approach, just like the BSM regression, returns evidence of convergence,

i.e. µi = −0.072 (=-0.008/0.141) in column 3 and µ = −0.057 (=-0.008/0.139) in column 7, where the

most flexible specification is adopted. However, and most importantly, contrary to the BSM regression, no

evidence of macro (province) level convergence can be found, i.e. µs = 0 in columns 6 and 7.

As discussed above, convergence can also be tested after adding beginning-of-period determinants of

growth at the micro or macro level. Hence, in table 2 we have added both firm and province level controls at

the initial year. These include firm-level capital intensity (from AIDA) and province-level labour productivity,

employment rate and degree of openness (from ISTAT). These are the most “comprehensive” variables we
12This part of the analysis is performed with MlwiN 2.23 (see Rasbash et al., 2009).
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could find in the general scarcity of firm-level and province level data. Province level variables are introduced

one at the time in order to avoid multicollinearity issues. Further, we include a set of dummies to control

for sectoral effects (2 digits of the ATECO 2002 classification).

TABLE 2
µ convergence with controls (Labour Productivity)

(1) (2) (3) (4) (5) (6) (7)

γ0 9.969

(0.039)

10.015

(0.267)

8.812

(0.288)

10.545

(0.171)

9.509

(0.187)

10.911

(0.019)

10.011

(0.040)

γ1 -0.010

(0.001)

-0.009

(0.001)

-0.009

(0.001)

-0.009

(0.001)

-0.009

(0.001)

-0.009

(0.001)

-0.009

(0.001)

Capital Intensity

(firm level)

0.081

(0.003)

0.081

(0.003)

0.081

(0.003)

0.081

(0.002)

Labour
Productivity

(province level)

0.226

(0.070)

0.303

(0.074)

Employment

(province level)

0.087

(0.045)

0.121

(0.048)

Openness

(province level)

0.033

(0.010)

0.040

(0.010)

Sectoral Dummies Yes Yes Yes Yes Yes Yes Yes

σ2
ε 0.176

(0.001)

0.176

(0.001)

0.176

(0.001)

0.176

(0.001)

0.176

(0.001)

0.176

(0.001)

0.176

(0.001)

σ2
η0 0.113

(0.003)

0.131

(0.003)

0.113

(0.004)

0.131

(0.003)

0.113

(0.003)

0.131

(0.003)

0.113

(0.003)

ση01 -0.006

(0.001)

-0.008

(0.001)

-0.006

(0.001)

-0.008

(0.001)

-0.006

(0.001)

-0.008

(0.001)

-0.006

(0.001)

σ2
η1 0.002

(0.000)

0.002

(0.000)

0.002

(0.000)

0.002

(0.000)

0.002

(0.000)

0.002

(0.000)

0.002

(0.000)

σ2
v0 0.002

(0.001)

0.001

(0.001)

0.002

(0.001)

0.001

(0.000)

0.002

(0.001)

0.001

(0.000)

0.001

(0.001)

σv01 0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

σ2
v1 0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

−2Log(L) 87845.5 88843.4 87831.9 88848.5 87839.4 88841.0 87830.7

Notes: Estimation by Restricted Iterative Generalized Least Squares; Standard Errors in

parentheses; Firm-level Capital Intensity is Capital Stock over Employees for the initial year

in 1999 from AIDA, Province-Level labour productivity, Employment Rate and Openness

Rate are for the initial year in 1999 from the ISTAT-SITIS database. All variables are in logs.

Results show that all the conditioning variables enter the regressions significantly and with the expected

positive sign. At the micro level, conditional convergence now ranges from 0.045 and 0.061, depending on

the specification. Conditioning on micro and macro-level variables and on sectoral dummies does not modify

the results in terms of province-level convergence, i.e. no conditional macro-level convergence can be found.
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FIGURE 2
σ convergence at the province level (panel a) and firm level (panel b).
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In figure 2 we further show the σ like convergence test discussed in the previous section. By centering

the model around each successive year, the estimated variance of the intercepts represents the dispersion

of labour productivity at each point in time. The figure also reports the 95% confidence interval for the

σ2 estimates. Panel a) of the figure shows that the province level dispersion does not statistically changes

over time. Hence, the lack of µ convergence at the macro provincial level is confirmed by the lack of σ like

convergence. For the firm-level, where evidence of µ convergence was found, panel b) shows a statistically

significant decrease in the estimated variance from the beginning to the end of the period,13 as indicated

by the non-overlapping confidence intervals of the estimated variance for the first and the last year in the

analysis.

4 Conclusions

The traditional analysis of convergence typically concentrates on the aggregate macro-level of interest, such

as countries or regions. Recently, however, researchers have highlighted the importance to investigate con-

vergence also at the disaggregate level. In this paper, we have drawn from the multilevel growth literature

to propose a methodology that exploits data disaggregated at the micro-level to test for convergence at both

the micro and macro level, obtaining β and σ like convergence parameters simultaneously for both levels of

interest.

We have provided an empirical example based on Italian firm-level data, where convergence in labour

productivity is tested at the same time among firms and provinces. Our results indicate convergence at
13The estimated variance decreases from the beginning until the fifth year of the sample and then shows a moderate, but

statistically insignificant, increase for the last two years.
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the micro-level, but not at the macro provincial level. Interestingly, this is in contrast to what is obtained

in a standard β regression framework, where convergence is identified at both levels. Our results confirm

that further examination of the growth dynamics at the micro-level and the relationship between the micro

and macro levels may yield important insights into the convergence debate. Further, they highlight the

importance to correctly choose the level to analyse the convergence process and, more generally, call for a

deeper investigation into the implications of aggregation for convergence analysis.
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APPENDIX A: Summary statistics

TABLE A1

a) Value Added (Y)

Year Obs Mean Std. Dev.

1999 9284 2955602 2707294

2000 9284 3214667 2821090

2001 9284 3269919 2797542

2002 9284 3325462 2679049

2003 9284 3335659 2669504

2004 9284 3479666 2636435

2005 9284 3549202 2658073

b) Number of Employees (L)

Year Obs Mean Std. Dev.

1999 9278 56 52

2000 9280 61 56

2001 9284 71 60

2002 9284 75 61

2003 9284 75 59

2004 9284 66 50

2005 9284 66 49

c) Labour Productivity (Y/L)

Year Obs Mean Std. Dev.

1999 9278 68592.21 98681.92

2000 9280 78061.76 176282.5

2001 9284 53135.63 45377.92

2002 9284 52081.57 69064.48

2003 9284 50999.01 43545.35

2004 9284 61528.31 64356.65

2005 9284 61157.15 39373.16
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