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In recent years, there has been increasing public interest in plant antioxidants, thanks to the potential anticarcinogenic and
cardioprotective actions mediated by their biochemical properties. The red (or blood) orange (Citrus sinensis (L.) Osbeck) is a
pigmented sweet orange variety typical of eastern Sicily (southern Italy), California, and Spain. In this paper, we discuss the main
health-related properties of the red orange that include anticancer, anti-inflammatory, and cardiovascular protection activities.
Moreover, the effects on health of its main constituents (namely, flavonoids, carotenoids, ascorbic acid, hydroxycinnamic acids, and
anthocyanins) are described.The red orange juice demonstrates an important antioxidant activity bymodulatingmany antioxidant
enzyme systems that efficiently counteract the oxidative damage which may play an important role in the etiology of numerous
diseases, such as atherosclerosis, diabetes, and cancer. The beneficial effects of this fruit may be mediated by the synergic effects of
its compounds. Thus, the supply of natural antioxidant compounds through a balanced diet rich in red oranges might provide
protection against oxidative damage under differing conditions and could be more effective than, the supplementation of an
individual antioxidant.

1. Introduction

In recent years, an increasing interest in plant antioxidants
has occurred because of the potential anticarcinogenic and
cardioprotective actionsmediated by their biochemical prop-
erties [1–3]. The antioxidant activity of these compounds
may be dependent on the number and arrangement of the
hydroxyl groups and the extent of structural conjugation,
as well as the presence of electron-donating and electron-
withdrawing substituents in the ring structure. Due to the

growing interest in these pharmacologically active compo-
nents in fruits, the demand for studies conducted on specific
fruit such as pigmented orange juice is increasing.

Red (or blood) orange (Citrus sinensis (L.) Osbeck) is
a pigmented sweet orange variety typical of eastern Sicily
(southern Italy), California, and Spain. The red orange is
noteworthy for its excellent orange flesh color and the consis-
tent appearance of red coloration. The red coloration of red
orange is mostly caused by the presence of water-soluble
anthocyanin pigments not usually found in other citrus fruits.
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In this paper, we discuss the main health-related proper-
ties of red orange that include anticancer, anti-inflammatory,
and cardiovascular protection activities, and the effects on
health of the main constituents of the red orange (namely,
flavonoids, carotenoids, ascorbic acid, hydroxycinnamic
acids, and anthocyanins) and their antioxidant activity and
ability to modulate some key regulatory enzymes.

2. History, Geographical Distribution, and
Varieties of Red Oranges

Red oranges may have originated from either China or the
southern Mediterranean regions, but their exact origin is not
known. It is possible that, in China, northeastern India, and
southeastern Asia, Citrus sinensis trees were eventually trans-
ported along Asian trade routes to Africa, the Mediterranean
Sea Basin, and Europe where orangeries were established. A
mosaic in a Roman villa built in the first quarter of the 4th
century and located about 3 km outside the town of Piazza
Armerina, Sicily (southern Italy), demonstrates the presence
of lime and lemon in Italy in that period of time. Citrus
fruit seems to have been introduced in Sicily by Arab traders
during the 7th century and cultivated as ornament until
the 16th century. Spaniards introduced orange cultivation in
South America in the 1500s and from there also in the United
States. The first description of the red orange in Sicily was
noted in the 17th century operaHesperides (1646).The author
described a particular kind of orange fruit (“aurantium
inducum”), which is strongly pigmented (“purpurei coloris
medulla”), imported to the island by a Genoese missionary
from the Philippines islands.

The three most common types of red oranges are the
Tarocco, the Moro (both native to Italy), and the Sanguinello
(native to Spain). Other less common types include Budd
blood orange, Maltese, Khanpur, Washington Sanguine, Ruby
Blood, Sanguina Doble Fina, Delfino, Red Valencia, Burris
blood Valencia orange, Vaccaro blood orange, Sanguine grosse
ronde, Entre Fina blood orange, and Sanguinello a pignu.
While also pigmented, Cara Cara Navels and Vaniglia San-
guignos have pigmentation based on lycopene, not antho-
cyanins like blood oranges [4]. The Tarocco variety is a medi-
um-sized seedless fruit and is perhaps the sweetest and most
flavorful of the three types. It is referred to as “half-blood,”
because the flesh is not accentuated in red pigmentation as
much as with the Moro and Sanguinello varieties. The Moro
is the most colorful of the red oranges, referred to as “deep
blood orange,” with deep red flesh ranges from orange-veined
with ruby coloration, to vermilion, to vivid crimson, and
nearly to black and a rind that has a bright red blush. This
fruit has a distinct, sweet flavor with a hint of raspberry. The
Moro variety is believed to have originated at the beginning
of the 19th century in the citrus-growing area around Lentini
(in the Province of Siracusa in Sicily) as a budmutation of the
“Sanguinello Moscato.” The Sanguinello variety, discovered in
Spain in 1929, is also present in Sicily as a “full-blood” orange,
close in characteristics to the Moro. It matures in February,
but can remain on trees unharvested until April. Fruit can last
until the end of May.

3. The Anti-Inflammatory Capacity of Red
Orange Juice

Red orange juice contains elevated quantities of various com-
pounds including polyphenols, flavanones, anthocyanins,
hydroxycinnamic acids, and ascorbic acid, and it is supposed
to have a high antioxidant capacity depending on all its
components (Table 1). After determining the antioxidant
profile of several fresh orange juices obtained from five dif-
ferent Citrus sinensis (L.) Osbeck varieties (three pigmented
varieties: Moro, Sanguinello, and Tarocco, and two blond
varieties,Valencia late andWashington navel), the antioxidant
efficiency of orange juices has been attributed, in a significant
part at least, to their content of total phenols, whereas
ascorbic acid seems to play a minor role [5]. In vivo studies
conducted on healthy people has shown that red orange juice
consumption determines a significant increase in plasma
vitamin C, cyanidin-3-glucoside, beta-cryptoxanthin, and
zeaxanthin [6]. The effect of red orange juice has been
studied also in 19 subjects with increased cardiovascular risk
included in a randomized, placebo-controlled, single-blind
crossover study and compared with 12 healthy, nonobese
control subjects in which consumption of red orange juice
ameliorated endothelial functions, improving flow-mediated
dilation and reducing inflammation [7].

The antioxidant activity of orange juices is related not only
to structural features of phytochemicals but also to their capa-
bility to interact with biomembranes [5]. The quality control
of cultivation and characteristic freshness of red oranges
have demonstrated their active influence on total antioxidant
activity and bioactivity of such fruit.The antioxidant capacity
of red orange has been explored in two orange-based prod-
ucts: first, pasteurized pure juice with 40 days of shelf life,
and, the second, a sterilized beverage containing minimum
12% of concentrated fruit juice [8]. Results obtained revealed
that the antioxidant activity was positively related to the
content of anthocyanins and the reduction of their content,
typical of commercial long-shelf life juices, leading to a
remarkable loss of antioxidant power. Similar results were
obtained comparing both the phytochemical content (i.e.,
phenolics, anthocyanins, and ascorbic acid), total antioxidant
activity and in vitro bioactivity, in terms of the protective
effect obtained against oxidative damage at cellular level with
organically and nonorganically grown red oranges in cell
culture systems [9]. The organic orange extracts showed a
higher total antioxidant activity than non-organic orange
extracts due to their higher content of total phenolics, total
anthocyanins, and ascorbic acid levels than the correspond-
ing nonorganic oranges.

Red orange intake (especiallyMoro juice) has been found
to limit body weight gain, enhance insulin sensitivity, and
decrease serum triglycerides and total cholesterol inmice [10,
11]. Dietary Moro juice markedly improved liver steatosis by
inducing the expression of peroxisome proliferator-activated
receptor-𝛼 and its target gene acylCoA-oxidase, a key enzyme
of lipid oxidation. Consistently,Moro juice consumption sup-
pressed the expression of liver X receptor-𝛼 and its target gene
fatty acid synthase, and restored liver glycerol-3-phosphate
acyltransferase 1 activity [10].This action on fat accumulation
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Table 1: Main components of red orange fruit.

Food components Value
Proximates

Energy, recalculated, kJ 144
Energy, recalculated, kcal 34
Total protein, g 0.7

Animal protein, g 0.0
Vegetable protein, g 0.7

Total fat, g 0.2
Animal fat, g 0.0
Vegetable fat, g 0.2

Cholesterol, mg 0
Available carbohydrates, g 7.8

Starch, g 0.0
Soluble carbohydrates, g 7.8

Dietary total fibre, g 1.6
Alcohol, g 0.0
Water, g 87.2

Minerals and traces elements
Iron, mg 0.2
Calcium, mg 49
Sodium, mg 3
Potassium, mg 200
Phosphorus, mg 22
Zinc, mg 0.20

Water soluble vitamins
Vitamin B1, thiamin, mg 0.06
Vitamin B2, riboflavin, mg 0.05
Vitamin C, mg 50
Niacin, mg 0.20
Vitamin B6, mg 0.10
Total folate, 𝜇g 31

Retinol eq., 𝜇g 71
Retinol, 𝜇g 0
𝛽-Carotene eq., 𝜇g 426

Vitamin E, 𝛼-tocopherol eq., mg 0.24
Vitamin D, 𝜇g 0.00

Fatty Acids
Saturated fatty acids, g 0.03
Monounsaturated fatty acids, g 0.04
Oleic acid, g 0.03
Polyunsaturated fatty acids, g 0.04
Linoleic acid, g 0.03
Linolenic acid, g 0.01

Source: European Institute of Oncology (EIO) database at http://www.ieo.it/
bda2008/homepage.aspx.

has been demonstrated to be mediated by the insulin-like
effect of anthocyanins cyanidin-3-O-𝛽-glucoside (C3G) and
its metabolite protocatechuic acid (PCA) [12]. However, the
Moro juice antiobesity effect on fat accumulation cannot
be explained only by its anthocyanin content and multiple
components present in the red orange juice that might act

synergistically to inhibit fat accumulation. Likewise, the anti-
inflammatory effects of red orange juice do not depend
only on a single component [5]. An experimental study has
demonstrated that the intake of a single portion of red orange
juice provides an early protection of the mononuclear red
cell against oxidative DNA damage, whereas, on the contrary,
no subsequent effect of a drink supplemented with the same
amount of vitamin C was observed [13]. Thus, the protective
effect of red orange juice was not explained by utilization
of vitamin C alone. Therefore, a variety of phytochemicals
contained in red oranges are assumed to be involved.

4. Components of Red Orange

4.1. Flavonoids. Polyphenols are a group of chemical sub-
stances found in plants, especially in the genus Citrus, char-
acterized by the presence of more than one phenol unit [14].
The most commonly studied polyphenols are the flavonoids,
which include several thousand compounds, characterized
by a common benzo-𝛾-pyrone structure [14]. Flavones,
flavonols, anthocyanins and, in greater quantities, flavanones
are four types of flavonoids present inCitrus, in concentration
dependent on age of the plant and directly proportional to its
mitotic activity [14].The relatively large number of flavonoids
in Citrus juices is a result of the many different combinations
that are possible between polyhydroxylated aglycones and a
limited number of mono- and disaccharides (Table 2). The
most abundant flavonoid species that have been so far iden-
tified and quantified in Citrus sinensis, regardless of variety,
is by far hesperidin, followed by narirutin and didymin [15].
These are all flavanone-O-glycosides, which account for most
of the flavonoid content in juice, although a higher content
has been found in red orange varieties (Sanguinello, Moro,
and Tarocco) compared with nonpigmented variants (Navel,
Valencia, and Ovale) [16].

The antioxidant properties of flavonoids protect by oxida-
tive stress induced by both reactive oxygen species (ROS) and
reactive nitrogen species (RNS) that have been shown to play
a role in initiation and progression of CVD and atheroscle-
rosis (Table 3). Several studies suggest that flavonoids act
through several mechanisms on the NO-guanylyl cyclase
pathway, endothelium derived hyperpolarizing factor(s), and
endothelin-1, protecting endothelial cells inducing vasore-
laxation [17]. Other evidence suggests that prevention of
endothelial dysfunction, blood pressure, and oxidative stress
reduction are the main actions of flavonoids [18, 19]. Their
mechanism of action seems to be explained by some in vitro
studies in which flavonoids interacted with various enzyme
systems involved in cellular signaling, such as cyclo-oxygen-
ases and lipoxygenases, phosphodiesterases, tyrosine kinases,
and phospholipases [20].These compounds also protect low-
density lipoproteins (LDL) against macrophages-induced
oxidation by preventing the generation of lipid hydroperox-
ides and to preserve R-tocopherol, an endogenous antioxi-
dant carried in lipoproteins [21, 22].

Flavonoids have been demonstrated to be able to inhibit
the growth of some tumors, such as colon [23], oral cancer
[24], human breast cancer cells [25], lung carcinoma [26],
and different melanoma cell lines, in which there have been
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Table 2: Main polyphenols contained in red orange juice.

Polyphenol group Single component Mean content min max SD
Flavonoids

Anthocyanins Cyanidin 3-O-glucoside 1.41mg/100mL 0.28 4.03 1.32
Cyanidin

3-O-(6󸀠󸀠-malonyl-glucoside) 1.76mg/100mL 0.37 3.86 1.30

Flavanones
Hesperidin 43.61mg/100mL 18.00 66.50 17.98
Narirutin 4.80mg/100mL 2.90 6.46 1.28
Didymin 2.43mg/100mL 0.89 3.53 1.27

Flavones
Sinensetin 0.26mg/100mL 0.26 0.26 0.00
Nobiletin 0.31mg/100mL 0.31 0.31 0.00
Tangeretin 0.04mg/100mL 0.04 0.04 0.00

Flavonols 3-Methoxynobiletin 0.08mg/100mL 0.08 0.08 0.00
Phenolic acids

Hydroxycinnamic acids Cinnamoyl glucose 1.50mg/100mL 0.41 3.74 1.50
Cinnamic acid 0.02mg/100mL 7.00𝑒 − 03 0.06 0.03
p-Coumaric acid 2.92mg/100mL 1.24 4.46 0.84

Caffeic acid 0.88mg/100mL 0.44 1.51 0.34
Ferulic acid 4.40mg/100mL 3.16 6.37 0.75
Sinapic acid 1.74mg/100mL 1.01 3.59 0.63

Source: phenol-explorer at http://www.phenol-explorer.eu/.

Table 3: Name, effect, and mechanisms of action of main components of red orange.

Food components Effect Mechanisms of action

Flavonoid

Anti-inflammatory Modulate apoB secretion and cellular cholesterol; help cholesterol levels by raising HDL
and lowering LDL cholesterol

Antioxidant Stimulate endothelial NO synthase; normalize lipid peroxidation markers
Antiaggregation Inhibit TxA2-mediated responses and dense granule secretion

Anticarcinogenic Promote apoptosis in human pre-B NALM-6 cells and colon cancer cells; inhibit HIF-1𝛼
and VEGF expression in ovarian cancer and in lung cancer

Antiproliferative
Inhibit the COX-2 and MMPs in lung, prostate, and hepatocellular carcinoma cells;
inhibited the proliferation of MCF-7 human breast cancer cells and testosterone-induced
proliferation of LNCaP cells; inhibit lung colonization by melanoma and sarcoma cell
line; inhibit formation of new blood vessels in human breast cancer cells

Anthocyanins

Antioxidant
Protect biomembranes from peroxidation by trapping peroxyl radicals in the cytosol;
chelate metal ions like Cu2; ability in chelating metal ions like Cu2; form an ascorbic acid
metal-anthocyanin complex (copigment)

Antimutagenicity Form a cyanidin-DNA copigmentation complex; inhibit the reverse mutation induced by
heterocyclic amines in microsomal activation systems

Growth inhibition Inhibit the tyrosine kinase activity of the EGFR and the activation of the GAL4-Elk-1
fusion protein

Carotenoids Antioxidant React with singlet molecular oxygen and peroxyl radicals

Vitamin C

Blow-flow increase Enhance generation of NO; reduce nitrite; stabilize atherosclerotic plaques (due to effect
on collagen synthesis)

Antioxidant
Reduce the affinity of LDL-bound apoB protein for transition metal ions; quench aqueous
ROS and RNS, decreasing their bioavailability in the plasma; reduce potentially damaging
ROS, forming resonance-stabilized and relatively stable ascorbate free radicals; attenuate
LDL-oxidation and protection of human vascular smooth muscle cells against apoptosis

Hydroxycinnamic acids
Antioxidant Effect on phase II detoxification cascade; inhibit of superoxide dismutase and catalase;

suppress of PG synthesis and cyclooxygenase-2

Anticarcinogenic Prevent the tumor onset and protect the biochemical and molecular abnormalities in
mammary, buccal pouch, colon, and skin cancers

EGFR: epidermal growth-factor receptor; HDL: high-density lipoproteins; HIF-1𝛼: hypoxia-inducible factor 1𝛼; LDL: low-density lipoproteins; MMP: matrix
metalloproteinase; NO: nitric oxide; PG: prostaglandins; RNS: reactive nitrogen species; ROS: reactive oxygen species.
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demonstrated the antiproliferative effects but not the cyto-
toxic activity [27, 28]. Several flavonoids actions have been
explored as possible mechanisms able to explain their anti-
carcinogenic effects, such as inhibition of matrix metallopro-
teinase (MMP) secretion, migration, invasion, and adhesion
[29–33], as well as inhibition of the angiogenic process by
regulating the expression of vascular endothelial growth
factor (VEGF) and hypoxia-inducible factor 1𝛼 (HIF-1𝛼) [34–
36], all factors required by cancer cells to acquire metastatic
properties. Some citrus flavonoids have been suggested to
have potential health benefits due to their proapoptotic activ-
ity on several cancer cell lines, thus inhibiting progression of
carcinogenesis [37–40].

4.2. Anthocyanins. Anthocyanins are a group of water-
soluble plant compounds responsible for the brilliant color
of fruits and flowers [41]. They are glycosylated polyhydroxy
and polymethoxy derivatives of flavylium salts. The first
experimental observation of anthocyanins in red orange was
in 1931 by Matlack that demonstrated their presence in citrus
fruits, “the red-fleshed variety, the so-called blood orange”
[42] confirming a statement noticed even 15 years before [43].
Fruits subjected to thermal stress produce a greater amount of
protective substances (i.e., anthocyanins) necessary to guard
against unfavorable environmental conditions. The compo-
sition of Anthocyanins can be analyzed as a parameter for
the assessment of authenticity and quality of foods rich in
anthocyanin pigments [44, 45]. Several studies carried out on
red oranges have shown that cyanidin-3-glycoside (C3G) was
the main component of the fraction [46]. Some differences in
anthocyanins content may occur considering different types
of red oranges. Indeed, the primary anthocyanins in Budd
blood orange, a red-colored blood orange typically grown
in Florida, USA, were inverted in content, cyanidin-3-(6󸀠󸀠-
malonylglucoside) (44.8%) followed by cyanidin-3-glucoside
(33.6%). Vegetables and fruits, with special regard to pig-
mented oranges, such asMoro, Sanguinello, and Tarocco vari-
eties, represent a natural source of anthocyanins, especially
cyanidins [2]. Each cultivar shows a characteristic seasonal
variation of the content of anthocyanins: the cultivar Moro
contains the highest amount of anthocyanins, with a maxi-
mumpeak at the first half of April; cultivarsTarocco shows the
highest value in the first decade ofMarch; cultivar Sanguinello
Nocellare and Sanguinello show the lowest values of antho-
cyanins with themaximum values in the end of February and
in the first half of March, respectively [41].

The antioxidant properties of anthocyanins, and espe-
cially of the C3G, depend on their radical scavenging and
inhibitory effects on lipid peroxidation [2, 47] by their
strong oxygen radical absorbance capacity (ORAC) andnitric
oxide (NO) and cyclooxygenase inhibitory activities [48–50]
(Table 3). Given the unstable nature of anthocyanins under
natural conditions, it was believed that suchmolecules would
not have antioxidant activity in living systems but many
studies, instead, have demonstrated the antioxidant activity
of C3G also in in vivo experiments [51]. The protection
against oxidative damage of anthocyanins was observed as
a dose-dependent decrease of ROS-mediated tissue damages
after different C3G administration in living systems such

as isolated Langendorff-perfused rat hearts subjected to
ischemia and reperfusion [52], rat liver, kidneys, and brain
[53], rabbit erythrocytemembranes, and rat livermicrosomes
[54]. In rats maintained on vitamin-E-deficient diets for 12
weeks in order to enhance susceptibility to oxidative damage,
consumption of dietary anthocyanins significantly improved
plasma antioxidant capacity, decreased the vitamin E defi-
ciency, and enhanced hydroperoxides concentrations in liver
[47]. These properties seem to be due to the cyanidin
structure that allows the compound to be incorporated into
the plasma membrane and cytosol of endothelial cells sig-
nificantly enhancing their resistance to the damaging effects
caused by several ROS-generating systems [55]. The antioxi-
dant activity of orally administered C3G in rats was demon-
strated in a model for acute oxidative stress in which C3G
significantly suppressed the elevations of the liver and serum
thiobarbituric-acid-reactive substance concentrations and
the serum activities of marker enzymes for liver injury (GOT,
GPT, and LDH) caused by hepatic ischemia-reperfusion
treatment [56]. It has been suggested only in recent years
that orally administered C3G is absorbed into the circulating
system as a free form and subsequently metabolized to
protocatechuic acid or peonidin 3-glucoside in the blood
and tissues [57], and these compounds act as antioxidants in
rats [58]. In vivo formation of protocatechuic acid following
administration of C3G has been demonstrated in three
species (humans, rats, and pigs), although protocatechuic
acid is not retrieved in blood in 100% of cases due to differ-
ences in the experimentalmodels (namely storage conditions,
preanalytical treatments of biological samples and extrac-
tion procedure) that may affect its fugitive nature [59].
The bioavailability and biotransformation issues have to be
always considered when the health efficacy of compounds
from oral administration on target organs is considered.
Further research should be focused not only on consequent
anthocyanins effects but also on theirmetabolites, rather than
their native forms, that reach tissues andmay exert biological
effects.

A number of biological activities of anthocyanins aimed
at preventing cancer have been addressed [60–62]. The anti-
mutagenic activity was demonstrated by a study on colorectal
carcinogenesis inducted by 1,2-dimethylhydrazine (DMH)
[63] confirming previous reports in which juice or extracts
of plants containing large amounts of anthocyanins acted as
inhibitors of heterocyclic amine mutagenesis [64, 65]. C3G
also prevented genomic DNA damage in human fibroblast
[66], hepatoma-derived cell line (Hep G2) [67], colonic
adenocarcinoma (CaCo-2) [68], melanoma [69], and vulva
carcinoma A431 [70] cell lines. Finally, experiments on pro-
tocatechuic acid have been demonstrated promising curative
properties in its use against colon cancer [71–73].

4.3. Carotenoids. Fruits and vegetables are a rich source in
this phytochemicals and almost 50 carotenoids can be found
in the human diet [74]. The carotenoids that have been most
studied in this regard are 𝛼-carotene, 𝛽-carotene, lycopene,
lutein,𝛽-cryptoxanthin, and zeaxanthin, almost all contained
in red orange in higher quantities than in other sweet oranges
(only Cara Cara orange demonstrated a superior contents
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of carotenoids compared with Sanguinello) [75]. Carotenoids
have been implicated as important dietary nutrients having
many other biological functions such as antioxidant activity,
being involved in the scavenging of free radicals. Moreover,
carotenoids react with singlet molecular oxygen and peroxyl
radicals generated in the process of lipid peroxidation and
they have been shown to protect LDL against oxidation
(Table 3) [76].

In addition to their antioxidant properties, carotenoids
show an array of biological effects including cardioprotec-
tive, antimutagenic and anticarcinogenic activities, involving
modulation of signal transduction pathways and induc-
tion of gap-junctional communication. Dietary intakes of
carotenoids have been associated with decreased risk of
coronary artery disease [77], CVD [78, 79], atherosclerosis
[80]. Lutein plasma changes have been associated with more
promising early outcomes and decreased lipid peroxidation
in subjects after ischemic stroke [81, 82], reduced risk of
ischemic stroke [83]. By contrast, the risk reductions in
cardiovascular events subsequent to high carotenoid intakes
have appeared only to a small degree [84] or not confirmed in
other studies [85, 86]. During the post-intervention follow-
up, dietary supplementation with alpha-tocopherol or beta-
carotene has produced neither any benefit nor harm [87].
After an average of four years of supplementation, the com-
bination of beta carotene and vitamin A showed no benefits
and may even have had an adverse effect on health, with an
increased risk of death cause, lung cancer, and CVD [88].
Finally, evidence resulting from a recent randomized con-
trolled trial on specific antioxidant supplementation was
insufficient to prove the effectiveness of each of the vitamin
supplements in preventing or treating cardiovascular disease
[89]. To date, more information is needed to clarify the rela-
tion between the intake of single carotenoids, and the risk of
heart diseases.

4.4. Ascorbic Acid (Vitamin C). Vitamin C, or ascorbic acid,
serves in humans as a co-factor in several important enzyme
reactions and is necessary for the synthesis of collagen [90].
Due to the incapacity to synthesize vitamin C, humans
require it from natural sources through supplements to the
ordinary diet. Lack of vitamin C results in scurvy, a patho-
logical condition characterized by friable vessels, especially
in capillary tissues that are most likely to rupture, and also
petechial hemorrhages and ecchymosis due to a deficit of
collagen synthesis and secretion to form the extracellular
matrix or part of the basement membrane [90]. The vitamin
C content of red oranges is in the range of 32 to 42mg
per 100mL, with the highest levels found in the Sanguinello
varieties, followed by Cara Cara navels and Moro (the US
recommended daily allowance for vitamin C is set at 75mg
for women and 90mg for men) [46].

At physiological concentrations, vitamin C is a potent-
free radical scavenger in plasma, protecting cells against
oxidative damage caused by ROS (Table 3) [91]. The antiox-
idant property of ascorbic acid is attributed to its abil-
ity to reduce potentially damaging ROS, forming, instead,
resonance-stabilized and relatively stable ascorbate free rad-
icals [92]. These antioxidant capacities lead to numerous

effects of vitamin C on vascular bed, such as induction of
endothelial-dependent artery dilation and increase of blood
flow [93], attenuation of in vitro and in vivo LDL-oxidation
[94–96], and protection of human vascular smooth muscle
cells against apoptosis [97, 98]. In light of the several benefits
of vitamin C on endothelial cell proliferation, function,
and viability, it is plausible that increases in plasma and
cell content of such vitamins might help to prevent, delay,
or stabilize early endothelial dysfunction associated with
atherosclerosis.

Several studies hypothesized that the anti-inflammatory
properties of Vitamin C may reduce the incidence of many
malignancies in humans due to a number of cytoprotective
functions under physiological conditions, including preven-
tion of DNA mutation induced by oxidation by neutralizing
potentiallymutagenic ROS [99–102]. Indeed, consumption of
vitamin-C-rich foods has been found to be inversely related
to the level of oxidative DNA damage in vivo [103]. However,
the inconsistency of the vitamin C cancer correlation and
lack of validated mechanistic basis for its therapeutic action
underline its potential role as a preventive rather than
therapeutic drug.

4.5. Hydroxycinnamic Acids. Hydroxycinnamic acids (hy-
droxycinnamates) are a class of polyphenols having a C6-
C3 skeleton. These compounds are hydroxy derivatives of
cinnamic acid. In the category of phytochemicals that can
be found in red orange, the most common are caffeic, p-
coumaric, ferulic, and sinapic [104]. Free and bound ferulic
acid represent the major component in all cases, followed
by p-coumaric acid, sinapic acid, and caffeic acid. However,
hydroxycinnamic acids have been found to bemore abundant
in red orange than in blond juices. Ferulic acids and caffeic
acid are among the most studied hydroxycinnamic acids
(Table 3).

Ferulic acid is an abundant phenolic phytochemical
found in plant cell wall components such as arabinoxylans as
is found, for instance, in covalent side chains. It is related to
trans-cinnamic acid. As a component of lignin, ferulic acid is
a precursor in themanufacture of other aromatic compounds.
It has been demonstrated to be successfully employed as
topical protective agents against UV radiation-induced skin
damage after in vitro and in vivo evaluation [105], often in
combination with other antioxidants such caffeic acid [106]
and vitamin C [107]. Its mechanisms of action may depend
on preventing DNA damage and restoring antioxidant status
and histopathological changes [108]. The anticarcinogenic
properties of ferulic acid have been studied on mammary
[109], buccal pouch [110], colon [111], and skin [112] car-
cinogenesis in experimental models findings showing that
oral administration of ferulic acid significantly prevented the
onset of tumors and the biochemical and molecular abnor-
malities. Although the exact chemopreventive mechanism of
the ferulic acid is unclear, its antigenotoxic and antioxidant
potentials as well as modulatory effect on phase II detoxifica-
tion cascade could play a possible role [109].

Caffeic acid is an organic compound that is classified as
a hydroxycinnamic acid. This acid consists of both phenolic
and acrylic functional groups. It is found in all plants because
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it is a key intermediate in the biosynthesis of lignin, one of the
principal sources of biomass [113]. The caffeic acid phenethyl
ester has been found to be a potent free radical scavenger
[114] and studied for its antioxidant capacities in several
experimental rat models on renal impairment [115–117],
retinal oxidative stress [118], myocardial oxidative stress [119],
age-related vascular remodeling and cardiac damage [120],
and at the same time helping to prevent the metabolic conse-
quences in diabetesmellitus [121, 122], erythrocytemembrane
ischemia/reperfusion injury [123], cerebral damage induced
by ischemia reperfusion [124], and oxidative stress [125]. The
mechanisms by which caffeic acid phenethyl ester exerts its
anti-inflammatory action seems to depend on its effect on
lipid peroxidation (LPO) and the inhibition of antioxidant
enzymes such as superoxide dismutase and catalase [126].
Moreover, caffeic acid phenethyl ester has also been shown
to cause dose-dependent suppression of prostaglandins syn-
thesis suppressing the expression of cyclooxygenase-2 in
cultured human oral epithelial cells and in an animal model
of acute inflammation [127] and in the protection of mice
from lethal endotoxin shock. It also inhibits lipopolysaccha-
ride-induced cyclooxygenase-2 and inducible NO synthase
expression in RAW 264.7 macrophages via the p38/ERK and
NF-𝜅B pathways, therefore providing mechanistic insights
into the anti-inflammatory and chemopreventive actions of
caffeic acid phenethyl ester in macrophages [128].

5. Conclusions

On the basis of these findings, evidence has shown that red
oranges demonstrate both potent antioxidant activity and
also cytoprotective effects that reflect their substantial role in
preventing chronic pathological conditions such as cardio-
vascular diseases and in many forms of cancers. A synergic
action between organic farming and social activities may
amplify the advantages and reciprocal benefits in order to
obtain a “social and environmental sustainability” and spread
consumption of healthy products [129, 130]. The supply of
natural antioxidant compounds through a balanced diet rich
in red oranges might provide protection against oxidative
damage under different conditions and could be more effec-
tive than supplementation of an individual antioxidant.

Acknowledgments

Giuseppe Grosso and Fabio Galvano equally contributed to
the paper. Giuseppe Grosso was supported by the Interna-
tional Ph.D. Program in Neuropharmacology, University of
Catania Medical School, Catania, Italy. The funders had no
role in the study design, data collection, analysis, decision to,
or preparation of the paper.

References

[1] F. Galvano, L. La Fauci, G. Lazzarino et al., “Cyanidins: metabo-
lism and biological properties,” Journal of Nutritional Biochem-
istry, vol. 15, no. 1, pp. 2–11, 2004.

[2] A. M. Amorini, G. Fazzina, G. Lazzarino et al., “Activity and
mechanism of the antioxidant properties of cyanidin-3-O-𝛽-
glucopyranoside,” Free Radical Research, vol. 35, no. 6, pp. 953–
966, 2001.

[3] F. Galvano, F. Salamone, A. Nicolosi, and P. Vitaglione, “Antho-
cyanins-based drugs for colon cancer treatment: the nutrition-
ist’s point of view,” Cancer Chemotherapy and Pharmacology,
vol. 64, no. 2, pp. 431–432, 2009.

[4] W.Reuther, D. B. Leon, and J.W.Herbert,Horticultural Varieties
of Citrus, 1967.

[5] P. Rapisarda, A. Tomaino, R. Lo Cascio, F. Bonina, A. de
Pasquale, and A. Saija, “Antioxidant effectiveness as influenced
by phenolic content of fresh orange juices,” Journal of Agricul-
tural and Food Chemistry, vol. 47, no. 11, pp. 4718–4723, 1999.

[6] P. Riso, F. Visioli, C. Gardana et al., “Effects of blood orange juice
intake on antioxidant bioavailability and on different markers
related to oxidative stress,” Journal of Agricultural and Food
Chemistry, vol. 53, no. 4, pp. 941–947, 2005.

[7] S. Buscemi, G. Rosafio, G. Arcoleo et al., “Effects of red orange
juice intake on endothelial function and inflammatory markers
in adult subjects with increased cardiovascular risk,”The Amer-
ican Journal of Clinical Nutrition, vol. 95, no. 5, pp. 1089–1095,
2012.

[8] A. Fiore, L. La Fauci, R. Cervellati et al., “Antioxidant activity
of pasteurized and sterilized commercial red orange juices,”
Molecular Nutrition and Food Research, vol. 49, no. 12, pp. 1129–
1135, 2005.

[9] A. Tarozzi, S. Hrelia, C. Angeloni et al., “Antioxidant effective-
ness of organically and non-organically grown red oranges in
cell culture systems,” European Journal of Nutrition, vol. 45, no.
3, pp. 152–158, 2006.

[10] F. Salamone, G. Li Volti, L. Titta et al., “Moro orange juice pre-
vents fatty liver in mice,”World Journal of Gastroenterology, vol.
18, no. 29, pp. 3862–3868, 2012.

[11] L. Titta, M. Trinei, M. Stendardo et al., “Blood orange juice
inhibits fat accumulation in mice,” International Journal of
Obesity, vol. 34, no. 3, pp. 578–588, 2010.

[12] B. Scazzocchio, R. Var̀ı, C. Filesi et al., “Cyanidin-3-O-𝛽-gluco-
side and protocatechuic acid exert insulin-like effects by upreg-
ulating PPAR𝛾 activity in human omental adipocytes,”Diabetes,
vol. 60, no. 9, pp. 2234–2244, 2011.

[13] S. Guarnieri, P. Riso, andM. Porrini, “Orange juice vs vitaminC:
effect on hydrogen peroxide-inducedDNAdamage inmononu-
clear blood cells,”The British Journal of Nutrition, vol. 97, no. 4,
pp. 639–643, 2007.
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