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Abstract. Our aim is to give an account, trough an analysis of a number of papers by
F.Petruccione, H.J.Charmicael, J.C. Raimond and their contemporaries, of the specific answer
that we gave to the problem of Open Quantum Systems dynamical evolution and how this idea
evolves and develops in physical research and in the scientific debate of the following decades.
Permanent solution should not been accepted from physical research, but analysis of the real
work of scientists, of the difficulties they face and the ever changing solutions they offer is, we
believe, part of our understanding of science and an indispensable basis for further methodological
inquiries.

In this paper we have chosen to analyze a dissipative Jaynes-Cummings model assuming the
common electrodynamics free field for the bipartite system and an another independent bath for
the cavity, so taking into account loosing of energy because of the imperfect mirrors. The Nud
theorem application leads to predict new cooperative effects between the atom and the cavity
mode as the creation of conditional transient entanglement, tending to become stationary as the
coupling constant take a well defined value.

1. Introduction

The idea of implementing quantum information devices based on the use of
single atoms or molecules has gone progressively growing up in the course of the
last few years. The reason can be envied in the high contemporary evolution of
theoretical dynamical models along with the ability reached by experimentalists in
manipulating quantum objects first considered theoretician’s tools [1]. The state
of art is that, although it has been possible to obtain entanglement conditions
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between elementary systems in different physical scenarios [1], the temporal per-
sistence of quantum coherence is an open problem. In this moment, it is therefore
necessary to put attention on the theoretical aspects of decoherence in order to pre-
dict the experimental conditions under which it is maximally reduced [3]. Almost
Decoherence Free Substates seem to have the characteristics of eligibility needed to
implement quantum computation. Their generation and temporal persistence can
be theoretically predicted in some high symmetrical models [4, 6, 7, 8, 9, 10, 11].
The application of the early introduced formal solution of the Markovian Master
Equation (Nud theorem) [4] has supplied, in the few analyzed systems, the pre-
diction of a conditional building up of entanglement. The result is obtained under
symmetrical condition corresponding to specific locations of involved subsystems
(atoms, molecules). Unfortunately, despite the positive results in isolating single
quantum objects [1], the difficulties connected with the location of more than one
atoms in fixed arbitrary points is an open task.

In general, practical quantum gates implementation needs to meet stringent
criteria in order to operate successfully [5]. First of all, the qubits has to be suf-
ficiently isolated in order to manipulate them in a controlled environment. They
need to be initialized precisely. The effective interactions among qubits should be
carefully tuned and a set of quantum operations should be made possible in order
to perform any other required quantum gates. Finally, the system must be scalable
to more than a few qubits [12].

These considerations have encouraged us to speculate about the possibility to
use hybrid entanglement conditions in order to implement quantum protocols. A
single mode cavity and a two level atom may be considered a hybrid two qubits
system. The isolation of a single atom for enough long time inside a cavity is today
possible. Moreover, the Jaynes and Cummings Model is one of the few exactly
soluble models in quantum optics. It predicts many interesting non classical states
experimentally testable in laboratory [1]. In realistic situation, however, one per-
forms experiments in cavity with finite Q and in presence of atomic spontaneous
emission. So it become of fundamental importance to know how the predictions
of this model are affected by the unavoidable presence of loss mechanisms. This
problem is currently very extensively studied, the main approximation being the
assumption of two different reservoirs, one for the atom and one for the cavity
mode respectively [2]. The further calculation are simpler under this approxima-
tion because the two bath don’t introduce coherences between the atom and the
cavity: the master equation is in Lindblad form and it is easier to solve than the
one we derive; the solution being the total destruction of coherences because of
the two different and nonspeaking channels of dissipation. Moreover, my equation
contains the simple one as particular case. Actually, here we show to be able to
find the exact solution of a dissipative J-C model assuming a common reservoir
for the bipartite system, which, on the ground of the above consideration, appears
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to be a more realistic hypothesis. This leads to the prediction of new cooperative
effects, induced by the zero-point fluctuations of environment, between the atom
and the cavity mode as the creation of conditional transient entanglement, tend-
ing to become stationary as the strengths of the coupling with the reservoir take a
well defined value. Finally, in order to be maximally realistic, Prof. J.M.Reimond
suggested me to consider also the loose of energy due to the imperfect reflection
on the mirrors. This correction in the microscopic model does not introduce com-
plication in the solution of the relative master equation because the new bath is
independent from the first one and, indeed, easily treating from a theoretical point
of view (not induced coherences). In presence of the second channel of decoherence
the building up of entanglement exists during the transient period in which the
atom is confined inside the cavity. The long time solution (the order of magnitude
of the time involved is given in the next sections) shows that the introduction
of the second bath makes disappear coherence (Rabi oscillation) among the two
subsystem involved: the atom and the cavity mode. Despite this fact, the time
involved in decoherence process can be made much longer than those necessary
to implement a quantum protocol as deducible from the theoretical analysis here
developed if interfaced with the experimental measures performed by Aroches’
group. The measures appear well fitted by the theoretical model here proposed.
The standard models (two different baths) are able to reproduce only the top of
the curve (dissipation [4]). Instead mine is able to reproduce also the lower part
(cooperation [4]).

The paper is structured as follow: in section II we report the principal step
and approximation leading to the microscopic derivation of the Markovian Master
Equation (MME) and we solve it when T = 0, showing also the full equivalence
between MME and Piecewise Deterministic Processes (PDP) [4]. In section III
we apply the NuD theorem to derive the solution to the dissipative J-C model.
In section IV we try to justify the obtained dynamical behaviour in terms of
continuous measurement theory.

2. The Markovian Master Equation

It is well know that under the Rotating Wave and the Born-Markov approxima-
tions the master equation describing the reduced dynamical behavior of a generic
quantum system linearly coupled to an environment can be put in the form [4, 13]

ρ̇S(t) = −i[HS +HLS, ρS(t)] +D(ρS(t)), (1)

where HS is the Hamiltonian describing the free evolution of the isolated system,

D(ρS(t)) =
∑

ω

∑

α,β

γα,β(ω)(Aβ(ω)ρS(t)A†
α(ω)

−1

2
{A†

α(ω)Aβ(ω), ρS(t)}), (2)
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HLS =
∑

ω

∑

α,β

Sα,β(ω)A†
α(ω)Aβ(ω), (3)

Sα,β(ω) =
1

2i
(Γα,β(ω) − Γ∗

β,α(ω)) (4)

and
γα,β(ω) = Γα,β(ω) + Γ∗

β,α(ω), (5)

Γα,β(ω) being the one-sided Fourier transforms of the reservoir correlation func-
tions. Finally we recall that the operators Aα(ω) and A†

α(ω), we are going to define
and whose properties we are going to explore, act only in the Hilbert space of the
system.

Eq. (1) has been derived under the hypothesis that the interaction Hamiltonian
between the system and the reservoir, in the Schrödinger picture, is given by [13]

HI =
∑

α

Aα ⊗Bα, (6)

that is the most general form of the interaction.
In the above expression Aα = (Aα)† and Bα = (Bα)† are operators acting

respectively on the Hilbert space of the system and of the reservoir. The eq.
(6) can be written in a slightly different form if one decomposes the interaction
Hamiltonian into eigenoperators of the system and reservoir free Hamiltonian.

DEFINITION 1. Supposing the spectrum of HS and HB to be discrete (general-
ization to the continuous case is trivial) let us denote the eigenvalue of HS (HB) by
ε (η) and the projection operator onto the eigenspace belonging to the eigenvalue
ε (η) by Π(ε) (Π(η)). Then we can define the operators:

Aα(ω) ≡
∑

ε
′−ε=ω

Π(ε)AαΠ(ε
′

), (7)

Bα(ω) ≡
∑

η
′−η=ω

Π(η)BαΠ(η
′

). (8)

From the above definition we immediately deduce the following relations

[HS , Aα(ω)] = −ωAα(ω), [HB, Bα(ω)] = −ωBα(ω), (9)

[HS , A
†
α(ω)] = +ωA†

α(ω) and [HB, B
†
α(ω)] = +ωB†

α(ω). (10)

An immediate consequence is that the operators A†
α(ω > 0) e Aα(ω > 0) raise

and lower the energy of the system S by the amount h̄ω respectively and that the
corresponding interaction picture operators take the form
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eiHStAα(ω)e−iHSt = e−iωtAα(ω), eiHBtBα(ω)e−iHBt = e−iωtBα(ω), (11)

eiHStA†
α(ω)e−iHS t = e+iωtA†

α(ω) and eiHBtB†
α(ω)B−iHBt = e+iωtB†

α(ω). (12)

Finally we note that

A†
α(ω) = Aα(−ω) and B†

α(ω) = Bα(−ω). (13)

Summing eq. (13) over all energy differences and employing the completeness re-
lation we get

∑

ω

A†
α(ω) =

∑

ω

Aα(−ω) = Aα and
∑

ω

B†
α(ω) =

∑

ω

Bα(−ω) = Bα (14)

The above positions enable us to cast the interaction Hamiltonian into the following
form

HI =
∑

α,ω,ω′

Aα(ω) ⊗Bα(ω′) =
∑

α,ω,ω′

A†
α(ω) ⊗B†

α(ω′). (15)

The reason for introducing the eigenoperator decomposition, by virtue of which
the interaction Hamiltonian in the interaction picture can now be written as

HI(t) =
∑

α,ω,ω′

e−i(ω+ω′)tAα(ω) ⊗Bα(ω′), (16)

is that exploiting the rotating wave approximation, whose microscopic effect is
to drop the terms for which ω 6= −ω′, is equivalent to the Schrodinger picture
interaction Hamiltonian:

HI =
∑

α,ω

Aα(ω) ⊗Bα(−ω) =
∑

α,ω

Aα(ω) ⊗B†
α(ω). (17)

LEMMA 2. The Rotating Wave Approximation imply the conservation of the free
energy of the global system, that is

[HS +HB,H] = 0 (18)
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2.1. Proof

The necessary condition involved in the previous proposition is equivalent to
the equation [HS +HB,HI ] = 0 we are going to demonstrate.

[HS +HB,H] = [HS +HB,HI ] = [HS,HI ] + [HB ,HI ] (19)

=
∑

α,ω

[HS , Aα(ω)] ⊗B†
α(ω) +

∑

α,ω

Aα(ω) ⊗ [HB , B
†
α(ω)]

= −
∑

α,ω

ωAα(ω) ⊗Bα(−ω) +
∑

α,ω

ωAα(ω) ⊗Bα(−ω) = 0.

where we have made use of eq. (9,10)

LEMMA 3. The detailed balance condition in the thermodynamic limit imply [16]

γαβ(ω) = e−βωγαβ(−ω) (20)

where β = (kBT )−1

COROLLARY 4. Let us suppose the temperature of the thermal reservoir to be
the absolute zero, on the ground of Lemma 2 immediately we see that

γαβ(ω < 0) = 0 (21)

Let us now cast eq. (1) in a slightly different form splitting the sum over the
frequency, appearing in eq. (2), in a sum over the positive frequencies and a sum
over the negative ones so to obtain

D(ρS(t))

=
∑

ω>0,α,β

γα,β(ω)(Aβ(ω)ρSA
α†(ω)

− 1

2
{Aβ†(ω)Aα(ω), ρS})

+
∑

ω>0,α,β

γα,β(−ω)(Aα†(ω)ρSA
β(ω)

− 1

2
{Aα(ω)Aβ†(ω), ρS}), (22)

where we again make use of eq. (13). In the above expression we can recognize
the first term as responsible of spontaneous and stimulated emission processes,
while the second one takes into account stimulated absorption, as imposed by the
lowering and raising properties of Aα(ω). Therefore if the reservoir is a thermal
bath at T = 0 the corollary 4 tell us that the correct dissipator of the Master
Equation can be obtained by suppressing the stimulated absorption processes in
eq. (22).



[Author and title] 7

2.2. NuD Theorem

We are now able to solve the markovian master equation when the reservoir
is in a thermal equilibrium state characterized by T = 0. We will solve a Cauchy
problem assuming the factorized initial condition to be an eigenoperator of the free
energy HS + HB. This hypothesis doesn’t condition the generality of the found
solution being able to extend itself to an arbitrary initial condition because of the
linearity of the markovian master equation 1.

NUD THEOREM 5. If eq. (1) is the markovian master equation describing the
dynamical evolution of a open quantum system S, coupled to an environment B,
assumed to be in the detailed-balance thermal equilibrium state characterized by a
temperature T=0, and if the global system is initially prepared in a state ρ(0) =
ρB(0)ρS(0) so that (HS + HB)ρ(0)(HS + HB) = E2

Lρ(0), where EL = ES + EB

is the free energy of the global system then ρS(t) is in the form of a Piecewise
Deterministic Process [13], that is a process obtained combining a deterministic
time-evolution with a jump process.

The proof of the theorem is contained in the paper [4]. My aim here is to give
an explanation of the found implication.

A PDP is a statistical mixture of alternative generalized trajectories evolving
individually in a deterministic way. This statement is mathematically given by
the equation

ρS(t) =
N

∑

i=0

ρi(t), (23)

where the quantum trajectories ρi(t) are obtained by the deterministic non-
unitary equation

ρi(t) = U(t)fi(t)U
†(t), (24)

where, in particular,
fN (t) = ρN (0) (25)

and U(t) = e−
i
h̄

Bt, U †(t) = e
i
h̄

B†t, B being

B = H0 −
i

2h̄

∑

ω>0,α,β

γαβ(ω)Aβ†(ω)Aα(ω) ≡ H0 −
i

2h̄
H ′, (26)

1 It is out of relevance to consider initial condition having non-zero coherence between the
environment and the system because it is not possible to resolve them in the reduced dynamics
obtained tracing on the environment degrees of freedom.
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with H ′ hermitian. Finally,

fN−j (t) =
∑

ω′,α′,β′

∑

ω”,α”,β”

...
∑

ωj ,αj ,βj

γαβ(ω)γα′β′

(ω′)γα”β”(ω”)...γαjβj

(ωj) (27)

×
∫ t

0

∫ t′

0

∫ t”

0
...

∫ tj

0
dt′dt”...dtjU−1(t′)Aβ′

(ω′)U(t′)U−1(t”)Aβ”(ω”)U(t”)...

. U−1(tj)Aβj

(ωj)U(tj)fN (tj)U †(tj)Aαj†(ωj)U †−1(t”)...

. U †(t”)Aα”†(ω”)U †−1(t”)U †(t′)Aα′†(ω′)U †−1(t′), j = 1, ..., N

These last are generalized respect to F.Petruccione and H.J.Carmochael ap-
proach, which leads to ρS(t) =

∑

i |ψi >< ψi|. The last expansion, in terms of
proper trajectories, is obtainable from the mine if and only if we are able to put
into diagonal form the spectral correlation tensor, that is known to be always pos-
sible because of the positivity of γαβ, but nobody is able to do it, with exception
of few highly symmetrical systems.

The found solution (NuD theorem) ensures that the dynamical processes,
whose statistical mixture gives the open system stochastic evolution, are deter-
ministic. This demonstrates that the evolution is representable as a Piecewise
Deterministic Process (PDP) [13]. The found solution generalizes the PDPs in-
troduced by H.J.Carmichael and formalized by F.Petruccione and H.P.Breuer.
Actually, it is applicable also when the Markovian Master Equation isn’t in the
Lindblad form. This, as already highlighted, in general, introduces simplification
in the further calculations, but because of the difficulty to recast the equation in
this form the results obtained are in general merely formal. Tough the eq. (27)
seems complicated to use it is a powerful predictive tool. We have tested it de-
riving the photocounting formula [8, 20]; reproducing the environment-induced
entanglement between two two-level not-direct-interacting atoms placed in fixed
arbitrary points in the free space [8, 9, 10, 11] and Carmichael unravelling of the
Master Equation [8, 17].

Moreover I have tested the NuD theorem’s predictive capability solving the dy-
namics of two two-level dipole-dipole interacting atoms placed in fixed arbitrary
points inside a single mode cavity in presence of atomic spontaneous emission and
cavity losses [7]; n two-level not-direct-interacting atoms placed in fixed arbitrary
points inside a single mode cavity in presence of atomic spontaneous emission and
cavity losses [6]; a bipartite hybrid model, known as Jaynes-Cummings model, con-
stituted by an atom and a single mode cavity linearly coupled and spontaneously
emitting in the same environment (next subsection) and two harmonic oscillator
linearly coupled and spontaneously emitting in the same environment (work in
progress).

Two of my results are already published, others will be object of future papers.
All of them contain the same (predictable? [4]) result: multipartite systems,
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discarding the physical nature of the parts and of the environment, can exhibit
entangled stationary states towards the system can be guided by a probabilistic
scheme of measurement.

3. Dissipative Jaynes and Cummings model

The Jaynes-Cummings Model describes, under the Rotating Wave Approxi-
mation, the resonant interaction between a single two-level atom and the single
mode of the electromagnetic field protected by a perfect cavity (no loosing of en-
ergy). The model has been introduced in 1963 [?] in order to analyze the classical
aspects of spontaneous emission and to understand the effects of quantization on
the atomic evolution. Actually, despite its apparent simplicity, this model has
revealed interesting non-classical proprieties characterizing the matter-radiation
interaction. Moreover, thanks to the recent experimental implementation of high
Q cavities, it is today possible to verify the most of the theoretical predictions of
the model [1, 2, 43].

The major experimental limitation is related to the coupling with a chaotic
environment able to destroy the quantum coherences. A theoretical approach
including the loss of energy due to the interaction of the atom and the cavity
mode with the free electromagnetic field is more complete and, as we will show, it
is suitable to reproduce the experimental measured decay of the population of the
atom [1]. In particular, assuming a common bath of interaction between the cavity
mode and the atom, the theoretical probability to find the atom in the excited state
performs Rabi oscillation exponentially decaying. This fact is consistent with the
open dynamics but it is not the only effect. Actually, the common bath induces
cooperation between the two involved parts (mode and atom). This behavior
competes with the exponential decay. In the long time limit the the exponential
decay wins on cooperation if we work under the experimental condition performed
by Haroche group. In the paper [1] is reported the experimental graph relative to
the probability to find the atom in its excited state as a function of the time. We
can interpret the upper part of the figure as the exponential decay and the lower
part of it (increasing of probability) as the cooperation induced by the common
reservoir. The new theoretical approach, here presented, is better than the usual
one (two independent baths) because it is able to reproduce the experimental curve
in a complete way. In fact the two bath approximation keeps account only for the
dissipation meaning that the Rabi oscillation of the atomic population goes to
zero every period characterizing the free dynamics of the bipartite system. In this
case the cooperative part of the dynamics disappears: the two parts do not speak
trough the common bath, the main behavior being the dissipation of energy in
the reservoirs. Moreover it is possible to demonstrate that single bath approach is
more general than the other including it as particular case. This fact is very well
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understood if the parts are, for example, two or more atoms, in which case the
cooperation is the maximum one if the distance among atoms is small enough and
it reaches its minimum value when the distance goes to infinity [6]. In the last case
the out diagonal terms of the spectral correlation tensor go to zero meaning that
the parts see independent reservoirs. The lack of a microscopical derivation of the
coupling constant of the mode with the electromagnetic field makes difficult the
analytical derivation of an analogue relation in the case here analyzed. Despite
this fact it will be shown that the single bath case is more general than the other
one because the independent baths case does not reproduce the out diagonal terms
giving a simplified Master Equation unable to reproduce part of the experimental
measurements.

The Hamiltonian describing the open system is

H = h̄
ω0

2
Sz + h̄ω0α

†α+ h̄(ǫαS+ + ǫ∗α†S−) + h̄
∑

~k,λ

ω~k
b
†
λ(~k)bλ(~k) (28)

+
∑

~k,λ

[g∗~k,λ
bλ(~k) + g~k,λ

b
†
λ(~k)](S+ + S−) +

∑

~k,λ

[s∗~k,λ
bλ(~k) + s~k,λ

b
†
λ(~k)](α† + α).

If we make the position

HS = h̄
ω0

2
Sz + h̄ω0α

†α+ h̄(ǫαS+ + ǫ∗α†S−), (29)

HB = h̄
∑

~k,λ

ω~k
b
†
λ(~k)bλ(~k), (30)

HI =
2

∑

α=1

AαBα, (31)

where

B1 =
∑

~k,λ

[g∗~k,λ
bλ(~k) + g~k,λ

b†λ(~k)], (32)

B2 =
∑

~k,λ

[s∗~k,λ
bλ(~k) + s~k,λ

b†λ(~k)] (33)

A1 = (S+ + S−), (34)
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A2 = (α† + α) (35)

we can describe the reduced dynamics of the bipartite system at T = 0 by a
Master Equation of the standard form

ρ̇S(t) = − i

h̄
[HS, ρS(t)] +D(ρS(t)). (36)

In this expression we have neglected the Lamb-Shift. This approximation is
made possible because we have considered, ab initio, a direct linear static interac-
tion among the parts respect to which the Lamb-Shift is negligible. In the above
equation

D(ρS(t)) = γ1,1(S−ρSS+ − 1

2
{S+S−, ρS}) (37)

+ γ2,2(αρSα
† − 1

2
{α†α, ρS})

+ γ1,2(αρSS+ − 1

2
{α†S−, ρS})

+ γ2,1(S−ρSα
† − 1

2
{S+α, ρS})

where

γ1,1 = π
∑

~k,λ

| g~kλ
|2 δ(ω~k

− ω) (38)

γ2,2 = π
∑

~k,λ

| s~kλ
|2 δ(ω~k

− ω) (39)

γ1,2 = π
∑

~k,λ

Re(s∗~kλ
g~kλ

)δ(ω~k
− ω) + ih̄π

∑

~k,λ

Im(s∗~kλ
g~kλ

)δ(ω~k
− ω) (40)

γ2,1 = π
∑

~k,λ

Re(s∗~kλ
g~kλ

)δ(ω~k
− ω) − ih̄π

∑

~k,λ

Im(s∗~kλ
g~kλ

)δ(ω~k
− ω) (41)

The master equation for ρS can be solved applying the NuD theorem to this
case:

ρS(t) =
n

∑

i=0

ρi(t), i ∈ N (42)



[Author and title] 12

where n is the number of the excitation initially given to the system (ρS(0) ≡
ρn(0)) and i is the index giving the number of excitations characterizing every
quantum trajectory.

The trajectories evolve in time in accordance with

ρi(t) = N(t)fi(t)N
†(t), (43)

where fi(t) is given by eq.(27) and N(t) = e−
i
h̄Bt is a nonunitary temporal

evolution operator, B being, in general, non-hermitian as it appears from the
following equation:

B =
h̄

2
Ω0Sz + h̄Ωα†α+MS+α+ Pα†S− − i

γ1,1

2
, (44)

where
Ω0 = ω0 − iγ1,1 (45)

Ω = ω0 − iγ2,2 (46)

M = ε− iγ2,1 (47)

P = ε∗ − i(γ2,1)∗. (48)

Let us suppose the system in the initial state characterized by (n−1) excitations
in the cavity mode and the atom in its excited state | + >:

ρS(0) =| (n− 1),+ >< (n− 1),+ |, (49)

then every quantum trajectory ρi(t) belonging to statistical mixture characterizing
the dynamical evolution of the system will have the form

ρi(t) = ρ1,1i
(t) | (i− 1),+ >< (i− 1),+ | +ρ1,2i

(t) | (i− 1),+ >< i,− |(50)
+ ρ2,1i

(t) | i,− >< (i− 1),+ | +ρ2,2i
(t) | i,− >< i,− | .

The highest energy subspace (i = n) is easily solved and the block vector
relative to this subspace has the form:

ρ1,1n(t) =
e−2γ2,2(n− 1

2
)t−γ1,1t

2 | An |2 {(| An |2 − | ∆ |2) cos(2ant) (51)

+ (| An |2 + | ∆ |2) cosh(2bnt) − 2ibn∆(sin(2ant) + sinh(2bnt))}

ρ1,2n(t) =
i
√
nM∗

2A∗
n

e−2γ2,2(n− 1

2
)t−γ1,1t{sin(2ant) − i sinh(2bnt) (52)

+ i
∆

An
(cos(2ant) − cosh(2bnt))}
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ρ2,1n(t) = ρ∗1,2n
(t) (53)

ρ2,2n(t) =
n |M |2
4 | An |2 e

−2γ2,2(n− 1

2
)t−γ1,1t{sin(2ant) − i sinh(2bnt)}, (54)

where

An = an + ibn =
√

∆2 + nMP (55)

∆ =
1

2
(γ1,1 − γ2,2). (56)

Let us note that if we have started from the initial condition | ψ1(0) >=| n,− >

we have obtained the same dynamical behavior. This fact ensures that an arbitrary
linear combination of the two different initial condition will bring to the same
dynamics. This fact is really important because it is not simple to prepare one or
the other of the initial states. Actually, when we inject an excitation inside the
system we can only know that the system is in a statistical mixture of the two
states. But we have seen seen that the dynamics is not case sensitive and therefore
a statistical mixture of the two states leads to the described dynamical evolution.

3.1. Entanglement building up

The circumstance that we succeed in finding the explicit time dependence of
the solution of the master equation (36) provides an occasion to analyze in detail
at least some aspects of how entanglement is getting established in our bipartite
system. As particular case we can choose n = 1 so obtaining in a simple way the
complete dynamics of the open system in the form

ρS(t) = ρ0(t) + ρ1(t), (57)

where

ρ1(t) = ρ1,11
(t) | 0,+ >< 0,+ | +ρ1,21

(t) | 0,+ >< 1,− | (58)

+ ρ2,11
(t) | 1,− >< 0,+ | +ρ2,21

(t) | 1,− >< 1,− |

and

ρ0(t) = (1 − ρ1,11
(t) − ρ2,21

(t)) | 0,− >< 0,− | (59)

On the basis of the block diagonal form exhibited by Eq. (57), at a generic time
instant t, the system is in a statistical mixture of the vacuum state of the system
and of a one-excitation appropriate density matrix describing with certainty the
storage of the initial energy. In order to analyze the time evolution of the degree of
entanglement that gets established between the two initially uncorrelated parties,
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Fig. 1: Blablabla...

we exploit the concept of concurrence C first introduced by Wootters [44, 45]. If,
at an assigned time t, no photon have been emitted the conditional concurrence
C assumes the form:

C(t) =

√

2(ρ1,1nρ2,2n+ | ρ1,2n |2) + 4ρ2,2n | ρ1,2n

ρ1,1n + ρ2,2n

(60)

−
√

2(ρ1,1nρ2,2n+ | ρ1,2n |2) − 4ρ2,2n | ρ1,2n

ρ1,1n + ρ2,2n

.

In the analyzed case (n = 1), as clearly shown in Fig.1, obtained using the ex-
perimental values setted by Haroche’s group, the degree of entanglement starting
from zero increases during the transient collapsing to the initial value when time
is long enough. This fact depend on the choice of the atom whose spontaneous
emission time γ1,1 is much longer than the cavity damping time γ2,2. In accor-
dance to this fact the probability to find the atom in the excited state starting
from 1 go to zero when t≫ (γ1,1 + γ2,2)

−1 as clearly showed in Fig.2. This Figure
reproduce in a perfect way the experimental measures performed by Haroche’s
group [1]. The standard theoretical models assume two different channel of dissi-
pation (one for the atom and one for the cavity mode). The corresponding Master
Equation is simpler to solve because of the absence of cooperative terms [4] but the
corresponding dynamics fits only the upper part of the measures of the Haroche’s
group (dissipative behavior). The low part of the graph represent the cooperation
induced by the common reservoir between the cavity mode and the atom.

Such cooperation become the maximum one when γ1,1 = γ2,2 and fase, as
clearly shown in Fig.3 and Fig.4. These ones depicted the concurrence and the
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Fig. 2: Blablabla...

probability to find the atom in its excited state, respectively.
Under this condition (Decoherence Free Regime) Eq. (57) suggests that, for

t ≫ (γ1,1 + γ2,2)
−1, the correspondent asymptotic form assumed by ρS(t) is time

independent and such that the probability of finding energy in the bipartite system
is 1

2 :

ρS(t≫ (γ1,1 + γ2,2)
−1) =

1

2
| ψG >< ψG | (61)

+
1

2
| ψA >< ψA |,

where

| ψG >=| 0,− >< 0,− | (62)

is the ground state of the bipartite system and

| ψA >=
1√
2
(| 0,+ >< 1,− | − | 1,− >< 0,+ |) (63)

is the maximally antisymmetric entangled state of the system.
This fact suggests that stationary entangled states of the JC system can be

generated by putting a single photon detector able to capture in a continuous way
all the excitations lost by the system in the reservoir. Reading out the detector
states at t ≫ (γ1,1 + γ2,2)

−1, if no photons have been emitted, then, as a conse-
quence of the measurement outcome, our system is projected into the maximally
antisymmetric entangled state | ψ >= 1√

2
(| 0,+ >< 1,− | − | 1,− >< 0,+ |).

This is the main result of the paper which means that a successful measurement,
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Fig. 3: Blablabla...

Fig. 4: Blablabla...
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performed at large enough time instants, generates un uncorrelated state of the
two subsystems, bipartite system and reservoir, leaving atom and cavity in their
maximally antisymmetric entangled state.

This ideal result has to be corrected by the introduction in the microscopical
model of a second bath of interaction able to take account of the cavity leakage
of energy because of the imperfect mirrors. In terms of the hamiltonian operator
this means:

H = h̄
ω0

2
Sz + h̄ω0α

†α+ h̄(ǫαS+ + ǫ∗α†S−) + h̄
∑

~k,λ

ω~k
b
†
λ(~k)bλ(~k) (64)

+ h̄
∑

~k,λ

ω~k
c
†
λ(~k)cλ(~k) + +

∑

~k,λ

[g∗~k,λ
bλ(~k) + g~k,λ

b
†
λ(~k)](S+ + S−)

+
∑

~k,λ

[s∗~k,λ
bλ(~k) + s~k,λ

b
†
λ(~k)](α† + α) +

∑

~k,λ

[r∗~k,λ
cλ(~k) + r~k,λ

c
†
λ(~k)](α† + α).

If we make the position

HS = h̄
ω0

2
Sz + h̄ω0α

†α+ h̄(ǫαS+ + ǫ∗α†S−), (65)

HB = h̄
∑

~k,λ

ω~k
b
†
λ(~k)bλ(~k) + h̄

∑

~k,λ

ω~k
c
†
λ(~k)cλ(~k), (66)

HI =
2

∑

α=1

AαBα, (67)

where

B1 =
∑

~k,λ

[g∗~k,λ
bλ(~k) + g~k,λ

b†λ(~k)], (68)

B2 =
∑

~k,λ

[s∗~k,λ
bλ(~k) + s~k,λ

b†λ(~k)] +
∑

~k,λ

[r∗~k,λ
cλ(~k) + r~k,λ

c†λ(~k)] (69)

A1 = (S+ + S−), (70)

A2 = (α† + α) (71)
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we can describe the reduced dynamics of the bipartite system at T = 0 by a
standard Master Equation and we can solve it in the same way of the previous case.
The changes in the microscopical model do not introduce variation in the formal
solution. Instead, the presence of two different channel of dissipation modifies the
dynamical behavior. Actually, the system has now the possibility to loose energy
in environments that do not speak each other. This means that, when the time is
much longer than the sum of the single emission time, the coherence induced by the
common bath during the transient will go to zero in the long time domain. Despite
this fact, the dechoerence time can be made as long as we need to implement the
required quantum protocol. Actually, named k the cavity decay rate, if k is much
greater than γ1,1 = γ2,2, then the storage of energy can be maximized for a time
sufficient to realize the quantum protocol.

4. Conclusion

In this paper we have considered the interaction of a Jaynes and Cummings
system with the electromagnetic field (and with another phenomenological zero
temperature bath) in its vacuum state and, solving the dynamical problem, we
have analyzed the amount of entanglement induced in the bipartite system by the
common electromagnetic reservoir. This has allowed us to quantitatively charac-
terize the regime under which field-induced cooperative effects are not vanished by
dissipation. Once the Decoherence Free Regime is reached, transient entanglement
tends to become stationary and, therefore, usable for quantum gate implementa-
tion.

The asymptotic solution of the dynamical problem appears to be a statistical
mixture of a maximally entangled state and the ground state of the open system,
the probability to obtain one or the others being the same. In the whole temporal
domain the found solution tell us that the state of the system is a statistical mix-
ture of the free energy system eigenoperators. This fact is general enough [4] and it
is consistent with the existence of a photon detector device because the act of mea-
surement introduces a stochastic variable respect to which we can only predict the
probability to have one or another of the possible alternative measures [4]. These
probabilities can be regarded as the weight of the possible alternative generalized
trajectories. With this approach the dynamics has to be depicted as a statistical
mixture of this alternative generalized trajectories. Moreover the found trajecto-
ries evolve in time in a deterministic way: for example the trajectory relative to the
initially excited system state is a shifted free evolution characterized by complex
frequencies that means an exponential decay free evolution. This statement may
give the sensation that every system has to decay in its ground state because of the
observed dynamics. It is in general not true. Actually, if the system is multipartite
as ours, it is possible that it admits excited and entangled equilibrium Decoher-
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ence Free Subspace (DFS) [46](so as it happens in some highly symmetric models),
constituted by states on which the action of HI is identically zero. If the system,
during evolution, passes through one of these states, the successive dynamics will
be decoupled from the environment evolution. An equilibrium condition is reached
in which entanglement is embedded in the system.
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