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Abstract
We study the entanglement dynamics for two independent superconducting qubits, each
affected by a bistable impurity generating random telegraph noise (RTN) at pure dephasing.
The relevant parameter is the ratio g between the qubit–RTN coupling strength and the RTN
switching rate, which captures the physics of the crossover between Markovian and
non-Markovian features of the dynamics. For identical qubit–RTN subsystems, a threshold
value gth of the crossover parameter separates exponential decay and the onset of revivals;
different qualitative behaviors also show up by changing the initial conditions of the RTN.
We also show that, for different qubit–RTN subsystems, when both qubits are very strongly
coupled to the RTN, an increase of entanglement revival amplitude may occur during the
dynamics.

PACS numbers: 03.67.Mn, 03.65.Yz, 03.67.−a

(Some figures may appear in colour only in the online journal)

1. Introduction

Entanglement dynamics has been intensively studied for
bipartite quantum systems interacting with quantum environ-
ments (independent or common). It presents, depending on
the Markovian or non-Markovian nature of the environments,
phenomena such as entanglement sudden death (ESD) [1],
revivals [2–4] or trapping [5, 6]. Entanglement dynamics
has also been analyzed in some solid-state systems, such
as superconducting qubits or quantum dots, which are
promising candidates for realizing quantum information
processing [7–10]. Considerable progress has been made over
the last decade toward the implementation of a controlled
solid-state quantum computer. In particular, superconducting
high-fidelity single-qubit gates with coherence times of
∼1 µs are currently available [11, 12]. High-fidelity Bell
states of superconducting qubits have also been prepared
[13, 14]. Superconducting nanodevices are usually affected

by broadband noise, with typical power spectra displaying a
1/ f low-frequency behavior followed by a white or ohmic
flank [15–18]. The dynamics of entanglement in these devices
has recently been analyzed distinguishing the effects of
adiabatic and quantum noise [9]. The disentanglement process
has also been studied by the quasi-Hamiltonian method when
two independent superconducting qubits are locally affected
by random telegraph noise (RTN) [19].

In this paper we consider a model, relevant to the
solid-state system [17], consisting of two non-interacting
qubits, each affected by a single bistable impurity inducing
RTN at the pure-dephasing working point. In addition, this
model can be exactly solvable in analytic form and captures
the physics of the crossover between a Markovian and a
non-Markovian environment under quite general conditions.
The relevant parameter separating the two regimes is the
ratio between the qubit–RTN coupling constant and the
switching rate of the impurity. We analyze the entanglement
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dynamics for both identical and different conditions of the
two local qubit–RTN. In section 2 we introduce the relevant
single qubit–RTN model, while in section 3 we describe the
entanglement dynamics under various initial noise conditions.
In section 4, we present our concluding remarks.

2. Model: a qubit under pure-dephasing random
telegraph noise

Our system consists of a couple of independent super-
conducting qubits, A and B, each affected by a bistable
impurity generating RTN at pure dephasing. The total
Hamiltonian is Htot = HA + HB , where for each qubit the
Hamiltonian at pure dephasing is (h̄ = 1) [17]

H = −(�/2)σz − (v/2)ξ(t)σz,

where ξ(t) is a stochastic process producing RTN switching
at a rate γ between ±1, and v is the qubit–RTN coupling
constant. The power spectrum of the unperturbed equilibrium
fluctuations of ξ(t) is s(ω) = v2γ /[2(γ 2 + ω2)]. The relevant
parameter is the ratio g = v/γ that permits us to analyze
the crossover between a Markovian environment for weakly
coupled impurities (g < 1) and a non-Markovian environment
for strong coupled impurities (g > 1) [17]. The exact
evolution of single-qubit coherence q(t) ≡ ρ01(t)/ρ01(0) has
been found in [17] and is given by

q(t) = e−i(�+v/2)t [A e−
γ (1−α)t

2 + (1 − A) e−
γ (1+α)t

2 ], (1)

where A =
1

2α
(1 + α − igδp0) and α =

√
1 − g2. Note that δp0

is a degree of freedom depending on the initial conditions
of the RTN and is not present in previous analysis of
entanglement dynamics under RTN [19]. In particular, δp0

can take the value δp0 = 0 (corresponding to the value of
thermodynamical equilibrium) or the values δp0 = ±1. The
form of equation (1) clearly shows the different roles of
weakly and strongly coupled impurities in the decoherence
process. Dephasing comes from the sum of two exponential
terms. If g � 1 only the first of these terms is important
and the corresponding rate is ≈v2/(4γ ), coinciding with the
golden rule; if g � 1 the two terms are of the same order and
the decay rate is ∼γ [17].

3. Dynamics of entanglement

The two-qubit density matrix elements are evaluated in the
computational basis B = {|0〉 ≡ |00〉, |1〉 ≡ |01〉, |2〉 ≡ |10〉,

|3〉 ≡ |11〉}, where Hi |0i 〉 = −
�i
2 |0i 〉, Hi |1i 〉 =

�i
2 |1i 〉 (i =

A, B), where Hi = −(�/2)σz . We consider as initial states
the extended Werner-like (EWL) states expressed by the
density matrices [20]

ρ̂1 = r |1a〉〈1a| +
1 − r

4
14, ρ̂2 = r |2a〉〈2a| +

1 − r

4
14 (2)

whose pure parts are the one and two-excitation Bell-like
states |1a〉 = a|01〉 + b|10〉, |2a〉 = a|00〉 + b|11〉, where the
subscript a identifies the initial degree of entanglement of
the pure part and |a|

2 + |b|
2
= 1. The density matrix of

EWL states is non-vanishing only along the diagonal and

anti-diagonal (X form) [20], and this structure is maintained
at t > 0 in the system we are considering (pure dephasing).
Using the concurrence [21] C to quantify entanglement,
the initial entanglement is equal for both the EWL states
of equation (2) and reads Cρ1(0) = Cρ2(0) = 2max{0, (|ab| +
1/4)r − 1/4}. Initial states are thus entangled for r > r∗

=

(1 + 4|ab|)−1. Moreover, the purity P = Tr(ρ2) of EWL states
is P = (1 + 3r2)/4. Entangled states with purity ≈0.87 and
fidelity to ideal Bell states ≈0.90 have been experimentally
generated [14]: these states may be approximately described
as EWL states with rexp ≈0.91.

In order to obtain the concurrence at time t , we need the
evolved two-qubit density matrix that can be evaluated by
the knowledge of the single-qubit density matrix evolution,
according to a standard procedure [2]. The initial EWL states,
during the pure-dephasing evolution, maintain the diagonal
elements unchanged and the anti-diagonal elements depend
on the product of single-qubit coherences. The concurrences
at time t for the two initial states of equation (2) are given
by, respectively, Cρ1(t) = 2max{0, K1(t)} and Cρ2(t) =

2max{0, K2(t)}, where K1(t) = |ρ12(t)| −
√

ρ00(t)ρ33(t),
K2(t) = |ρ03(t)| −

√
ρ11(t)ρ22(t). In our case, we have

K1(t) = K2(t) = K (t), so that the two concurrences are
equal for both initial states Cρ1(t) = Cρ2(t) = C(t). In the
following, we consider identical qubits (�A = �B = �) and
we distinguish the cases of equal RTNs gA = gB = g and of
different RTNs gA 6= gB for the two subsystems.

3.1. Identical random telegraph noises

Consider the case gA = gB = g and equal initial conditions.
We obtain C(t) = max{0, 2K (t)} with

K (t) = r |a|

√
1 − |a|2|q(t)|2 − (1 − r)/4, (3)

where q(t) is the single-qubit coherence of equation (1).
We now investigate how the concurrence depends on
different initial conditions of the system and state parameters.
Equation (3) clearly shows the role of the purity parameter r
in concurrence evolution: for pure states, r = 1, there cannot
be an ESD and the entanglement goes asymptotically to
zero similarly to single-qubit coherence; on the other hand,
any value of r inside the interval r∗ < r < 1 determines
a threshold value for the first term of equation (3) to
be overcome in order to have non-zero entanglement
(of course, 0 < |a| < 1). The dynamics of entanglement
is shown in figure 1 when g = 0.5, 5 and δp0 =

0, ±1, for initial states with r = rexp = 0.91 and a = b =

1/
√

2 whose initial concurrence is C(0) = 0.865. Similarly
to other works [2, 19], for weak coupling (g < 1,
Markovian environment) there is a simple (exponential)
decay, while for strong coupling (g > 1, non-Markovian
environment) there are damped revivals after dark periods of
entanglement (see figure 1). It is, however, worth noting that,
whereas for a single qubit the crossover between Markovian
(exponential) and non-Markovian (oscillating) decay is
identified by g = 1, for the two-qubit system, depending
on initial state parameters, a threshold value gth > 1
exists separating exponential decay and the onset of revivals.
This gth can be found analytically [22] and its dependence
on r (for a = b = 1/

√
2) is displayed in figure 1(b) (for

2
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(a)

(b)

Figure 1. Concurrences versus the dimensionless time γ t with
r = rexp = 0.91 and a = b = 1/

√
2 for g = 0.5 (a) and g = 5 (b).

Solid black lines are for δp0 = 0, while dashed blue lines are for
δp0 = ±1. The inset of panel (b) displays gth versus r for
a = b = 1/

√
2.

r = 1 it is gth = 1). When r = 1 the entanglement goes to
zero asymptotically (oscillating and vanishing at given times
for g > gth), analogous to the results already found for the
case of adiabatic (low-frequency) noise due to collective
impurities generating 1/ f noise [9]. In contrast, when r < 1
there is always ESD for g 6 gth and a ‘final death’ (after
revivals) for g > gth, where by final death we mean the
definitive disappearance of entanglement. Different RTN
initial conditions (values of δp0) qualitatively affect the
entanglement dynamics for g > gth (strong memory effects),
while they leave it practically unchanged for g 6 gth (weak
memory effects), as shown in figure 1. In particular, when
g > gth, the concurrence for δp0 = ±1 is always larger than
that for δp0 = 0 with small beats touching the peaks of the
revivals appearing in the corresponding curve for δp0 = 0;
the final death time is also longer than the previous one (see
figure 1).

In the limit of small g (Markovian noise) and for
δp0 = 0, only the first term is important in equation (1) and,
from equation (3), we may estimate the ESD times (giving,
however, a good match with plots up to g = 0.9)

γ tESD = −
2

1−
√

1−g2
ln


√

(1−g2)(1−r)/r |a|
√

1−|a|2

1 +
√

1 − g2

.

(4)
These ESD times are plotted in figure 2 as a function of g
for three different values of r . They decrease as g increases,
with a reduction of about an order of magnitude going from
g = 0.1 to g = 0.4.
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Figure 2. ESD times tESD (scaled with γ ) versus g, with
a = b = 1/

√
2 and δp0 = 0, for rexp = 0.91 (black solid line),

r = 0.8 (blue dashed line) and r = 0.7 (red dot-dashed line).
The inset shows the range g > 0.5.

3.2. Different random telegraph noises

We now consider the more realistic case of qubits affected by
different RTNs gA 6= gB , with δp0 = 0 for both. The function
K (t) is now given by equation (3) replacing |q(t)|2 with
|qA(t)qB(t)|, where qi (t) (i = A, B) is the coherence of qubit
i given in equation (1). The entanglement dynamics for
different values of gA, gB is displayed in figure 3. We assume
the rate γ to be fixed for both impurities and different values
of vA, vB . When a qubit, for instance qubit B, is not affected
by RTN (gB = 0), we find a qualitative behavior analogous
to that observed for identical RTNs, with a threshold value
gAth > 1 after which revivals occur. On the other hand, when
one of the two qubits is affected by a strong non-Markovian
RTN (for instance, gB = 2), as gA increases the revivals tend
to disappear after a certain gA > 1 (indeed, when gA = gB = 2
the value of gth is larger than 2, as seen in the previous section)
and then reappear for larger values of gA with final death
times shorter and shorter. With further increasing the fixed
value of gB , other new qualitative behaviors appear when
gA increases in the strong coupling domain. The inset of
figure 3(b) shows the presence of entanglement revivals whose
amplitude increases with respect to the previous one for the
values gA = 10, gB = 5. Similar behaviors occur for initial
pure states (r = 1) but without dark periods. These behaviors
are due to the different contributions of the two single-qubit
dynamics.

4. Conclusions

In this paper, we have analyzed the entanglement dynamics in
a system of two initially entangled independent super-
conducting qubits (A and B), each affected by
impurity-induced RTN at pure dephasing. A crucial role
in determining the behavior of entanglement dynamics is
played by the ratio between qubit–RTN coupling v and
switching rate γ , g = v/γ . For identical RTNs, we found
that, in spite of the fact that for the single-qubit dynamics the
crossover between Markovian and non-Markovian behaviors
is identified by g = 1, for an initially entangled two-qubit
system this threshold is, in general, shifted to a value gth > 1
depending on the initial state (for initial pure states gth = 1).
In the case when the RTN has the initial value δp0 = 0

3
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(a)

(b)

Figure 3. Concurrences versus γ t for gB = 0 (a) and gB = 2 (b)
and values of gA equal to 0.5 (solid black line), 1.1 (red dashed
line), 2 (green dot-dashed line) and 5 (blue dotted line). In the inset
of panel (b), we set gB = 5 with values of gA equal to 1.1 (orange
dashed line), 5 (gray dot-dashed line) and 10 (magenta solid line).
Initial conditions: r = rexp = 0.91, a = b = 1/

√
2, δp0 = 0.

(thermodynamical equilibrium), we have retrieved the known
behaviors of exponential (Markovian) decay for g 6 gth

and of oscillating (non-Markovian) decay with revivals for
g > gth. We then found new qualitative behaviors, in the
non-Markovian regime (g > gth, relevant memory effects),
by changing the initial value of RTN, δp0. For example, if
δp0 = ±1, the entanglement never vanishes at intermediate
times and no revivals occur, with a final death time longer
than that for δp0 = 0. We finally considered the case when the
two local qubit–RTN conditions differ, in particular gA 6= gB .
Entanglement dynamics may behave quite differently from
that for identical subsystems. In particular, when both gA,

gB are in the strong non-Markovian domain, a new feature
in the entanglement dynamics shows up; that is, there can
be entanglement revivals whose amplitude increases with
respect to the previous one.

The simple model, relevant to solid-state systems,
analytically studied here displays the richness of behaviors of
entanglement dynamics and its crucial dependence on both
system–environment parameters and initial conditions.
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