
DOI 10.1212/WNL.0b013e318278b618
; Published online before print November 28, 2012; 2012;79;2315Neurology

Francesca L. Conforti, Rossella Spataro, William Sproviero, et al.
amyotrophic lateral sclerosis

Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in

 
December 11, 2012This information is current as of 

 

 
 http://www.neurology.org/content/79/24/2315.full.html

located on the World Wide Web at: 
The online version of this article, along with updated information and services, is

 

rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.
Allsince 1951, it is now a weekly with 48 issues per year. Copyright © 2012 by AAN Enterprises, Inc. 

® is the official journal of the American Academy of Neurology. Published continuouslyNeurology 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53277887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.neurology.org/content/79/24/2315.full.html


Francesca L. Conforti,
PhD

Rossella Spataro, MD
William Sproviero, PhD
Rosalucia Mazzei, PhD
Francesca Cavalcanti, MD
Francesca Condino, PhD
Isabella L. Simone, MD
Giancarlo Logroscino,

MD
Alessandra Patitucci, PhD
Angela Magariello, PhD
Maria Muglia, PhD
Carmelo Rodolico, MD
Paola Valentino, MD
Francesco Bono, MD
Tiziana Colletti, BSc
Maria R. Monsurrò, MD
Antonio Gambardella,

MD
Vincenzo La Bella, MD,

PhD

Correspondence & reprint
requests to Dr. La Bella:
vincenzo.labella@unipa.it

Ataxin-1 and ataxin-2 intermediate-length
PolyQ expansions in amyotrophic lateral
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ABSTRACT

Objective: Recent evidence suggests that intermediate-length polyglutamine (PolyQ) expansions
in the ataxin-2 (ATXN-2) gene are a risk factor for amyotrophic lateral sclerosis (ALS). This work
was undertaken with the aim to investigate the frequency of ataxin-1 (ATXN-1) and ATXN-2
PolyQ expansions in a cohort of patients with sporadic ALS (sALS) and patients with familial
ALS (fALS) from southern Italy.

Methods: We assessed the PolyQ lengths of ATXN-1 and ATXN-2 in 405 patients with sALS, 13
patients with fALS, and 296 unrelated controls without history of neurodegenerative disorders.

Results:We found significantly higher intermediate PolyQ expansions$32 forATXN-1 alleles and$28
for ATXN-2 alleles in the sALS cohort (ATXN-1: ALS, 7.07% vs controls, 2.38%; p 5 0.0001;
ATXN-2: ALS, 2.72% vs controls, 0.5%; p 5 0.001). ATXN-1 CAT and ATXN-2 CAA interrup-
tions were detected in patients with ALS only. Age at onset, site of onset, and sex were not
significantly related to the ATXN-1 or ATXN-2 PolyQ repeat length expansions.

Conclusions: Both ATXN-1 and ATXN-2 PolyQ intermediate expansions are independently asso-
ciated with an increased risk for ALS. Neurology� 2012;79:2315–2320

GLOSSARY
ALS 5 amyotrophic lateral sclerosis; ATXN 5 ataxin; fALS 5 familial amyotrophic lateral sclerosis; NC 5 normal control;
PQBP 5 PolyQ binding protein; PolyQ 5 polyglutamine; ROC 5 receiver operating characteristic; sALS 5 sporadic amyo-
trophic lateral sclerosis; SCA 5 spinocerebellar ataxia.

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder of
motor neurons, leading to a severe muscle weakness and atrophy.1 Several mutated genes (e.g.,
Cu/Zn SOD1, FUS/TLS, TARDBP, C9ORF72) have been demonstrated to be implicated in the
disease.1–4

A recent work demonstrated that TDP-43, a TARDBP gene product, and ataxin-2 (ATXN-2)
form a complex that depends on RNA binding and that a small number of patients with ALS are
carriers of ATXN-2 intermediate expansions (27–33 glutamines).5 This finding led to a number of
studies from America, Europe, and China that have now demonstrated that ATXN-2 intermediate
poly-CAG expansions with CAA interruptions are indeed a risk factor for ALS.5–12 This effect
appears to be specific, as ATXN-2 repeat length intermediate expansions in Alzheimer disease,
Parkinson disease, and frontotemporal degeneration were not significantly more frequent than
in controls.13

Clinical signs and symptoms of motor neuron degeneration, with bulbar and distal neurogenic
muscle atrophy, have been described in spinocerebellar ataxias.14–16 In particular, the protein pro-
duct of spinocerebellar ataxia 1 (SCA1), ataxin-1 (ATXN-1), forms aggregates in the nucleus and
binds to coiled bodies, exerting a toxic effect on RNA metabolism, thus leading to neuron degen-
eration including motor neurons.17–19 These data point to a specific role of ataxin-1 protein in
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motor neuron survival. The evidence that pa-
tients with SCA1 during the course of the dis-
ease can develop motor neuron degeneration
is a further support to this hypothesis.

In this work, we analyzed the ATXN-1 and
ATXN-2 polyglutamine (PolyQ) repeat length
in a large cohort of patients with sporadic ALS
(sALS) and patients with familial ALS (fALS).

METHODS Patients and controls. With written informed

consent, blood samples were obtained from 405 patients diag-

nosed with sALS (236 male and 169 female; mean age at onset

57.07 years, SD 12.5) and 13 patients diagnosed with fALS (6

male and 7 female; mean age at onset 57.85 years, SD 11.9).

All patients, diagnosed according to the El Escorial revised crite-

ria,20 were previously screened for the presence of pathogenic

mutations in the superoxide dismutase (SOD1), TAR DNA-bind-

ing protein (TDP-43), angiogenin (ANG), and fused in sarcoma/

translocated in liposarcoma (FUS/TLS) genes.
The very recent discovery of the C9ORF72 gene prompted us

to search for the presence of the pathogenic GGGGCC expan-

sion, by a repeat-method PCR assay (pathologic expansion $30

repeats), in all patients (fALS and sALS) carrying an ATXN-1 or

ATXN-2 intermediate PolyQ repeat length expansion. However,

the examined cohort did not show any pathogenic expansion for

this gene (data not shown).

A cohort of 296 geographically matched unrelated Italian in-

dividuals (171 male, 125 female; mean age 60.5 years, SD 15.6)

without history of neurodegenerative disease were used as controls.

Standard protocol approvals, registrations, and patient
consents. We received approval for these studies from the eth-

ical standards institutional committees of each participating insti-

tution. A written consent was obtained by each subject who

contributed a DNA sample for this study (consent for research).

Determination of ATXN-2 and ATXN-1 CAG repeat size.
DNA was extracted from venous blood tissue using standard

methods. Genotyping of the ataxin-2 and ataxin-1 CAG repeat

number was performed using fluorescent-labeled primer PCR

with capillary electrophoresis on an ABI3130xl sequencer

(primer sequences are available on request) and analyzed with

GeneMapper software version 4.0 (Applied Biosystems). A con-

trol subject with a 22/40 heterozygous genotype checked by

direct sequencing was used as a calibrator. Expansions above

30 repeats were confirmed by a second analysis and directly

sequenced after gel separation. The same fragments were also

cloned into a pGEM-T Easy vector system I (Promega, Madison,

WI) and sequenced bidirectionally in at least 3 independent

clones (Applied Biosystems) to further verify the number of

CAGs and the presence of interruptions (CAA/CAT).

Statistical analysis. The difference in sex distribution among

groups was evaluated with the x2 test. Kruskal-Wallis test was

performed to compare age at examination and Mann-Whitney

U test was used for age at onset.

To determine the best cutoff to discriminate ALS cases from

controls, a receiver operating characteristic (ROC) analysis was

performed. We assign the same importance to the sensitivity

and the specificity, so the optimal cutoff level was considered to

be the value that had the highest unweighted sum of sensitivity

and specificity values. x2 test and Fisher exact test (when the

smallest expected frequency was less than 5) were used to calculate

the significance for the genetic association of ATXN-2/ATXN-1
repeat lengths and ALS. Odds ratios and 95% confidence intervals

were calculated according to a logistic regression model adjusted for

age and sex. Exact logistic regression model was used when the

expected frequencies were low. In all tests, a p value below 0.05

was considered significant.

In order to evaluate the differences in clinical and demo-

graphic characteristics between patients carrying and not carrying

long ATXN-2/ATXN-1 repeats, we used x2 test (or Fisher exact

test, as appropriate) for categorical variables and Mann-Whitney

U test for continuous variables.

Statistical analysis was performed in SPSS (version 17, for

Windows). The exact logistic regression model was obtained by

using the elrm package (version 1.2.1) implemented in R.

RESULTS We evaluated the ATXN-1 and ATXN-2
PolyQ repeat length in genomic DNA from 405 pa-
tients with sALS, 13 patients with fALS, and 296
neurologically normal controls (NC) from a relatively
large Mediterranean area (southern Italy).

Table 1 summarizes the demographic and clinical
characteristics of the 3 groups. All patients with ALS
(both sporadic and familial) included in this study
were diagnosed according to the World Federation of
Neurology–El Escorial revised criteria.20 Mean age at
onset was 57.07 6 12.5 years for sALS and 57.85 6

11.9 years for fALS (p5 0.970, Mann-WhitneyU test).
The M/F ratio was 1.39 for sALS, 0.85 for fALS, and
1.37 for NC (p5 0.684). Onset was bulbar in 18.7% of
sALS and 15.4% of fALS cases.

The distribution of ATXN-1 and ATXN-2 PolyQ
repeat length in sALS and NC are shown in the figure
and table 2. We found that 57 out of the 806
ATXN-1 alleles in the sALS cohort harbored a $32
PolyQ repeat length (7.07%), as compared to 13
(2.38%) out of the 544 NC alleles (p 5 0.0001, x2

test; figure, A). For ATXN-2, a $28 PolyQ repeat
length was found in 22 (2.72%) of the 808 sALS
alleles and in only 3 (0.5%) of the 586 NC alleles

Table 1 Demographic and clinical characteristics of the patients with
amyotrophic lateral sclerosis (sporadic and familial) and controls

sALS (n 5 405) fALS (n 5 13) Controls (n5 296) p Valuea

Men, n (%) 236 (58.3) 6 (46.2) 171 (57.8) 0.684b

Age at onset, y, mean 6 SD 57.07 6 12.5 57.85 6
11.9

— 0.970c

Site of symptom onset, n (%)d

Bulbar 62 (18.7) 2 (15.4) 1.0e

Spinal 266 (80.1) 11 (84.6)

Abbreviations: fALS 5 familial amyotrophic lateral sclerosis; sALS 5 sporadic amyotrophic
lateral sclerosis.
ap Value refers to a comparison among 3 groups for sex and 2 groups for the other
variables.
bx2 test.
cMann-Whitney U test.
dSite of symptom onset data were not available for 73 sALS cases.
e Fisher exact test.
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(p 5 0.001, x2 test; figure, B). Furthermore, both
ATXN-1 and ATXN-2 intermediate PolyQ repeat
length expansions are likely to be independently asso-
ciated with an increased risk for sALS. Only 1 patient
with ALS out of the 418 sALS and fALS patients and
296 NC tested was found to be a carrier of both
ATXN-1 and ATXN-2 allele expansions.

The analysis of ATXN-1 and ATXN-2 intermedi-
ate PolyQ repeat length expansions in fALS revealed
that ATXN-1 might be a potential risk factor also in
these patients (table 2). However, further studies with
a larger patient cohort are needed to verify this asso-
ciation as the sample size was relatively small.

We then determined which demographic or clinical
variable would have been associated with the ATXN-1
or ATXN-2 PolyQ repeat length expansions. We could
only obtain information about sex, age at onset, and
site of onset. Other clinical and demographic variables
were not available at the time of this study. As shown
in table 3, none of the variables tested in sALS and
fALS were significantly related to the ATXN-1 and
ATXN-2 PolyQ repeat length expansions. Direct
DNA sequencing of the longest repeat alleles (i.e.,
both ATXN-1 and ATXN-2, $35 and $31 repeats,
respectively) showed ATXN-1 CAT and ATXN-2
CAA interruptions in patients with ALS only.

DISCUSSION In the present study, we have evalu-
ated the role of ATXN-1 and ATXN-2 expansions
in a cohort of patients with ALS, and found a signif-
icant association of both ATXN-1 alleles $32 and
ATXN-2 alleles $28 PolyQ repeats with sALS.

Both ATXN-1 and ATXN-2 expansions were de-
tected in 1 patient with ALS only, and this strongly
suggests that the 2 genetic variables are in fact inde-
pendently related to an increased risk of ALS.

Our data confirm the recent reports that ATXN-2
is a genetic risk factor for ALS.5–12 The finding that
ATXN-1 PolyQ repeats$32 also represent a risk factor
for ALS is novel, and suggests that intermediate expan-
sions of both ataxins might indeed be involved in the
pathogenesis of this neurodegenerative disorder.

ATXN-2 was the first ataxin shown to predispose to
ALS,5 with repeat length$30 units in European patients
with ALS.6,8,12 Normal ATXN-2 alleles were in fact#31
repeats in several studies.5,6,8 In our sALS cohort from
southern Italy, we found a significant association with
ATXN-2 when PolyQ repeats were $28 (2.7% alleles),
with only 0.5% expanded alleles in controls. This makes
our finding closer to the study of the American and
Chinese ALS cohorts, where the disease was shown to
be associated withATXN-2 repeat expansions 27–33 and
$27, respectively.5,9 Furthermore, our study supports

Table 2 Frequency of ‡32 ATXN-1 and ‡28 ATXN-2 intermediate PolyQ repeat
length expansions in sALS and fALS

Alleles sALS Controls p Value OR (95% CI)a

ATXN-1, n (%)

‡32 repeats 57 (7.07) 13 (2.4) 0.0001b 2.396 (1.26–4.56)

<32 repeats 749 (92.9) 531 (97.6)

ATXN-2, n (%)

‡28 repeats 22 (2.7) 3 (0.5) 0.001b 5.832 (1.71–9.78)

<28 repeats 786 (97.3) 583 (99.5)

fALS Controls p Value OR (95% CI)a

ATXN-1, n (%)

‡30 repeats 8 (33.3) 94 (17.3) 0.056c 1.56 (0.42–9.67)

<30 repeats 16 (66.7) 450 (82.7)

ATXN-2, n (%)

‡22 repeats 26 (100) 574 (97.9) 1.0c NA

<22 repeats 0 (0.0) 12 (2.1)

Abbreviations: ATXN 5 ataxin; CI 5 confidence interval; fALS 5 familial amyotrophic lateral
sclerosis; NA 5 not available; OR 5 odds ratio; PolyQ 5 polyglutamine; sALS 5 sporadic
amyotrophic lateral sclerosis.
aORs and 95% CIs were calculated according to a logistic regression or exact logistic
regression model, as appropriate, adjusted for age and sex.
bx2 test.
c Fisher exact test.

Figure Distribution of ATXN-1 (A) and ATXN-2 (B) PolyQ repeat lengths in patients with sporadic ALS (sALS)
and neurologically normal controls (NC)

ATXN 5 ataxin; PolyQ 5 polyglutamine.
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the observation that ATXN-2 intermediate repeat ex-
pansions vary between different populations, and this
might be independent of a specific ethnic back-
ground.6,8,9 In several studies, in fact, the different ana-
lytical methods adopted might have contributed to the
variability in the cutoffs used to demonstrate ATXN-2
repeat expansion association in patients with ALS vs
controls.6,8,10,11 We used a ROC curve analysis to
choose the best cutoff repeat expansion to discriminate
between the 2 groups, an approach also reported by
Van Damme et al.12

The most frequent normal ATXN-2 repeat length
is a 22-CAG repeat with 2 CAA interruptions; the
expansion of more than 34 repeats causes SCA2. Fur-
thermore, it has been observed that patients with
SCA2 carry a pure CAG repeat and do not harbor
the CAA interruptions.21 Although the CAA codons
do not alter the amino acid residue, they can result in
branched structures at the DNA and RNA level in
vitro.22 Interestingly, it has been argued that the length
of expansion as well as the structure purity of the repeat
region might influence the phenotypic presentation.7

In our ALS group, 6 patients carried ATXN-2
alleles in the intermediate range (32–33 repeats)
and 4 carried full expanded alleles (34–36 repeats).
Cloning and sequencing of these alleles revealed that
they were interrupted by at least 1 CAA. More

detailed analysis of the internal repeat structure fur-
ther demonstrated that expansions had occurred via at
least 2 mechanisms resulting in different internal
repeat structures in our carriers (either a single inter-
ruption or 2 interruptions).

ATXN-1 PolyQ repeat length intermediate expan-
sions is an emerging genetic risk factor for ALS.
ATXN-1 PolyQ repeat expansions are the cause of
SCA1, an autosomal dominant spinocerebellar progress-
ive ataxia where signs and symptoms of motor neuron
degeneration are reported, and rarely predominate.14,19,23

Normal ATXN-1 variable CAG repeats ranging from
6 to 44 have been reported in the general population,
and those with repeats longer than 20 typically have
CAT triplet interruptions within the CAG tract.24 In
contrast, SCA1-affected alleles have $39 repeat expan-
sions and CAT triplet interruptions are lacking.19

In our sALS cohort, 7.07% of the ATXN-1 alleles
carried repeat expansions $32 compared to only
2.4% of control alleles. ATXN-1 might therefore be
a novel risk factor for ALS, and this widens the role of
genetic modifiers in ALS. In our cohort, 6 patients
carried ATXN-1 expanded alleles (36, 37 repeats)
and the sequencing of these revealed the presence of
2 CAT interruptions.

A recent report suggested that several PolyQ
genes, including ATXN-1, may not be involved in
ALS.11 In that work, done with American patients
with ALS, the ATXN-1 PolyQ repeats expansion
range analyzed was 21–37, with the most common
length repeat being 27–28.11 Our study showed a
different profile; that is, the association with ALS
was found with ATXN-1 alleles $32 repeat lengths,
with the most common repeat lengths in both cases
and controls being 28–29. The ATXN-1 repeat length
variability from population to population and different
methodologic approaches might explain the above di-
vergent results. In particular, while Lee et al.11 looked at
the range of PolyQ repeat lengths both in patients with
ALS and controls, we established the best repeat cutoff
value to discriminate cases and controls through a
ROC analysis.

Analyzing patients with fALS, we found that only
ATXN-1$30 PolyQ repeats alleles showed a modestly
significant association with the disease. However, as
the recruited patients with fALS were relatively few,
these results should be replicated in a larger cohort.

We could not find ATXN-1 or ATXN-2 PolyQ
repeat expansion effects on phenotypic variables in
our ALS cohort. We could only assess sex, age at onset,
and site of onset, and showed that none of them was
significantly related to either ATXN-1 or ATXN-2
PolyQ repeat expansions. Our results are in line with
a recent report which showed that ALS phenotype is
not affected by ATXN-2 PolyQ repeat expansions.10

Taken together, both studies argue against a significant

Table 3 Frequency of ‡32 ATXN-1 and ‡28 ATXN-2 intermediate PolyQ repeat
length expansions in sALS and fALS according to demographic and
clinical variables

sALS allele repeats

<32
ATXN-1

‡32
ATXN-1 p

<28
ATXN-2

‡28
ATXN-2 p

Men, n (%) 435 (58.1) 33 (57.9) 0.97a 458 (58.3) 14 (63.6) 0.61a

Age at examination, y,
mean 6 SD

60.9 6 11.9 58 6 13 0.27b 60.7 6 12.3 62.5 6 9.6 0.61b

Site of onset, n (%)

Bulbar 118 (18.8) 6 (16.7) 0.75a 122 (18.9) 2 (10) 0.40c

Spinal 510 (81.3) 30 (83.4) 522 (81.1) 18 (90)

fALS allele repeats

<30 ATXN-1 ‡30 ATXN-1 p <22 ATXN-2 ‡22 ATXN-2 p

Men, n (%) 7 (43.8) 3 (37.5) 1.0c 0 (0.0) 12 (46.2) NA

Age at examination,
y, mean 6 SD

61.9 6 12.5 56.6 6 9.9 0.24b — 59.9 6 11.3 NA

Site of onset, n (%)

Bulbar 4 (25) 0 (0) 0.2c 0 (0.0) 4 (15.4) NA

Spinal 12 (75) 8 (100) 0 (0.0) 22 (84.6)

Abbreviations: ATXN 5 ataxin; fALS 5 familial amyotrophic lateral sclerosis; NA 5 not
available; PolyQ 5 polyglutamine; sALS 5 sporadic amyotrophic lateral sclerosis.
a x2 test.
bMann-Whitney U test.
c Fisher exact test.
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role for both ATXN repeat expansions as clinical modi-
fiers in ALS.

The demonstration of selective repeat expansions
in ATXN-1 and ATXN-2 in ALS carries significant
implications for the understanding of the patho-
physiology of this severe neurodegenerative disorder.
ATXN-2 PolyQ repeats enhance the interaction of
ataxin-2 protein with TDP-43, and promote TDP-43
mislocalization into the cytoplasm, altered RNAmetab-
olism, and toxicity to motor neurons.5,25 ATXN-1 has
RNA-binding activity and can interact with p80 coilin
in the nucleoplasm, suggesting a specific role in RNA
metabolism.17,18 Furthermore, a specific ATXN-1-
interacting protein, PolyQ binding protein-1 (PQBP-
1), when overexpressed in mice increases ubiquitin
nuclear accumulation and induces a progressive motor
neuron disease–like phenotype.26 Given that the
length of PolyQ repeats drives the PQBP-1 affinity
to ATXN-1, and that this association has been sug-
gested to lead to cell death,27 it might indicate that
ATXN-1/PQBP-1 aggregates form in motor neurons
of patients with ALS bearing ATXN-1 repeat length
expansions, thus representing a genetic variable that
may prompt neurodegeneration.

We further confirm an association between ATXN-2
intermediate expansions and risk for ALS and show that
ATXN-1 intermediate expansions also play a role as
risk factor for the disorder. Both ataxins therefore
independently contribute to ALS pathogenesis, probably
through a perturbed RNA processing. The identification
of the specific roles of ATXN-1 and ATXN-2 PolyQ
proteins in motor neuron degeneration and death will
give a key contribution for research into pathogenesis of
motor neuron diseases.
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