Оценка вклада созвездия спутников ГЛОНАСС при выполнении RTK съемки с использованием ГНСС приемников геодезического класса

Джино Дарданелли (Gino Dardanelli)

Департамент гражданского строительства, природообустройства и авиакосмической техники,

Профессор Университета Палермо.

Аннотация

Развертывание орбитальной группировки спутников ГЛО-НАСС способствовало появлению эффективной системы, которая играет существенную роль при проведении любых геодезических работ, особенно в условиях, когда прием спутниковых сигналов затруднен из-за наличия препятствий на пути их распространения. В данной статье приведены результаты тестов по определению координат с использованием нового поколения ГНСС приемников геодезического класса, которые были предоставлены различными производителями. Целью испытаний являлась оценка вклада созвездия спутников ГЛОНАСС в результаты RTK (Real Time Kinematic) съемки в условиях неблагоприятной геометрии расположения спутников. Приемники, использующие сигналы с двух спутниковых систем, продемонстрировали высокую надежность, показав наиболее точные результаты даже при наличии препятствий, мешающих приему этих сигналов.

Краткое описание системы ГЛОНАСС

Современные радионавигационные системы, такие как GPS и ГЛОНАСС, были созданы врезультате реализации космических программ, разрабатывавшихся соответственно в США и СССР после второй мировой войны. В 1980-х гг. СССР начал работы по созданию спутниковой радионавигационной системы ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система). В это же время в США велись аналогичные работы по созданию американской радионавигационной системы NAVSTAR-GPS. Развертывание системы ГЛОНАСС, разработанной с целью покрытия спутниковыми сигналами всей территории земного шара, было завершено в 1995г. В ее состав вошли 26 рабочих спутников. Однако из-за социального и политического кризиса в СССР в то время не хватало средств на поддержание системы в рабочем состоянии, и казалось, что она была обречена.

Изначально проектом предусматривалось, что система ГЛОНАСС будет состоять из 24 спутников, расположенных в трех орбитальных плоскостях, разнесенных по отношению друг к другу на 120°. Спутники ГЛОНАСС вращаются по почти круговым орбитам на высоте примерно 19100 км от поверхности Земли с периодом обращения около 11 часов 15 минут. Угол наклона орбит к плоскости экватора составляет 64,8°. Эффективную работу спутниковой группировки ГЛОНАСС обеспечивает сегмент управления, расположенный на территории России и состоящий из Центра управления си-

стемой, находящегося под Москвой, и нескольких командно измерительных пунктов, расположенных в Санкт-Петербурге, Щелково,Енисейске и Комсомольске-на-Амуре.

В системе ГЛОНАСС реализован метод множественного доступа с частотным разделением каналов (Frequency Division Multiple Access - FDMA), в основе которого лежит передача одного и того же кода на различных частотах, свойственных каждому спутнику. В действительности два спутника, находящиеся в одной орбитальной плоскости, но в противоположных ее точках, передают сигналы на одной и той же частоте. Такой подход представляет собой главное отличие от системы GPS, в которой все спутники передают сигналы на одной и той же частоте (L1 и L2). Это, несомненно, усложняет разработку приемников и соответствующего программного обеспечения, способных отслеживать и обрабатывать сигналы со спутников обеих навигационных систем. Начиная с 2001г.,

Рис. 1. Спутники ГЛОНАСС

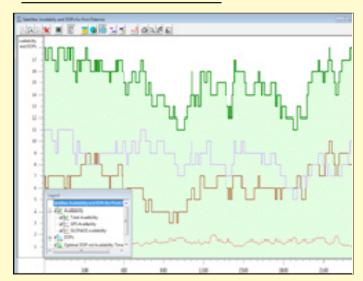


Рис. 2. Наличие спутников GPS+ГЛОНАСС в ходе проведения тестов

российское правительство в рамках финансового и экономического сотрудничества с Индией реализует новую федераль-

ную программу Глобальная навигационная система, которая в частности предполагает использование системы ГЛОНАСС в гражданских целях. Чтобы понять, как же удалось возродить систему ГЛОНАСС, достаточно сказать, что в 2007 г. российский президент Владимир Путин подписал указ, разрешающий свободный доступ к приему сигналов спутниковой системы гражданским пользователям как в России, так и за рубежом.

На момент написания статьи система насчитывает 27 спутников, из которых 23 являются рабочими (http://www.glonassianc. rsa.ru/). К концу этого года российскоее правительство планирует полностью развернуть спутниковую группировку. В научном и профессиональном плане интерес к этой спутниковой системе состоит, главным образом, в том, что прием сигналов обеих систем GPS и ГЛОНАСС может обеспечить более оптимальную спутниковую геометрию и, тем самым, способствовать получению избыточных данных при определении координат в условиях ограниченной видимости спутников, когда только система GPS не позволяет получить решение. На рис. 2 показано число доступных в районе г.Палермо спутников GPS+GLONASS с маской возвышения 10°. Максимальное количество доступных для работы спутников обеих систем доходит до 18 (зеленый цвет), из которых 11 - спутники GPS (пурпурный цвет) и 7 - спутники ГЛОНАСС (красный цвет).

Планирование и выполнение измерений

Тестовые измерения были направлены на то, чтобы убедиться в целесообразности приема сигналов спутников GPS+ГЛОНАСС для определения местоположения в режиме реального времени (в соответствии с процедурами RTK съемки), для чего были выбраны геодезические приемники трех основных производителей. Наблюдения проводились 14 и 15 декабря 2010 г. на крыше Департамента гражданского строи тельства, природообустройства и авиакосмической техники Технического факультета университета г.Палермо. Три пункта съемки находились на расстоянии 3 метра друг от друга. Это было сделано для того, чтобы можно было работать одновременно с тремя приемниками при одинаковой геометрии

Рис. 3 – Участок проведения наблюдений и используемое оборудование

расположения спутников и аналогичных условиях доступа в интернет для приема сетевых RTK поправок (см. рис. 3).

Сначала на тестовом участке были проведены измерения

в режиме статики, чтобы получить опорные координаты, с которыми впоследствии будут сравниваться результаты RTK съемки, полученные в ходе тестов. Обработка осуществлялась с использованием коммерческого программного обеспечения Торсоп Tools (предоставленного Департаменту для проведения измерений) путем ввода координат в системе ETRF2000 (эпоха 0.2008). Для обработки данных использовалась расположенная поблизости постоянно действующая базовая станция PALE, которая является собственностью RND (National Dynamic Network) и управляется IGMI (Italian Geographic Military Institute).

Дифференциальные поправки генерировались программой GNSMART, которая также была предоставлена Департаменту компанией Geo++ из Ганновера. Компания Geo++ одной из первых в мире выпустила программное обеспечение для управления сетями базовых станций ГНСС при передаче различных сетевых поправок. Она является незаинтересованной стороной в отличие от производителей, чьи приборы использовались в ходе тестовых измерений. Более того, программа GNSMART совместима со всеми тестируемыми приемниками (к сведению: она широко используется в сетях базовых станций по всему миру и в Италии она установлена в шести региональных сетях постоянно действующих базовых станций). В ходе тестовых измерений использовался формат RTCM 3.0 для поправок, которые передавались по протоколу NTRIP со статусом Nearest постоянно действующей базовой станцией ГНСС PALE, работающей в Палермо с 2007 г.

- а) Мы решили не передавать другие поправки, потому что постоянно действующая базовая станция PALE расположена близко к району выполнения наблюдений;
- b) Мы решили не использовать собственные сетевые форматы каждого производителя (MAC, VRS или FKP).

На рис. 4 показано меню программы GNSMART со спутниками, используемыми в ходе тестовых измерений.

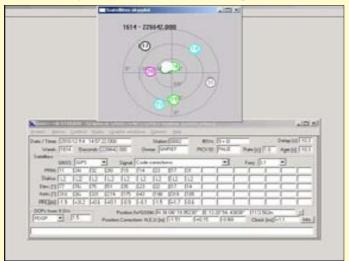


Рис. 4. Пример экрана программы Geo++ с отображением используемых спутников

В таблице 1 представлены приемники, которые использовались при проведении тестов и их основные технические характеристики. Они являются наиболее передовыми представителями линейки ГНСС оборудования мировых лидеров в этой области.

Таблица 1: Приемники и контроллеры, используемые при проведении тестовых измерений

Компания	Модель	МПО	Каналы	
LEICA	VIVA GS15	1.2	120	
TOPCON	GR-3	3.3p4	72	
TRIMBLE	R8 GNSS	3.24	220	
	•	•		

Компания	Контроллер	ПО	Каналы	
LEICA	CS15	Smart Worx	1.2	
TOPCON	FC250	TopSURV	7.2.3	
TRIMBLE	TSC2	Survey Controller	12.10	

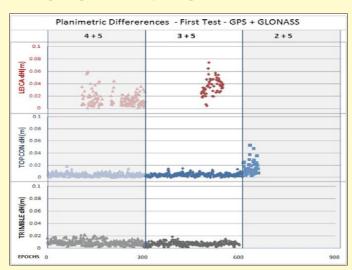
Тестовые измерения проводились при намеренно разной конфигурации спутников GPS и ГЛОНАСС. Были проведены два типа тестов:

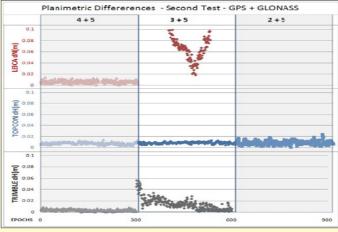
- 1. Первый тест заключался в том, чтобы проверить, принимают ли приемники сигналы спутников ГЛОНАСС для разрешения фазовой неоднозначности. С этой целью число спутников, участвующих в формировании дифференциальных поправок, менялось; при каждом варианте конфигурации спутников разрешение фазовой неоднозначности начиналось заново, и затем записывались координаты для 300 эпох. Было проведено четыре сеанса измерений, при этом также менялось расстояние между приемниками, чтобы добиться большей достоверности и надежности результатов. Подобного рода тест воспроизводит ситуацию, которая имеет место в момент начала съемки.
- 2. Второй тест был нацелен на то, чтобы проверить работу приемников в наиболее неблагоприятных с точки зрения съемки условиях, когда из-за наличия препятствий для распространения спутниковых сигналов число видимых спутников, как правило, постоянно меняется. Этот тест начался с передачи поправки с использованием всех доступных спутников, и затем примерно через каждые 150 секунд спутники GPS отключались один за другим, в то время как приемник продолжал непрерывно записывать координаты.

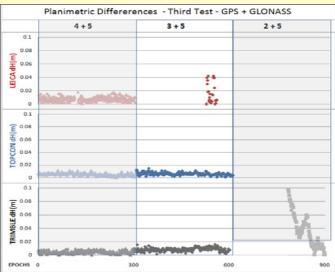
В ходе сеансов наблюдений запись данных осуществлялась таким образом, чтобы можно было получить как фиксированное, так и плавающее решение, а также абсолютные координаты в автономном режиме. По окончании приема сигналов в расчет принимались только фиксированные решения, которые, по мнению самих производителей, являются наиболее надежными. При оценке результатов мы использовали разности между записанными координатами и полученными ранее опорными значениями. Разности значений в плане вычислялась по следующей формуле:

$$dH = \sqrt{dE^2 + dN^2}$$

где dE=E(известн.)-E(измер.) и dN=N(известн.)-N(измер.), в то время как разности по высоте вычислялась по формуле dU=Up(известн.)-Up(измер.). В итоге, мы исключили из рассмотрения значения, которые отличались от известного на величину более чем 10 см, даже если это значение было получено из фиксированного решения.

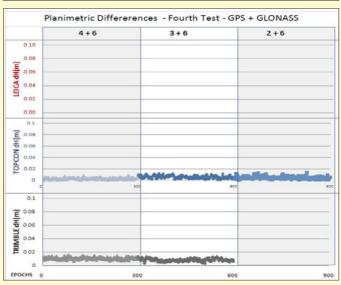
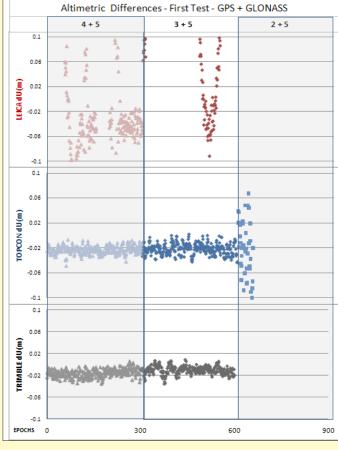
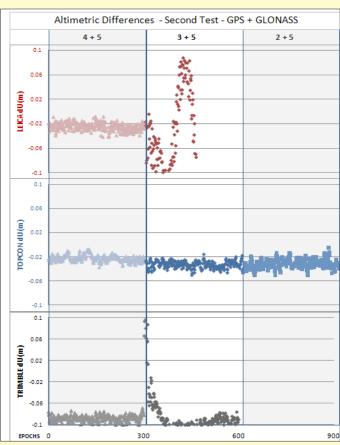

Съемка с использованием только спутников GPS (тесты с повторной инициализацией)

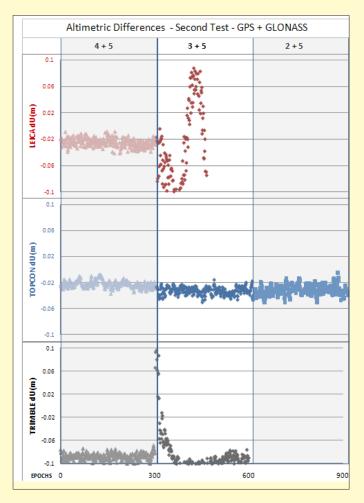

В ходе тестовых измерений, когда передавалась только поправка по спутникам GPS, их конфигурация менялась, начиная с момента, когда сигнал принимался со всех спутников GPS, а затем с 6, 5 и 4 спутников соответственно. Вышеуказанное изменение числа спутников выполнялось в программе Geo++ GNSMART. Сеансы измерений проводились три раза 14 декабря 2010 г. и один раз 15 декабря 2010 г., при каждом варианте конфигурации спутников заново производилось вычисление неоднозначностей, и записывались решения для 300 эпох. По итогам анализа данных трех приемников были получены отличные результаты с точки зрения отклонений в плане для всех четырех тестовых измерений, проведенных одновременно. Полученные с приемников данные очень хорошо коррелируются между собой, показывая небольшое отклонение в интервале 1-2 см, без каких-либо заметных отскоков, вызванных сокращением числа спутников (от 9+0 до 5+0). И, наоборот, в сложных для выполнения измерений условиях (4+0) ни один приемник не смог вычислить фазовые неоднозначности. Также наблюдается корреляция разностей высот с результатами измерений в плане, т.е. отсутствие сколько-нибудь заметных отклонений при изменении конфигурации спутников.


Съемка с использованием спутников GPS+ГЛОНАСС (тесты с повторной инициализацией)

При выполнении тестов с использованием спутников GPS+ГЛОНАСС мы меняли конфигурацию спутников от 4+5 до 3+5, и, наконец, до 2+5. Это изменение также осуществлялось в программе Geo++GNSMART, в точно таком же режиме наблюдений, что и ранее выполненный тест с использованием только лишь спутников GPS.

Было отмечено, что значения отклонений, полученные в результате анализа данных приемников Торсоп и Trimble, лежат в одном и том же интервале. Однако, если сравнивать с разбросом значений, полученным ранее для конфигураций только GPS спутников, то этот интервал согласуется с ранее полученными значениями только при геометрии спутников 4+5. При такой конфигурации спутников приемник Leica выдал достоверные решения в двух из трех сеансов наблюдений.


Рис 5. Диаграммы разности значений в плане при повторной инициализации GPS+GLONASS

При переходе к конфигурации спутников 3+5 данные, полученные с приемников Trimble и Торсоп, показали одинаковый разброс значений, что и в тесте с использованием только GPS спутников, в то время как приемник Leica не выдал ни одного решения.

При геометрии спутников 2+5 приемник Торсоп выдал все решения в двух сеансах наблюдений, в то время как приемник Trimble – только в одном тесте, причем с четко выраженными неоднородностями (рис. 5). Для разности высотных значений были получены результаты, аналогичные тем, что были ранее получены для разности значений в плане (рис. 6).

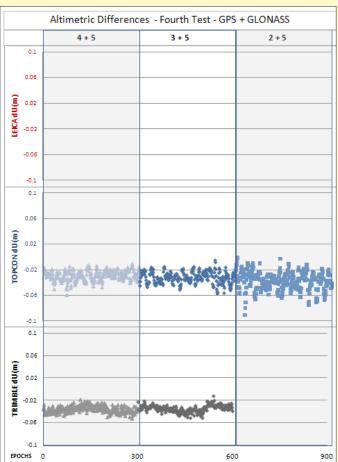
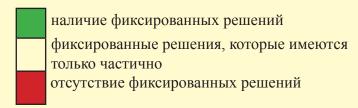


Рис. 6. Диаграммы разности значений по высоте с повторной инициализацией GPS+ГЛОНАСС

Ниже в таблице 2 показаны сводные данные по результатам, полученным в ходе тестовых измерений, когда приемники перезапускались заново при каждом изменении количества GPS спутников. Пояснение к результатам см. внизу таблицы.

14/12/2010		GPS + GLONASS						
Session 1		9+ 0	6+ 0	5+ 0	4+ 0	4+ 5	3+ 5	2+ 5
	Leica							
9.20 -	Topcon							
10.30	Trimble							


14/12/2010		GPS + GLONASS						
Session 2		8+	6+ 0	5+ 0	4+ 0	4+ 5	3+ 5	2+ 5
	Leica							
10.57	Topcon							
11.52	Trimble							

14/12/2010		GPS + GLONASS						
Session 1		9+ 0	6+ 0	5+ 0	4+ 0	4+ 5	3+ 5	2+ 5
	Leica							
15.00 -	Topcon							
16.15	Trimble							

14/12/2010		GPS + GLONASS						
Session 1		9+ 0	6+ 0	5+ 0	4+ 0	4+ 5	3+ 5	2+ 5
	Leica							
8.00 -	Topcon							
8.50	Trimble							

Таблица 2: Сводные данные по результатам, полученным в ходе тестов с повторной инициализацией

Пояснение к результатам

Тест с непрерывной записью

В течение этого теста, который продолжался примерно 20 минут, приемники непрерывно записывали данные с интервалом в 1 секунду, в то время как конфигурация спутников GPS изменялась каждые 150 секунд в программе GNSMART. Разность полученных плановых (Е – восточная компонента и N – северная компонента) координат и разность высот были вычислены и определены в сравнении с координатами, полученными по результатам статической съемки и вычисленными в программе Торсоп Tools. На диаграммах видно, как ведут себя разности в плане и по высоте с течением времени по данным, полученным с трех приемников.

В результате анализа диаграмм рассеяния (рис.7 и 8), построенным по данным, полученным с трех приемников, предварительно можно отметить, что до тех пор пока для решения используются 4 спутника (иными словами, согласно теории съемка ведется в приемлемых условиях с точки зрения геометрии спутников), данные с разных приемников согласуются между собой, при этом диапазон разброса значений не превышает 1-2 см.

В сложных условиях, при наличии 3 спутников GPS и 6 спутников ГЛОНАСС, разности значений, полученные приемниками Topcon и Trimble, лежат в том же самом диапазоне, который согласуется с интервалом отклонений, полученным для предыдущей конфигурации спутников. С другой стороны, разности, полученные в результате анализа данных приемника Leica, показывают четко выраженную несогласованность, когда отклонение от опорных значений составляет 7-8 см. При уменьшении числа спутников GPS можно видеть, что разность значений,полученных по данным приемников Topcon и Trimble, не превышает 1-2см, т.е. эти значения представляют собой величины того же порядка, что были получены в ходе тестов с использованием только GPS спутников, но при этом приемник Торсоп выдает большее количество решений (в конфигурациях спутников 3+6, 2+6 и 0+6).

В то же время в результате обработки данных, полученных приемником Leica, такой малый разброс значений характерен только для конфигураций лучше, чем 3+6. Результаты, аналогичные тем, что показаны на диаграммах отклонений в плане, были получены и для высот. Когда используются не менее 4 спутников GPS, разности значений, полученные по данным трех приемников,согласуются друг с другом и лежат в интервале ± 2 -5 см. В условиях неблагоприятной спутниковой геометрии данные с приемников Topcon и Trimble показывают один и тот же разброс значений, в то время как приемник Leica не дает корректных решений для конфигураций 3+6, 2+6 и 0+6. И наконец, в условиях, когда отсутствует прием сигналов со спутников GPS, а принимаются сигналы 6 спутников ГЛОНАСС, только приемник Торсоп смог выдать результаты, которые согласуются с теми, что были получены ранее для других конфигураций спутников.

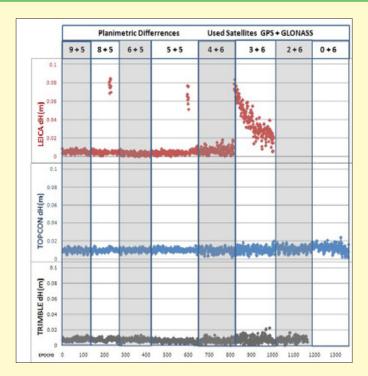


Рис. 7. Диаграмма разности значений в плане

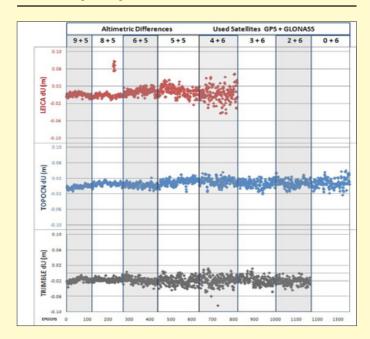


Рис. 8. Диаграммы разности высотных значений

ЗАКЛЮЧЕНИЕ

Как было отмечено ранее, интерес исследовательских центров и университетов к системе ГЛОНАСС обусловлен тем, что совместное использование двух спутниковых систем может обеспечить лучшую геометрию спутников при проведении съемки в сложных условиях в естественной и городской среде или в областях, подверженным воздействию электромагнитного излучения. Политическая заинтересованность российского «правительства в развитии системы ГЛОНАСС способствует тому, что к концу этого года рабочими станут 26 спутников, как и в системе GPS, что позволит максимально полно использовать ее возможности. Однако благодаря ГНСС приемникам, которые имеются на рынке, уже сейчас можно принимать сигналы спутников как

американской, так и российской навигационной системы.

Первые результаты тестовых измерений,проведенных в рамках данной работы при намеренно изменяемой конфигурации спутников систем GPS и ГЛОНАСС, показали хорошую работу приемников с точки зрения точности и внутренней сходимости результатов в оптимальных условиях приема сигналов со спутников, т.е. при наличии большого количества доступных спутников GPS и ГЛОНАСС.

Имитация реальных условий работы при выполнении GPS съемки (наличие преград на пути распространения сигнала, потеря сигнала, съемка в городских условиях, воздействие электромагнитного излучения), позволила увидеть, что при ограниченном числе спутников GPS и ГЛОНАСС (тесты с непрерывной записью) приемники Торсоп и Trimble показали малые значения отклонений в плане и по высоте и высокий процент выдачи фиксированных решений. Следует отметить, что, принимая сигналы с 3 спутников GPS и 6 спутников ГЛОНАСС, приемник Leica не смог выдать решения, которое согласовывалось бы с теми, что были получены ранее при более благоприятной конфигурации спутников.

И наконец, при проведении RTK съемки в неблагоприятных условиях, когда принимались только сигналы спутников ГЛОНАСС, единственным приемником, который выдал фиксированные решения с отклонениями в пределах 1-2 см, оказался приемник Торсоп.

Однако следует отметить, что данное исследование не ставит своей целью дать субъективную оценку работе исполь-

зуемых приемников. Автор и далее планирует исследовать влияние спутников ГЛОНАСС на результаты RTK съемки с использованием других типов сетевых поправок (VRS, MAC,FKP), которые формируются различными коммерческими программными продуктами для управления сетями постоянно действующих базовых станций.

ВЫРАЖЕНИЕ ПРИЗНАТЕЛЬНОСТИ

Автор благодарит Серджио Конделло (Sergio Condello), Джанфранко Лупо (Gianfranco Lupo) и Дэвида Пеллегрино (Davide Pellegrino) из компании Leica Geosystem Italia, Паоло Сентанни (Paolo Centanni) и Вито Терцо (Vito Terzo) из компании Geotop srl, Леонардо Алестра (Leonardo Alestra) и Мишеля Гаглиано (Michele Gagliano) из компании СGT Trimble за любезно предоставленное аппаратное и программное обеспечение для проведения тестовых измерений

Автор особо признателен Франческо Бордонаро (Francesco Bordonaro), который принял участие в проведении измерений и будет скоро защищать свою диссертацию по этой теме в Департаменте гражданского строительства.

Статья опубликована по материалам итальянской версии журнала «Геомедиа». Выпуск №3 2011г.

Article printed in the Italian original language of GEOmedia 3 2011.

