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Creating quantum correlations through local nonunitary memoryless channels
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We show that two qubits, initially in a fully classical state, can develop significant quantum correlations as
measured by the quantum discord (QD) under the action of a local memoryless noise (specifically we consider
the case of a Markovian amplitude-damping channel). This is analytically proven after deriving in a compact
form the QD for the class of separable states involved in such a process. We provide a picture in the Bloch sphere
that unambiguously highlights the physical mechanism behind the effect regardless of the specific measure of

quantum correlations adopted.
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The existence of states where two or more systems are
correlated in a way unattainable in classical physics ranks
among the most puzzling and yet distinctive features of
quantum mechanics. Such possibility is commonly pictured in
terms of an extra amount of correlations, usually referred to as
quantum correlations (QCs), which a multipartite system can
possess in addition to those of a merely classical nature. Until
recently, the scrutiny of QCs has been almost ubiquitously
intertwined with investigations on entanglement [1] and the
pivotal role that it plays in the area of quantum information
processing [2]. A breakthrough yet occurred as soon as it was
realized [3] that while classicality always entails separability
the reverse is in general untrue (a state is entangled if it is
nonseparable). Entanglement thereby is not the only form
in which QCs can occur. Such finding brought about a
widened perspective, which is currently prompting a growing
number of researchers to advance the field along various
lines. A prominent one is the quest for faithful easy-to-handle
indicators of QCs [4,5]. Among those proposed so far, quantum
discord (QD) [3] is having a considerable impact despite
the fact that its explicit calculation is usually demanding
even for two qubits (i.e., a pair of two-dimensional systems).
Yet evidence of its ability to capture QCs not detected by
entanglement has been supplied in various frameworks such
as one-qubit quantum computation (even experimentally) [6]
and quantum phase transitions [11].

Another major concern that soon arose is to assess how QCs,
according to such a novel paradigm, are affected by nonunitary
dynamics. These typically stem from the interaction with
an environment, a process where entanglement is extremely
fragile in most cases [1,2]. In contrast, QD was proven to be
in general quite resilient to such dynamics and, strikingly,
in some cases even fully insensitive over long stages [7].
From a reverse perspective, it was shown that the quantum
noise arising from a common bath can create QCs initially
fully absent [8], a phenomenon well known to occur for
entanglement also [9]. Moreover, preexisting QCs can exhibit
an increasing behavior at some stages of their time evolution
in the presence of non-Markovian local channels, as recently
demonstrated for both entanglement and QD [10]. In such
instances, the increase of QCs stems either from the ability
of a common memoryless reservoir to mediate an effective
interaction or as a memory effect of local environments. The
question is now raised: Can the interaction with a bath which is
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both local and memoryless enhance QCs? The answer is well
known to be negative for entanglement, which cannot grow
under any local quantum maps [1]. As for the full amount of
QCs, however, the issue is not as trivial since as stressed above
even separable states may feature some quantumness [3]. As
far as local unitaries are concerned, though, QC measures,
such as QD, cannot increase [3-5]. In some respects, this
conclusion might be expected to be strengthened with noisy
local operations. However, QCs without entanglement can
arise under a local nonunitary operation owing to its ability
to map orthogonal into nonorthogonal states [5]. In this work,
we present a simple paradigmatic process, where entanglement
is absent throughout, which clearly testifies that QCs can even
be entirely created (or increased) solely via the interaction
with a bath which is both local and memoryless. We provide
rigorous and comprehensive insight into such an effect in a way
that makes transparent the underlying physical mechanism.
Although we focus on QD, it will become clear that the
essential physical effect takes place regardless of the specific
measure of QCs used.

To begin with, we briefly recall the definition of QD. Given
two systems A and B in a state p, this measures the discrepancy
between the mutual information Z and the classical correla-
tions C associated with p [3]. A local measurement on B in a
given orthonormal basis can be specified by a complete set of
projectors { By}, where k indexes a possible outcome. If k is
recorded with probability p; = Tr[Byp By ] the overall system
collapses onto the (normalized) state o, = (Byp Bi)/pr. Then
the QD D can be expressed as [3]

D (p) = S(pp) = S(p) +min > piS(p0). (1)
Tk

In Eq. (2), pgp = Trap is the reduced density operator that
describes the state of B, S(o0) = —Tr (o log,o) is the Von
Neumann entropy of an arbitrary state o, and the infimum
in the last term is evaluated over all the possible sets {By}.
As for the QD D~ involving measurements on A with
associated projectors {Ay}, this is obtained from Eq. (1)
through replacement of B with A. In general, D # D~ [3].
Specifically, in the process under study A and B are two
qubits and the only involved states have the separable form

p = 3(10)4(01 ® w0 + |1)a (1] ® 1p). @
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FIG. 1. (Color online) Behavior under a local amplitude-damping
channel of (a) discord D and (b) classical correlations C against p. In
each panel, the inset shows the corresponding behavior expressed as
a function of the rescaled time yt, where p = 1 — e 7",

where 71 are generic density matrices, while the orthonormal

set of vectors {|0),[1)} is the usual local computational basis.

The state Eq. (2) are commonly dubbed as classical-quantum

states owing to D~ = 0 as is immediate to check [12], while

in general D~ # 0. We will thereby set D = D henceforth.
Consider now the initial state

po = 3100401 ®@ [+ + D a{ll @ [=)p(=D, (3)

i.e.,in the light of Eq. (2) 79 = |+)(+| and t; = |—)(—|, where
|£) = (|0) &= |1))/ V2. Although manifestly correlated, state
Eq. (3) is fully classical since it is diagonal in the basis resulting
from the tensor product between {|0) 4,|1) 4} and {|+)5,|—) 5},
namely two local orthogonal bases [13]. Thus D(pg) = 0.
Assume now that, while A is well protected from the external
environment, B is in contact with a dissipative Markovian
bath. In such a case, the system dynamics as a function of
time ¢ is fully described by an amplitude-damping channel
[2]. This has an associated quantum map &, that transforms

state py according to €,(po) = EopoE} + ElpOET, where
Ey=10)3(0] + «/1 — p|1)p(1]| and E| = ,/p|0)p(1] are the
associated Kraus operators, while p is a probability that grows
with time ¢ according to p = 1 — e~ (y is a relaxation rate).
As anticipated, £,(pp) evidently belongs to class Eq. (2) for any
p (i.e.,Vt) since Ey and E| act on B only (hence entanglement
never appears throughout). In Fig. 1(a), we plot D [cf. Eq. (1)]
against p and the rescaled time y ¢ as resulting from numerical
evaluation [14]. D(p), which is initially null, as discussed
above, at a first stage grows and eventually decays to zero as
p — 1,1e., fort > y’l. This marks a profound difference
between QD and entanglement in that a local nonunitary
and memoryless channel is able to create QCs previously
fully absent. Remarkably, the dissipative dynamics is merely
detrimental to the classical correlations C = 7 — D [3], where
T =S8(pa) + S(pg) — S(p) is the mutual information [2]. C
indeed exhibits a monotonic decay vanishing for p — 1, i.e.,
yt — 00, as shown in Fig. 1(b).

In the following, we make this result rigorous by analyt-
ically deriving D(p) and C(p) so as to reproduce Fig. 1. To
this aim, we first explicitly derive in a compact form the QD
of state Eq. (2) when 7y and 7| have the same purity. Next, we
present a picture in terms of trajectories in the Bloch sphere,
clearly highlighting the physical mechanism that causes QD
to necessarily grow in the present process.

Among state Eq. (2) a prominent instance is the resource
state for the Bennett 1992 (B92) quantum cryptography proto-
col [2], which reads pgo> = $(|0)4 (0] ® [0)5(0] + [1) (1] ®
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|+) g (+|). Similarly to the popular Bennett-Brassard 1984
(BB84) protocol [2] the above is among those quantum
protocols where the exploited quantum resource is not entan-
glement, which is is fully absent. Rather, it harnesses one-way
QCs stemming from the nondistinguishability of states |0) and
|+) [13]. Later on, we will indeed show that pgg, possesses
the maximum allowed QD within family Eq. (2) with 7y and
71 having equal purities. Also, states such as Eq. (2) can allow
for quantum locking (see Ref. [15] and references therein).
To our knowledge, the literature lacks explicit formulas for
the QD of Eq. (2). We will thus carry out an ab initio
calculation.

To this aim, our first step is to express the single-qubit states
79 and 1) in Eq. (2) through the Bloch-sphere representation
as ;= (1 +s; -0)/2, where 1 and o = {07,02,03} are the
usual identity and Pauli operators, respectively, while s; is the
Bloch vector corresponding to t; (i = 0,1). Without loss of
generality we can assume that so, = Soy, = 0, o, = 5o, and
s1y = 05 i.e., in the Bloch sphere sy and s; lie on the x-z plane
with sy along the z axis (s; = |s;| < 1). Indeed, one can reduce
the problem to such a case by applying a suitable single-qubit
rotation, which cannot affect the QD like any local unitary
operation [3]. Using this along with |0)(0| = (1 4 03)/2 and
[1){1] = (1 — 03)/2, state Eq. (2) can be arranged as (from
now on we drop subscripts A and B)

p=11®1+1® (a0 +as03) + 03 ® (b0 + b303)],

“)
with
s18ing 50 + 51 COS @
ay=—b = s a3 = —————,
2 2 )
S0 — §1 COS @
by = ———,
2

where we have carried out the replacements s, = s; sin @,
s1; = 51 cos ¢ (@ is the angle between sy and s;). Next, in the
light of Eq. (1) we need to calculate how p is transformed
when a generic Von Neumann measurement is performed on
system B, i.e., px, as well as the associated probability py. As
in [16] we use the property that the projector corresponding
to any such measurement can be expressed as 1 ® B, with
B, = VII, VI, where IT; = |k) (k| (k = 0,1)and V is ageneric
one-qubit unitary. We thus expand pyor = (1 ® By)p(1 ® By)
as

pioe =1 VYARMYARVHpdl e V)A @ M)A e V.
(6)

The unitary V' transforms each Pauli matrix o; according to
Vie,V = Z;zl v;joj, where v;; are real numbers satisfying
the constraint vlzj + U22j + v32j =1, for any j = 1,2,3. Also,
fork = 0,1 Hkoll'lk = I'Ikozl'lk = 0 while Hka3l'lk = fkl'Ik,
where fy =1 and f; = —1. This along with Eq. (4) yields
Eq. (6) in the simpler form

wrl + vios3

Pkpk=(]1®V)|: 2

®n4@®vh

el 4 o3

; ® (VI VY,
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where

we = 1+ filaviz +azvs3), v = fi(biviz + b3vsz). (7)
As VIT; V! represents a pure state and each Pauli matrix is
traceless it is immediately checked that py = /2. There-
fore, we obtain that o, = (1 + vi/r03)/2 ® (VII V), whose
eigenvalues are (1 £ v /1x)/2 (each twofold degenerate). The
quantity to minimize entering the last term of Eq. (1) thus
reads

i, (1 E v/
é , = S = —h|——— ), @8
(v13,v33) k;M PrS(px) k;o,] > ( > ) (¥

where h(x) = —xlog, x — (1 —x)log,(1 — x) is the binary
Shannon entropy function and on the left-hand side we have
highlighted the dependence on variables v;3 and wvs3. The
identity v7; + v3; + v3; = 1 (see above) yields that {v3,v33}
must fulfill vy + v3; = 1 — v3; < 1; i.e., they belong to the
unit circle. To work out the infimum of § we accomplish
the linear transformation x = a,vy3 + azvsz and y = bjvis +
byvss. This way, Eq. (8) now becomes a universal function of
x and y, which we call S(x,y); i.e., it no longer depends on
parameters {a;,b;} specifying states 7y and 7| [cf. Eq. (5)].

In Fig. 2(a) we plot § against x and y. Note that its actual
domain of definition is the square having side length 1/+/2 and
vertices at points (1, 0) and (0, 1) [this is because of the
logarithms of 1 £ f;y/(1 4+ fix); see Egs. (7) and (8)]. Also,
& is an even function of x ( y) for any set value of y (x) as is also
clear from its dependance on x and y through p; and v; [see
Eqgs. (7) and (8)]. It takes value 1 for x = y = 0 and decreases
as the distance from the origin grows. Its concavity is minimum
along the x axis, where the function is fully flat, and maximum
along the y axis [see the sail-like shape in Fig. 2(a)]. As for
the domain D within which Eqg. (8) is to be minimized, i.e., the
region in the new reference frame corresponding to the unit
circle U123 + v323 < 1 (see above), it is immediately checked

(@)

(b)

0
10
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FIG. 2. (Color online) (a) Function 8(x,y) for |x| < 1 and |y| <
1. (b) and (c) Function S(x,y) for (x,y) € D as given by Eq. (9) when
so=s; =1 and (b) ¢ = /3 and (c) ¢ = 27 /3. In either case, the
red region on the x — y plane represents the corresponding D.
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through the inverse transformation that this is an elliptic region
given by

D=1{x,y: Ax> +2Bxy +Cy> <1}, )]
2
A= |50—.Sl| . B= S(%—.Slz ’
$0s1 sin @ (581 sin @)?

C— ( Iso +'Sl| )2.
SoS1 SIn @
As is evident from Fig. 2(a), owing to the concavity of §
its infimum under constraint Eq. (9) necessarily lies on the
boundary of D, i.e., the ellipse obtained from Eq. (9) by turning
the inequality into an identity. While such an ellipse is centered
at x =y = 0, its own axes in general do not coincide with
those defining the reference frame. Yet, in the case that B = 0
[cf. Egs. (9) and (10)] the ellipse is not rotated with respect to
the x and y axis. This circumstance physically occurs when
79 and | have the same purity, i.e., so = s [see Eq. (10)].
Henceforth, we will focus on such a case, which is enough
for the scope of the present work and allows for a prompt
analytical derivation of the infimum of Eq. (8) under constraint
Eq. (9). Hence, by setting so = 51 = s coefficient Eqs. (10)
become A = 1/r2, B =0,C = 1/r2, where r, = s|sin(¢/2)|
and ry = s| cos(¢/2)| are the ellipse semiaxis lengths along
the x and y axis, respectively. Now, because of the shape of
8(x,y) [see Fig. 2(a)], when the main axes and the ellipse’s
own ones are collinear S(x, y) takes its minimum at the points
(0,£ry). This is evident from Figs. 2(b) and 2(c), where we
plot the restriction of § to region D in two paradigmatic cases.
The one in Fig. 2(b) [Fig. 2(c)] is such that ry > ry, (r, < 7)).
The minimum of Eq. (8) within region Eq. (9), i.e., the last
term in Eq. (1), thus reads
cos & D
2

:h|:1+s|sin<p/2|]’

(10)

mjnS(x,y) = S(O,ry) =3 (O,s
b

> (11
where we used the fact that uy =1+ fix and v, = firy
[cf. Egs. (7) and (8)].

As for S(pp), the trace over A of Eq. (4) is obtained
as pg = (1 4+ aj01 + azo3)/2, whose eigenvalues with the
help of Eq. (5) are found as (1 & s|cos¢/2])/2. Hence,
S(pp) = h[(1 4 s| cos ¢/2|)/2]. Using again Egs. (4) and (5),
the eigenvalues of p are calculated as (1 & s)/4, each being
two-fold degenerate yielding that S(p) = 1+ A[(1 +5)/2].
Using these results along with Eq. (11) in the light of Eq. (1),
we find the QD of any state Eq. (2) such that 7y and t; have
the same Bloch-vector length s in the compact form

1+s|cos¢/2|i| th [1 —|—s|sing0/2|i|

D=
2

12)

As for the classical correlations C = 7 — D, using the fact that
S(pa) = S(14/2) = 1 we find that

1 +s|sin(p/2|:|

> 13)

C:l—h[
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FIG. 3. (Color online) (a) D and (b) C vs s and ¢.

In Fig. 3 we plot D (a) and C (b) versus s and ¢ as given
by Eqgs. (12) and (13). For a given s, i.e., for fixed purity, D
solely depends on |¢ — m /2| exhibiting its maximum value
when ¢ = /2. As |¢p — /2| grows the QD progressively
decreases until it vanishes at ¢ = 0,77. On the other hand, for
a given ¢, D increases with the purity at a rate that grows
as ¢ approaches 7 /2. Within the present class of states, the
QD thus takes its maximum value Dy, =~ 0.202 [about three
times larger than the maximum value attained in Fig. 1(a)] for
s =1 and ¢ = /2, which correspond to the B92 resource
state pgo; introduced previously. This feature is in accordance
with Ref. [17] (where a different QC measure was used). As
for C, Fig. 3(b) shows that this is maximum for s = 1 and
¢ = m and decreases when either of such two parameters is
reduced.

We are now in a position to provide a comprehensive
explanation for the effect in Fig. 1. Using the above-
discussed Kraus decomposition of &, it is straightforwardly
found that &,(|£)(£]) = (1 £ /1 — po; + po3)/2. Hence,
Sox = —S1x = +/1 — p, while 5o, = 51, = p (note that this
immediately shows that so = s; = s for any p). Using this,
we end up with

s(p)=+/1+p(p—1). @(p)=nr —2arctan(p//1 — p).

(14)

By replacing Eq. (14) in Egs. (12) and (13), the functions D(p)
and C(p) so obtained reproduce the plots in Fig. 1.

To shed light on the physical mechanism behind the
effect, in Fig. 4 we plot on the x-z plane of the Bloch
sphere the parabolic trajectories of the Bloch vectors cor-
responding to &,(|£)(%£|). Initially, the two vectors have
unit lengths pointing toward opposite directions of the x
axis. Hence, s = 1 and ¢ = 7, which yields that D = 0 and
C =1 [cf. Egs. (12) and (13) and Fig. 3]. When p =1,
i.e., for yr > 1, either state is mapped onto |0)(0], i.e., the
North Pole, which gives us that s = 1, ¢ = 0 and thereby
D =C =0 [Eq. (2) indeed shows that the state becomes
evidently uncorrelated]. At the intermediate stage, map &,
acts in a way that the two Bloch vectors move along
symmetrical parabolic trajectories (see Fig. 4) yielding that, in
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FIG. 4. (Color online) Trajectories of £,(|+) (+]) (blue solid line)
and &£,(|—)(—]) (red dashed line) on the X-Z plane of the Bloch
sphere.

particular, 0 < ¢ < . On the other hand, the purity shows a
dip with s taking its minimum sy, = V3/2 for p=1/2 in
accordance with Eq. (14). In the light of Eq. (12) and Fig. 3(a),
this necessarily brings about that D > 0 since 0 < ¢ <7
and the Bloch vector length, although shrinking to some
extent, keeps finite throughout. This clarifies why discord must
necessarily be created in the course of the process. In essence,
the local dissipative channel transforms |+)(+| and |—)(—|
so as to reduce their distinguishability, which unavoidably
gives rise to QCs without entanglement [3,13]. Note that the
nonunitarity is crucial since distinguishability as measured by
the scalar product is unaffected by any unitary [5,18]. Also,
note that based on the definition of classically correlated states
[13] the above reasoning shows that QCs will be surely created
regardless of the specific measure chosen to quantify them.

In summary, in this paper we asked whether QCs can de-
velop as a result of local nonunitary dynamics, an unattainable
phenomenon with entanglement. After deriving the QD for
the class of involved states, we analytically proved that this
indeed can occur for two qubits, initially in a fully classical
state, under a local memoryless amplitude-damping channel.
Also, we showed that the mechanism behind the QCs’ birth
can be readily grasped in the Bloch-sphere picture.

All these phenomena are arguably not restricted to qubits.
The generalization to continuous-variable systems in a way
that local bosonic Gaussian maps now play the role of the
amplitude-damping channel is under ongoing investigations.

Note added. Recently, we became aware of a related
manuscript by Campbell ef al. [19].

We thank R. Fazio and M. Paternostro for comments
and acknowledge support from Fondo per gli Investimenti
della Ricerca di Base (FIRB) IDEAS through project
RBID08B3FM.
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