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Abstract. In this paper a strategy to perform strain-hardening elastoplastic analysis by using the 
Symmetric Boundary Element Method (SBEM) for multi-domain type problems is shown. The 
procedure has been developed inside Karnak.sGbem code  by introducing an additional module. 

1 INTRODUCTION 

A multi-domain SBEM strategy [1], based on an initial strain approach, is applied for the 
analysis of 2D structures, in the hypothesis of kinematic hardening behaviour, von Mises model, 
associated flow rules and strain plane state. Let us start from the discretization of the domain in 
substructures called bem-elements, where the plastic strain accumulation have to be computed. 
Then, in order to obtain the self-stresses equation governing the elastoplastic problem, let us impose 
the regularity conditions, in strong form on the displacements (nodal compatibility) and in weak 
form on the tractions (generalized equilibrium) both evaluated on the interface boundary, and let us 
effectuate a strong variable condensation. For the generic load increment, this equation  permits to 
locate the active bem-elements which require correction techniques. Then, the trial solution is 
corrected by a return mapping algorithm, which is defined in according to the extremal paths theory 
[2], simultaneously in all the plastically active bem-elements. The proposed algorithm utilizes the 
same self-stresses equation in a nonlinear global system of 7xa equations in 7xa unknowns, where a 
is the active bem-elements number. In the present approach the approximate solution is easily 
obtained by using the well-known standard Newton-Raphson procedure, just used  in elastoplastic 
problems within the Bem formulations [3]. Finally a numeral test, performed by the Karnak.sGbem 
code [4], is shown. 

2 SELF-STRESSES EQUATION VIA MULTI-DOMAIN SBEM  

For each bem-e let us start by imposing the following Dirichlet and Neumann conditions 

 1 1=u u       on 1Γ ,        2 2=t f       on 2Γ  (1a,b) 

and by evaluating the response in terms of the displacement 0u  and traction 0t  vectors on the 
interface boundary 0Γ . In addiction, let us introduce the stress vector at Gauss points 
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In the latter equations the Somigliana Identities (S.I.) of the displacements and of the tractions have 
been introduced. 
The vector ε p  represents the inelastic strains due to thermal or plastic actions, whose presence 
requires domain integrals having singular kernels, suitably studied [3,5]. 

A boundary discretization into boundary elements is made by introducing the following 
modelling of all the known and unknown quantities:  

 1 t 1 2 t 2 0 t 0 2 u 2 1 u 1 0 u 0 p, , , , , , =f = Ψ F f = Ψ F t = Ψ F u = Ψ U u = Ψ U u = Ψ U ε Ψ pp   (3a-g) 

where tΨ  and uΨ  are shape functions regarding the boundary quantities, while pΨ  are domain 
shape functions used to model plastic strains p  connected to the Gauss points of  the bem-e. 
Besides, the capital letters F  and U  indicate the nodal vectors of the forces ( 1F  on 1Γ , 2F  on 2Γ  
and 0F  on 0Γ ) and of the displacements ( 1U  on 1Γ  , 2U  on 2Γ  and 0U  on 0Γ ) defined on the 
boundary elements. 

Let us perform the weighting of all the coefficients of the eqs.(2a-d). At this aim, the same shape 
functions as those modelling the causes have been employed, but introduced in an energetically 
dual way in according to the Galerkin approach. In this way it is possible to obtain the following 
block system: 
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where the introduced coefficient β  is the multiplier of the all external actions. 
The eqs.(4) may be expressed in compact form in the following way: 
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where the vector X  collects the sub-vectors 1F , ( )2U−  and 0F , whereas the ( )0U−  and p  vectors 
characterize the displacements of the nodes in the interface zones, changed in sign, and the plastic 
strains at the Gauss points, respectively.  

The vector 0P  represents the generalized (or weighted) traction vector defined in the boundary 
elements of the interface zones, obtained as a weighted response to all the known, amplified by β , 
and unknown actions, regarding boundary and domain quantities. The vector σ  represents the 
stress, valued at the Gauss points, due to the all the known and unknown actions. 

By performing a variables condensation through the replacement of the X  vector extracted from 
eq.(5a) into eqs.(5b,c), one obtains: 
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These latter are the characteristic equations of each bem-e. They relate the generalized (or 
weighted) tractions 0P  defined on the interface zone 0Γ  and the stresses σ  at the bem-e domain to 
the nodal displacements 0U , to the plastic strains p  and the two load terms 0P̂  and σ̂  amplified by 
β , respectively. These latter represent the elastic response in terms of the generalized tractions 
vector along the interface boundary and of the stresses vector in the domain with reference to each 
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bem-e. Moreover, 00D , 0σD , 0σd , σσd  are the stiffness matrices of the bem-e, being 00D  and σσd  
square matrices, 0σD  and 0σD  rectangular ones.  

Let us subdivide the body in m bem-elements and consider the eqs.(6a,b) for each of these. Thus 
we obtain two global relations connecting all the generalized tractions and the stresses related to the 
bem-elements considered, formally equal to the same eqs.(6a,b), but regarding the constitutive 
equations of the assembled system. 

Let us introduce the compatibility among  the nodal displacements of the adjacent bem-elements 
0 0=U Hξ  and the equilibrium condition 0 =H P 0T  among generalized tractions at the interface 

boundaries, with H  topological matrix and 0ξ  nodal displacements vector of the assembled system. 
Using the previous regularity conditions, eqs.(6a,b) become: 
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By performing a new variables condensation through the replacement of the 0ξ  vector extracted 
from eq.(7a) into eq.(7b), the self-stresses equation is obtained: 

 ˆ sβ= + ⋅σ Zp σ   (8) 

This equation provides the stress at the strain points of each bem-e in function of the volumetric 
plastic strain p  and of the external actions σ̂s , the latter amplified by β . The matrix Z , defined 
self-stresses influence matrix of the assembled system, is a square matrix having 3mx3m 
dimensions with m bem-elements number, full populated, non symmetric and semi-defined 
negative. The evaluation of this matrix involves only the elastic material characteristic and structure 
geometry knowledge. 

3 ACTIVE MACRO-ZONES ANALYSIS  

In this section the strategy to compute the plastic strains for each loading step and at every bem-e 
is shown. This approach utilizes eq.(8) both to evaluate the predictor phase and during the corrector 
one, here after shown. First eq.(8) provides all the predictors ( )

*
1+σ n , i.e. the purely elastic response, 

at the instant 1+n  in each m bem-elements, as function of the plastic strain ( )p n , stored up at the 
previous step and then imposed as volumetric distortions, and of load increment ( )1+β n : 

 ( ) ( ) ( )
*

1 1 ˆ sn n nβ+ += + ⋅σ Zp σ   (9) 

where Z  matrix regards all the bem-elements, obtained by the discretization. The check of the 
plastic consistency condition of the stresses computed on appropriately chosen points is performed 
by using the yield condition expressed in this context through the von Mises law for each bem-e: 

 ( ) ( ) ( ) ( ) ( ) ( )
T 21

21 1 1 1 1 1[ , ] ( )  ( ) 0+ + + + + += − − − ≤σ ρ σ ρ M σ ρ yn n n n n nF σ   (10) 

In the a bem-elements (with ≤a m ) where this latter inequality is violated, a return mapping 
phase occurs to evaluate the plastic strains and the direction of the plastic flow. Therefore the same 
eq.(8) is used to obtain the elastoplastic solution at every bem-e where the plastic consistency 
condition is violated. The vector σ , representing the end step stress, the internal variable vector ρ  
as well as the volumetric plastic strain vector p  are unknown quantities. This latter is the plastic 
strain to impose at every active plastically bem-e in order to have the stress on the yield boundary of 
the elastic domain, through which the direction of the plastic flow may be defined. Obviously, 
inside of each loading step the corrector phase has to be repeated until all the predictors do not 
satisfy the plastic consistency conditions. 

In detail eq.(8), written for every h bem-elements ( h = 1,...,a ), is utilized to perform the 
elastoplastic analysis at 1+n  load step simultaneously in all the plastically active macro-zones, 
defined as whole of active bem-elements, individuated in the previous predictor phase, i.e.: 



4 
 

 *
1

     
=

− − =∑σ σ Z p 0a
h h hk kk
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where the subscript  1+n  has been omitted for convenience. 
The Zhk  sub-matrix with , 1,...,h k a=  derives from the Z  matrix present in eq.(8), by extracting 

the blocks relative to the a plastically active bem-elements. The double index specifies the bem-
elements k where the plastic strains (cause) and the h related stresses (effect) arise. 

In the hypothesis that, for each h-th bem-e, the shape function definite in eq.(3g) is the same of 
the shape function related to the plastic multiplier, i.e. ψ Λk pk kλ =  with ψ 0≥p , the plastic strain 
for the h-th active bem-e is expressed as / ( )= Λ ∂ ∂ = Λ −p σ M σ ρk k k k k k kF . 

The non linear solving system for all the active bem-elements is the following: 
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where σh  is the stress solution located on the yield surface of the elastic domain, *σh  the elastic 
predictor,   ( )Λ −Z M σ ρh hh k k  the direct corrective component and 

1
  ( )∉

=
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 the 

indirect corrective component, respectively. 
Eqs.(12) comprises a system of 7xa non linear equations in 7xa unknowns (three stress 

components σh , three internal variables  ρh  and a plastic multiplier Λh  for each active bem-e).  
The approximate solution of this nonlinear problem involving all the plastically active bem-

elements is here obtained by applying the Newton-Raphson procedure: 
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which, written in compact form, becomes:  

 1 1( )  ( )j j j j
a a aa a a
+ −= − JX X X f X   (14) 

The Jacobian matrix Ja  contains the derivatives of the functions defined in eqs.(12), 1+j
aX  is the 

vector of the unknowns, j
aX  and  ( )j

af X  are the known vectors computed in the j-th step. 
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