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a b s t r a c t

In the present paper a new displacement method, defined as external variables one, is proposed inside
the multidomain symmetric Boundary Element formulation.

This method is a natural evolution of the displacement approach with interface variables in the
multidomain symmetric BEM analysis. Indeed, the strategy employed has the advantage of considering
only the kinematical quantities of the free boundary nodes and the algebraic operators involved show
symmetry and very small dimensions. The proposed approach is characterized by strong condensation of
the mechanical and kinematical boundary nodes variables of the macro-elements. All the domain
quantities, such as tractions and stresses, displacements and strains, are computed through the
Somigliana Identities in a subsequent phase.

Some examples are shown using the calculus code Karnak.sGbem, by which it was possible to make some
comparisonswithanalytical solutionsandotherapproaches toshowtheeffectivenessof themethodproposed.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

In all fields of applied engineering there is the need to use
analysis methods able to obtain solutions very close to the real ones
through a reduced number of variables.

The Symmetric Boundary Element Method (SBEM), as well as
the Collocation Boundary Element Method (BEM), has the pecu-
liarity of working with variables of the boundary only. Furthermore,
these methods utilize the Fundamental Solutions (F.S.) which allow
one to obtain a high response accuracy because the equilibrium and
compatibility equations are satisfied in the domain.

The computational difficulties related to the evaluation of some
solving equation system coefficients, due to integrals with strong
singularity or hypersingularity, initially slowed down application of
the method. Later these difficulties were overcome by using
different techniques: within the BEM, we can mention the papers
by Gray et al. (1990), Portela et al. (1992), Holzer (1993), Guiggiani
(1995), Aliabadi (2002) and, within the SBEM, the papers by Bonnet
(1995), Frangi and Novati (1996), Panzeca et al. (1998), Salvadori
(2001), Terravecchia (2006).

Other difficulties have beenmet in the analysis of the continuum
bodies with step-wise variable physical and geometrical charac-
teristics, but recently these drawbacks have been overcome through
þ39 91 6568407.
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appropriate strategies inside the substructuring process. The idea of
subdividing the domain in the macro-elements was introduced, in
the SBEM, by Maier et al. (1991). Subsequently Gray and Paulino
(1997) utilized the substructuring in potential problems; Layton
et al. (1997) proposed a formulation dividing the body in macro-
elements, each of which is governed by boundary quantities only,
thus obtaining inside a condensation process a system having some
non-symmetric blocks; Ganguly et al. (1999) presented an entirely
symmetric approach for a plane elastic body subdivided by two
macroelements, discretized along the boundary and characterized
by a symmetric solving system having as unknowns all the
boundary quantities, both those of the free and constrained
boundaries and the interface one between the two macroelements.

Panzeca et al. dealt with the same problem by using a strategy
connected to the variational formulation introduced by Maier and
Polizzotto (1987), Polizzotto (1988a,b, 1991), and obtained two
different approaches defined as mixed-variable (Panzeca et al.,
1999; Panzeca and Salerno, 2000) and displacement approaches
(Panzeca et al., 2002b,c), both characterized by a strong variable
condensation. Through these strategies the authors obtained
a system only depending on the interface nodal variables of the
contiguous macroelements, here called bem-element (bem-e).

The approach, defined as displacement method with interface
variables only, is very similar to that obtained by the FEM. The
regularity conditions were imposed in weighted form for the
tractions on the bem-e interface boundaries and for the displace-
ments of the same boundary in each node.
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Subsequently, this formulation was applied by the same
research group in some mechanics problems as the thermo-
elasticity (Panzeca et al., 2004), the contact-detachment problem
(Panzeca et al., 2008), and the mechanics of quasi-brittle fracture
(Panzeca et al., 2009).

Cen et al. (1999) developed amulti-zone approach, where a non-
symmetric mixed-variable solving system, having the unknown
vector only with interface nodal mechanical and kinematical
quantities, was considered within the cohesive fracture case.

Pérez-Gavilán and Aliabadi (2001) proposed an approach only
having kinematical variables applied in problems having non-
uniqueness solutions.

Kallivokas et al. (2005) proposed a variational formulation for
multidomain interface problems in termsof Dirichlet-type variables
only. The formulationwas applied to thermal andacoustic problems.

Vodi�cka et al. (2007) utilized a variational approach character-
ized by symmetric operators applied to nonconforming mesh
problems for curve interfaces.

In the last decade several strategies with variables condensation
have been developed allowing a reduction in variables, giving
computationally more advantageous systems.

In this paper a strategy, defined as displacement approach with
external variables only, is proposed. On the basis of an analogous
strategy used by Panzeca et al. (2002b,c) within the displacement
approach with inner variables, it leads to a solving equation system
characterized by symmetric algebraic operators in which the
unknowns are represented by the displacements of the free
boundary nodes of the body.

The strategy contemplates:

- subdivision of the body into bem-es, having any dimension
and shape;

- evaluation for each bem-e, discretized on the boundary, of an
expression which relates the tractions evaluated in weighted
(or generalized) form in the free or interface boundaries to the
nodal displacements defined in the same boundaries and to
the known domain and boundary actions;

- a solving equation system, obtained by imposing the equilib-
rium between the generalized tractions on the bem-e interface
and the compatibility between the nodal displacements of the
sameboundaries, giving a systemdependingonall the interface
boundary displacements and the free boundary displacements.

- reduction of the solving system unknowns through a conden-
sation process, thus making it possible to have as unknowns
the free boundary displacements only.

The approach works using as its only variables the free
boundary displacements and leads to a solving system having very
small dimensions. It does not involve changes in the solving system
dimension when a newmesh is introduced in the domain or a new
discretization is performed in the interface boundaries of the
contiguous bem-es.

The method proposed was implemented within the Kar-
nak.sGbem (Panzeca et al., 2002a) calculus code. This algorithm
allows one to perform an elastic analysis for plates having any
shape, made up of homogeneous material and having constant
thickness for each bem-e, subjected to boundary forces, to imposed
displacements, and to domain actions like body forces and inelastic
strains, both transferred on the boundary of the bem-e according to
a strategy developed by Panzeca et al. (2004).

Furthermore, the closed formevaluation of thematrix coefficients
and of the load vector was carried out within the Karnak.sGbem
calculus code according to a strategy shown subsequently by
Terravecchia (2006). This strategy regards all the coefficients, both
those concerning the boundary elements where cause distribution
and effect evaluation are coincident and those distant from one
another. Moreover, the evaluation of these coefficients, all in closed
form, allows analysis of bem-es having any shape and dimension
without giving rise to numerical instability.

2. Multidomain elastic analysis

Let us consider a bi-dimensional body having domain U and
boundary G, referred to a Cartesian system (o, x, y), subjected to
actions in its plane:

- forces f in the portion G2 of the free boundary,
- displacements u imposed in the portion G1 of the constrained
boundary,

- body forces b and inelastic actions w in U.

In this body the physical and geometrical characteristics are
zone-wise variables. We want to obtain the elastic response to the
external actions in terms of displacements u2 on G2, reactive forces
f1 on G1, displacements, strains and stresses inU by using the SBEM,
through two formulations in the sphere of the displacement
approach. For this purpose an appropriate subdivision of the
domain into boundary elements (bem-es), each having constant
physical and geometrical characteristics, was introduced.

This subdivision involves the introduction of an interface
boundary G0 between contiguous bem-es and, as a consequence,
the rise of two new unknown quantities in the analysis problem, i.e.
the displacements u0 and the interface tractions f0 vectors, both
referred to interface boundaries.

Let us consider the i-th bem-e embedded in the infinite domain
UN having the same physical and geometrical characteristics as the
element considered (Fig. 2). The boundary quantities of the bem-e
are the forces f and the displacement discontinuities (�u), both
layered along the boundary.

The strategy adopted makes it possible to characterize each
bem-e in a similar way to what is done in the FEM, but with high
performances because of the peculiarity of the method employed;
further, the closed form computation of the algebraic operator
coefficients allows one to operate in a simpleway in the presence of
irregular bem-es.

Now two strategies are shown for performing multidomain
analysis using the symmetric formulation of the BEM within the
displacement approach. The first, shown in Section 3, is a classic
displacement approach with interface variables, developed by
Panzeca and Salerno (2000) and Panzeca et al. (2002b,c) where the
substructuring problem is governed only by the kinematical nodal
unknowns U0 of all the boundaries G0. The second one, shown in
Section 4, is a displacement approachwith external variables,where
the substructuring problem is governed only by the kinematical
unknowns U2 of all the nodes of the body external boundaries G2.

3. Displacement approach with interface unknowns

In this Section the strategy developed by Panzeca and Salerno
(2000) and Panzeca et al. (2002b,c) is shown in performing
multidomain analysis via SBEM, within the displacement approach.

A strategy is presented having the general characteristic of
producing for each bem-e all the algebraic operators characterizing
its mechanical behaviour depending on the geometry and
boundary type. In this connection, the following relation, defined as
characteristic, is obtained for each bem-e (Panzeca et al., 2002b,c):

P0 ¼ D00U0 þ bPGðf;uÞ þ bPUðb;wÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bP0

: (1)
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This relation, containingquantitiesevaluatedat the interfaceamong
bem-es, connects the generalized tractions P0 along the boundary side
to the nodal displacements U0, belonging to the same boundary
through the stiffness matrix D00, and to the known generalized trac-
tions regarding the boundary bPG and domain bPU imposed actions.

If we impose some appropriate regularity conditions on the inter-
face boundaries, the following solving equation system is obtained:

K00U0 þ bf0 ¼ 0 (2)

where the unknowns are the displacements of all the nodes
belonging only to the interface boundaries, and the operators K00
and bf0 are the symmetric stiffness matrix of the structure and the
load vector, respectively.

In Section 3.1 the characteristic equation of each e-bem is
obtained by utilizing the Galerkin weighting definition. Subse-
quently in Section 3.2 the solving equation system is obtained by
imposing appropriate regularity conditions, weak for the
mechanical quantities and strong for the kinematical ones, both at
the interface between contiguous bem-es.

3.1. The elasticity relation of each bem-e

For each bem-e we want to determine an elasticity equation
connecting thequantities associatedwith the interface zonebyusing
a strategybasedon theSBEM.This strategycontemplates thestudyof
each bem-e embedded in an unlimited domain having the same
physical properties and the same thickness as the examining body. It
is necessary to distinguish the body boundaryas the boundaryG ofU
or as the boundary Gþ of the complementary domain UN\U. As
a consequence of this condition the boundary quantities take on
a different meaning: the forces acting on the boundary must be
interpreted as layered force distribution, whereas the displacements
must be thought of as double layered displacement distribution.

The displacements and the tractions marked with the symbols
($)þ and ($)� denote boundary quantities defined on Gþ and G�,
whose values may be defined at points infinitely close to G from the
outside and inside, respectively. However, for simplicity, the
quantities referring to the inner boundary G� are indicated without
superscript because they represent the true quantities of the
problem being examined, when the solution is obtained.

In order to obtain an elasticity relation for each of the bodies A,
B, C, we refer to a generic body, thus omitting the reference
superscript A, B, C in the equations to be obtained.

Let us impose the classical Dirichlet andNeumann conditions, i.e.

u1 ¼ u1 on G1 (3a)

t2 ¼ f2 on G2 (3b)

and evaluate the displacement u0 and traction t0 vectors on G0, i.e.
in the interface zone.

When we introduce the Somigliana Identities (S.I.) of the
displacements and the tractions, the following boundary integral
equations can be obtained

on G1Z
G1

Guuf1 þ
I
G1

Gutð � u1Þ þ 1
2
u1 þ

Z
G2

Guuf2 þ
Z
G2

Gut
�� u2

�

þ
Z
G0

Guuf0 þ
Z
G0

Gut
�� u0

�þ Z
U

Guubþ
Z
U

Gusw ¼ u1 ð4aÞ

on G2
Z
G1

Gtuf1 þ
Z
G1

Gtt
�� u1

�þ I
G2

Gtuf2 þ 1
2
f2 þ

Z
G2

Gtt
�� u2

�

þ
Z
G0

Gtuf0 þ
Z
G0

Gtt
�� u0

�þ Z
U

Gtubþ
Z
U

Gtsw ¼ f2 ð4bÞ

on G0

u0¼
Z
G1

Guu f1þ
Z
G1

Gut
��u1

�þ Z
G2

Guu f2þ
Z
G2

Gut
��u2

�

þ
Z
G0

Guu f0þ
I
G0

Gutð�u0Þþ
1
2
u0þ

Z
U

Guubþ
Z
U

Gusw ð4cÞ

t0 ¼
Z
G1

Gtu f1 þ
Z
G1

Gtt
�� u1

�þ Z
G2

Gtu f2 þ
Z
G2

Gtt
�� u2

�

þ
I
G0

Gtuf0 þ 1
2
f0 þ

Z
G0

Gtt
�� u0

�þ Z
U

Gtubþ
Z
U

Gtsw ð4dÞ

where the small circles appearing in the integrals define these as
Cauchy Principal Values (CPV), whereas the terms in which 1/2 is
found are the corresponding free terms. In addition, when the
solution is reached, the traction vector t0, obtained by Eq. (4d) and
defined in the equilibrium equation f0 ¼ �tþ0 þ t0 on the
boundary, is identical to the layered force vector f0 because on Gþ

0
the traction vector must be tþ0 ¼ 0.

Let us modify Eqs. (4a)e(4c) by grouping all the terms together
on the left side and leaving Eq. (4d) unchanged. We obtain an
integral equations system where the Eqs. (4a)e(4c) may be inter-
preted as the response of the examining body on the boundaries
Gþ
1 , G

þ
2 , G

þ
0 , respectively, whereas Eq. (4d) maintains the same

traction meaning as evaluated on the interface boundary G0. We
obtain

on Gþ
1Z

G1

Guuf1þ
Z
G2

Gut
��u2

�þ Z
G0

Guu f0þ
Z
G0

Gut
��u0

�
I
G1

Gutð�u1Þ �
1
2
u1þ

Z
G2

Guuf2þ
Z
U

Guubþ
Z
U

Gusw¼ 0 ð5aÞ

on Gþ
2Z

G1

Gtuf1þ
Z
G2

Gtt
��u2

�þ Z
G0

Gtu f0þ
Z
G0

Gtt
��u0

�

þ
Z
G1

Gtt
��u1

�þ I
G2

Gtuf2 �
1
2
f2þ

Z
U

Gtubþ
Z
U

Gtsw¼ 0 ð5bÞ

on Gþ
0Z

G1

Guuf1 þ
Z
G2

Gut
�� u2

�þ Z
G0

Guu f0 þ
I
G0

Gutð � u0Þ � 1
2
u0

þ
Z
G1

Gut
�� u1

�þ Z
G2

Guuf2 þ
Z
U

Guubþ
Z
U

Gusw ¼ 0 ð5cÞ

and on G0

t0 ¼
Z
G1

Gtu f1þ
Z
G2

Gtt
��u2

�þ I
G0

Gtuf0 þ1
2
f0þ

Z
G0

Gtt
��u0

�

þ
Z
G1

Gtt
��u1

�þ Z
G2
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Z
U

Gtubþ
Z
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Gtsw ð5dÞ
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Let us introduce the boundary discretization through boundary
elements by carrying out the following variable modelling:

f1 ¼ JfF1; (6a)

u2 ¼ JuU2; (6b)

f0 ¼ JfF0; (6c)

u0 ¼ JuU0; (6d)

where the capital letters define the nodal values of the reactions (F1
onG1 and F0 onG0) andof the displacements (U2 onG2 andU0 onG0).

Let us now perform theweighting of all the coefficients of the Eqs.
(5a)e(5d). For this purpose, the same shape functions as those
modelling the response have been employed, but in an energetically
dual way on the base of the Galerkin approach: the coefficients
defining displacements are weighted through the shape functions
modelling the forces, andvice-versa thecoefficients defining tractions
are weighted through the shape functions modelling the displace-
ments. In this way it is possible to obtain the following block system
In the latter equation the conditions Wþ
1 ¼ R

Gþ
1

~jfu
þ
1 ¼ 0 and

Pþ
2 ¼ R

Gþ
2

~jut
þ
2 ¼ 0have to be considered as the classicalDiriclet and

Neumann conditions of the continuum (u1 ¼ u1 on G1 and t2 ¼ f2
on G2, or, which is the same thing, uþ

1 ¼ 0 on Gþ
1 and tþ2 ¼ 0 on Gþ

2 ),
written on the boundary elements Gþ

1 and Gþ
2 of the complementary

domain, respectively, in termsof generalized (orweighted) quantities.
The other two expressions regard quantities of the interface zone:
specifically, the condition Wþ

0 ¼ R
Gþ
0

~jfu0 ¼ 0 represents the
generalized displacement, null on theboundaryGþ

0 ,whereas the term
P0 ¼ R

G0

~jut0 collects the values of the generalized tractions defined
on the boundary elements of G0.

In Eq. (7) the following positions have been set for the matrix
coefficients
Au1;u1 ¼
Z
Gþ
1

~jf

Z
G1

Guujf ¼ ~Au1;u1 ; Au1;f2 ¼
Z
Gþ
1

~jf

Z
G2

Gutju ¼ ~Af2;u1
; Af2 ;f2 ¼

Z
Gþ
2

~ju

Z
G2

Gttju ¼ ~Af2;f2 ;

Au1;u0 ¼
Z
Gþ
1

~jf

Z
G0

Guujf ¼ ~Au0;u1 ; Af2;u0
¼

Z
Gþ
2

~ju

Z
G0

Gtujf ¼ ~Au0;f2 ; Au0;u0 ¼
Z
Gþ
0

~jf

Z
G0

Guujf ¼ ~Au0;u0 ;

Au1;f0 ¼
Z
Gþ
1

~jf

Z
G2

Gtujf ¼ ~Af0;u1
; Af2;f0 ¼

Z
Gþ
2

~ju

Z
G0

Gttju ¼ ~Af0;f2 ; Af0;f0 ¼
Z
G0

~ju

Z
G0

Gttju ¼ ~Af0;f0 ;

Au0;f0 ¼
Z
Gþ
0

~jf

I
G0

Gutju þ 1
2

Z
Gþ
0

~jfju ¼ ~Af0;u0
;

(8a ej)
and for the load vector

cWþ
1 ¼

Z
Gþ
1

~jf

I
G1

Gut juð � U1Þ þ
1
2

Z
Gþ
1

~jfjuð � U1Þ

þ
Z
Gþ
1

~jf

Z
G2

GuujfF2 þ
Z
Gþ
1

~jf

Z
U

Guubþ
Z
Gþ
1

~jf

Z
U

Gusw; ð9aÞ
bPþ
2 ¼

Z
Gþ
2

~ju

Z
G1

Gtt juð � U1Þ þ
Z
Gþ
2

~ju

I
G2

Gtu jfF2

� 1
2

Z
Gþ
2

~jujfF2 þ
Z
Gþ
2

~ju

Z
U

Gtubþ
Z
Gþ
2

~ju

Z
U

Gtsw; (9b)

cWþ
0 ¼

Z
Gþ
0

~jf

Z
G1

Gutjuð � U1Þ þ
Z
Gþ
0

~jf

Z
G2

GuujfF2

þ
Z
Gþ
0

~jf

Z
U

Guubþ
Z
Gþ
0

~jf

Z
U

Gusw; (9c)

bL0 ¼
Z
G0

~ju

Z
G1

Gttjuð � U1Þ þ
Z
G0

~ju

Z
G2

GtujfF2

þ
Z
G0

~ju

Z
U

Gtubþ
Z
G0

~ju

Z
U

Gtsw: (9d)

In Eq. (8j), seen previously, the termsAu0;f0 and
~Af0 ;u0

include the
weighting of the CPV integrals and of the corresponding free terms.

As can easily be observed, in positions (8,9) the coefficients are
made up of double integrals. Some of the integrals constituting the
matrix A in Eq. (7) show singular or hypersingular kernels: this
happens when the boundary cause distribution acts on the
boundary elements where the weighted effect is valued.

Panzeca et al. (2001) have removed the computational difficul-
tiesmentioned by determining all the coefficients of thematrixA in
closed form, both those containing singular or hypersingular
kernels and those computed as Riemann integrals, thus producing
high performance. The load vector coefficients are obtained in
closed form too. A particular strategy made it possible to set up
a software, called Karnak.sGbem (Panzeca et al., 2002a), able to give
solutions to plane structural system having any geometry and
subdivisible into bem-es having different material characteristics
and different thicknesses. These systems may be subjected to in-
plane external actions, like boundary and volume forces or imposed
displacements of the constraints and inelastic actions.

On the basis of these considerations, Eq. (7) may be expressed in
extended form with obvious meaning of the symbols in the
following way:
0 ¼ AXþ A0ð�U0Þ þ bL (10a)
P0 ¼ ~A0Xþ A00ð�U0Þ þ bL0 (10b)

where the vector X collects the boundary sub-vectors F1, (�U2) and
F0, whereas (�U0) collects the nodal displacements in the interface
zone, changed in sign. The vector P0 represents the generalized (or
weighted) traction vector defined in the boundary elements of the
same interface zone, obtained as a weighted response to all the



Fig. 1. System subdivided into bem-es A, B, and C.
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known and unknown actions, regarding boundary and volume
quantities.

By performing a variable condensation through the replacement
of the X vector extracted from Eq. (10a) in Eq. (10b), we obtain the
relevant equation:

P0 ¼ D00U0 þ bP0 (11)

where the following positions have been made:

D00 ¼ ~A0A
�1A0 � A00; (12a)

bP0 ¼ bL0 � ~A0A
�1bL: (12b)
Eq. (11), called characteristic equation of the bem-e, relates the
generalized (or weighted) tractions P0 defined on the elements of
the boundary in the interface zone G0 to the displacements U0 of
the nodes of the same boundary and to the load term bP0, the latter
being the generalized traction vector, as the effect evaluated on the
same interface boundary elements, caused by the external actions
present in the bem-e being examined. Furthermore, D00 is the
related stiffness matrix.

As can be shown, Eq. (11), valid for each bem-e, is formally
identical to that written in the sphere of the FEM (Cook, 1989).

The previous considerations show the high performance that
this approach is able to give. Indeed, among the main characteris-
tics we can mention the following:
� computation in closed form of all the coefficients of the stiff-
ness matrix and of the load vector in Eq. (11); and

� very simple modification of the algebraic operators dimensions
involved, which is useful in nonlinear analysis.
3.2. Solving equation system

In order to obtain the elastic response of a structure subjected to
known external actions, the same two-dimensional continuum
body as in Fig. 1 was considered. As a consequence of the physical
(E, n) and geometrical (s) characteristics, it is subdivided into three
subdomains specified by the capital Latin letters A, B, C.

The bem-e interfaces are called by the lower-case Latin letters a,
b and c between the solids A andB, A andC, B andC, respectively. The
two nodes indicated byHbelong to all the bem-es as shown in Fig. 3.

Each of the bem-es A, B and C is characterized by a relationship
between the generalized tractions and the nodal displacements,
both quantities defined on G0 as shown in Eq. (11). For example, for
the bem-e A we can write in detail:

j PA
0a

PA
0b

PA
0H

j ¼ j DA
0a;0a DA

0a;0b DA
0a;0H

DA
0b;0a DA

0b;0b DA
0b;0H

DA
0H;0a DA

0H;0b DA
0H;0H

jj UA
0a

UA
0b

UA
0H

j þ ��������
bPA
0abPA
0bbPA
0H

��������
(13)

Let us introduce the characteristic equation for each bem-e:

PA
0 ¼ DA

00U
A
0 þ bPA

0 for body A (14a)

PB
0 ¼ DB

00U
B
0 þ bPB

0 for body B (14b)

PC
0 ¼ DC

00U
C
0 þ bPC

0 for body C (14c)

Now imposing the regularity conditions for the displacements
of the interface nodes

U0k ¼ Ui
0k ¼ Uj

0k (15)

and for the generalized tractions of the interface boundary elements

Pi
0k ¼ �Pj

0k (16)

where i, j¼A, B, C, is j and k¼ a, b, c, H we obtain the elastic
solution in terms of the nodal displacements U0 through the
following solving equation system:

K00U0 þ bf0 ¼ 0 (17)

where the following positions have been set
(18a)

(18b)

(18c)



Fig. 2. Bem-es A, B, and C, each embedded in UN.
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The remaining boundary quantities of the substructures A, B and
C, regarding the nodal reactive forces F1 of the constrained
boundary G1, the displacements U2 of the free nodes of G2 and the
nodal interface forces F0 between the bem-es, all variable quanti-
ties collected in the vectors XA, XB and XC, are obtainable by using
equations like Eq. (10a), written for each bem-e.
4. Displacement approach with external unknowns

In this section a new displacement approach is presented which
reduces the unknowns in the analysis phase. It is possible, if one
wishes, to utilize as variables not the nodal displacements U0 of all
the interface boundaries G0, but the nodal displacements U2 of the
free boundary G2 of the assembled system.

Let us define an appropriate relation for each bem-e, deduced by
Eq. (7), i.e.:

P20 ¼ D20;20U20 þ bPGðf;uÞ þ bPUðb;wÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bP20

where P20 ¼
����Pþ

2 ¼ 0
P0

����; U20 ¼
����U2
U0

���� (19)

This relation connects the generalized tractions Pþ
2 ¼ 0 and P0

introduced to define Eq. (7) (the first vector assumed to be null
according to the generalized Neumann condition) along the
boundaries Gþ

2 and G0 to the nodal displacements U2 and U0 of
the boundaries G2 and G0, through the stiffness matrix D20,20 and to
the known generalized traction vectors bPG and bPU.

The use of appropriate regularity conditions at the interface
boundaries leads to the following solving equations system, here
defined as a complete solution:
A BC

a

a

b

b

b

c

c

c

H

H

Fig. 3. Characterization of the interface boundaries.
K20;20U20 þ bf20 ¼ 0 (20)
where the unknown vector U20 collects the displacements U2 and
U0 of all the nodes belonging to the boundaries G2 and G0, in full
analogy with the FEM.

A furthervariablecondensationprocess in thepreviouslyassembled
system leads to the following solving equation system in the displace-
ment approach where only the external unknowns are present:

H22U2 þ bt2 ¼ 0 (21)

In it the unknowns are the nodal displacementsU2 of all the free
boundaries of the assembled system, obtained through the
symmetric stiffness matrix H22 and the load vector bt2.

In the following sub-sections both the rise of the elasticity
relation of each bem-e and the solving equations system are shown.

4.1. The elasticity relation of each bem-e

Let us perform a different arrangement of the block system of
Eq. (7), as follows:
The meaning of all the block coefficients remains unchanged.
The previous equation may be expressed in compact form as

follows with obvious meaning of symbols:

0 ¼ AuuF10 þ Auf ð�U20Þ þ bLu (23a)

P20 ¼ ~AfuF10 þ Aff ð�U20Þ þ bLf (23b)

The vector P20 collects the generalized tractions sub-vectors eval-
uatedonthefreeboundaryelementsofGþ

2 andthe interfaceonesofG0.
Let us perform a first variable condensation by substituting the

vector F10, obtained by Eq. (23a), in Eq. (23b). One obtains the
following block system written for each bem-e:

(22)
(24)
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or in compact form

P20 ¼ D20;20U20 þ bP20 (25)

where the following positions have been made:

D20;20 ¼ ~AfuA
�1
uuAuf � Aff ; (26a)

bP20 ¼ bLf � ~AfuA
�1
uu

bLu (26b)

Eq. (25) is the characteristic equation of each bem-e. This
connects the generalized tractions Pþ

2 ¼ 0 and P0 evaluated on the
boundary elements of Gþ

2 and G0 to the nodal displacements of the
boundary G2 and G0 through the symmetric stiffness matrix D20,20
and the load vector bP20.
(32a)

(32b)

(32c)

(33)
4.2. Solving equation system

In order to obtain the elastic response of the structure, sub-
divided into bem-es and subjected to external actions, the bi-
dimensional solid in Fig. 3 is considered.

Each bem-e A, B and C is characterized by a characteristic rela-
tion which connects generalized tractions to nodal displacements
(Eq. (25)). For example, for the bem-e A we can write:
(27)
The latter relation may be expressed in compact form for each
bem-e as follows:

PA
20 ¼ DA

20;20U
A
20 þ bPA

20 for body A (28a)

PB
20 ¼ DB

20;20 UB
20 þ bPB

20 for body B (28b)

PC
0 ¼ DC

00U
C
0 þ bPC

0 for body C (28c)

As can be noted, Eq. (28c), referring to the bem-e C, differs from
Eqs. (28a) and (28b) and coincides with Eq. (14c) because it only has
the interface boundary G0.

Now the regularity conditions have to be imposed in terms of
nodal compatibility

U0k ¼ Ui
0k ¼ Uj

0k (29)
and of generalized equilibrium at the same interface boundary
elements, analogously to what was shown in Section 3.2, i.e.

Pi
0k ¼ �Pj

0k (30)

where i, j¼A, B, C, is j and k¼ a, b, c, H.
Let us obtain a solving systemwhere the only unknowns are the

free U2 and interface U0 nodal displacements:

K20;20U20 þ bf20 ¼ 0 (31)

where
or in extensive form:
The term K20,20 is the symmetric stiffness matrix of the
assembled system. It allows one to obtain the response in terms of
all the nodal displacements, in a similar way to what we find in
Pérez-Gavilán and Aliabadi (2001) and Kallivokas et al. (2005), in
complete analogy with the FEM. Lastly, the unknown mechanical
vectors Fi10 (i¼A, B, C) are obtained by means of Eq. (23a).

The solving equation system (31) proves to be more onerous
than the displacement method shown in Section 3.2 from the
computational point of view. Therefore in order to reduce the
unknowns, further variable condensation has to be made by
working on the assembled equation system (31). In this way it is
possible to remove the unknown displacements U0 of the interface
nodes, thus obtaining a solving equation system having as
unknowns only the nodal displacementsU2 of the free boundary G2.

Let us write Eq. (33) in the following extensive form:

K22U2 þ K20U0 þ bf2 ¼ 0 (34a)

K02U2 þ K00U0 þ bf0 ¼ 0: (34b)

If the vector U0 is deduced from Eq. (34a) and substituted in Eq.
(34b), the solving equation system of the displacement approach
with external unknowns is obtained:
H22U2 þ bt2 ¼ 0 (35)

where the following positions have been made:

H22 ¼ K22 � ~K20K
�1
00K02 (36a)



a b

Nodes considered in the solving system Nodes suppressed in the condensation process Constrained nodes

Fig. 4. Displacement approaches: (a) with interface variables only; and (b) with free variables only.
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bt2 ¼ �~K20K
�1
00

bf0 þ bf2 (36b)

H22being thesymmetric stiffnessmatrix andbt2 the loadvector, the
latterdefining theresponseonthe freeboundarycausedby theknown
boundaryanddomainactions. Lastly, the replacementof thevectorU2
in Eqs. (23a) and (34a) allows one to obtain the vectors U0, F0 and F1.

This method may be considered as an alternative approach to
that classical one proposed by Panzeca et al. (2002b,c) and shows
some advantages for multidomain analysis in Symmetric BEM
analysis. The fact is that the structural analysis is carried out only
considering the kinematical quantities of the external boundary and
the algebraic operators show symmetry and very small dimensions.
These advantages are particularly evident in the structural analysis
of panels made up of stones or for plasticity problems, where the
stones or the plastic cells are treated as bem-es.

Both the strategies shown in the Sections 3 and 4 have been
implemented within the Karnak.sGbem (Panzeca et al., 2002a)
calculus code. It is necessary to point out that both the displace-
ment methods shown in this paper, i.e. the one based on the
interface unknowns and the one with external variables, are
multidomain approaches characterized by interface regularity
conditions between bem-es, strong for the kinematical quantities
(nodal compatibility, Eq. (15)) and weak for the mechanical ones
(generalized equilibrium, Eq. (16)).

Within the SBEM formulation, an approach with mixed vari-
ables has been developed by Panzeca et al. (1999). In this latter, the
regularity conditions between bem-es are assured for the kine-
matical and mechanical quantities both in terms of nodal variables
(strong regularity) and in terms of generalized quantities (weak
regularity). Obviously, the latter approach proves to be computa-
tionally more onerous than the methods shown in this paper.

5. Summing up

� In the displacement approach with interface unknowns
(Panzeca and Salerno, 2000; Panzeca et al., 2002b,c), shown in
Section 3, Eq. (17) allows one to carry out a multidomain
analysis by considering as unknowns only the nodal displace-
ments belonging to all the interface boundaries G0 (Fig. 4a).
Table 1
Summarizing table of the displacement approaches.

Displacement
approaches

Solving equations system

With interface variable condensation: Section 3 K00U0 þ bf0 ¼ 0

Complete K20;20U20 þ bf20 ¼ 0

With free variables condensation: Section 4 H22U2 þ bt2 ¼ 0
� In the approach, here defined as complete (Eq. (31)), the vari-
ables regard all the nodal displacements, i.e. those belonging to
the interface boundaries G0 and those belonging to the free
boundaries G2, analogously to what is done in the FEM.

� Lastly, in the displacement approach with external unknowns,
shown in Section 4, Eq. (36) makes it possible for the
unknowns to be only the displacements belonging to the free
boundaries G2 (Fig. 4b).

In Table 1 both the solving equation system relating to the three
approaches and the additional equations required to evaluate the
other unknowns in the post-processing phase are shown.

6. Applications

To show the effectiveness of the proposed formulation, some
structures have been considered as subjected both to boundary and
to domain actions. In the first two examples the results are
compared to the analytical solutions (the first) and to the results
obtained with the SBEM considering the body as single (the first
and second) (Panzeca et al., 1998, 2001); instead, the third example
shows the potentiality of the method proposed in this paper.

6.1. Application 1

In this application a built-in beam (100� 20�1 cm), con-
strained on the left and loaded on the right by shearing forces
having a parabolic shape with maximum value qmax¼ 7.5 daN/m
was considered.

The aim of the application is to test the model by assuming as
the comparison solution both the analytical solution and the single
domain solutions (Fig. 5a) obtained with the symmetric BEM. For
this aim the simulation of the proposed model is made using
regular and irregular meshes to show that the domain subdivision
into bem-es does not substantially modify the global response of
the structural system.

The following physical characteristics were assumed: Young
modulus E¼ 10,000daN/cm2, Poisson ratio n¼ 0.18. In this simu-
lation four different domain discretizations were utilized, i.e.:
Nodal unknown

U0 U2 F0 F1

U0 ¼ �K�1
00

bf0 X ¼ �A�1½A0ð�U0Þ þ bL�
U20 ¼ �K�1

20;20
bf20 F10 ¼ �A�1

uu ½Auf ð�U20Þ þ bLu�

U0 ¼ �K�1
00 ½K02U2 þ bf0� U2 ¼ �H�1

22
bt2 F10 ¼ �A�1

uu ½Auf ð�U20Þ þ bLu�



x

y

(-31,-7)

Uxa

b

c

d

e

Uy

Fig. 5. Built-in beam subjected to parabolic shearing force: (a) single domain analysis; (b) regular mesh 4 bem-es; (c) irregular mesh 4 bem-es; (d) regular mesh 15 bem-es; and
(e) irregular mesh 15 bem-es.
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- Fig. 5b: regular mesh, through a domain subdivision into 4
bem-es having the same shape and dimensions;

- Fig. 5c: irregular mesh through a domain subdivision into 4
bem-es having different shapes and dimensions;

- Fig. 5d: regular mesh, through a domain subdivision into 15
bem-es having the same shape and dimensions;

- Fig. 5e: irregular mesh, through a domain subdivision into 15
bem-es having different shapes and dimensions;

In all the simulations the discretization of all the boundary types
was maintained constant by using a boundary mesh step p¼ 2 cm.

In Table 2 the solution in terms of nodal displacements of the
low corner and of stress at the coordinate point (�31,�7) is shown.
As can be noted, the solution remains almost the same, showing
values very close to those obtained with the analytical solution and
with SBEM single domain analysis.
Table 2
Nodal displacements and stress solution.

Displacement stress Analytical Single domain (a) Regular mesh 4 (b

Ux �0.000725 �0.000721 �0.000719
Uy �0.004838 �0.004917 �0.004918
sx �0.850500 �0.841943 �0.841885
sy 0 0.000111 0.000111
sxy �0.038250 �0.037747 �0.037744
In Fig. 5bee only the nodes belonging to the free boundary G2
are shown. These nodes represent the only unknowns in the
proposed formulation and define the dimensions of the algebraic
operator H22 which shows the same dimensions (218� 218) in all
the fourth multidomain simulations. Instead the dimensions of the
operator K20,20 are different since it provides the displacement
response both of the free boundaries G2 and of interface ones G0: (a)
regular mesh (332� 332), (b) irregular mesh (364� 364), (c)
regular mesh (650� 650), (d) irregular mesh (426� 426).

6.2. Application 2

In this application a masonry panel, having the dimensions
shown in Fig. 6a and thickness s¼ 40 cm, is considered. At first the
panel is thought of as a single body with homogeneous material,
while subsequently it is discretized according to different strategies
) Irregular mesh 4 (c) Regular mesh 15 (d) Irregular mesh 15 (e)

�0.000719 �0.000719 �0.000719
�0.004918 �0.004917 �0.004917
�0.841886 �0.839739 �0.841800
0.000113 0.000137 0.000111

�0.037740 �0.038627 �0.037734



Fig. 6. The masonry panel: (a) single domain; (b) regular mesh; (c) irregular mesh; and (def) strained shapes.
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(regular or irregular meshes), in the absence of mortar and gaps to
make a comparison with the single-domain solution.

Thepanel is subjected to boundaryexternal actions and to domain
actions: a distributed load at the topq¼ 2000 daN/m, a linear vertical
displacement imposed on the left support having maximumvalue at
the corner umax¼ 0.01 cm and the body force g¼ 1900 daN/m3.

The following physical characteristics were assumed: Young
modulus E¼ 35,000 daN/cm2, Poisson ratio n¼ 0.2. In order to
study this panel, two different domain discretizations were used.
Fig. 7. Mapping of principal stresses: (ae
- Fig. 6b: regular mesh, through a domain subdivision into 62
bem-es having the same shape and dimensions to simulate
a masonry panel made up of perfectly regular stones;

- Fig. 6c: irregular mesh, through a domain subdivision into 129
bem-e having different shape and dimension to simulate
a masonry panel made up of chaotic stones.

In both cases the solutionwas compared with the single domain
solution (Fig. 5a).
c) compression; and (def) traction.



Table 3
Nodal displacements and stress solution.

Displacement,
stress

Single
domain

Multidomain
regular mesh

Multidomain
irregular mesh

1 Ux �0.00626 �0.00629 �0.00628
Uy �0.01438 �0.01439 �0.01440

2 Ux �0.00662 �0.00664 �0.00661
Uy �0.01174 �0.01178 �0.01177

3 Ux �0.00440 �0.00444 �0.00442
Uy �0.00616 �0.00619 �0.00620

4 Ux �0.00587 �0.00575 �0.00575
Uy �0.01282 �0.01261 �0.01274

5 sx 0.38565 0.43196 0.41705
sy �0.12839 �0.11443 �0.10626
sxy 0.07566 0.08732 0.08398

6 sx �0.01450 �0.01193 �0.01351
sy �0.78158 �0.78416 �0.79431
sxy �0.02921 �0.02786 �0.02811
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In Fig. 6dee the three related strained shapes are shown.
The mappings of the maximum compression (Fig. 7aec) and

traction (Fig. 7def) principal stresses are shown. In all three cases
the stress distributions are approximately the same and the
maximum values are very similar and act in the same zone.

In Table 3 the solution in terms of nodal displacementsUx andUy

and of stresses sx, sy and sxy evaluated at 4 boundary nodes and 2
inner points, respectively, is shown. These points are indicated in
Fig. 6aec.

6.3. Application 3

Let us consider the same masonry panel as in Section 6.2, but
here considered as not homogeneous because of the presence of
Fig. 8. The masonry panel: (a) regular and (d) irregular meshes; (b), (e)
mortar. The global dimension and the thickness of the panel, as
well as the external actions, remain the same. The phys-
icalegeometrical characteristics of the stones are: dimensions
(79� 39� 40 cm), body force gs¼ 1900 daN/m3, Young modulus
Es¼ 35,000 daN/cm2, Poisson ratio ns¼ 0.2. The physicalegeo-
metrical characteristics of the mortar beds are body force
gm¼ 1400 daN/m3, Young modulus Em¼ 20,000 daN/cm2, Poisson
ratio nm¼ 0.2.

For this simulation two different domain discretizations were
utilized.

- Fig. 8a and c: regular mesh, through a domain subdivision
into 124 bem-es, i.e. 62 bem-es to simulate the regular
stones and 102 bem-es to simulate the presence of horizontal
and vertical mortar beds both having the same width
s¼ 1 cm.

- Fig. 8d and f: irregular mesh, through a domain subdivision
into 258 bem-es, i.e. 201 bem-es to simulate the chaotic
unformed stones and 57 bem-es to simulate the presence of the
mortar having a width varying between 1 and 3 cm.

In Fig. 8a and d the domain mesh discretization is shown,
whereas in Fig. 8b and e two details of the stone-mortar
connection are represented and in Fig. 8c and f the two strained
shapes.

In Fig. 9a, b, d, and e the mappings of principal traction and
compression stresses in the stones only are shown, where it can be
noted that the presence of themortar does not substantially modify
the inner distribution of the stresses and the related maximum
values. In Fig. 9c and f the distributions of the normal stresses are
shown along the horizontal and vertical sections, each computed at
70 points.
some details of stone-mortar connection; and (c, f) strained shapes.



Fig. 9. Stress distributions: (a, d) compression stress and (b, e) traction stress mappings; and (c, f) normal stress distribution along horizontal sections.

Table 5
CPU times with different displacement approaches.

Displacement
approaches

Nodal
interface
nodes

Nodal free
nodes

CPU times [s]

Regular
mesh

With interface variables 1474 52 82.5
With free variables 63.8

Irregular
mesh

With interface variables 2901 61 389.0
With free variables 290.2

L. Zito et al. / European Journal of Mechanics A/Solids 30 (2011) 82e94 93
In the vertical section made in the middle of the door opening
a different normal stress function may be noted. Indeed in Fig. 9c
the section passes through the vertical mortar layers and the
related normal stress value shows a very low value compared with
those computed in the low and upper stones. By contrast, in Fig. 9f
the function appears to be continuous.

In the horizontal distributions related to vertical stresses there
are some abrupt jumps. This is due to the position of the point
where the stress is computed, i.e. in the stone or in the mortar.

In Table 4 the solution in terms of nodal displacementsUx andUy

and of stresses sx, sy and sxy evaluated at 4 boundary nodes and 2
inner points, respectively, is shown. These points are indicated in
Fig. 8a and d.

Table 5 shows the CPU times required using the different
displacement approaches. These tests were performed on
a personal computer equipped with a 2.5 GHz Core2Duo processor
and 8 GB of Ram.
Table 4
Nodal displacements and of stress solution.

Displacement, stress Regular mesh Irregular mesh

1 Ux �0.00622 �0.00635
Uy �0.01450 �0.01513

2 Ux �0.00662 �0.00668
Uy �0.01194 �0.01201

3 Ux �0.00440 �0.00447
Uy �0.00630 �0.00672

4 Ux �0.00577 �0.00576
Uy �0.01283 �0.01345

5 sx 0.39412 0.38735
sy �0.03166 �0.04368
sxy 0.07775 0.08021

6 sx �0.011394 �0.01426
sy �0.77423 �0.79201
sxy �0.02766 �0.03001
7. Conclusions

Within the Boundary Element Method applied to in-plane
loaded structural systems, the symmetric formulation is of
considerable significance, mainly as regards the computational
aspects. In this formulation, a sub-structuring makes it possible to
obtain some results for bodies having zone-wise physical and
geometrical characteristics.

The approach proposed in this paper employs sub-structures
called, as in the FEM, bem-elements having large or small dimen-
sions, inside which the equilibrium and compatibility conditions
are satisfied at every point because the fundamental solutions are
used.

A displacement approach with free variables in which the main
variables are only thenodal displacements of the freeboundaryof all
the assembled system has been shown. This approach is a natural
evolution of the classical displacement approach with interface
variables developed by Panzeca and Salerno (2000) and Panzeca
et al. (2002b,c); this choice arises from the need to reduce the
computational burdenwhen themesh proves to be very dense as in
the case of elastoplastic analysis through step-by-step strategies.

For each bem-e a relationship between generalized tractions,
nodal displacements and external actions, all quantities defined
both on the interface between adjacent bem-es and on the free
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boundaries, is evaluated. The regularity conditions written at the
interfaces between the bem-es and a subsequent condensation
process lead to a solving equation system having reduced dimen-
sions due to the presence of only the nodal displacements of the
free boundary.

This strategy has been implemented inside the Karnak.sGbem
calculus code (Panzeca et al., 2002a) and some applications show
the effectiveness of the response compared to the analytical solu-
tions, when the latter are applicable, or to the single domain
formulation with the symmetric BEM.
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