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SUMMARY

In this paper the finite element method (FEM) for the mechanically based non-local elastic continuum
model is proposed. In such a model each volume element of the domain is considered mutually interacting
with the others, beside classical interactions involved by the Cauchy stress field, by means of central body
forces that are monotonically decreasing with their inter-distance and proportional to the product of the
interacting volume elements. The constitutive relations of the long-range interactions involve the product
of the relative displacement of the centroids of volume elements by a proper, distance-decaying function,
which accounts for the decrement of the long-range interactions as long as distance increases. In this
study, the elastic problem involving long-range central interactions for isotropic elastic continuum will be
solved with the aid of the FEM. The accuracy of the solution obtained with the proposed FEM code is
compared with other solutions obtained with Galerkins’ approximation as well as with finite difference
method. Moreover, a parametric study regarding the effect of the material length scale in the mechanically
based model and in the Kröner–Eringen non-local elasticity has been investigated for a plane elasticity
problem. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Classical continuum field theories, used in general context of elastic problems, yield useful solutions
in good agreement with experimental evidences in all cases such that the resolution scale of
the described problem is much larger than the internal dimension of the inner property of the
material. Analysis of physical and engineering problems that does not fulfil this latter condition is
nowadays faced in many contexts involving liquid crystals, biopolymers, shape memory alloys or
micro/nanostructured materials. Indeed the presence of the material length scale is unavoidably
loss in the continualization process leading to the field equations of continuum mechanics. The
main observation about the discrete nature of matter led to the use of lattice dynamics theory in
the analysis of engineering materials [1], but such an approach remains impracticable also for the
most modern computer facilities, albeit it is questionable since it is not well established whether
Newtonian mechanics apply at atomistic scale. As an alternative, some refinements of the theory
of continuum mechanics have been proposed, since the beginning of the sixties of the last century,
resorting to extensions of the theory of polar continuum [2], yielding the theory of micromorphic

∗Correspondence to: M. Zingales, Dipartimento di Ingegneria Strutturale, Aerospaziale e Geotecnica (DISAG),
Università degli Studi di Palermo, Viale delle Scienze Ed.8, I-90128, Palermo, Italy.

†E-mail: massimiliano.zingales@unipa.it

Copyright � 2011 John Wiley & Sons, Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53276166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FEM FOR THE MECHANICALLY BASED MODEL OF NON-LOCAL CONTINUUM 1559

continuum [3–6] or the quasi-continuum theories [7–10]. Indeed description of the inner state of
the matter by means of micromorphic continuum theory yields the modern multiscale approach
to computational mechanics [11–14] used very often in combination with Boundary Elements
Methods [15]. On the other hand, quasi-continuum field theories have been proposed in several
kind of physics and engineering problems since their first apparition at the beginning of seventies
[8, 16–19] and successfully applied in linear elasticity problems by closed-form solutions [20],
finite element method (FEM) [21, 22], as well as problems involving plasticity and damage [23–26]
yielding smeared stress field in close vicinity of discontinuities of the considered domains. As an
alternative, gradient methods accounting for the presence of an inner microstructure have been
introduced in the nineties [27, 28] and several applications of gradient theories have also been
proposed in context of cracks propagations or plastic material behavior [24, 29–32]. Beside the
large amount of research efforts in the field of non-local mechanics that has been based on integral
or gradient theories, at the beginning of the century a different non-local mechanics theory, dubbed
peridynamic elasticity theory, has been introduced [33–37]. Within this theory long-range forces
between different elements of an elastic body have been introduced to equilibrate external and
inertial interactions. Such long-range forces result in integral terms that depend on the relative
displacements of the interacting elements. In this way the requirement of differentiability of the
response fields is no more necessary and a wide range of applications in the context of damage
and fracture mechanics have been reported in the scientific literature [38].

Very recently an alternative approach in the field of non-local elasticity [39], dubbed mechan-
ically based non-local elasticity has been proposed. This approach may be considered a fusion
between the main concepts of the peridynamic theory, the fundamental of lattice dynamics as well
as Eringen’s integral model of elasticity [40]. This model is mainly a two-scale model in which,
beside the classical local stress between adjacent volumes there is another kind of interaction
between non-adjacent volumes accounting for the inner material microstructure. These latter are
long-range central elastic bonds between non-adjacent volume elements. The long-range interac-
tions are modeled as central body forces, monotonically decreasing with the inter-distance between
interacting elements. The interactions have been assumed to depend on the relative displacements
of the body elements and to be proportional to a proper, material dependent, distance-decaying
function that is monotonically decreasing with the distance of interacting volumes. The proposed
model of elastic continuum has proved to be thermodynamically consistent [41] as well as to
fulfill all the basic theorems of linear elasticity theory [42]. The model, originally proposed in
static setting for a simple 1D case has been extended to wave scattering [40] as well as to static
analysis of general type of 3D elastic problems [43]. Remarkably, the mechanical boundary condi-
tion may be enforced without any difficulty since body forces do not affect the equilibrium of the
Cauchy tetrahedron at the boundaries so that the traction-type boundary conditions involve, only,
the Cauchy contact stresses.

The main governing equations of the theory, formulated in terms of displacement fields, are
of integro-differential type and closed-form solutions could be obtained only for very specific
functional class of decaying function and unbounded domains [44]; otherwise, finite differences
or analytical, approximate strategies [45] must be used to provide approximate solutions. The
main criticism to latter methods of solution of the governing equations of the mechanically based
approach to non-local mechanics is related to the fine discretization grid necessary within finite
difference methods (FDM) or to the difficulties in handling complex boundaries within approximate
analytical methods.

The need for more reliable and easy-to-code numerical methods in handling non-local elastic
problems with long-range interactions motivates the present study that extends the displacement-
based version of the FEM to the analysis of elastic problem with long-range interactions.

The governing field equations of the elastic continuum with long-range central interactions
have been formulated in a variational weak form and the solid domain has been discretized into
non-local finite elements.

The element equations have been then obtained resorting to an approximation of the unknown
field in the element domain with the use of shape functions. The resulting equilibrium matrix
equations may be decomposed into the classical sparse, local stiffness matrix contribution due
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to the local Cauchy stress and a fully populated non-local stiffness matrix. Both matrices are
symmetric, well conditioned and positive definite.

Some numerical applications involving 1D and 2D elastic problems are presented to show the
capabilities of the proposed method of solution contrasting the FEM results with other results
previously obtained via approximate analytical methods. The analysis reported in the paper shows
that even for linear elements, accurate solution of the non-local elastic problem may be obtained.
The paper is organized as follows: In Section 2 the main general concepts of the mechanically
based approach to non-local mechanics is reported. In Section 3 the formulation of the non-local
finite element model is provided on variational basis yielding the element equations for the general
three-dimensional elasticity. Some numerical applications have been reported in Section 4. Section
5 has been devoted to a discussion of the connections and the differences between the mechanically
based non-local elasticity, peridynamic non-local theory and Kröner–Eringen integral theory.

2. THE MECHANICALLY BASED MODEL OF NON-LOCAL ELASTICITY

In this section a brief outline of the mechanically based approach of the non-local model will
be summarized. Let us consider a linear elastic solid embedded in a region V of an Euclidean
space and referred to the orthogonal reference system reported in Figure 1. Let us denote Sc the
constrained part of the surface where the displacement are assigned and Sf the free part where the
external tractions are assigned. Then S= Sf∪Sc is the total surface of the solid.

Let u(x)={uk(x)} be the displacement vector field at location xT= [x1, x2, x3]. In the following
we denote p̄n the assigned tractions on S f and ū(x) the assigned displacements on Sc, moreover
let b̄(x)={b̄k} be the external body vector force field. The mechanically based model takes into
account two kinds of interactions between different volumes: The contact stress (The classical
Cauchy stress) and some non-local interactions between adjacent and non-adjacent volumes. The
non-local interactions between solid volume elements are modeled as central body forces applied
on volume element located in x, denoted as dV (x), by each elementary volume elements located at
position n. Let q(x,n)={qk(x,n)} be the specific long-range interactions exerted at the location x by
the volume element located in n. Since the non-local body forces are central, then the components
of the specific long-range interactions vector field read:

qk(x,n)=|q(x,n)|rk(x,n), k=1,2,3 (1)

where |q(x,n)|= (qk(x,n)qk(x,n))1/2 is the norm of long-range interactions (convention of repeated
symbols is adopted), and rk(x,n) the kth component of the unitary vector associated with the
direction x−n, and then it reads

rk(x,n)= (xk−�k)

[(xi−�i )2]1/2
(2)

u(x)

u( )

Figure 1. Volume elements in 3D solid.
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Vector q(x,n) is modeled as:

q(x,n)=G(x,n) ·g(x,n) (3)

where [·] ·[·] is the tensor contraction operator, g(x,n)={�k(x,n)} is the relative displacements
field represented by g(x,n)= (u(x)−u(n)) and the directional double symmetric tensor G(x,n)=
{gik(x,n)} gathers, under the assumption of isotropic solid, elements in the form:

gik(x,n)=g(x,n)Jik(x,n) (4)

being J(x,n)={Jik(x,n)} the Jacobi tensor defined as: Jik(x,n)=ri (x,n)rk(x,n) (see [41]). The
scalar-valued function g(x,n) is a distance-decaying function that accounts for the consideration
that all long-range interactions decay with the interdistance |x−n| and it will be assumed in the
form: g(x,n)=g(|x−n|).

The introduction of the long-range interactions among non-adjacent volume elements involves
additional terms in the field equilibrium equation. The resultant non-local elastic equilibrium
problem is governed by the system of differential equations:

div[r(l)(x)]=−b(x)−f(x), x∈V (5a)

e(x)=∇s[u(x)], x∈V (5b)

r(l)(x)=D :e, x∈V (5c)

where div[·] is the divergence operator (div[r(l)(x)]={�ik,k(x)}) and [·],i means differentiation
with respect to the field variable xi . We denoted r(l)(x)={�ik(x)} the double and symmetric
Cauchy tensor field, e(x)={�ik(x)} the, double and symmetric, strain tensor field that related to
the symmetric component of the gradient operator as: ∇s[u(x)]={1/2(ui,k(x)+uk,i (x))}. In the
constitutive relation in Equation (5c) D={Dikml} is the symmetric, fourth-order tensor of the elastic
constants that, under the assumption of hyperelastic and isotropic material, is expressed in terms
of Lamé constants � and � as

Dikml=��ik�ml+�(�im�kl+�il�km) (6)

where �ik is the Kronecker delta. The Lamé constants are related to Young’s modulus E and to
the Poisson ratio 	 by the well-known expression:

�= E	

(1+	)(1−2	)
�= E

2(1+	)
(7)

The extra term in the equilibrium equation (5a), f(x)={ fk(x)} is the resultant of the internal
long-range interactions applied on volume dV (x) by all the surrounding non-adjacent volume
elements of the body that is represented as

f(x)=
∫

V
q(x,n)dV (n)=

∫
V

G(x,n) ·g(x,n)dV (n) (8)

with each component as:

fk(x)=
∫

V
qk(x,n)dV (n)=

∫
V

gki(x,n)�i (x,n)dV (n) (9)

The governing equations of the elastic problem formulated in Equations (5)–(9) may be cast, in
Navier form involving only kinematic variables as:

�∇2uk(x)+(�+�)
1,k(x)+
∫

V
gki(x,n)�i (x,n)dV (n)+bk=0 (10)
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where 
1,k(x)=ui,ik is the gradient of the first invariant of the strain tensor e and ∇2[·]= [·],ii is the
Laplacian operator. Static and kinematic boundary conditions associated with the field governing
equations in Equation (10) reads [43]

u(x)= u(x) x∈ Sc (11a)

r(l)(x) ·n= pn x∈ Sf (11b)

the governing equations of the static equilibrium problem in Equations (10) and (11) may also be
obtained as the Euler–Lagrange equations and associated natural boundary of the total potential
energy of the elastic solid with long-range interactions. It is to be stressed that the mechanically
boundary conditions in the mechanically based theory simply remain the classical ones since the
non-local forces are body forces and then they do not affect the equilibrium equations of the
Cauchy tetrahedron at the boundaries. More details on this crucial point of the theory may be
found in [43].

It has been shown in previous papers (see e.g. [43]) that the mechanically based non-local
elasticity theory may be contrasted, efficiently, with the Kröner–Eringen non-local elasticity theory
in the 1D case either for unbounded and bounded domains. Moreover, in 1D analysis an exhaustive
discussion between the mechanically based model of non-local elasticity, the Kröner–Eringen non-
local elasticity and the peridynamic theory has been reported in [40]. Under the assumption of
vanishing contact stress, the mechanically based model of non-local elasticity is exactly coalescing
with the peridynamic theory in the 1D case. The aforementioned observations lead to the conclusion
that, in 1D case, the mechanically based model of non-local elasticity may be considered a hybrid
model between different non-local theories in unbounded domains. In bounded domains, instead,
the mechanical boundary conditions may be imposed in terms of the local stress as the applied
surface tractions at the boundaries as already discussed. This cannot be done with lattice theory
or the peridynamic theory because, at the boundaries of the elastic domain, the external pressure,
which is a contact interaction, cannot be equilibrated by volume body forces.

In a generic 3D problem, a direct comparison of the expressions of the long-range forces
involved by the peridynamic theory of non-local elasticity [33] with the interactions involved by
the mechanically based non-local elasticity shows that they coincide, as far as the assumption of
unstressed reference state is postulated in the peridynamic model (see Equation (61) in [33]).

On one hand this consideration may lead to consider the mechanically based model of non-local
elasticity as a particular case of peridynamic theory, in the unstressed reference state, involving
the additional contribution of the Cauchy contact stress to account for the traction-type boundary
conditions. On the other hand, it exhibits a main difference between those two theories in the
presence of a distributed set of long-range forces in the reference state of the solid, repulsive
or attractive for some values of the interaction distances that, in the peridynamic theory, do not
contain any Jacoby directional tensor [33]. As in fact, it may be observed from straightforward
manipulation of Equations (53), (61) in [33] that in the presence of internal forces, non-central terms
are involved in the peridynamic models. A different scenario is encountered in the mechanically
based non-local elasticity since the existence of an internal body force field in the unstressed
state must be accounted introducing an initial body force field represented by a Jacoby directional
tensor. In fact the mechanically based model of non-local elasticity is based on the assumption
that all the long-range interactions are always modeled by central-type long-range forces as in
the complex network of springs of lattice dynamics. In passing we remark that the presence of
long-range interactions beside the classical Cauchy stress as in the mechanically based model of
non-local elasticity corresponds to a multiscale mechanical model. In fact local Cauchy stress is
experienced at macroscopic level, whereas the long-range interactions appear as we consider a
refined model of the solid body (i.e. a mesoscopic picture of the solid) useful to describe fracture
mechanics or voids nucleation in the material structure.

Summing up the mechanically based model of non-local elasticity may be considered formally
similar to the peridynamic theory but it is de facto a different model since it has been built upon
the mechanical equivalence of a complex network of springs. This model corresponds, always
to a central-type model of long-range interactions also in the presence of internal forces in the
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reference configuration. The model, which is intrinsically a multiscale description of the solid
body behavior, may be enriched of additional contributions as the presence of long-range moments
describing the behavior of polar materials. This is, anyway, beyond the scope of the paper and it
will be considered in a separate study.

The variational form of the elastic equilibrium problem will be used in the next section to
formulate the finite element equations of the elastic problem with long-range central interactions.

3. DISPLACEMENT-BASED FINITE ELEMENTS IN THE PRESENCE OF LONG-RANGE
CENTRAL INTERACTIONS

The elastic problem reported in the previous section may be cast in terms of the total elastic
potential energy. This is a convenient formulation to provide the basic element equations of the
FEM. Similar considerations may be provided resorting to a weak form of the governing integro-
differential equation reported in Equations (10) and (11) (see [42, 45]). The total potential energy
�(u,e,g) of the elastic equilibrium problem is defined as �(u,e,g)=�(e,g)+P(u) where the
potential energy of the external, conservative loads P(u) is represented by

P(u)=
∫

V
P (r )(u,x)dV (x)+

∫
Sf

P (s)(u,x)dSf(x) (12)

where P (r )(u,x) and P (s)(u,x) are given by

P (r )(u,x)=−b̄(x) ·u(x), P (s)(u,x)=−t̄n(x) ·u(x) (13)

and �(e,g) is the elastic potential energy of the solid that is provided in the form [42, 43]:

�(e,g)= 1

2

∫
V
e(x) :D :e(x)dV (x)+ 1

4

∫
V

∫
V
g(x,n) ·G(x,n) ·g(x,n)dV (n)dV (x) (14)

so that the total potential energy of the elastic problem giving the governing equations already
shown in Section 2 reads:

�(u,e,g)= 1

2

∫
V
e(x) :D :e(x)dV (x)+ 1

4

∫
V

∫
V
g(x,n) ·G(x,n) ·g(x,n)dV (n)dV (x)

−
∫

V
P (r )(u,x)dV (x)−

∫
Sf

P (s)(u,x)dSf(x) (15)

It has been proved in a previous paper [45] that the solution of the elastic problem corresponds to a
minimum of Equation (15). Analytical solutions of the 3D elastic problem with long-range forces
non-local interactions are not available and only some numerical approximate solution based of
finite differences have been previously exploited [43].

In the FEM solution we basically introduce a proper discrete mesh subdividing the volume V
of the solid into disjoint volume elements Vi (i, j=1,2, . . . ,n) with common vertices shared by
adjacent volumes defined as mesh nodes. The discrete mesh is such that V =V1∪V2∪·· ·∪Vn . So
that the following relation:

�(u,e,g)=
n∑

i=1
�i (u,e,g)=

n∑
i=1

(�i (e,g)+P (r )
i (u)+P (s)

i (u)) (16)

holds true. The approximation involved in the finite element scheme is related to the interpolation
of the displacement field within the volume element Vi (x), denoted ui (x) and represented in the
form:

ui (x)=Ni (x)di , i=1,2, . . . ,n (17)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 86:1558–1576
DOI: 10.1002/nme



1564 M. ZINGALES, M. DI PAOLA AND G. INZERILLO

where Ni is the matrix collecting the interpolation functions and di is the vector of the unknown
nodal displacement. The element equations of the proposed model of non-local elasticity may be
obtained introducing Equation (17) into the generic contribution in Equation (16), yielding:

�i (ui ,ei ,g)∼=�i (ei ,g)+
∫

Vi

P (r )
i (ui ,x)dVi (x)+

∫
Si

P (s)
i (ui ,x)dSi (x) (18)

where the elastic potential energy of the i th volume element is expressed in the form:

�i (ei ,g)= 1

2
dT

i

∫
Vi

Bi (x)TD̄Bi (x)dVi (x)di

+1

4

n∑
l=1

∫
V

∫
Vi

[g(x,n)]TG(x,n)g(x,n)dVi (x)dV (n) (19)

where we denoted D̄ the 6×6 compliance matrix of the material, listing elements D̄ij=
−��ij/[2�(3�+2�)]+1/(2�), corresponding to the fourth-order tensor D as major and minor
symmetries have been accounted for, and

Bi (x)=∇s[Ni (x)] (20a)

g(x,n)= u(n)−u(x)=N(n)d j−Ni (x)di (20b)

The main consideration that may be withdrawn from the observation of Equation (19) is related
to the sum of n double integral at the right-hand side of Equation (19) that is extended to each
couple of dV and dVi j=1,2, . . . ,n in the solid body domain. The presence of this additional
term is due to the long-range interactions as it represents the amount of elastic energy stored
in the long-range bonds. Moreover, it may be observed that the elastic potential of element Vi
do involve displacement field in the whole body due to the sum in Equation (19). To this aim
let us define the N -dimensional nodal displacement vector of the whole discretized structure as
dT= [d1d2 . . .dN ] gathering the nodal displacements of all the nodes of the solid body elements
so that the nodal displacement di may be obtained by means of the boolean, connectivity matrix
Ci of the i th element as:

di=Ci d, i=1,2, . . . ,n (21)

Substitution of Equations (20b) and (21) into Equation (19) yields the compact expression:

�i (ei ,g)= 1
2 (dT(K(l)

i +K(nl)
i )d) (22)

where we denoted K(l)
i the classical local stiffness matrix accounting for contact stress of the i th

volume element and K(nl)
i is the non-local stiffness matrix accounting for the long-range interactions.

These two stiffness matrices may be expressed in the form:

K(l)
i =

∫
Vi

(Bi (x)Ci )
TD̄Bi (x)Ci dVi (x) (23a)

K(nl)
i =

1

2

n∑
j=1

∫
Vi

∫
V
{N(n)C−Ni (x)Ci ·}TG(x,n)

×{N(n)C−Ni (x)Ci }dV (n)dVi (x) (23b)

So that the total potential energy associated with the finite volume element Vi reads:

�i (d)= 1
2 (dT(K(l)

i +K(nl)
i )d)−fT

i d (24)
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where the external load vector reads:

fi=
∫

Vi

Ni (x)Ci b(x)dV (x)+
∫

Si

Ni (x)Ci tn(x)dSi (x) (25)

By introducing Equation (24) into Equation (16) the total potential energy is provided as:

�=�(d)= 1
2 (dT(K(l)+K(nl))d)−fTd (26)

and

K(l) =
n∑

i=1
K(l)

i (27a)

K(nl) =
n∑

i=1

n∑
j=1

K(nl)
ij (27b)

where

K(nl)
il = 1

2

∫
Vi

∫
Vj

{N(n)C−Ni (x)Ci }TG(x,n)

×{N(n)C−Ni (x)Ci }dV (n)dVi (x) (28)

It is worthy noticing that the non-local stiffness matrix K(nl) is a fully populated, symmetric and
positive-definite matrix. The character of positive definition of the stiffness matrix K(nl) is fully
accomplished as long as the strong formulation of the Drucker stability principle is fulfilled in the
whole domain (see [41] for more details). The elastic equilibrium problem involving the solution
of the nodal displacement vector d of the mesh grid is obtained by the condition:

��= ��

�d
�d=0 ∀�d⇒Kd−f=0 (29)

where we introduced the total stiffness matrix of the considered elastic solid in the form:

K=K(l)+K(nl) (30)

At this stage some comments involving the non-local stiffness matrix represented in Equation
(27) are necessary. In fact the band of the stiffness matrix K is larger than the band of the stiffness
matrix containing only the local terms K(l). This is due to the presence of non-vanishing terms
K (nl)

ij =K (nl)
ji that represents the stiffness of the long-range bonds between elements Vi and Vj so

that the computational efforts to solve by numerical inversion the algebraic system in Equation (29)
may become very large. Those contributions are, however, rapidly vanishing with the interdistance
of the interacting elements and thus it is convenient, for numerical purposes, the introduction of
a central parameter L R that represent the radius of the horizon of significative long-range effects
(Figure 2). In this context an FE library may be built accounting for self-stiffness contributions
K (nl)

ii and only a subset of cross-terms K (nl)
ij conveniently chosen and depending on the relative

distance between the couple of element considered. In this context an optimization of the computer
code may be obtained allowing for a significative time-saving in the assembly of non-local stiffness
matrices.

4. NUMERICAL APPLICATIONS

The proposed FEM to solve the elastic problem posed within the mechanically based model of non-
local elasticity has been applied in this section two cases: (i) An 1D elastic bar in simple traction;
(ii) A plane elasticity problem involving a squared domain under external boundary tractions. Both
cases have been contrasted with the solution obtained with approximate analytical methods used
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Figure 2. Triangular elements with centroids. Matrices K(nl)
il relative to yellow elements are computed for

the evaluation of the element matrix K(nl)
i .

Figure 3. Mesh of a 1D bar.

by the authors in previous papers. The numerical codes used have been structured as shown in
Algorithm (1): from line 1 to 8, the code evaluates, for any element i(i=1,2, . . . ,n), the elements
within the horizon radius L R by means of the distance between their centroids xG

i and xG
j , and

collects them in the array NeighElm(i). In line 10, elements of the global stiffness matrix are
initialized to zero and, from line 11 to 19, two nested loops assemble the global stiffness matrix
K and the load vector f; then, a sub-routine called FindUnknown() supplies an array collecting
indices of unknown displacements in order to condition the stiffness matrix for the solution.

4.1. 1D elastic bar in tension

Let us consider an elastic bar of length L=20cm, with uniform cross-section A=1cm2 and
Young’s modulus E=2.1106 daNcm−2, loaded with a self-equilibrated couple of external loads
F=100daN. The bar, depicted in Figure 3, is subdivided along the direction x in n elements of
constant length �x with nodes coordinates xi= i�x and xi+1= (i+1)�x . The FEM solution has
been obtained assuming a linear displacement field so that the vector of the shape function is
provided in the form:

N(i)(x)=
(

xi+1−x

xi+1−xi

x−xi

xi+1−xi

)
(31)

and, considering Equation (20a)

B(i)(x)=
(
− 1

xi+1−xi

1

xi+1−xi

)
(32)
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The code looks for the element far L R or less from the i th element;1

for i←1 to n do2

for l←1 to n do3

if |xG
i −xG

l |�L R then4

NeighElm(i)← Union(NeighElm(i),l)5

end6

end7

end8

Assembly of K;9

K =0;10

for i←1 to n do11

K←K+K(l)
i ;12

f← f+fi ;13

Assembly of K(nl)
i ;14

for l← NeighElm(i) do15

K(nl)
i ←K(nl)

i +K(nl)
il ;16

end17

K←K+K(nl)
i ;18

end19

s← FindUnknown() ;20

K̃←K (s,s);21

f̃← f (s) ;22

ũ← K̃
−1

f̃;23

Algorithm 1: Non-local FEM procedure.

The decay function, according to [41], has been chosen in the form:

g(x,�)= �E

2�A2
e−|x−�|�−1

(33)

In order to compare the results with the ones supplied by the finite difference code developed
previously [43], for this 1D problem, all the non-local element matrix K(nl)

ij will be considered
corresponding to L R→∞. The numerical results obtained with the FEM code have been repre-
sented in Figures 4(a) and (b). In Figure 4(a) the displacement field along the bar has been reported
for different values of the internal length �. It may be observed that, as far as the internal length
increases, a stiffer model is involved and stronger non-local effects may be detected. This is
mechanically due to the consideration that more and more springs are involved in the model as
far as the internal length � increases.

The estimation of the relative error involved in the FEM discretizaton has been evaluated
resorting to measure of the elastic potential energy of the bar. To this aim in Figure 4(b), we
represented a non-dimensional ratio |�−�̄|/�̄ vs number of elements in the mesh where � is the
elastic potential energy of the discretized model and �̄ is the total elastic energy calculated with an
FEM solution of 2000 elements and assumed as benchmark solution . The observation of Figure 4
shows that in all the cases analyzed the FEM achieves faster convergence with respect to FDM.
The additional computational effort to evaluate displacements, stress and strains within FEM for
non-local mechanics is related only to the construction of the non-local stiffness matrix K(nl) since
for each element we need to evaluate the local stiffness matrix K(l)

i and n stiffness matrices K(nl)
ij

(Figure 5).
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Figure 4. Axial displacement (a) Elastic potential energy convergence for different � (�=0.9) (b).
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Figure 5. Eight hundred and ninety-six elements FE mesh (479 nodes—940 DOF)
(a); square plate in plain stress state (b).

4.2. A 2D plane elasticity problem

Let us consider a squared elastic layer of edge L , in plane stress state, loaded by a self-equilibrated
system of constant traction �11(±0.5 ·L , y)=50×103 daNm−2 on two opposite edge and with
mechanical parameters selected to E=2.1×1010 daNm−2, 	=0.3. The decaying function is
assumed as

g(x,n)=Ce−|x−n|�
−1

(34)

where C=1014 daNm−2 and �=0.1m as reported in [41]. Numerical results have been compared
with those supplied by the FDM and Galerkin approximations used in previous papers [43] and
henceforth no horizon have been included (L R→∞) including all the elements in the evaluation
of the non-local stiffness matrix K(nl). The domain has been meshed with triangular linear elements
with 3 Gauss integration points and the result obtained have been contrasted with a Galerkin
solution and an FDM one [41] and the mesh grid has been refined near to the boundaries to
highlight the higher gradients of the displacement function. The program developed in MATLAB�

to implement the FEM ran for 2577 s to compute the solution, whereas the FDM program used in
[41] ran for 4372 s on the same machine and operating system. Figure 6 shows that FEM solution
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Figure 6. (a) Displacement component u1 and (b) strain component �11 along
section planes parallel to the x1 axis.

Figure 7. �11(x1, x2) for �=0.5.

totally fits the others (FDM and Galerkin) which, together with the shorter computing time, shows
the efficiency of the algorithm proposed. The stress fields �11 and �12 have been reported in
Figures 7 and 8 of the �ij(x1, x2) for a prescribed value of the internal length �=0.5mm.

The introduction of the horizon parameter L R enhances the effciency of the FEM code as
expected; In fact assuming that, for example, the horizon radius proportional to the internal length
� L R= ln (400)� or L R= ln (100)� the reduction of the computational time is, respectively, of 76%
and of 84% with respect to the absence of the horizon. In fact in this latter case all the matrices
K(nl)

ij must be evaluated. A parametric study of the influence of the horizon radius L R may be
performed introducing the ratio:

rg= g(0)

g(L R)
=eL R/� (35)

so that we may evaluate the changes of the total elastic energy, measured by the ratio |�−�̄|/�̄ for
different values of rg as reported in Figure 9. When rg≈100 the order of magnitude of the relative
error is very small (10−3) although the solution shows small but still visible differences on the core
of the squared domain. Several other numerical applications with higher-order interpolation of the
displacement field and Gauss integration points have been investigated. More precisely, elements
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Figure 8. �12(x1, x2) for �=0.5.
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Figure 9. Relative error of the internal elastic energy versus rg parameter.

with 4 and 7 Gauss points have been used. The time required to solve the 2D test problem is
2577 s with 3 Gauss points, 6363 s with 4 Gauss points and 10 941 s with 7 Gauss points. Anyway,
Figure 10(a) shows that the gain in precision is quite small when higher polynomials are employed
for the integration of the stiffness matrices; hence, in our opinion, 3 Gauss points elements are
a reasonable choice in order to achieve good precision and faster computations. Furthermore, the
mechanically based model has been tested also with a 8-node QUAD element FEM whose results
are shown in Figure 10(b). The comparison here proposed is between a 896 element solution
with 3-node triangular elements with 3 Gauss points and a 400 element regular mesh solution
with 8-node serendipity elements with 9 Gauss points. However, the increasing precision of the
latter solution with a consistent increment of the computational time corresponds to very small
differences in the accuracy of the result with respect to the rough triangular mesh originally used.

In authors’ opinion, this is due to the intrinsically mechanical representation of non-local effects
as long-range forces that in this theory they depends only on the relative displacement field; so
that, as far as displacement field is accurate enough, no significant error is included in the non-
local terms. This is an important issue of the used non-local theory since it allows to formulate a
FEM code for non-local problems in standard fashion with high accuracy yet with single linear
elements.
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Figure 10. Comparison of the strain component �11 along section planes parallel to the x1 axis among
different numbers of Gauss points (a) and between triangular and 8-node quadrangular elements (b).

As the validation of the proposed FEM code to analyze non-local systems in the presence of
long-range interactions has been assessed by the previous considerations, a numerical comparison
with the Eringen integral model of non-local elasticity for the plane elasticity problem illustrated
in Figure 5(b) has been reported. The numerical solution of Eringen’s model of non-local elasticity
has been obtained by means of a finite element code with 8-node serendipity rectangular elements
and 9 Gauss points (see e.g. [16] for details). In fact, the triangular finite element code that has
been used for the mechanically based model yield a too rough solution as applied to Eringen’s
model. The stress field �11 and the ε11 strain field have been evaluated for both models and for
different values of the internal length �. In the mechanically based model of non-local elasticity,
the stress field coincides with the classical Cauchy local stress whereas in Eringen’s approach the
stress field is a non-local field, dubbed as r̂(x), and defined as follows [16]:

r̂(x)=�1D :e(x)+�2

∫
V

g(|x−n|)D :e(n)dV (n), (36)

where D is the elastic fourth-rank tensor, e is the strain tensor, �1 and �2 are the volume fractions
of the local and non-local material, respectively, such that �1+�2=1. Function g(|x−n|) is the
attenuation kernel of Eringen’s model that has been selected, for the sake of numerical comparison,
in the same functional class of 34 that reads [16]:

g(|x−n|)= 1

2�2s
e−|x−n|�

−1
(37)

where s is the plate thickness. In the reported numerical comparison we have selected �1=�2=0.5
according to [16]. In order to evaluate the stress field for each Gauss point, Equation (36) can be
written as follows:

r̂(x)∼=�1D :e(x)+�2
∑

j∈Ei

∫
Vj

g(|x−n|)D :e(n)dV (n), (38)

where Ei is the set of elements whose centroid is far or less than L R=6� from centroid of the i th
element. In fact, as for the non-local matrix assembly, it is fair to assume that also the evaluation of
the stress field of Eringen’s model can be simplified neglecting elements further than a prescribed
distance, namely L R , which depends on the internal length �. Hence, approximating the integral
of the j th element volume Vj in Equation (38) we obtain

r̂(x(k)
i )=�1D :e(x(k)

i )+�2
∑

j∈Ei

9∑
l=1

g(|x(k)
i −x(l)

j |)D :e(x(l)
j )Vjw(l), (39)
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Figure 11. �11(x1, x2) plots of the study case of Figure 5(b) for different values of �: (a) mechanical-
ly-based �=0.05[m]; (b) eringen �=0.05[m]; (c) mechanically-based �=0.1[m]; (d) eringen �=0.1[m];

(e) mechanically-based �=0.5[m]; and (f) eringen �=0.5[m].

with x(k)
i being the coordinate of the kth Gauss point of the i th element and w(l) the weight

coefficient related to the lth Gauss point of the generic element. The stress field pattern is shown in
Figure 11 both for Eringen and the mechanically based model of non-local elasticity. The Eringen
model has been analyzed by [21] FEM method as discussed in Equations (36)–(39).

It may be observed that contrasting the stress field for different values of the internal length
scale �, for the mechanically based model, the non-local behavior is vanishing as the internal
length decreases, recovering the constant value on the entire domain. Eringen’s model instead
tends to recover the local solution only in the inner part of the domain and on the loaded edge
while it exhibits lower values on the two opposite free edges which become more marked as �

decreases. The strain field �11 corresponding to the mechanically based and the Eringen model of
non-local elasticity have been reported in Figure 12 for different values of the internal length. It
may be observed that, in the mechanically based model the local solution is recovered as �→0
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Figure 12. �11(x1, x2) plots of the study case of Figure 5 for different values of �: (a) mechan-
ically-based �=0.05[m]; (b) eringen �=0.05[m] and local solution; (c) mechanically-based
�=0.1[m]; (d) eringen �=0.1[m] and local solution; (e) mechanically-based �=0.5[m]; and

(f) eringen �=0.5[m] and local solution.

since the strain is just a linear combination of local stress fields. In Eringen’s model, instead, the
local solution of classical elasticity is only partially recovered in the core domain showing higher
values on the edges with peaks on the corners.

Even if there are no experimental results which can establish the absolute accuracy of the
mechanically based model among others, in the authors’ opinion the model proposed here actually
simplifies the position of boundary conditions with respect to other non-local models and it shows
a complete consistency over the class of decay function that are symmetric and strictly positive.
The Eringen model, on the other hand, exhibits a different behavior of the solution close to the
borders of the domain. This, in the authors’ opinion, means that the Eringen model may be used to
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describe phenomenological behaviors which are different form those predicted by the mechanically
based model, although both of them are non-local in nature.

5. CONCLUSIONS

The paper has been devoted to the formulation of an FEM for non-local problems that is consistent
with the mechanically based non-local elasticity theory, recently proposed. The method has been
developed formulating the elastic equilibrium problem in weak form by means of the total potential
energy functional. As in classical FEM a discretization of the domain and the approximation of
the displacement function in each subdomain yields the algebraic equations of the FEM in the
unknowns reported by nodal displacements. The matrix coefficients of the algebraic system report
local and non-local contributions and both are symmetric and positive definite (upon the application
of boundary conditions).

The numerical studies handled in the paper have been reported to challenge the capabilities of
the FEM with respect to other solution methods used in previous studies. The analysis has been
carried out in 1D and 2D cases and several types of finite elements with different orders of the
interpolation of the unknown function have been used. All the analysis have shown that the use of
higher-order in interpolation of the displacement fields does not involve an appreciable increase of
the accuracy of the solution with respect to the use of linear triangular finite elements. Therefore,
only the results obtained with triangular finite elements have been reported in the paper contrasted
with the solution obtained via other approximate methods. It has been shown that the solution
obtained with the proposed FEM is more convenient with respect to FDM or other approximate
methods both in the 1D and in the 2D cases studied.

In the 1D case the terms involved in the evaluation of FE non-local matrices may be obtained
in closed-form whereas in the higher-dimensional domain an approximate evaluation of integrals
via Gauss quadrature methods must be used. The numerical studies conducted shown that the
order of the quadrature does not affect the quality of the solution and henceforth a coarse 3 Gauss
points quadrature may be considered without a significative loss of accuracy in the numerical
results. This aspect is closely related to the mechanically based model of non-local elasticity
that introduces the long-range forces in terms of the relative displacements between interacting
volumes. Therefore, as far as a sufficiently accurate representation of the displacement field in
the solid is achieved, as with linear triangular finite elements, no significative enhancement of the
accuracy of the FEM solution is obtained for higher-order quadrature. Similar considerations hold
true also in terms of the order of the approximation of the displacement field within the finite
element used.

We therefore conclude that the proposed FEM is a convenient choice to handle non-local
problems in the context of the mechanically based model of non-local elasticity.
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