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ABSTRACT 
Copy-move forgery is one of the most common type of tampering 
in digital images. Copy-moves are parts of the image that are 
copied and pasted onto another part of the same image. Detection 
methods in general use block-matching methods, which first 
divide the image into overlapping blocks and then extract features 
from each block, assuming similar blocks will yield similar 
features. In this paper we present a block-based approach which 
exploits texture as feature to be extracted from blocks. Our goal is 
to study if texture is well suited for the specific application, and to 
compare performance of several texture descriptors. Tests have 
been made on both uncompressed and JPEG compressed images. 
 

Categories and Subject Descriptors 
I.4.7 [Image Processing and Computer Vision]: Feature 
Measurement - Texture 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Image Forensics, Copy-Move Forgery, Texture descriptors. 

1. INTRODUCTION 
In today’s digital age, the creation and manipulation of digital 
images, by using commercial software tools, is very simple and 
diffuse. As a result, it is very difficult to verify the authenticity 
and the integrity of a digital image. Digital Image Forensics deals 
with the problem of certifying the authenticity of a picture, or its 
origin, without explicit a priori information, e.g. using 
watermarks.  Nevertheless the need of digital techniques for 
image authentication has been widely recognized, Digital Image 
Forensics is still a new research field in the Image Processing 
area. For a complete overview of the state of the art in Image 
Forensics see [1].  

Three are the main branches in this research field: 

- Image Source Identification, which aims to identify which 
device was used to capture an image (model or exemplar of 
scanner, of digital camera); 

- Discrimination of computer generated images, to detect if an 
image is natural or synthetic; 

- Image Forgery detection, to discern if an image has been 
intentionally modified by human intervention. 

In our work we investigated the problem of detecting image 
forgeries. Images can be doctored in several ways: photo-
compositing, re-touching, enhancing are only some examples of 
typical image alterations. Although many tampering operations 
generate no visual artifacts in the image, they will nevertheless 
affect its inherent statistics. See [2] for a classification of the most 
common tampering operations applied to a digital image. In 
particular we dealt with the problem of detecting copy-move 
forgeries[3], i.e. parts of an image that are copied and pasted onto 
the same image. The goal of our work is to test the ability of some 
standard texture descriptors to find similar areas into an image, as 
possible copy-move alterations. Both precision and efficiency are 
tested within our experiments. 

The paper is organized as follows: section 2 discuss some state-of-
the-art techniques: section 3 presents the overall proposed 
method; section 4 describes the tested texture descriptors; section 
5 discuss the evaluation metrics we used in our experiments, 
which are presented and discussed in section 5; a conclusive 
section ends the paper. 

2. COPY-MOVE FORGERY  
Copy-Move[3] is one of the most common forgery used for to 
alter the content of an image, typically to delete objects from the 
scene, and to substitute information with some other from the 
same image. The most simple approach to solve this problem is 
exhaustive search, i.e. to compare an image with every cyclic-
shifted version of itself. However, this approach is 
computationally very expensive and takes (MN)2 steps for an 
image of size MxN. The most common approaches in literature 
are block-matching based. First, an image is divided into 
overlapping blocks. Then, some features are extracted from each 
block, and compared to find the most similar ones. At last, results 
are analyzed and decision is made only if there are several pairs of 
similar image blocks within the same distance. Several different 
features has been proposed in literature to search copy alterations 
within a block-matching based system. In [4], the authors 
proposed to use quantized Discrete Cosine Transform (DCT) 
coefficients for this purpose. The advantage is  that the signal 
energy is concentrated on the first few coefficients, and operations 
such as noise addition, compression, and retouching should not 
affect these coefficients. Nevertheless, it does not work if 
duplicated regions are processed by geometrical transformation. 
Later on, Popescu et al.[5] used Principal Component Analysis 
(PCA) and Eigenvectors of the covariance matrix for an 
alternative representation of the blocks. The approach proved to  
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to be robust to compression and noise addition,  however re-
sampling (scaling, rotation) affects eigenvalues. In [6] Li et al. 
proposed to decompose the image using discrete wavelet  
transform (DWT) and singular value decomposition (SVD). 
Results are similar to those of [5], since SVD and PCA are very 
similar methods. In [7], Luo et al. proposed to use color 
information to represent blocks: average value of red, blue and 
green color components of the whole block and of 4 sub-blocks, 
divided according to different directions. Experimental results 
showed that this method was very robust to JPEG compression, 
Gaussian blurring and additive noise.  

In this paper we exploit texture as feature to be extracted from 
blocks to be matched. The goal is to study if texture is suited for 
the specific application, and to compare performance of several 
texture descriptors. 

3. OVERALL METHOD 
The scheme of the overall approach is shown in fig.1.  

Input image (size M x N)  is first grayscaled, as in this work we 
are not interested in studying the influence of color properties. 
Image is then decomposed into overlapping square blocks (size B 
x B). The number of blocks to be analyzed is nB= (M-B+1) x (N-
B+1). 

We extract texture features from each block: 5 different texture 
descriptors are tested (see section 4). Each feature is represented 
as a vector. 

Blocks are sorted according to vector’s component which has the 
maximum variance along all the blocks. The sorted list of the 
blocks is then scanned in order to find similar blocks. Features 
from each block are compared to those of the next blocks in the 
sorted list, according two possible approaches: 

- Fixed Window: WS =nB*P where P is a fixed parameter, 
that indicates the percentage of following blocks in the list to 
be considered. 

- Adaptive window: blocks are compared up to those in the list 
which distance (for the key component) is below a threshold. 

Even if the second approach is adaptive, the first one is faster, 
since matching time for matching is constant for all the blocks. 
Furthermore no significant differences in accuracy has been 
measured. Therefore we preferred the fixed window solution 
setting the value of WS as 1/1000 of the number of blocks. 

As similarity criterion we used the relative error: 
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between the corresponding components Vi 
j and Vi

k of the feature 
vectors (size n) extracted from two blocks Bj and Bk. To make it 
symmetrical, instead of using (1), the relative error is computed as  

the ratio of the absolute error and the minimum value of the two 
components:  
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If all the relative errors are below a percentage TH,  the two 
blocks are considered as candidate forgeries. We choose the 
relative error of each component, rather than Euclidean distance 
of the vectors, as in some cases, components have different order 
of magnitudes. 

Then we compute the distance djk between spatial coordinates of 
matching blocks. Matching blocks that overlaps are considered 
false positives and discarded. To further reduce false positives, we 
select only pairs of blocks which are at the most frequent distance 
(MFD processing). In fact in a tampered image a copy is the 
translated version of a set of blocks from elsewhere into the 
image, and the same translation function is applied to all the 
copied blocks. Furthermore, in case of forgeries, duplicated areas 
are composed by several matching blocks. Then, among 
candidates, isolated blocks, that are not connected to any other 
blocks,  are deleted from the output mask (IB processing). This 
general approach has been applied extracting 5 different texture 
descriptors.  

4. TEXTURE DESCRIPTORS 
Texture is one of the most studied image features in Computer 
Vision, Image Processing and Computer Graphics applications. It 
can be considered as a measure of the perceived image surface 
variations. In literature there are several works which propose[8]  
and evaluate[9,10] texture descriptors, for many different 
applications. For our purpose we test 5 different standard texture 
descriptors: 

- Statistical: mean, standard deviation, skewness and kurtosis 
of the pixels grey values. Output is a 4-dimensional vector. 

- Edge Histogram[11]: in our simplified version, we filter 
blocks with 4 directional (vertical, horizontal, 45, 135) and a 
non-directional Roberts-like operators. Mean of the filtered 
blocks are considered as descriptors. Descriptors is a 5-
dimensional feature vector. 

- Tamura[12] descriptors: Contrast, Coarseness and 
Directionality properties from the Tamura set of features. 
Output a 3-dimensional feature vector. 

- Gabor[13] descriptors: a bank of Gabor filters (2 scale and 4 
orientations) is applied to blocks. Mean and standard 
deviation of the coefficients from each sub-band are 
calculated to form a 16- dimensional texture feature. 

- Haralick[14] Descriptors: The Haralick descriptors are based 
on statistical moments and obtained from co-occurrence 
matrix. We use as descriptors correlation, energy, contrast, 
homogeneity, resulting in 4-dimensional vector. 

Fig. 1 Scheme of the overall method. 
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5. EVALUATION METRICS 
To evaluate the precision of the method, the source and the 
destination areas of every copy moves are saved as a binary mask: 
we called this area AR (reference area, fig. 2.c). The result of the 
detection method is an output mask AD (detected area, fig.2.d-i)  

Better results as much AD is similar to AR. In particular we 
measured detection precision (DP) as follows: 
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where: 

- R is the recall, i.e the ratio of the number of pixels in the 
intersection of the detected area AD and the reference area AR, 
and the number of pixels in AR. When it tends to 1, AD covers 
the whole AR, but nothing can be said about pixels outside AR; 
if it tends to 0 AD and AR have smaller intersection; 

 
a) original 

 
b) tampered 

 
c) reference area 

 
d) BS=8; TH=0,01; DP=0,66 

 
e) BS=16; TH=0,01; DP=0,63 

 
f) BS=32; TH=0,01; DP=0,24 

 
g) BS=8; TH=0,01; DP=0,95 

 
h) BS=8; TH=0,01; DP=0,94 

 
i) BS=8; TH=0,01; DP=0,84 

Fig. 2 Example results: Statistical Descriptor. After matching (d-f) and after post-processing (MFD and IB processing)  (g-i). 
BS=block size, TH=threshold, DP=Detection Precision 
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- P is the precision, i.e the ratio of the number of pixels in the 
intersection of the detected area AD and the reference area AR, 
and the number of pixels in AD. When P tends to 0, the whole 
detected area has no intersection with the reference. If it tends 
to 1, fewer pixels of AD are labeled outside AR. Nevertheless 
this parameter will not assure that the whole reference area 
has been covered. 

DP combines these two parameters: DP is high if AD both covers 
AR and has few outliers, and it is low if AD and AR are only 
partially overlapped or, when AR is well covered, if AD encloses 
many pixels which are not in AR. 

Varying block size two overlapping effects are observed: 

- If the block size is larger than the tampered areas, R0. In 
fact,  whatever block we consider it will contain pixels which 
do not belong to the tampered area. Therefore no matches can 
be found. 

- If block size is small P  0, because the probability to have 
natural similarities in an image increases, so that the number 
of false positives. 

6. EXPERIMENTAL RESULTS 
The overall method has been implemented in Matlab and executed 
on an Intel Core i7 PC (4 CPU, 1.6 GHz per processor, 4 GB 
RAM). We exploit the Matlab parallel library to make 4 workers 
run simultaneously. 

Our dataset is made of 20 400x400 tampered uncompressed 
images, into which areas are copied and pasted onto other parts of 
the same image. For each test we measured both accuracy and 
execution time. Tests are also repeated for JPEG-compressed 
versions of the images (70% quality) to study how compression 
influences the detection ability of the analyzed descriptors. 

Fig.2 shows some results obtained with the Statistical descriptor, 
varying block size and with a fixed threshold value. Note that 
after matching (2.d-f), DP decreases when block size increases, 
since larger false positives are detected, and the method does not 
correctly detect contours of the copies, in correspondence of fine 
details of the reference area. After post-processing (2.g-i), results 
with block size 8 and 16 are very similar, while 32 is a too larger 
value for this input image, and object contour is roughly detected. 

Figure 3 shows average execution time for two of the steps of the 
method: feature extraction and matching (post-processing time is 
negligible with respect of matching).  

With regards of feature extraction: 

- Statistical descriptor is the fastest, and time slightly 
increases with block size.  

- Edge Histogram and Tamura descriptors are quite fast for 
small blocks while time strongly increases with block size.  

- Gabor and Haralick feature extraction time does not depend 
on block size. 

Regarding matching time, we show results (fig.3) versus block 
size (results averaged on thresholds) and versus threshold value 
(averaged on block sizes):  

- It loosely depends on block size (it slightly decrease as the 
number of blocks decrease)  

- Processing time increases when threshold value is higher, as 
the number of matches increases, particularly for Tamura and 
Gabor.  

Figure 4 reports results about average detection precision results 
achieved with the 5 tested descriptors, for uncompressed (left) and 
JPEG-compressed(right) images. 

Results after matching (purple, light blue lines and red in fig. 4), 
before post processing, show that: 

- Statistical, Edge Histogram and Gabor descriptors give 
similar results: precision is very high (90%) for lower values 
of the threshold Th while it decreases when for higher values 
of Th, as some false positives are detected.  

- Tamura and Haralick give bad results (acceptable results 
only for Tamura with small block size) 

After post-processing (dark blue, yellow and violet): 

- For small blocks all the methods give similar results, very 
high precision (even about 95%). Only Haralick gives a lower 
average precision (85%). 

- Statistical, Haralick and Edge Histogram precisions are 
practically independent of threshold value, within the tested 
range of values. 

- Gabor and Tamura precisions decrease for higher threshold 
values, as some false positives are still detected. 

For JPEG-compressed images (quality 70%): 

- After matching, before post-processing, no good results with 
any of the descriptors, within the selected range of thresholds. 

- After post-processing, we have bad results with lower values 
of the threshold, and some results are achieved only with 0,1. 
Acceptable results with Statistical (80%) and Edge Histogram 
(70% with block size 16 and 32). 

-Higher values of the threshold do not improve precision, as 
the number of false positives strongly increases.  

- For higher compression ratio, (e.g. 50%) the method does 
not give acceptable results, not even using best descriptors. 

 
Fig.3 Average Execution Time: Feature Extraction vs block size (left); Matching vs block size (center) and vs threshold (right).  

62



 

Fig 4 Average Detection Precision (DP) vs Threshold (Th). Lines represents results measured after matching and after post-
processing with different values of block sizes (8,16,32). (for clarity, table callouts are shown only on the right). 
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7. CONCLUSIONS 
In this paper we studied the ability of some standard texture 
descriptors to detect copies in tampered images. We used a 
common framework to test descriptors: a block matching 
approach and a post-processing step, to filter out false positives. 

Experiments showed that the simplest descriptor (the Statistical) is 
that giving the best results in terms of precision versus execution 
time. Edge Histogram gives good results too, in case of small 
block size.  

We tested our system also on JPEG compressed images and we 
observed that  Statistical descriptor and Edge Histogram give still 
the best results, but setting higher values for the threshold 
parameter in the matching process. 

In our experiments we intentionally ignored color properties, as 
our goal was to test only texture as relevant feature for our 
application. Furthermore, block matching methods are not 
applicable when copies are processed by geometrical 
transformations. In our future works we plan to compare results 
achieved with texture descriptors, with those obtained using other 
image features (color, shape), and to combine them within a single 
framework. 
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