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a  b  s  t  r  a  c  t

The  genetic  and  morphological  variations  of  Pomatoschistus  tortonesei  Miller,  1968  were studied  in
samples  collected  from  three  Tunisian  lagoons.  The  morphological  analysis  included  18  morphomet-
ric  measurements  and  was  based  on  linear  discriminant  analysis  (LDA),  whereas  the  genetic  analysis  was
based on  the  16S-rRNA  and  COI mitochondrial  genes.  Both  analyses  differentiated  the  populations  and
demonstrated  consistently  a well-supported  differentiation  between  the  western  Mediterranean  sam-
ples  (Bizerta  and  Tunis  South  lagoons)  and the  eastern  Mediterranean  sample  (El  Bibane  lagoon).  The
observed  differentiation  could  be explained  in terms  of  the  geographic  isolation  of  the  various  popula-
tions  and  the  influence  of  environmental  factors,  which  differ  greatly  between  the  different  sites.  The
molecular  results  revealed  that the  populations  are characterised  by  unique  haplotypes  which  are  well
defined  in  relation  to limited  gene  flow  and  restricted  dispersal  abilities.  Additionally,  it  seems  that  local
selective  pressures  have  modelled  biometrical  variation.  Morphological  results  can  reflect  a  differen-
tial  habitat  use  revealed  in  the  cephalic  features  and  a different  response  to  hydrodynamic  constraints
developed  in  dissimilar  dorsal  and  pelvic  fin  lengths.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Coastal lagoons are complex dynamic ecosystems, characterised
by a constant fluctuation of environmental conditions. There are
numerous lagoons throughout the Mediterranean area, the major-
ity having appeared during the Holocene period. These lagoons are
well recognised as being unique in terms of biodiversity, and are
possibly capable of producing and protecting more or less distinc-
tive evolutionary lineages (e.g. Porter et al., 2001; Trabelsi et al.,
2004).

One of the most predominant fish taxa to be found in Mediter-
ranean lagoons is the genus Pomatoschistus Gill, 1844 of the
Gobiidae family. One of these gobiine species is Pomatoschistus tor-
tonesei Miller, 1968, which is endemic to the Mediterranean Sea and
listed as an endangered species (Abdul Malak et al., 2011). Despite
its particular situation, there is scant knowledge regarding its spa-
tial distribution and only sporadic records have been reported, e.g.
in the Marsala lagoon (Sicily, Italy) (Miller, 1968), the Farawa lagoon
(Libya) (Miller, 1982) and in various Tunisian lagoons (Mejri et al.,
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2009a). P. tortonesei is a non-migratory, euryhaline species which
spends its entire life in lagoons; benthic adults are considered poor
swimmers because, as other gobies, their pelvic fins are fused in
such a way  as to form a suction disc (Miller, 1986).

Recent published results regarding the genetic structure of this
species across its distribution range have revealed a significant
divergence between the western and eastern Mediterranean popu-
lations, delimited by the Siculo-Tunisian Strait (STS) which acts as a
breakpoint to gene flow in the Mediterranean Sea, and have shown
a further degree of differentiation among western populations due
to the hydrographic and ecological patterns of each locality (Mejri
et al., 2009b).  Despite such levels of genetic variation among pop-
ulations, it is not yet known to what extent morphological and
genetic differences correlate with each other.

It is known that morphological and genetic markers provide
different but complementary information regarding population
structure and this has been widely used in population differentia-
tion studies and in stock assessments. Morphometric characters are
partially genetically determined and they are strongly influenced
by environmental conditions (Tudela, 1999; Turan, 2004). Thus,
geographic isolation between populations is expected to promote
the differentiation of both morphological and genetic characters,
either due to drift or to different selective regimes related to
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Fig. 1. Locations of the sampling sites in Tunisia: Bizerta lagoon (BIZ) and Tunis South lagoon (LST) in the western Mediterranean Sea (W-MED), El Bibane lagoon (BIB) in the
eastern  Mediterranean Sea (E-MED), divided by the Siculo-Tunisian Strait (STS).

environmental features (Slatkin, 1985). Consequently, population
divergence may  reflect insufficient gene flow and/or different selec-
tive pressures (Slatkin, 1985).

P. tortonesei is of particular interest in terms of evolution and
adaptive radiation as it is well known that lagoons are charac-
terised by wide variations in environmental parameters which may
cause strong selective pressures on organisms. These factors, in
association with geographic discontinuity, can play a key role in
differentiating populations inhabiting these biotopes. In the light of
these considerations, the available mtDNA data previously reported
by Mejri et al. (2009b) were compared with the morphometric
measurements of the present study with the aim of: (i) compar-
ing morphological and genetic differentiation; (ii) identifying and
quantifying phenotypic variability and the evolutionary role of
lagoons; and (iii) inferring the importance of lagoon environmental
parameters in population structuring.

2. Materials and methods

2.1. Sample collection

Between April 2006 and March 2007 specimens of P. tortone-
sei were caught using a 10 m long purse seine with 0.5 mm mesh
from three Tunisian coastal lagoons: the Bizerta lagoon (BIZ), the
Tunis South lagoon (LST) and the El Bibane lagoon (BIB) (Fig. 1). The
choice of these three sites was determined by ease of access and the
abundance of the investigated species. The geographic coordinates
of each mainland lagoon, their environmental features (Lemoalle,
1986; Sammari et al., 2006; Hlaili et al., 2008) and the numbers of
individuals used in the present study are given in Table 1.

2.2. Morphological analysis

In total, 120 specimens of P. tortonesei were collected from
the three lagoons (BIZ, LST and BIB). Eighteen morpho-anatomical

parameters, including horizontal as well as vertical dimensions of
the body, were measured: standard length (LS); head length (H);
right eye diameter (E); postorbital and interorbital length (PO and
IO); cheek depth (CHd); body height (BH); first and second dorsal
fin base lengths (D1 and D2); pectoral fin length (Pl); anal fin length
(A); pelvic fin length (Pv); distances from the snout to the origin of
the first and second dorsal fins (SN/D1 and SN/D2); distance from
the snout to the pectoral fin origin (SN/Pl); distance from the snout
to the anal fin origin (SN/A); distance from the snout to the pelvic
disc origin (SN/Pv) and the minimum height of the caudal pedun-
cle (CP) (Fig. 2). All morphometric measurements were taken by the
same person on the left lateral aspect and measured to the nearest
0.01 mm.

For such analyses, it is important to eliminate any size effect
especially when comparing fish of different sizes. Therefore,
any size-dependent variation in morphometric characters was
removed using the allometric approach by Reist (1985):

Mtrans = log M − ˇ(log SL − log SLmean),

where Mtrans is the transformed measurement, M is the origi-
nal measurement,  ̌ is the within-group slope regression of log M
against log SL, SL is the standard length of the fish and SLmean is
the overall mean of the standard length. Morphometric charac-
ters were analysed together and a multivariate analysis of variance
(MANOVA) was  performed to test the significance of differences
among groups.

In order to obtain an optimal set of characters for evaluating
the extent to which geographic entities with different morpho-
metric features could be separated, a linear discriminant analysis
(LDA) was  performed on the 120 individuals from the three sites.
This analysis obtains linear combinations of variables (discrimi-
nant functions) which can be used to provide the best separation
of classes. Wilk’s criterion values were estimated to test the sig-
nificance of such a discrimination for a combination of variables,
and discriminant functions were used to classify individuals into

Table 1
Sample locations of Pomatoschistus tortonesei,  geographic coordinates, environmental features, number of individuals per analysis and mean standard lengths (MSL, aver-
age  ± s.d.).

Sampling
locations

Geographic
coordinates

Environmental features Sample sizes MSL  (cm)

Substrata Vegetation
encountered

Tide amplitude Genetic study Morphometric
study

Bizerta 37◦13′N 9◦51′E Muddy + biodetritus Algae 0.02–0.13 m 10 39 (4♂ 35♀) 2.90 ± 0.31
Tunis  South 36◦47′N 10◦14′E Muddy Algae 0.4 m 7 33 (2♂ 31♀) 2.45 ± 0.17
El  Bibane 33◦16′N 11◦17′E Sandy + biodetritus Cymodocea nodosa 1.8 m 9 48 (1♂ 47♀) 2.69 ± 0.19
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Fig. 2. Morphometric measurements (see text for details).

samples. The classification success rate (PCS) representing the per-
centage of individuals which were correctly assigned to the original
sample was evaluated.

All calculations and graphs were made with Minitab 12.2 and R
2.8.1 software. The packages used were “ade4” (Chessel et al., 2004),
Mass (Venables and Ripley, 2002), Stats (R Development Core Team,
Vienna, and contributors worldwide) and Ape (Paradis et al., 2004).

2.3. Genetic analysis

For molecular analyses, 26 previously obtained sequences of
P. tortonesei (Mejri et al., 2009b)  were used. The data set con-
tained samples from the three lagoons investigated in the present
study. The procedure, which has already been reported in Mejri
et al. (2009b), is briefly summarised here. Total DNA was  extracted
from analysed specimens and a fragment of both the mitochondrial
16S ribosomal RNA gene (16S-rDNA, 518 bp) and the cytochrome
oxidase I gene (COI, 648 bp) were amplified. Levels of haplotypic
diversity h (Nei, 1987) and nucleotide diversity � (Tajima, 1993)
were calculated using DnaSP v. 4.50 (Rozas et al., 2003). Phylogeo-
graphic analyses were performed, using the UPGMA method, with
the software MEGA v. 4 (Tamura et al., 2007). The tree was rooted
with co-genus Pomatoschistus marmoratus haplotypes originating
from Tunisia. Node robustness was estimated by running bootstrap
tests with replicates encompassing 1000 data sets.

3. Results

3.1. Morphological analysis

The MANOVA for the 18 biometric characters revealed highly
significant average differences (p < 0.001) among localities, leading
to the rejection of the null hypothesis of ‘no heterogeneity’. The
LDA of P. tortonesei’s  log-transformed variables yielded two initial
factorial axes, accounting for 86.49% and 13.51% of total variance,
respectively. Hence, the two discriminant functions LD1 and LD2
were chosen for the analyses.

Plotting these two discriminant functions resulted in a distinc-
tion among the three studied lagoons (Fig. 3A). The first two groups
were spread along LD2 and were composed of individuals originat-
ing from BIZ and LST from the north of Tunisia. The third group,
which projected onto the positive side of LD1, represented the sam-
ple from BIB, which is located on the south coast. The significance of
the inter-group variability between the lagoon samples was  proven
by Wilk’s criterion (Wilk’s � = 0.07, F = 16.80, p < 0.001).

Table 2
Classification success rate (PCS) evaluated according to the percentage of
Pomatoschistus tortonesei individuals correctly assigned to the original sample. BIZ:
Bizerta lagoon; LST: Tunis South lagoon; BIB: El Bibane lagoon. N = sample size.

Sample BIZ LST BIB

BIZ 35 4 0
LST  4 29 0
BIB 0 0 48
N  total 39 33 48
N  correct 35 29 48
Proportion 89.7 87.9 100

The most important discriminative characters in distinguishing
between the groups were pelvic fin length (Pv) and the second dor-
sal fin length (D2) (Fig. 3C and D), both of which contributed to
defining the first discriminating function, LD1. Cheek depth (CHd)
and head length (H) (Fig. 3B), which characterise the cephalic region
of the body, defined the second axis, LD2.

Using these morphometric characters, the discriminating anal-
ysis correctly classified 112 of the 120 fishes (i.e. 93.3%), while the
cross-validation testing procedure correctly classified 105 of 120
fishes (i.e. 87.5%). The proportion of specimens correctly classified
into their original group was highest (100%) for BIB (Table 2).

3.2. Genetic analysis

Values relating to indexes of general genetic diversity are
reported in Table 3. It is noteworthy that the different populations
under investigation presented private haplotypes which were only
found in a single locality.

The UPGMA tree revealed a split between two  highly diver-
gent groups with no geographical overlap and a high bootstrap
value (100%) (Fig. 4). The first clade was represented by the west-
ern Mediterranean samples from BIZ and LST, whereas the second
clade was  formed by the eastern Mediterranean sample from BIB.
On a local scale, the neighbouring populations from BIZ and LST
presented a further segregation within the major clade, appearing
as separated sub-groups (Fig. 4). Thus, all haplotypes were related
according to their geographic area of occurrence, and their topology
was consistent with the degree of morphometric differentiation.

4. Discussion

The results from genetic and morphological analyses provided
congruent evidence for a significant differentiation between all
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Fig. 3. (A) Plot of the linear discriminant analysis on the first plane (LD1, LD2) for the three lagoon samples: Bizerta lagoon (BIZ), Tunis South lagoon (LST) and El Bibane
lagoon (BIB). (B) The parameters cheek depth (CHd) and head length (H), which contribute to LD2. (C and D) The parameters pelvic fin length (Pv) and second dorsal fin length
(D2),  which contribute to LD1.

Table 3
Genetic variability of 16S-rRNA and COI sequences detected in Pomatoschistus tortonesei samples.

Bizerta lagoon Tunis South lagoon El Bibane lagoon

Locus 16S COI 16S COI 16S COI
Sample size (N) 10 10 7 7 9 9
Segregating sites (SS) 2 1 2 1 2 4
Number of haplotypes (Nh) 3 2 3 2 3 4
Nucleotide diversity (�) 0.0010 0.0005 0.0014 0.0004 0.0008 0.0018
Haplotypic diversity (h) 0.5111 0.3555 0.6666 0.2857 0.4166 0.7500

Fig. 4. Nucleotide divergence from 16S-rDNA + COI sequences, clustered by UPGMA
(numbers indicate the percentage of 1000 bootstrap replicates that support each
branch). BIZ: Bizerta lagoon; LST: Tunis South lagoon; BIB: El Bibane lagoon.

three samples, and, most predominantly, between the western vs.
eastern Mediterranean areas, which correspond to the northern
(BIZ and LST) and southern coasts of Tunisia (BIB), respectively.
The role of the STS, which separates the gene pool of the western
from that of the eastern Mediterranean samples, has been widely
discussed in previous papers (Mejri et al., 2009b, 2011). Here, the
dataset allows an additional differentiation with regard to morpho-
metric data which is congruent with the genetic pattern.

A consideration of the various analysed metric parameters
reveals the discriminating value of some of the samples. The
causes of morphological differences between populations can often
be quite difficult to explain. However, most authors agree that
variations in environmental conditions play the largest part in
determining morphological variation and phenotypic discreteness
(Norton et al., 1995; Wainwright, 1996). Either these particular
designs have been fostered by natural selection (because they are
more appropriate than the alternatives), or they are particularly
economical in terms of energy or materials (Alexander, 1988).

According to the LDA results (Fig. 3A), three phenotypically
diverse groups could be distinguished, and a strong discrepancy
between the P. tortonesei populations from the north of Tunisia
(BIZ + LST) and the population from southern Tunisia (BIB) was
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found. The whole LDA pattern is the result of the variation detected
in the following characters: cheek depth (CHd) and head length (H),
which have had the major weight in the discrimination on the LD2
axis, and dorsal (D2) and pelvic (Pv) fin lengths, which can be con-
sidered responsible for the discrimination on the LD1 axis (Fig. 3).
According to the results, BIB specimens have the longest fins while
the western populations, BIZ and LST, have the larger amplitude of
variation in head shape.

Various authors have studied the intra-specific variation of head
morphology and different trophic uses in marine fishes, such as
carangids (Turan, 2004), labrids (Westneat, 1995; Wainwright et al.,
2004) and sparids (Sarà et al., 1999; Hammami et al., 2011). These
authors suggest that a detailed study of cephalic morphology and
body shape could reveal different trophic groups. The morphologi-
cal discrepancy in head traits may  reflect a differential habitat use,
especially regarding the exploitation of different ecological niches
with variable diets (Hyndes et al., 1997; Delariva and Agostinho,
2001). In general, the link between morphology and diet in fish
is provided by feeding performance (Norton, 1991; Wainwright,
1991; Motta and Kotrschal, 1992). For example, head morphology
is subject to various constraints determined by the feeding strategy
and the type and size of ingested food (Gatz, 1979; Wainwright and
Richard, 1995).

For the present study, the nature of the substrata and their cover
has been investigated at all sampling sites (Table 1). P. tortonesei
from the northern Tunisian lagoons (BIZ and LST) were collected in
muddy vegetated substrata where grasses abound, offering a good
biotope for amphipods and ostracods, which are the preferred prey
of this fish (Miller, 1982; personal observations). In the south (BIB),
in contrast, this species was plentiful only in sandy areas lacking in
vegetation and characterised by prey depletion. Specimens could
have adapted their head size and shape according to food availabil-
ity or density, and to the type and size of prey in relation to algal
cover.

In addition to differences in cephalic features, we also observed
morphological discrepancies in dorsal (D2) and pelvic (Pv) fin
lengths. It is well known that soft dorsal fins act as a static keel or
body stabiliser, generating thrust and lateral forces during locomo-
tion. During turning manoeuvres, dorsal fins become a fixed pivot
point for body rotation. The soft dorsal fins also play a significant
role in steady propulsion and generate a large, lateral force (Drucker
and Lauder, 2001, 2005). Along with the caudal and anal fins, the
paired pelvic fins permit fish to swim steadily forwards with min-
imal roll and yaw (Drucker and Lauder, 2005). In gobiid species,
the pelvic fins are fused into a suctorial disk which assists them in
attaching themselves firmly to rocks, preventing them from being
swept away by swift currents (Miller, 1986). Thus, various fins are
used by fish to move and stabilise their bodies when suspended
in turbulent flow. The range of stability conferred by the fins may
cause body shape and habitat specialisation to play a lesser role in
swimming in turbulence than in steady flow (Bioly and Magnan,
2002).

When considering the differences in hydrodynamic constraints
(i.e. tide currents) in the lagoons under investigation (Table 1), we
noticed that hydrographic currents are of great importance, partic-
ipating actively in the circulation, turbulence flow and renewal of
water masses, particularly in El Bibane lagoon (BIB). These con-
ditions provide a stimulus for benthic species with a ‘homing’
behaviour (such as P. tortonesei)  to develop and increase their fix-
ation surface and stability organs in order to thwart drift through
tidal currents and to be able to act in sudden perturbations. Indeed,
fish subjected to complex flows normally demonstrate an ability
to maintain stability, which can be achieved either passively by
self-correcting mechanisms or actively through the powered move-
ments of fins (Webb and Weihs, 1994; Jindrich and Full, 2002;
Liao, 2002; Webb, 2004). The shape of the body and the posture

of fins and their intrinsic compliance can also contribute to passive
mechanisms of stability (Liao, 2007).

However, the biometric differences among populations of P.
tortenesei from the three different lagoons may reflect not only
phenotypic plasticity but also the effect of geographic isolation.
Molecular analyses confirmed such a scenario. Previous studies
(Mejri et al., 2009b)  have demonstrated that no haplotypes were
shared between the three populations under investigation, imply-
ing that there was  no gene flow between them (Fig. 4). The pattern
described by the UPGMA tree is consistent with the degree of mor-
phometric differentiation.

The current genetic structure of P. tortonesei,  a species which
exclusively inhabits lagoons, could be the product of an increasing
divergence of lineages producing morphologically different forms.
It can be assumed that a restricted gene flow between populations
has constrained P. tortonesei populations to adapt and evolve as
independent entities in different environmental conditions. Specif-
ically, as P. tortonesei is strictly associated with lagoon habitats,
which are transitional environments and characterised by an insta-
bility of their physico-chemical parameters (Sarà, 2009), it could
have been exposed to selective pressures more frequently than
marine species which inhabit open-sea habitats. Such selective
pressures could have amplified pre-existent, morphological traits,
especially since P. tortonesei is a benthic species with low dispersal
abilities and short pelagic larval stages. Brackish water ecosystems
are often exposed to wide variations in environmental parameters,
a fact which may  cause strong selective pressures on organisms
(e.g. Trabelsi et al., 2004). In association with genetic and geo-
graphical discontinuity, these pressures can play an important role
in separating species inhabiting these environments into different
populations.
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