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Glossary 

AMF: Arbuscular Mycorrhizal Fungi 

Cmic: Microbial biomass C 

EAA: Enzyme Addition Assay 

LDA: Linear Discriminant Analysis 

NLFA: Neutral Lipid Fatty Acids 

NT: No-till/direct seeding 

Pa: Plant-available phosphorus 

PCAL: Calcium-acetate-lactate extractable P 

Pi: inorganic Phosphorus (orthophosphate)  

PLFA: Phospholipid Fatty Acids 

Pmic: microbial biomass Phosphorus 

Porg: organic phosphorus 

Pt: Soil total phosphorus 

RT: Reduced/non-inversion tillage 

SOM: Soil organic matter 
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Figure 5.1 Strategies and mechanisms for phosphorus (P) acquisition by plants: 1) soil exploration via 

roots and mycorrhizal hyphae; 2) mobilization of sparingly-soluble inorganic P (Pi) and organic P (Porg) 

by exudation of H
+
/OH

-
 and carboxylates; 3) mineralization of Porg by phosphatases. Plant-driven 

processes have solid outlines, microbial activity is shown by dotted outlines 

 
Figure 5.2 Pathways of phosphorus (P) transfer and plant-microbial processes affecting P availability 

by cover cropping. 1) Soil P pools of varying degrees of availability are solubilized and/or mineralized 

and are immobilized in the microbial biomass. 2) The microbial biomass releases P into the soil 

solution which 3) ends up in the plant via root or mycorrhizal uptake. Cover crops may additionally 

possess the capacity to mine P from poorly-available P pools or to produce biochemical rhizosphere 

modifications to increase P availability. 4) The roots release rhizodeposits that shape the microbial 

community, eventually leading to increased P mining. 5) The P stored in the cover crop biomass is 

transferred to the main crop via cover crop residues, which are decomposed by the soil microbial 

community (6). The soil microbial community (i.e. mycorrhizal fungi) in the main crop phase, 

enhanced by the cover crops, may possess an increased capacity to mine P for the main crop (7). 

 

Figure 5.3 Cover crop dry matter biomass [t ha
-1

], shoot phosphorus (P) content [kg ha
-1

] and 

concentration of P in biomass [g kg
-1

]. The points represent the modeled median (+/- 95 % CI) of the 

different cover crop treatments. On the left are displayed the number of observations. The letters 

indicate significant differences among cover crop types with a Tukey post-hoc test (p<0.05). The 

corresponding models can be found in Supplementary Material S5.3.1 

 

Figure 5.4 Change in main crop yield and shoot biomass following cover crops from different families. 

The points represent the modeled median (+/- 95 % CI), relative to the respective controls. On the left 

are displayed the number of observations. The lower-case letters indicate, for a single main crop type 

with a Tukey post-hoc test (p<0.05), significant differences among cover crop types (including the 

control) and the upper-case letters between cover cropping in general and the controls. The 

corresponding models can be found in Supplementary Material S5.3.2 

 

Figure 5.5 Change in main crop yield and shoot biomass after different Fabaceae cover crop genera 

and species. The points represent the percentage change of the modeled median (+/- 95 % CI), 

relative to the respective controls. On the left are displayed the number of observations. The letters 

indicate significant differences among cover crop species with a Tukey post-hoc test (p<0.05). Species 

with only one or two observations were aggregated as “other Fabaceae”: Anthyllis vulneraria, 

Tephrosia purpurea, Stylosanthes guianensis, Pueraria phaseoloides, Psophocarpus tetragonolobus, 

Mucuna cochinchinensis, Dolichos lablab, Cassia tora, Canavalia ensiformis, Cajanus cajan, Trifolium 

sp., Arachis hypogaea. The corresponding model can be found in Supplementary Material S5.3.3 

 

Figure 5.6 Soil biological parameters: change in percent abundance of arbuscular mycorrhizal fungi 

(AMF), microbial biomass phosphorus (P) content, and phosphatase activity as well as available P 

after different cover crops, relative to the respective controls. On the left are displayed the number of 

observations. The lower-case letters indicate, for a single main crop type with a Tukey post-hoc test 

(p<0.05), significant differences among cover crop types (including the control), and the upper-case 

letters between mycorrhizal cover crops, nonmycorrhizal cover crops and the controls. The 

corresponding models can be found in Supplementary Material S5.3.5 
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Figure 5.7 Main crop yield and phosphorus (P) uptake as affected by cover cropping in soils with low 

and high available P (Pa). The points represent the percentage change of the modeled median (+/- 95 

% CI) of the cover crop treatments relative to the controls without cover crops. On the left are 

displayed the number of observations. The letters indicate significant differences among groups with 

a Tukey post-hoc test (p<0.05). The corresponding models are presented in Supplementary Material 

S5.3.6 

 

Figure 5.8 Effect of cover crops on arbuscular mycorrhizal fungi (AMF) in soils with different P 

availability. The points represent the percentage change of the modeled median (+/- 95 % CI) of the 

cover crop treatments relative to the controls without cover crops. On the left are displayed the 

number of observations. The letters indicate significant differences among groups with a Tukey post-

hoc test (p<0.05). The corresponding models are presented in Supplementary Material S5.3.7 

 

Figure 5.9 Radar chart summarizing the properties of the cover crop families and their effects on soil. 

The lines correspond to the calculated quantile moment of each data point (R code provided in 

Supplementary Material S5.4). Grid lines correspond to the 0, 25, 50, 75, and 100-quantiles of each 

variable. Asteraceae and Polygonaceae had missing data points and could not be displayed here. 

 

Figure 6.1 Soil cover, sampling scheme and a view of the field experiment of Study #2. 

 

Figure 6.2 Cover crop shoot and root parameters: a) plant biomass; b) phosphorus (P) concentration 

and c) plant P content. Displayed are the estimated marginal means of the four field replicates; error 

bars indicate the modelled 95% CI. The underlying data is provided in Supplementary Material S6.1, 

the structure of the fitted models and the F-tests in Supplementary Material S6.2 and the complete R 

code in Supplementary Material S6.3 

 

Figure 6.3 Soil phosphorus (P) pools in rhizosheath soil of buckwheat, mustard and phacelia as cover 

crops and bulk soil of the fallow control: a) inorganic, enzyme-stable organic P (Porg) and enzyme-

labile Porg in NaOH-EDTA soil extracts; b) detailed characterisation of the enzyme-available Porg 

available for phosphodiesterase, phosphomonoesterase and fungal phytase [µg P g
-1

 soil). The 

enzyme addition assay was conducted with rhizosheath samples of the cover crops and bulk soil of 

the fallow control in November 2016. The bars represent the estimated marginal means of the four 

field replicates, the error bars the 95% CI. Letters indicate significant differences by Tukey HSD. In the 

legend, the p-value for the main effect of the cover crop treatment is given (n.s. = not significant). 

The underlying data is provided in Supplementary Material S6.1, the structure of the fitted models 

and the F-tests in Supplementary Material S6.2 and the complete R code in Supplementary Material 

S6.3 

 

Figure 6.4 Microbial biomass phosphorus (P) in mg P g
-1

 bulk (black) and rhizosheath (white) soil of 

the cover crop treatments over the course of the experiment. Displayed are the estimated marginal 

means of the four field replicates; error bars indicate the modelled 95% CI. The underlying data is 

provided in Supplementary Material S6.1, the structure of the fitted models and the F-tests in 

Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 

 

	  



List	of	Figures

	

	 X	

Figure 6.5 Abundance of microbial groups: a) Gram-positive bacteria [PLFAs i15:0, a15:0, i16:0, and 

i17:0], b) Gram-negative bacteria [PLFAs cy17:0 and cy19:0], and c) saprotrophic fungi [PLFA 

18:2ω6,9] in nmol of fatty acids per gram bulk (black) and rhizosheath (white) soil of the cover crop 

treatments over the course of the experiment. Displayed are the estimated marginal means of the 

four field replicates; error bars indicate the modelled 95% CI. The underlying data is provided in 

Supplementary Material S6.1, the structure of the fitted models and the F-tests in Supplementary 

Material S6.2 and the complete R code in Supplementary Material S6.3 

 

Figure 6.6 Potential activities of extracellular enzymes: a) acid phosphomonoesterase; b) alkaline 

phosphomonoesterase; c) phosphodiesterase and d) N-acetyl-hexosaminidase in nmol (MUB= 

fluorescent methylumbelliferone) product per gram dry soil per hour in bulk (black) and rhizosheath 

(white) soil of the cover crop treatments over the course of the experiment. Displayed are the 

estimated marginal means of the four field replicates; error bars show the modelled 95% CI. The 

underlying data is provided in Supplementary Material S6.1, the structure of the fitted models and 

the F-tests in Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 

 

Figure 6.7 Relation of the measured potential alkaline phosphomonoesterase activity with phoD, 

coding for alkaline phosphomonoesterase (a); bacterial PLFA with phoD (b); bacterial PLFAs with 

alkaline phosphomonoesterase activity (c); and abundance of the bacterial gene phoD with the 

abundance of bacterial 16S (d). MUB=Methylumbelliferone, corresponding to product of hidrolysis. 

Figure (c) has more data points than the other figures, because enzyme activity and PLFA were 

assessed at all sampling dates, while phoD abundance was quantified only in November. The 

underlying data is provided in Supplementary Material S6.1, the structure of the fitted models and 

the F-tests in Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 

 

Fig 6.8 Relation of measured potential enzyme activities of a) acid phosphomonoesterase, b) alkaline 

phosphomonoesterase and c) phosphodiesterase the corresponding enzyme-labile organic 

phosphorus (P) (amount Porg mineralised by the addition of phosphomonoesterase or 

phosphodiesterase in the enzyme addition assay). The underlying data is provided in Supplementary 

Material S6.1, the structure of the fitted models and the F-tests in Supplementary Material S6.2 and 

the complete R code in Supplementary Material S6.3 

 

Figure 7.1 Climate and management of the field experiment of Study #3. Top: climate chart (left y-

axis: monthly average air temperature [°C], right y-axis: cumulative monthly precipitation [mm]). 

Bottom: sampling (February and October 2015), soil cover and management (RT: reduced tillage). 

Further management details are listed in Supplementary Material S7.1 

 

Figure 7.2 Soil P pools at Tachenhausen field site in 0-5 cm. a) In the left figure, the top, middle and 

bottom bars correspond to inorganic P (Pi), enzyme-stable organic P (Porg) and enzyme-labile Porg., 

respectively b) The enzyme-labile P pool can be further subdivided into Porg hydrolysable for 

phosphodiesterase, non-phytase-phosphomonoesterase and fungal phytase (bare= without cover 

crops, RT= reduced tillage, NT= no-till). The bars represent the estimated marginal means of the 

three field replicates; error bars show the modelled 95 % CI. The corresponding models and F-Tests 

can be found in Table 1 and Supplementary Material S7.3 

 

Figure 7.3 Calcium acetate lactate extractable phosphate (PCAL) under the different treatments at 0-5 

cm (bare= without cover crops, RT= reduced tillage, NT= no-till). Displayed are the estimated 

marginal means of the three field replicates; error bars show the modelled 95 %. The corresponding 

model and F-test can be found in Supplementary Material S7.3 
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Figure 7.4 Microbial biomass: a) microbial C measured as substrate induced respiration (SIR) [μg 

microbial C g
-1

 soil], b) concentration of microbial PLFA biomarkers [nmol PLFA g
-1

] and c) microbial P 

[μg P g
-1

] by treatments at 0-5 cm (bare= without cover crops, RT= reduced tillage, NT= no-till, bare= 

without cover crops). Displayed are the estimated marginal means of the three field replicates; error 

bars show the modelled 95 % CI. The corresponding models and F-Tests can be found in 

Supplementary Material S7.3 

 

Figure 7.5 Concentration of fatty acid biomarkers of microbial groups: a) Gram+ [PLFAs i15:0, a15:0, 

i16:0, and i17:0], b) Gram- bacterial [PLFAs cy17:0 and cy19:0], c) general fungal [PLFA 18:2ω6,9 and 

18:3ω6,9,12], and d) arbuscular mycorrhizal biomarkers [NLFA 16:1ω5] in nmol of fatty acids per 

gram dry soil under the different treatments at 0-5 cm (bare= without cover crops, RT= reduced 

tillage, NT= no-till, bare= without cover crops). Displayed are the estimated marginal means of the 

three field replicates; error bars indicate the modelled 95 % CI. The corresponding models and F-Tests 

can be found in Supplementary Material S7.3 

 

Figure 7.6 Potential activities of extracellular enzymes: a) phosphomonoesterase and b) 

phosphodiesterase in nmol of substrate per gram dry soil per hour under the different treatments at 

0-5 cm (bare= without cover crops, RT= reduced tillage, NT= no-till). Displayed are the estimated 

marginal means of the three field replicates; error bars show the modelled 95 % CI. The 

corresponding models and F-Tests can be found in Supplementary Material S7.3 

 

Figure 7.7 Relation between enzymatic activity and the respective enzyme-available organic P pools 

for a) phosphomonoesterase and b) phosphodiesterase. The trend lines, R
2
 and p-values were 

calculated using a simple linear model. As the relation of enzymatic activity and Porg pools interacted 

with depth and tillage as well as date and cover crops in the case of phosphomonoesterase and 

phosphodiesterase, respectively, the trendlines were fitted to the corresponding subsets. Coefficients 

and R-code can be found in Supplementary Material S7.3 and S7.4, respectively. 

 

Figure 7.8 Impact of cover crops (green= cover crops, brown= fallow) and tillage (light= reduced 

tillage/RT, dark= no-till/NT) on microbial community structure (a, b; fatty acid biomarkers) and 

activity (c, d; extracellular enzyme activity and substrate use capacity), in February (left) and October 

(right) at 0-5 cm, grouped by treatment. The parameters of each plot are summarised to a single 

point using linear discriminant analysis (LDA). The ellipses represent the 95 % CI of each group. 

Coefficients and R-code can be found in Supplementary Material S7.3 and S7.4, respectively 

 

Figure 7.9 Radar chart summarizing the effects the four treatments of the experiments (bare vs cover 

crops and reduced tillage vs no-till), on several soil phosphorus pools and microbial P-cycling in 

February at 0-5 cm. The variables represent (clockwise from the top right): Microbial abundance 

(Gram+ and fungal abundance); Soil P pools (fungal phytase-labile organic P (Porg), calcium-acetate-

lactate extractable P (PCAL), total Phospholipids (PLFAs), microbial biomass phosphorus; and enzyme 

activity (phosphodiesterase and phosphomonoesterase). Grid lines correspond to the 0, 25, 50, 75, 

and 100-quantiles of each variable over all dates and depths (R-code can be found in Supplementary 

Material S7.4) 
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Table 5.1: Plant species widely used for cover cropping and their properties as described in the 

literature 

 

Table 7.1 P-values for main effects and interactions of the fitted models of different P pools 

presented in Fig. 7.2. The factor levels were: cover crops (bare and cover crops), tillage (no-till and 

reduced tillage), date (Ferbuary and October) and depth (0-5 and 5-20 cm). The corresponding raw 

data can be found in Online Resource S7.2, models and full ANOVA tables in Online Resource S7.3, 

and the corresponding R code in Online Resource S7.4. Interactions where no significance was 

detected were omitted 
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Figure S5.5 Change in main crop phosphorus (P) content after cover crops belonging to 

different families. The points represent the modeled median (+/- 95 % CI) relative to the 

respective controls, averaged over all main crops. On the left are displayed the number of 

observations. The lower-case letters indicate, for a single main crop type with a Tukey post-

hoc test (p<0.05), significant differences among cover crop types (including the control), and 

the upper-case letters differences between cover cropping in general and the controls. The 

corresponding models are presented in Supplementary Material S5.3.4 

 

Figure S5.6 Main crop yield and phosphorus (P) uptake as affected by cover cropping under 

different management regimes: noninversion tillage plus fertilization; noninversion tillage 
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fertilization. Care has to be taken in the interpretation of the results of the no-till plus 
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observations. The letters indicate significant differences among groups with a Tukey post-
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Figure S6.4 Phosphorus (P) concentration of harvested soybean grains in mg P kg
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. 

Displayed are the estimated marginal means of the four field replicates; error bars show the 

modelled 95% CI. The underlying data is provided in Supplementary Material S6.1, the 

structure of the fitted models and the F-tests in Supplementary Material S6.2 and the 

complete R code in Supplementary Material S6.3 
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of the experiment. Displayed are the estimated marginal means of the four field replicates; 
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1 Summary 

Phosphorus (P) is one of the most limiting plant nutrients for agricultural production. The 

soil microbial community plays a key role in nutrient cycling, affecting access of roots to P, 

as well as mobilization and mineralization of organic P (Porg). This thesis aimed to better 

understand the potential of cover crops to enhance plant-soil-microbe interactions to 

improve the availability of P. 

The meta-analysis of 25 published field studies allowed us in Study #1 to articulate a 

comprehensive framework of cover crop-derived P benefits. Following our review, the field 

experiments of Studies #2 and #3 added to our understanding of the underlying 

mechanisms driving P availability, with special emphasis on the role of microbes. The field 

experiments were conducted on loess-derived soils in southwestern Germany with winter 

cover crops and soybean as main crop in randomized complete block designs with four 

replicates. Study #2 was designed to evaluate the plant-soil-microbe interactions of three 

cover crop species (mustard, phacelia and buckwheat) in their rhizosheaths and was carried 

out on a field low in available P. Study #3 investigated the interactions of a cover crop 

mixture with tillage treatments of different intensity under conditions of an abundant 

availability of inorganic P in 0-5 and 5-20 cm soil depth. In the field experiments, a 

comprehensive set of microbial properties, including microbial abundance, community 

structure (phospholipid fatty acid biomarkers, PLFAs), P-cycling enzymes and microbial 

biomass P, was linked for the first time with the lability of Porg pools for enzymatic 

mineralisation. Additionally, in Study #2, the abundance of 16S-rRNA and phoD, coding for 

alkaline phosphomonoesterase in bacteria, were quantified using real-time qPCR, while in 

Study #3 the carbon-substrate use capacity of the microbial community was additionally 

assessed. 

The used methods showed that microbial P, the activity of P-cycling enzymes and PLFAs 

increased under cover crops, indicating an enhanced potential for organic P cycling. Gram-

positive and Gram-negative bacteria, and to a lesser extent also arbuscular mycorrhizal 

fungi, increased their abundance with cover crops. However, saprotrophic fungi could 

benefit most from the substrate input derived from cover crop roots or litter. Enzyme-stable 

Porg shifted towards pools of a greater lability in the active soil compartments (rhizosheath 
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and detritusphere). The effects of agricultural management, such as cover crop species 

choice and tillage, were detectable, but weaker compared to the effect of the presence of 

cover crops. 

With the obtained results, the research aims of this thesis could be successfully 

addressed. We were able to confirm that cover crops have the potential to improve main 

crops’ access to P. Furthermore, we presented and discussed three pathways of P benefit. In 

the plant biomass pathway, P is cycled through cover crop biomass and becomes available 

for the main crop upon litter decomposition. The microbial enhancement pathway describes 

how the cover crop’s interaction with soil microbes increases their abundance and activity, 

thereby increasing the availability of Porg. Some cover crop species seem to be capable of 

utilizing a biochemical modification pathway, where changes in the sorption capacity of the 

soil result in a greater quantity of plant-available phosphate. However, the latter pathway 

was apparently not important in the crop rotations used in our field experiments. The data 

also allowed us to characterize ways in which plant-soil-microbe interactions under cover 

crops affected the relationship of soil microbial functions to the enzymatic availability of Porg 

pools. Cover crops increased the abundance and activity of microbes, especially fungi, as 

well as microbial P. This enhancement in P-cycling potential shifted Porg toward pools of 

greater availability to added enzymes. However, the relation between enzymes and Porg 

pools is complex and is possibly affected by soil P composition and other site characteristics, 

indicating the need for further research in this area. Finally, we elucidated how the choice of 

cover crop species and agricultural management can shift the relative importance of the 

pathways for the P benefit of the main crop, while site-specific management allows farmers 

to adapt to local conditions and to optimize the functions of their agroecosystems.  

In conclusion, our results indicate that the pathways of cover crop derived P benefit take 

place simultaneously. We confirmed the potential of cover crop biomass for the cycling of P, 

and we suggest that our observed increases in the availability of soil Porg are related to 

microbial abundance and activity. The interactions of cover cropping and tillage indicate 

also that P benefit can be optimized by management decisions. Finally, these new insights 

into soil phosphorus cycling in agroecosystems have the potential to support further 

development of more sustainable agricultural systems.  
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2 Zusammenfassung 

Phosphor (P) ist einer der wichtigsten limitierenden Nährstoffe für das 

Pflanzenwachstum in der Landwirtschaft. Bodenmikroben spielen eine Schlüsselrolle in 

Nährstoffkreisläufen, beeinflussen das Wachstum von Pflanzenwurzeln, die Mobilisierung 

sowie die Mineralisierung von organischem P (Porg) und somit den Zugang zu P. Das Ziel 

dieser Dissertation war die Einschätzung des Potentials von Zwischenfrüchten zur 

Verbesserung der Interaktionen im System Pflanze-Boden-Mikroben und einer dadurch 

möglichen Steigerung der P-Verfügbarkeit für die Hauptfrüchte. 

Diese Dissertation umfasst drei wissenschaftliche Veröffentlichungen. Die 

Literaturrecherche und die Meta-Analyse von 25 publizierten Feldversuchen ermöglichten 

es in Studie #1, ein Modell der Pfade der gesteigerten P-Verfügbarkeit nach 

Zwischenfrüchten zu präsentieren. Die selbst durchgeführen Feldexperimente der Studien 

#2 und #3 ergänzten das Verständnis der zugrundeliegenden Mechanismen mit besonderem 

Augenmerk auf die Rolle von Bodenmikroben. Die Feldexperimente wurden auf Lössböden 

mit Winterzwischenfrüchten vor Soja als Hauptfrucht in komplett randomisierten Blöcken 

mit vier Wiederholungen in Südwestdeutschland durchgeführt. In Studie #2 wurden die 

Wechselwirkungen zwischen Boden, Pflanze und Mikroben im Wurzelraum von drei 

verschiedenen Zwischenfrüchten (Senf, Phacelia und Buchweizen) in einem Boden mit 

geringer P-Verfügbarkeit untersucht. Studie #3 wertete die Interaktionen einer 

Zwischenfruchtmischung und Bodenbearbeitungsverfahren verschiedener Intensität mit 

ausreichender P-Verfügbarkeit anhand von Probennahmen in 0-5 und 5-20 cm Tiefe aus. In 

beiden Feldexperimenten wurde ein breites Set an bodenmikrobiologischen Methoden, 

inklusive Abundanz, Gemeinsschaftsstruktur von Bodenmikroben 

(Phospholipidfettsäuremuster, PLFAs), Aktivität von Enzymen des P-Kreislaufs und P in der 

mikrobiellen Biomasse mit der Verfügbarkeit von Porg für die enzymatische Mineralisierung 

in Zusammenhang gebracht. Zusätzlich wurden in Studie #2 die Abundanz von 16S-rRNA 

und phoD, einem Gen, das eine alkalische Phosphomonoesterase in Bakterien codiert, mit 

real-time qPCR quantifiziert. In Studie #3 wurde außerdem die Fähigkeit der mikrobiellen 

Gemeinschaft zur Nutzung von C-haltigen Substraten bestimmt. 
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Die verwendeten Methoden zeigten, dass Zwischenfrüchte den P-Gehalt in der 

mikrobiellen Biomasse, die Aktivität von Phosphatasen und mikrobielle Fettsäuremarker 

(PLFAs) erhöhen, was auf ein gesteigertes Umsatzpotential von organischen 

Phosphorverbindungen hindeutet. Die Abundanz von grampositiven und gramnegativen 

Bakterien, sowie in geringerem Umfang auch von arbuskulären Mykorrhizapilzen, wurde 

durch Zwischenfrüchte erhöht. Gleichwohl waren saprotrophe Bodenpilze die mikrobielle 

Gruppe, die am meisten von der Substratzufuhr der Wurzeln und Streu profitieren konnte. 

Stabiles P wurde in den aktiven Bodenzonen der Rhizosphäre und Detritusphäre in labilere 

Porg-Pools transformiert. Bewirtschaftungseffekte, wie die Wahl der Zwischenfrucht oder 

Bodenbearbeitung, waren erkennbar, aber wesentlich schwächer ausgeprägt als der 

Zwischenfruchteffekt insgesamt.  

Unsere Ergebnisse bestätigen, dass Zwischenfruchtanbau zur Steigerung der P-

Verfügbarkeit für die Hauptfrucht führen kann. Darüber hinaus konnten wir für den P-

Vorteil drei grundsätzliche Wirkungspfade aufzeigen, die in aktiven Bodenräumen 

stattfinden. Über den Wirkungspfad „Pflanzenbiomasse“ wird P aus dem Boden in die 

Biomasse der Zwischenfrucht aufgenommen und während der Zersetzung der Streu für die 

Hauptfrucht verfügbar. Über den Wirkungspfad „mikrobielle Verstärkung“ steigert die 

Zwischenfrucht im Wurzelraum die Biomasse und Aktivität der mikrobiellen Gemeinschaft, 

wodurch diese die Verfügbarkeit von Porg erhöhen kann. Durch den Wirkungspfad 

„biochemische Modifikation“ scheinen manche Zwischenfruchtarten in der Lage zu sein, 

über Wurzelexsudate die P-Sorption im Boden zu senken und dadurch den Anteil an 

pflanzenverfügbarem Phosphat zu erhöhen. 

Weiterhin ermöglichen die erhobenen Daten die Diskussion, inwiefern mikrobielle 

Funktionen und die Mineralisierbarkeit von Porg zusammenhängen und wie die Interaktionen 

von Pflanzen beeinflusst werden. Zwischenfrüchte steigerten sowohl die Abundanz und 

Aktivität von Mikroben, als auch die Menge an P in der mikrobiellen Biomasse. Diese 

Potentialsteigerung des P-Kreislaufs steigerte die Verfügbarkeit des Porg für zugefügte 

Enzyme. Es muss bedacht werden, dass die Rückkopplungen zwischen Enzymaktivität und 

verschiedenen Porg-Pools komplex sind. Diese hängen von den lokalen Eigenschaften des 
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Bodens, wie etwa der Zusammensetzung des P-Vorrats, ab und sollten durch zukünftige 

Studien geklärt werden.  

Drittens zeigen unsere Untersuchungen, wie die Wahl der Zwischenfrucht und die der 

Bewirtschaftung (z.B. Bodenbearbeitung oder Fruchtfolge) die relative Gewichtung der 

verschiedenen Pfade des P-Vorteils für die Hauptfrucht beeinflussen. Standortangepasste 

Zwischenfruchtsysteme erlauben es Landwirt:innen, die Funktionen ihres Agroökosystems 

hinsichtlich der lokalen Bedingungen zu optimieren. 

Zusammenfassend bestätigen unsere Ergebnisse, dass der P-Bedarf der Hauptfrucht über 

die Biomasse der Zwischenfrucht gedeckt werden kann und zeigen auf, dass die 

charakterisierten drei Pfade des P-Vorteils durch Zwischenfruchtanbau parallel stattfinden. 

Schließlich können die hier gewonnenen Erkenntnisse über den Phosphorkreislauf, 

basierend auf der Kombination von bodenmikrobiologischen Methoden mit der 

Charakterisierung der Labilität von Porg, zur zukünftigen Entwicklung einer nachhaltigeren 

Landwirtschaft beitragen. 
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3 General introduction 

Phosphorus (P) husbandry has long been a concern in agricultural sciences. Interestingly, 

while the use of green manures was described and encouraged even in antiquity by Greek 

and Roman authors (Winiwarter 2002), more modern agronomists have instead advocated 

mainly for the use of inorganic phosphate sources to maintain and increase yields (Heiden 

1865). Currently, as humanity is approaching the global limits of nutrient cycling (Carpenter 

and Bennett 2011; Campbell et al. 2017), inefficient use of P fertilisers is depleting mineable 

reserves and creating environmental hazards (Alewell et al. 2020). Fortunately, over time, 

our understanding of P cycling has made significant progress, in particular by development 

of methods to assess soil organic P (Porg), largely through bettter characterization of the key 

role soil microbes occupy in P availability (McLaren et al. 2020). In this regard, soil-improving 

cropping systems that substitute biological functions for inorganic external inputs are 

increasingly important in the quest to secure future food supplies (Withers et al. 2018). The 

present work aims to shed light on the underlying processes supporting the great potential 

of microbial P cycling management through the incorporation of cover crops into 

agroecosystems. 

The efficiency of P-fertilizers is low due to their differing interactions with the soil. As a 

result, only a very small percentage of soil P is present as plant-available phosphate in the 

soil solution due to physical (sorption onto particle surfaces, Fe- and Al-hydroxides) and 

chemical (production of secondary minerals such as Ca-apatite, or accumulation of 

recalcitrant Porg forms) interactions. Over-application of fertilizers in industrialised countries 

has led to the build-up of large soil P stocks in some areas (Menezes-Blackburn et al. 2018). 

Both of these, organic and sparingly available inorganic P pools, constitute important 

resources, however, and both could be managed with appropriate techniques.  

Plants have developed a variety of mechanisms and strategies to access soil P. A 

substantial fraction of soil P, between 30 and 65 %, is present in organic forms (Harrison 

1987) and is accessed by plants, frequently through their close interactions with microbes 

(Richardson and Simpson 2011). These strategies include increasing the colonized soil 

volume by optimizing root architecture and morphology (Honvault et al. 2021); formation of 

symbioses with arbuscular mycorrhizal fungi (AMF) in  many plant species (Elbon and 
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Whalen 2015); mobilization of sorbed organic and inorganic P compounds, driven mainly by 

the release of H+/OH- and/or carboxylates by roots and microbes (Hinsinger 2001); and 

production of various phosphatases that hydrolyse enzyme-labile Porg producing plant-

available phosphate. Microbes are an important source of these enzymes and play a crucial 

role in plant P nutrition (Richardson and Simpson 2011), while simultaneously providing for 

themselves a significant pool of relatively available P in the form of microbial biomass P 

(Pmic). Released rhizodeposits from plants are used by the microbes as C-sources, both 

shaping microbial communities and their capacity to increase access to P for the plants. 

Plant species differ greatly in their P acquisition strategies and interactions with the 

microbial community, however, underscoring the importance of aboveground biodiversity 

in agroecosystem nutrient management. 

The technique of cover cropping is the practice of growing plants for multiple purposes in 

the intervals between cash crops’ cultivation. Cover crop biomass remains on the field to 

reduce erosion, provide weed and pathogen control, enhance soil C inputs, and influence 

nutrient management (Marques et al. 2020). Cover crops improve access to P for main crops 

in  multiple ways. For example, by means of a biomass pathway, available P can be taken up 

into the cover crop biomass and, as the biomass litter decomposes, become potentially 

available for the main crop (Damon et al. 2014). Additionally, enhancement of soil microbial 

abundance and activity by cover crops via a microbial enhancement pathway may also 

increase P availability in temperate agricultural soils by stimulating Porg cycling and 

facilitating access to P for the following main crop (Richardson et al. 2011). Lastly, some 

cover crops are able to biochemically modify their rhizosphere (Lambers et al. 2013), 

potentially increasing the solubility and availability of P for the main crop by means of a 

biochemical modification pathway. This general framework, together with a detailed 

description of soil-plant-microbe interactions involved in P cycling and plant P acquisition, is 

presented and discussed in Study #1, a meta-analysis of cover crop effects on P availability. 
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4 Objectives 

In order to provide effective and efficient advice to farmers, we need a deeper 

understanding of the mechanisms and drivers controlling the underlying processes of cover 

crop-derived P benefits for the main crop.  

There is current agronomic interest in improved nutrient management using cover crops, 

but more fundamentally, characterizing the effects of cover crop-induced changes on soil 

microbes and their regulatory functions provides an opportunity to study key aspects of 

terrestrial (organic) P-cycling. These include soil habitat conditions, such as the availability 

of root- or litter-derived C-sources and P sorption, as well as the abundances and activities 

of different microbial groups and enzymes involved in P cycling, all under the broader 

scientific umbrella of soil-plant-microbe interactions. 

Therefore, the goal of this thesis is three-fold. First, it investigates whether and how 

cover crops increase access to P by main crops, specifically focusing on the role of soil 

microbes. Second, it elucidates the relationship of soil microbial functions to the enzymatic 

availability of Porg pools. Third, it clarifies how agronomic management (i.e., cover crop 

choice and tillage) affects plant-soil-microbe interactions. Deepening our knowledge of 

these mechanisms and approaches will enable us to improve the nutrient efficiency of 

agricultural systems in order to make responsible use of limited resources. 

The studies presented here are among the first to thoroughly examine the mechanisms 

that influence cover crop-derived changes in Porg availability, providing a conceptual 

framework for greater understanding of the underlying processes. While measurement of 

enzymatic activities to quantify the mineralization potential of organic compounds is among 

the main tools for soil biologists (Burns 1982), quantification of the potential availability of 

different native Porg pools for mineralization with added enzymes is a relatively novel 

method (Bünemann 2008; Keller et al. 2012; Annaheim et al. 2013; Jarosch et al. 2015). Two 

field experiments, the simultaneous characterisation of the Porg pools with respect to their 

availability for added enzymes, coupled with assessment of enzymatic activities and other 

microbial properties, offer a novel and cutting edge approach providing deep insights into 

the black box Porg.  
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The first study in this thesis is a review and meta-analysis of cover crop-derived effects 

on P cycling. In this work, state-of-the-art understanding of P acquisition and soil-plant-

microbe interactions is reviewed, with an emphasis on cover crop-related effects on P 

availability. Moreover, we present a conceptual framework with three distinct pathways 

(plant biomass, microbial enhancement and biochemical modification) for cover crops to 

affect P availability to the following main crops. The study further consists of a meta-

analysis of 240 datasets derived from 25 different studies covering the results of field 

experiments examining cover crop biomass P content, main crop performance, and soil 

microbial properties. The hypotheses were: (1) P acquisition by cover crops stimulates 

growth and P uptake of different main crops; (2) cover crops enhance mycorrhizal 

colonization, short-term storage of P in soil microorganisms, and P mineralization, 

improving plant- and microbially-driven P uptake of the main crop; (3) site conditions (e.g., 

fractions of available P) modify P benefit to the main crop; and (4) cover crop management 

(i.e., species mixtures, tillage intensity, and fertilization) can be used to increase P benefits 

to the main crop. 

The observed variability in results of the field experiments included in the meta-analysis 

required that we improve our mechanistic understanding of the availability of soil Porg pools. 

One of our principal aims, therefore, was to evaluate P dynamics under field conditions and 

to gain a more detailed understanding of the links between the functions of P cycling 

microbes and the lability of the corresponding Porg compounds. 

A close look at soil geography indicates that the area around plant roots is among the 

most active soil compartments; intense plant-soil-microbial interactions here determine 

both the availability and use of different P pools (Honvault et al. 2021). In Study #2, the 

effects of different plant species on P-cycling enzymes’ access to Porg pools around their 

roots was examined to investigate the mechanisms and implications of cover crop effects on 

soil microbial abundances and activities. Here we present the results of an on-farm field 

experiment assessing the microbial properties and P availability in the rhizosheaths of 

Sinapis alba (white mustard), Fagopyrum esculentum (buckwheat), and Phacelia 

tanacetifolia (purple tansy), grown as cover crops before Glycine max (soybean) on a soil 

low in available P. In order to evaluate the importance of the biomass pathway, the 
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quantities of P cycled through the cover crops’ shoot and root biomass were assessed. We 

characterized abundances of microbial groups, the potential activity of P-cycling enzymes, 

and the lability of Porg pools to added enzymes. This enabled us to  investigate the 

relationships among organisms producing enzymes, enzymatic activities, and the availability 

of Porg as a substrate. Additionally, the abundance of 16S-rRNA and the gene phoD, which 

codes for alkaline phosphomonoesterase in bacteria, were quantified using real-time qPCR. 

These data then tested the following hypotheses: 1) The selected cover crops increase labile 

Porg derived from microbial necromass or rhizodeposition in their rhizosheath. 2) Cover crop 

species differ in their plant-microbe interactions, leading to a distinct microbial community 

and activity in their rhizosheath. 3) The cover crops shape their rhizobiomes towards an 

increase in beneficial functions, e.g., by enhancing the specific enzymatic activity per unit of 

microbial abundance. And 4) Soybean as a subsequent main crop benefits from the 

increase in labile Porg and microbial activity by the cover crops. 

Agricultural management affects plant-soil-microbe interactions and omission of this 

factor complicates the interpretation and comparability of studies. However, site-specific 

management allows farmers to adapt to local conditions and to optimize the functions of 

their agroecosystems. Currently, conservation agriculture is one of the main agricultural 

systems promoting the use of cover crops in combination with reduced tillage intensity. It is 

currently practiced by farmers in almost 80 countries extending over 200 million ha, 

corresponding to 15 % of annual cropland globally (FAO 2021). Tillage reduction is expected 

to benefit soil biota by decreasing soil disturbance and changes in plant litter distribution. 

This could be especially important with respect to the effects on organisms such as 

mycorrhizal fungi, which improve crop P uptake but may be negatively affected by tillage 

(Bowles et al. 2017). The interaction of tillage intensity and cover crop effects on soil 

microbes and soil P availability was therefore one of the main objectives of this thesis. In 

Study #3 we assessed the outcomes of a winter cover crop mixture and no-till on microbial 

properties. Microbial biomass, phospholipid fatty acids (PLFAs), P cycling enzymes, and 

carbon-substrate use capacity were linked with the lability of Porg pools. These results made 

it possible to examine the questions of whether: 1) conservation agricultural practices, such 

as cover crop mixtures and no-till, could shift soil P towards more available pools; 2) a 
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stimulated microbial community with enhanced functions is associated with changed P 

pools; and 3) cover crops and no-till may have synergistic effects on soil microbial biomass, 

microbial community structure, and P-cycling capacity. 
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5.1 Abstract 

Background Phosphorus (P) is a limiting nutrient in many agroecosystems and costly 

fertilizer inputs can cause negative environmental impacts. Cover crops constitute a 

promising management option for sustainable intensification of agriculture. However, their 

interactions with the soil microbial community, which is a key driver of P cycling, and their 

effects on the following crop, have not yet been systematically assessed. 

Scope We conducted a meta-analysis of published field studies on cover crops and P 

cycling, focusing on plant-microbe interactions. 

Conclusions We describe several distinct, simultaneous mechanisms by which P benefits 

the main crop. Decomposition dynamics, governed by P concentration, are critical for the 

transfer of P from cover crop residues to the main crop. Cover crops may enhance the soil 

microbial community by providing a legacy of increased mycorrhizal abundance, microbial 

biomass P, and phosphatase activity. Cover crops are generally most effective in systems 

low in available P, and may access ‘unavailable’ P pools. However, their effects on P 

availability are difficult to detect by standard soil P tests, except for increases after the use 

of Lupinus sp. Agricultural management (i.e. cover crop species selection, tillage, 

fertilization) can improve cover crop effects. 

In summary, cover cropping has the potential to tighten nutrient cycling in agricultural 

systems under different conditions, increasing crop P nutrition and yield. 

 

5.2 Introduction 

Essential for agricultural production, but often limiting, mineable reserves of phosphorus 

(P) are non-renewable and concentrated in regions with territorial conflicts, adding a 

geopolitical dimension to P scarcity (Cordell and White 2014). Furthermore, P losses via 

erosion and leaching are responsible for eutrophication of water bodies and ecosystem 

degradation (Schoumans et al. 2014). Therefore, reliance on costly P-fertilizer inputs poses a 

threat to food security. Soil-improving cropping systems such as cover crops and 

conservation tillage are gaining attention for their potential to enhance overall sustainability 

of agriculture and P management (Tonitto et al. 2006; Simpson et al. 2011; Scopel et al. 

2013; Damon et al. 2014). They play an increasingly important role with respect to the 
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concept of ecological intensification (Bommarco et al. 2013) and agroecology (Altieri 2002; 

Faucon et al. 2017). 

Phosphorus-containing fertilizers are used extensively, but the processes underlying the 

biogeochemical P cycle are thus far not fully understood (Bünemann et al. 2011), especially 

under conditions of low P availability (Clarkson 1985; George et al. 2018). Phosphorus is 

present in soils in both mineral and organic forms with vastly different degrees of 

availability; only very small amounts of inorganic P (Pi) are present in the soil solution (Pierre 

and Parker 1927), and this is the form taken up by plants. In agricultural soils, the soil 

microbial community is increasingly acknowledged as the principal driver of soil P dynamics 

(Bünemann et al. 2011; Richardson and Simpson 2011), and efforts have been made to 

include soil microbes into P cycling models (Rengel 2008; Hinsinger et al. 2011; Damon et al. 

2014). The relatively large pools of soil organic P (Porg), as a result of the combined action of 

plant- and microbial-exuded carboxylates for mobilization and enzymes for mineralization, 

constitute a valuable yet poorly understood resource (George et al. 2018; Menezes-

Blackburn et al. 2018). The options for their management and their effects on crop P 

nutrition status and yield are therefore of paramount interest to both agronomists and 

farmers. 

Cover cropping is the practice of growing plants, usually in the off-season, leaving their 

biomass on the field to provide various benefits for the agroecosystem, including erosion 

reduction, soil organic matter (SOM) build-up, weed and pathogen control, and nutrient 

management. Cover crops are also used to improve the P efficiency of added organic or 

mineral fertilizers by increasing soil biological activity or uptake and protection of soluble 

mineral P in strongly P-fixing soils (Kamh et al. 1998; Kuo et al. 2005). In principle, most 

plant species could be used for these purposes, and the list of plant species that can be used 

as cover crops is rapidly expanding. However, agronomic requirements of the cover crops 

(e.g., rapid growth, Plant species in general, and therefore also when used as cover crops, 

vary greatly in their biomass production, soil exploration, exudation of P-mobilizing and 

organic P-mineralizing compounds, as well as their interaction with the rhizosphere 

microbial community. The variety of strategies for P-acquisition employed by different plant 

types must be considered, as, e.g., non-mycorrhizal species, while highly efficient at P 
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mobilization, do not necessarily interact strongly with soil microbes (Lambers and Teste 

2013; Lambers et al. 2015a). The inclusion of cover crops with special properties such as, 

e.g., the increase of the inoculum potential by arbuscular mycorrhizal fungi, can be 

beneficial in agricultural rotations that use domesticated cash crops developed in high-input 

breeding systems (Plenchette et al. 2005). Conservation agriculture, defined by the 

combination of cover crops, conservation tillage, and an adequate crop rotation (Hobbs et 

al. 2008), decreases  labor intensity and frequency, enhances soil rest, and benefits soil 

biota. Here, crop residues are mixed less deeply into the soil than under conventional 

tillage, modifying soil biological parameters and mineralization dynamics. Other effects of 

management could result from the termination method used (e.g., spraying or roll-

chopping) for winter-hard cover crops (Creamer and Dabney 2002).  

The effects of cover crops and conservation tillage on crop yield and soil properties, 

especially nitrogen (N) dynamics, have been the subject of many studies, several reviews 

(Dabney et al. 2001; Dreymann et al. 2005; Tonitto et al. 2006; Dahlin and Stenberg 2009), 

and projects (Crossland et al. 2015). However, P dynamics have, until recently, rarely been 

addressed. Some reviews on the underlying mechanisms of plant and microbial P acquisition 

and resulting implications for agricultural management have provided a theoretical 

foundation for predicting the influence of cover crops on P dynamics (Horst et al. 2001; 

Guppy et al. 2005; Richardson and Simpson 2011; Richardson et al. 2011; Damon et al. 

2014). Interestingly, those publications have largely reflected their regional conditions; 

climate, soil P content and sorption capacity. Studies of P-fertilization efficiency, often 

associated with pastures, come mainly from Australia (Rose et al. 2010a; Simpson et al. 

2011; McLaughlin et al. 2011; Faucon et al. 2015). Brazilian studies have emphasized 

conservation agriculture and acid soils with poor P availability (LeMare et al. 1987; Calegari 

et al. 2013; Balota et al. 2014; Fageria et al. 2016; Varela et al. 2017), while Scandinavian 

researchers have concentrated on P leaching (Liu et al. 2015; Aronsson et al. 2016). In the 

USA, cover crops of different species have been investigated (Lal et al. 1978), including their 

effects on mycorrhizal fungi (Galvez et al. 1995; Zibilske and Makus 2009; Rick et al. 2011; 

Maltais-Landry 2015), whereas in China and India, studies have often focused on microbial 

inoculants (Devi et al. 2013; Cui et al. 2015). In some African countries, India, and Mexico, 
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with their prevalent traditional smallholder cropping systems, agroforestry and 

intercropping have been important topics for research (LeMare et al. 1987; Tarawali et al. 

1999; Dinesh et al. 2004; Sileshi et al. 2008; Castillo-Caamal and Caamal-Maldonado 2011; 

Devi et al. 2013; Tanwar et al. 2014; Parihar et al. 2016). Previous meta-analyses have been 

concerned mainly with the effects of cover crops on Zea mays (maize) yield in North 

America (Miguez and Bollero 2005), effects on soil properties and yield in the South 

American Pampas region (Alvarez et al. 2017), response to woody and herbaceous legumes 

in sub-Saharan Africa (Sileshi et al. 2008), soil organic carbon (Poeplau and Don 2015). 

Nitrogen dynamics (Tonitto et al. 2006), P nutrition and dynamics has not been a focus of 

the meta-analyses in these agro-ecosystems. Consequently, understanding whether and 

how cover crops can benefit the P nutrition of following main crops is sorely needed. 

The aim of our review is to bridge our present knowledge of soil-plant-microbe 

interactions with the potential of cover crops to stimulate P dynamics in agricultural 

ecosystems. We begin with a description of P pools and P-acquisition mechanisms of cover 

crops, and present a conceptual framework of how P dynamics of cover crops and main 

crops may be linked. Both plants and soil microorganisms are involved in P dynamics of 

agro-ecosystems; we therefore present the most important mechanisms and pathways for 

both with respect to cover crops. We reviewed the conceptual framework through an 

extended meta-analysis that included 240 datasets derived from 25 studies. The focus of the 

meta-analysis was to elucidate whether  

(1) P acquisition by cover crops stimulates growth and P uptake of different main crops; 

(2) cover crops enhance mycorrhizal colonization, short-term storage of P in soil 

microorganisms, and P mineralization, improving plant- and microbial-driven P uptake of 

the main crop; 

(3) site conditions (e.g., fractions of available P) modify P benefit to the main crop; and 

(4) cover crop management (i.e. species mixtures, tillage intensity, and fertilization) can 

be used to increase P benefits of the main crop. 

1 Availability of phosphorus 

Plant P nutrition is constrained by limited availability, due to physicochemical processes 

in the soil, of orthophosphate, the form that is taken up by roots. Phosphorus compounds 
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interact strongly with the soil through sorption to particle surfaces (including SOM), slow 

diffusion into aggregates, and formation of precipitates with cations of calcium (Ca), as well 

as sorption onto oxides and hydroxides of iron (Fe) and aluminium (Al) (Kelly and Midgley 

1943), under alkaline and acid conditions, respectively. These interactions result in low P 

availability and P-fertilizer efficiency (McLaughlin et al. 2011). Soils with low P-sorption 

capacity also exhibit the associated hazard of P losses via leaching, whereas P-sorbing soils 

have problems with P-fertilizer efficiency due to immobilization of added P. As P-fertilizer 

efficiency is only 10-20 % in the short term (Chien et al. 2011), agricultural soils in 

industrialized countries have commonly received excessive loads of P over decades, often 

without reaching the soil saturation limit. This accumulated P constitutes a valuable 

resource that could be accessed by employing appropriate cropping systems. For a recent 

review about pools of recalcitrant P in agricultural soils and opportunities for mobilization, 

see Menezes-Blackburn et al. (2018). On the other hand, highly-weathered soils in the 

tropics are P impoverished, and rich in Fe/Al oxides and hydroxides (Simpson et al. 2011). In 

these systems, efficient recycling and use of the available inputs is essential. Phosphorus 

inputs into soil are from weathering of P-containing minerals or mobilization/mineralization 

of other P pools of low availability, as well as atmospheric deposition by dust, and by 

fertilizer application. Phosphorus is removed from the system through biomass of harvested 

crops, by erosion, and by leaching, and is accompanied by accumulation of P forms of low 

availability (Condron et al. 2005). Erosion, globally the biggest threat to sustainable soil 

stewardship (Bernoux et al. 2006; Durán Zuazo and Rodríguez Pleguezuelo 2008), is one of 

the major losses of agricultural P, as it is often associated with particle fractions prone to 

transport. 

Soil P consists of both large, but stable and small, but highly-dynamic pools (Sharpley 

1995). Although in heavily fertilized agricultural soils labile Pi may temporarily dominate the 

plant-available pools (Negassa and Leinweber 2009), usually 30-65 % of total P (Pt) is 

present in organic forms (Harrison 1987; Condron et al. 1990), and more in soils with high 

SOM content (Borie and Zunino 1983). During pedogenesis, the primary P-bearing minerals 

are slowly depleted, with highly weathered soils containing almost exclusively occluded P 

and Porg, which is tightly recycled in the biomass (Smeck 1985). Organic P can contribute to 
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crop nutrition, as plants and microbes can access the more labile Porg by a combination of 

mobilization with carboxylates and subsequent enzymatic mineralization (Condron et al. 

2005; Richardson and Simpson 2011). In addition to phospholipids and nucleic acid-P (both 

forms account for less than 10 % of total soil Porg, but comprise most of the microbial P 

(Pmic)), inositol phosphates (phytate) accumulate in soil due to their stable nature, and 

represent the major fraction of Porg (Jones and Oburger 2011). The inositol molecules consist 

of 1-6 phosphates attached to a C6-ring with ester-bonds, requiring specialized enzymes for 

breakdown; they also interact strongly with the soil due to their high charge density (Turner 

et al. 2002; Turner 2007). Due to low substrate availability, low phytase production by roots, 

and low enzyme-substrate efficiency in soils, only some plant species can access phytate to 

a limited extent (Menezes-Blackburn et al. 2013). However, several plant species are able to 

grow with sodium (Na)-hexaphytate as their sole P source in the laboratory (Steffens et al. 

2010). In natural soils with endogenous phytates, mobilization via carboxylates and 

subsequent interactions with microbes appear necessary for plants to use this resource. For 

a full review of inositol phosphates, see Turner et al. (2007). 

The direction of the effect of long-term SOM accumulation by cover crops on P 

availability is not clear. Improved soil physical-chemical parameters (e.g., water-holding 

capacity, aggregate stability) (Dorado et al. 2003) may increase P availability to crops 

directly or indirectly (Eichler-Löbermann et al. 2008). Some fractions of SOM may compete 

with P for binding sites on particle surfaces, decreasing P-sorption capacity (Janegitz et al. 

2013). However, large amounts of Porg are in the form of uncharacterized high-molecular-

weight organic material (McLaren et al. 2015), linking the accumulation of poorly-available 

Porg closely to SOM dynamics. This could constitute a problem for the exploitation of these 

pools (Romanyà et al. 2017), as SOM is needed for soil structure, fertility, and climate 

change mitigation, and one target of cover cropping is to increase SOM content in soils. 

However, the fact that C:N:Sulfur (S) ratios are relatively constant across soils, whereas C:P 

and C:Porg are more variable, may allow increasing available P (Pa) through Porg 

mineralization without affecting SOM accumulation. A P-priming effect has been described 

(Randhawa et al. 2005), but remains unresolved due to methodological constraints (Damon 

et al. 2014). 
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The most common way to characterize soil P is by using variants of the Hedley 

fractionation, which determines the amount of Pi and Porg in various soil extracts (i.e. 

NaHCO3, NaOH, HCl), which are used to represent pools of differing degrees of availability 

(Hedley et al. 1982; Cross and Schlesinger 1995). However, the net contribution of these 

operational fractions to uptake by microbes and plants, and therefore the validity of the 

method for the prediction of plant P uptake, is not straightforward (Negassa and Leinweber 

2009; Rose et al. 2010b). Olsen-P (Olsen et al. 1954), using NaHCO3 as extractant, is one of 

the most widely used methods and often correlates well with yield and P uptake, but was 

originally developed for calcareous soils. There are many other extractants for soil P testing 

methods, including Mehlich-III (Mehlich 1984), Bray 1 (Bray and Kurtz 1945), water (Paauw 

1971), calcium-ammonium-lactate (CAL) (Schüller 1969) and Colwell (Colwell 1963). Their 

application differs, even among regions in the same country, due to prevailing soil 

characteristics, but also due to historical reasons. More recently developed test methods 

that show promising results such as resin-P and “diffusive gradients in thin-films” (DGT) 

(Mason et al. 2013) are not yet widely used. One issue is that the color methods used in 

routine soil testing, mostly molybdate-blue (Murphy and Riley 1962), do not account for Porg 

(Steffens et al. 2010). This has been justified based on the assumption that Porg seems to 

play a minor role in plant nutrition under high availability of Pi (Guo et al. 2000), but has 

consequences for systems dependent on Porg (Dao et al. 2015). The combination of 

imperfect P-test methods and substantial knowledge gaps in understanding the complex P 

dynamics in soils constricts a scientific elaboration of general agricultural recommendations 

(Turner et al. 2005). Another problem is the definition of “plant-available P”, as there are 

major differences among plant species (Lambers et al. 2006) and even crop varieties (Pang 

et al. 2018a) regarding their ability to access different soil P pools.  

 

2 Phosphorus acquisition by cover crops 

Plant species differ greatly in their P-acquisition strategies. The ability of cover crops to 

access poorly-available soil P is often superior to that of cash crops (Fig. 5.1). Their 

strategies can be summarized as: 1) exploration of a greater soil volume by an adaptive root 

architecture and root morphology; 2) mobilization of sparingly-soluble inorganic and organic 
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P forms; and 3) mineralization of Porg. These mechanisms may all be enhanced through 

interaction with soil microbes. 

In addition to the transfer of Pa via cover crop residues to the main crop and to chemical 

rhizosphere modifications, some studies attribute benefits of cover crops to the subsequent 

crop to the soil microbial community, which influences P dynamics, both during the cover 

crop and the main crop phases (Nuruzzaman et al. 2005a; Pypers et al. 2007; Rose et al. 

2010a; Mat Hassan et al. 2013). 

Plants interact with the soil microbial community by releasing organic compounds into 

the rhizosphere that serve as substrates and signaling molecules to the microbes, increasing 

their abundance and activity several-fold (Bünemann et al. 2004; Balota et al. 2014). Our 

current knowledge indicates that both plants and soil determine microbial community 

composition (Marschner et al. 2001; Nannipieri et al. 2008). Together with plant roots, 

microbes are the principal drivers of Pi and Porg solubilization and of the mineralization of 

more or less recalcitrant Porg in soil. They possess a diverse array of mechanisms to increase 

P acquisition by plants, including modifications and extension of root systems, allowing 

roots to access P-rich substrates that are otherwise unavailable to plants due to their 

location in the soil (i.e. in narrow pore spaces). 
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Figure 5.1 Strategies and mechanisms for phosphorus (P) acquisition by plants: 1) soil exploration via 
roots and mycorrhizal hyphae; 2) mobilization of sparingly-soluble inorganic P (Pi) and organic P (Porg) 
by exudation of H+/OH- and carboxylates; 3) mineralization of Porg by phosphatases. Plant-driven 
processes have solid outlines, microbial activity is shown by dotted outlines 
 

3 Root architecture 

The differences in P uptake by cover crops are determined partly by their root 

architecture, with topsoil exploration and root hair density the most important traits for 

improved P uptake (Richardson et al. 2011). The kinetic properties of the Pi-uptake system, 

unlike those of more mobile nutrients such as nitrate, are not a major rate-limiting step in 

plant P acquisition (Clarkson 1985; Barber 1995). Mycorrhizal fungi play a fundamental role 

as extensions of the roots, whereas other microorganisms promote root growth and modify 
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root architecture (branching, root hairs) via signaling molecules in the rhizosphere (Hayat et 

al. 2010). Cover crops with more extensive root systems scavenge P from a larger and 

deeper soil volume, and make it potentially available for main crops with shallow roots 

(Dube et al. 2014). Some plants (e.g., Lupinus species), possess specialized root structures, 

termed cluster roots, that exploit soils with low P availability and potentially enhance P 

availability for the main crop (Nuruzzaman et al. 2005b; Lambers et al. 2006). They may 

additionally facilitate P acquisition for neighboring plants (Gardner and Boundy 1983; Horst 

and Waschkies 1987; Cu et al. 2005).  

To date, the most extensive description of cover crop traits related to P uptake is that by 

Wendling et al. (2016), who classified cover crops into five groups based on shoot biomass 

and nutrient concentration, comprising species from different families. The main findings of 

this study were shoot and root traits, rather than taxonomy; species with high nutrient 

concentrations and high root length density were recommended under high-fertility 

conditions and from a short-term perspective. However, although biochemical and 

microbial root P-acquisition strategies were not assessed in this study, they may well have 

been relevant, especially in systems with low P availability. 

 

4 Phosphorus mobilization 

Soil P-mining strategies enhance desorption and solubilization of sparingly-available Pi 

and Porg pools, which often limit P availability. Plants and microbes are capable of exuding 

low-molecular-weight organic anions (carboxylates) to dissolve precipitates and chelate 

metal cations, both of which make phosphate unavailable; because carboxylates facilitate 

the release of sorbed P via ligand-exchange reactions (Hinsinger 2001), and block binding 

sites on soil particles, they increase the concentration of P in solution (Ohno and Crannell 

1996). The pH of the soil solution is modified by exudation of H+ or OH-/HCO3-. This, in turn, 

determines the variable surface charge of minerals and SOM, and may also increase P in 

solution. Proton release enhances P availability only in calcareous soils, due to the 

dissolution of Ca-phosphate. However, as the (bio)chemistry of P in soils is very complex, 

with many processes occurring simultaneously, sometimes in opposite directions, it is 

difficult to predict the effect of pH changes on P dynamics. A review of Pi bioavailability in 
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the rhizosphere was written by Hinsinger (2001). Despite their name, ‘organic acids’ do not 

substantially decrease rhizosphere pH, as they are mostly released as organic anions, 

generally with cations other than protons as balancing ions (Zhu et al. 2005; Roelofs et al. 

2008). Exudation of P-solubilizing organic anions differs strongly among plant genotypes and 

soils (Kamh et al. 1998; Nuruzzaman et al. 2006) and is related to P deficiency and Al toxicity 

(Richardson et al. 2011). Citrate is a commonly released organic anion and one of the most 

effective for P mobilization (Jones 1998). It is produced in large quantities by Lupinus albus 

(Gardner et al. 1983; Dinkelaker et al. 1989; Cu et al. 2005) and other legumes (Kamh et al. 

2002), including Cicer arietinum (chickpea) (Veneklaas et al. 2003), Vicia faba (faba bean) (Li 

et al. 2007), and Trifolium pratense (red clover) (Gerke and Meyer 1995), but also by 

Brassica napus (canola) (Hoffland et al. 1992). The strategy of dicots (e.g., Fabaceae, 

Brassicaceae) is to utilize biochemical rhizosphere modification for P mobilization, whereas 

Poaceae predominantly take up P using their extensive root systems (Maltais-Landry 2015; 

Schnug and De Kok 2016). The exudation of different organic anions and acidification may 

be complementary (Gerke and Meyer 1995), but the mechanisms are complex and the 

result depends strongly on soil chemistry and P level (Oburger et al. 2011).  Complicating 

the system further, microorganisms function as both potential sinks and alternative sources 

of carboxylates (Deubel et al. 2000), and soil fauna remobilize P from the microbial biomass 

(Hinsinger et al. 2015). The identification of pH as the principal driver of microbial diversity 

in soils (Philippot et al. 2009) paired with substantial changes in pH in the rhizosphere led 

Hinsinger et al. (2009) to the hypothesis that root-induced pH changes shape the structure 

of the rhizosphere microbial community equally or more importantly than root C 

deposition. 

Microbes may use plant exudates to produce P-solubilizing compounds in the 

rhizosphere, complementing P mobilization by roots (Schilling et al. 1998). In fact, some root 

exudates do not function directly in plant nutrient acquisition, but are composed of mobile 

sugars, which can be used by the rhizosphere microbial community. The critical role of 

desorption for the mineralization of Porg is receiving increasing attention (Giaveno et al. 

2010). Pseudomonas species are among the most frequently studied P-solubilizing bacteria, 

but also species of Burkholderia, Enterobacter, Pantoea, Bacillus solubilize P (Jorquera et al. 
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2008). Together with arbuscular mycorrhizal fungi (AMF), P-solubilizing microorganisms are 

a target for the development of microbial inoculants, although often with limited success in 

the field (Parray et al. 2016). 

The potential of some plants to mine sparingly-available P pools led to optimism about 

their potential to increase P availability when used as cover crops (Teboh and Franzen 2011; 

Boglaienko et al. 2014). However, under conditions of P-deficiency, plants do not always 

respond by releasing organic anions and their effect on P uptake is not consistent (Wang et 

al. 2016).  

The minor direct benefits of cover crop rhizosphere modification (i.e. carboxylate 

exudation) for subsequent crops (Possinger et al. 2013) may be explained by the short 

duration of carboxylate exudation (a few weeks) associated with legume roots, limiting their 

effects on the main crop (Nuruzzaman et al. 2005a). Notwithstanding, the binding of 

carboxylates to Fe/Al hydroxides could delay microbial mineralization (Jones and Edwards 

1998) and reduce soil P-sorption capacity. The ability of microorganisms to access sparingly-

available P with benefits to plants may depend on microbial turnover (Richardson and 

Simpson 2011), as the microbial biomass conserves solubilized P. 

The inclusion of carboxylates and other rhizosphere processes could improve plant 

nutrition models, which have to date failed to predict the actual uptake of P and other low-

mobility nutrients, especially under low-input conditions (Hinsinger et al. 2011). Leaf 

manganese (Mn) concentration, for example, can be used as a proxy for carboxylate 

concentration in the rhozosphere, providing a tool that may be more reliable than 

measurement of rhizosphere carboxylates, given their transient nature in the field (Lambers 

et al. 2015b; Pang et al. 2018a). 

 

5 Mineralization 

In addition to mobilization mechanisms described above, the considerable amounts of 

Porg in soil require, once in solution, enzymatic hydrolysis to become plant-available Pi. In 

pot experiments, the activity of phosphatase enzymes was three-fold and nine-fold greater 

in the rhizosphere of Triticum aestivum (wheat) and Lupinus albus (white lupin), 

respectively, than in bulk soil, and this increased activity was, in both cases, associated with 
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the depletion of soil Porg (Nuruzzaman et al. 2006). However, phosphatases also have a role 

in recycling P inside cells and recapturing Porg lost from roots or microbial cells (Tarafdar and 

Jungk 1987; Barrett-Lennard et al. 1993). Experiments with transgenic Trifolium repens have 

shown that, under laboratory conditions, transgenic expression of phytase and purple acid 

phosphatase genes from Medicago truncatula increased the plants’ ability to utilize organic 

P in response to P deficiency (Ma et al. 2009). The use of these techniques is convenient for 

experimentation, but in the field, the efficacy of single exudation traits appears to be limited 

in P-deficient soil conditions where the soil does not exactly match the functional 

requirements of the enzymes of interest (Giles et al. 2017). 

Extracellular enzymes interact strongly with soil particles, leading to adsorption and 

inactivation, but also to protection against degradation (Rao et al. 2000). Adsorption 

depends on the mineral composition of the soil (Ditterich et al. 2016) and characteristics of 

the SOM. There are indications that carboxylates may serve a dual role of desorbing P and 

providing a favorable pH for the phosphatase enzymes, increasing enzymatic activity 

(Furutani et al. 2017)  

Due to sorption processes, the effect of plant-derived phosphatases will be restricted to 

a few millimeters of distance from the roots. However, mobile rhizodeposited sugars 

penetrate further into the bulk soil, and can be used by microbes to produce phosphatases, 

extending the range of Porg mineralization around the roots. Due to complex interactions 

with soil, microbial degradation, and interception of the products, increased phosphatase 

activities do not necessarily translate into a more rapid P-uptake rate for plants. 

Under natural conditions, the microbial contribution to the mineralization of Porg in the 

rhizosphere is undisputed; however, it is often difficult to separate the origin of enzymatic 

activity, as some enzymes, such as acid phosphatases and some phytases, are produced 

both by plants and microbes (Nannipieri et al. 2011). Diesterases can be produced by plants 

also, but diesterase activity is mainly related to microbial biomass (Turner and Haygarth 

2005; Lang et al. 2017). Alkaline phosphatases, however, some phytases (Azeem et al. 2015) 

and phosphonate hydrolases (Hunter et al. 2014) are produced only by microbes. 

Zymography is a promising in situ method for analysis of the two-dimensional distribution of 

enzymatic activity in soil. In an experiment with Lupinus albus it was combined with 14C 
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imaging, revealing that alkaline phosphatase-producing microorganisms were not 

dependent on recent rhizodeposition, whereas acid phosphatase activity was concentrated 

in the direct vicinity of the roots (Spohn and Kuzyakov 2013a). The relative contributions of 

microbial groups to the activities of the different phosphatases requires further 

investigation (Turner and Haygarth 2005). In contrast with plants, which take up P 

exclusively as Pi, microorganisms may be able to take up low-molecular-weight Porg, and 

protozoa can make use of high-molecular-weight Porg (Jones and Oburger 2011).  

The capacities of a plant species to solubilize and mineralize Porg forms may be related to 

its rhizosphere-associated microbes. For example, the pasture plants Lolium perenne 

(perennial ryegrass) and Trifolium repens (white clover) have predominantly phytate-

mineralizing bacteria in their rhizospheres, whereas in the cereal crops Avena sativa (oat) 

and Triticum aestivum (wheat), P-solubilizing bacteria dominate in the rhizosphere. 

Conversely, Lupinus luteus (yellow lupin) shows the lowest proportion of both bacterial 

types in a Chilean volcanic soil (Jorquera et al. 2008). Larger quantities of phytate-

mineralizing and P-solubilizing fungi can be isolated from the rhizosphere of leguminous 

crops as compared with those of cereals (Gaind and Nain 2015). The ecological interactions 

between r-strategists in the rhizosphere and K-strategists in the bulk soil may also influence 

P mineralization (Hunter et al. 2014). 

Strategies used by plants vary. There is a rather microbe-independent strategy, as in 

Lupinus albus, which releases inhibitors that prevent microbial degradation of root-derived 

carboxylates and phosphatases, intensively changing the chemistry of a small volume of soil 

around the cluster roots (Weisskopf et al. 2006). However, there are also non-mycorrhizal 

Brassicaceae with high levels of rhizodeposition, and mycorrhizal plants that scavenge P 

from a greater soil volume at a lower intensity. Therefore, the P-acquisition strategy of the 

cover crop influences the mechanisms of P-benefit to the main crop. A selection of common 

cover crop species and their properties is described in Table 5.1. 
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Table 5.1: Plant species widely used for cover cropping and their properties as described in the literature 

Cover crop Advantages Disadvantages P(1) -acquisition strategy Cited in  

Vicia faba (faba bean) 
Fabaceae 

x N2(2) fixation 
x P mobilization 

 x Rhizosphere modification: pH, 
carboxylates, phosphatases) 

Nuruzzaman et al. (2005b)  
Rose et al. (2010) 
Malthais-Landry (2015) 

Vicia villosa (hairy vetch) 
Fabaceae 

x High yielding  
x Cold tolerant 

 

x Mixed effect on 
AMF(3) 

 Anugroho et al. (2009) 
Tarui et al. (2013) 
Mbuthia et al. (2015) 

Lupinus sp. (lupin) 
Fabaceae 

x Excellent P mobilization 
x N fixation 

x Non-mycorrhizal 
x Difficult 

establishment 

Cluster roots: intensive exudation 
of carboxylates, protons and 
enzymes  

Veneklaas et al. (2003) 
Lambers et al. (2013) 
Janegitz et al. (2013) 

Lolium sp. (ryegrass) 
Poaceae 

x Good nutrient scavenger 
x Erosion and weed control 
x Cold tolerant 

x High C:P ratio 
x P immobilization 

x Extensive root system Aronsson et al. (2016) 

Avena sativa (oat) 
Poaceae 

x Fine rooting system, 
competitive 

x Winter kills 

  Muzangwa et al. (2012) 
Mukumbareza et al. (2015) 

Secale cereale (rye) 
Poaceae 

x Fast growth 
x Good nutrient scavenger 
x Late sowing possible 
x Cold tolerant 

x Nutrient 
immobilization 

x Termination difficult 

 White and Weil (2010) 
Maltais-Landry (2015) 

Brachiaria sp. (ruzigrass) 
Poaceae 

x High biomass  x Decreases P-sorption of acid soils 
x Converts recalcitrant P into 

available P 

Janegitz et al. (2013) 
Almeida and Rosolem  
(2016) 

Sinapis sp. (mustard) 
Brassicaceae 

x High biomass 
x N and P scavenger 
x Taproots 
x Biofumigation 

x Non-mycorrhizal 
x Poor improvement 

of soil structure 

x Rhizosphere modification 
(phosphatases, carboxylates), but 
no strong acidification 

x High biomass 

Haramoto and Gallandt 
(2004) 

Fagopyrum esculentum 
(buckwheat) Polygonaceae 

x Fast growing 
x P scavenger 

(carboxylates) 
x Winter kills 

x Non-mycorrhizal 
x Weed hazard when 

allowed to set seed 
x Low root biomass 

x Organic anion and proton release 
x Good solubilization of Ca-P(4) 

Teboh and Franzen (2011)  
Boglaienko et al. (2014) 

(1) Phosphorus; (2) Nitrogen; (3) Arbuscular Mycorrhizal Fungi; (4) Calcium-Phosphate 
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Conceptual framework: how do cover crops affect P dynamics? 

Among the P dynamics affected by the soil-plant-microbe processes of cover cropping 

(Fig. 5.2), the most studied mechanism is the direct uptake of Pa by plants and the transfer 

of P within the cover crop biomass. The storage of substantial quantities of P, both by high 

biomass and high P concentrations, is methodologically relatively simple to assess. 

Phosphorus in the plant biomass is protected from sorption onto the soil (Groffman et al. 

1987) or losses by erosion and leaching, but P mineralization needs to be in synchrony with 

the needs of the main crop. Some cover crops act through positive effects on the soil 

microbial community (i.e. earlier mycorrhizal colonization, production of enzymes and 

increased microbial P as a pool for plants), increasing the capacity of the crop-rhizobiome-

system to access P (Njeru et al. 2014). There is also chemical modification of the 

rhizosphere, via changes in pH, carboxylate exudation, or phosphatase release, as described 

above. Biochemical P mobilization would be potentially greatest in soils with a high content 

of poorly-available P, under the condition that chemical modification of the rhizosphere 

persists well into the main cropping phase. All these processes occur simultaneously with 

differing degrees of relative importance depending on the combination of agroecosystem 

and management. 
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Figure 5.2 Pathways of phosphorus (P) transfer and plant-microbial processes affecting P availability 

by cover cropping. 1) Soil P pools of varying degrees of availability are solubilized and/or mineralized 

and are immobilized in the microbial biomass. 2) The microbial biomass releases P into the soil 

solution which 3) ends up in the plant via root or mycorrhizal uptake. Cover crops may additionally 

possess the capacity to mine P from poorly-available P pools or to produce biochemical rhizosphere 

modifications to increase P availability. 4) The roots release rhizodeposits that shape the microbial 

community, eventually leading to increased P mining. 5) The P stored in the cover crop biomass is 

transferred to the main crop via cover crop residues, which are decomposed by the soil microbial 

community (6). The soil microbial community (i.e. mycorrhizal fungi) in the main crop phase, 

enhanced by the cover crops, may possess an increased capacity to mine P for the main crop (7). 

 

5.3 The Meta-Analysis 

In order to analyze the general effects of cover cropping on main crop performance in 

terms of P nutrition, we conducted a meta-analysis. We also assessed more specific effects, 

such as the multiple ways in which cover crops, interacting with microbes, influence P 

dynamics and P uptake of the main crop, as well as different cover crop-main crop 

combinations.  
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An initial search in 2017 for online available publications using Scopus with the key-words 

(”phosphorus“ AND "cover crop" OR  "green manure" OR  "catch crop") yielded 638 

matches that were screened by title and abstract. The literature cited in the studies meeting 

our criteria was also screened, and we expanded the search further using Google Scholar. 

We selected those studies that reported the effects on main crop yield and P uptake/P 

concentration, soil P and/or soil biological parameters related to P cycling (phosphatase 

activity, microbial biomass P, or abundance of AMF) and included a control treatment 

without cover crops. Phosphorus-mobilizing carboxylates are rarely measured in field 

studies and could not be included in the meta-analysis. We used only studies with cover 

crops and main crops grown in rotation, excluding intercropping or living mulch. 

Greenhouse experiments were excluded, as were agroforestry and grassland studies. Soil 

biological properties and available P were determined after termination of the cover crop or 

during growth of the main crop. Experimental factors such as main crop species and/or 

other factors (e.g., soils, tillage) and data from different years were treated as separate 

experiments within a study. 

The soils included in this meta-analysis were classified according to their P availability, 

using the descriptions of the field experiments and the results of standard P tests. Datasets 

from a single field experiment that had been published in several articles (e.g., yield and soil 

microbiology in different papers) were merged into a single dataset when possible. Details 

of the studies used (Weerakoon et al. 1992; Medhi and Datta 1996; Boswell et al. 1998; 

Vanlauwe et al. 2000; Kabir and Koide 2002; Somado et al. 2003; Jensen et al. 2005; 

Rutunga et al. 2008; Wang et al. 2008; Eichler-Löbermann et al. 2008; Oikeh et al. 2008; 

Takeda et al. 2009b; White and Weil 2010; Buyer et al. 2010; Rick et al. 2011; Tiecher et al. 

2012b, a; Karasawa and Takebe 2012; Njeru et al. 2014; Balota et al. 2014; Maltais-Landry et 

al. 2015; Karasawa and Takahashi 2015; Mbuthia et al. 2015; Ro et al. 2016; Pavinato et al. 

2017) and the extracted data can be found in supplementary material S5.1 and S5.2). The 

data were extracted from the publications using the shareware-tool DataThief III (Tummers 

2006) and the open source software Tabula (Aristarán et al. 2017). 

We used main crop yield and main crop P uptake as response variables to evaluate the 

effect of cover crops, because yield is ultimately of interest to farmers. We decided against 
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P concentration, because there is a trade-off between yield and nutrient concentration; that 

is, high-yielding cropping methods may decrease the concentration of some minerals in the 

crop (Garibay et al. 1997), whereas a crop with poor field emergence may have a high P 

concentration. Cover crop biomass and cover crop P uptake were also evaluated to 

characterize the different cover crop families. To assess the interactions between cover 

crops, soil microbial community, and the main crops, AMF abundance/colonization, Pmic, and 

phosphatase activity (alkaline and acid phosphomonoesterase, phosphodiesterase) were 

first treated as response variables to determine whether or not they were affected by cover 

cropping, then included in a separate analysis as moderating variables to determine their 

influence on main crop performance.  

The categorical variables soil P availability (high vs low) and climate (tropical vs 

temperate), and the agronomic factors tillage (inversion tillage vs non-inversion tillage/no-

tillage), fertilization (P-fertilized vs unfertilized), and cropping system (conventional vs 

organic) were also used as moderating variables for the response variables. 

The models had the following basic structure with their respective response and 

moderating variables: 

 

log𝑒(𝑦̂) = 𝑚 (𝑓𝑖𝑥𝑒𝑑 ) + 𝑠𝑡𝑢𝑑𝑦(𝑓𝑖𝑥𝑒𝑑) + 𝑠𝑡𝑢𝑑𝑦: 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝑛𝑒𝑠𝑡𝑒𝑑, 𝑟𝑎𝑛𝑑𝑜𝑚)  

 

𝑦 = response variable 

𝑚 = moderating variables 

 

The response variables were all loge-transformed to account for different units and scale 

effects, but back-transformed and reported as percentage change relative to the respective 

control treatments for graphical visualization. To calculate the relative percentage change 

by cover crops, the following formula was used: 
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𝑌(%) =
𝑦̂𝑐𝑜𝑣𝑒𝑟 𝑐𝑟𝑜𝑝𝑠𝑗 − 𝑦̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑗

𝑦̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑗

∗ 100 

 

𝑦̂𝑐𝑜𝑣𝑒𝑟 𝑐𝑟𝑜𝑝𝑗 = modeled median or 95 % CI, respectively, of the jth cover crop type 

𝑦̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = modeled median of the control treatments corresponding to j  

 

Bearing in mind possible interactions, cover crops and main crops were aggregated into 

phylogenetic families of similar properties (Supplementary Material S5.2). Fabaceae and 

Poaceae cover crops were by far the most studied groups. Lupinus sp. were not included in 

the Fabaceae group due to the special P-mobilizing properties of this non-mycorrhizal genus 

(Lambers et al. 2013). Phacelia (Hydrophyllaceae, only tested in one study) was included in 

the Asteraceae family, due to similarities in their respective mycorrhizal competence and 

biomass production. Despite promising results, cover crop mixtures, usually consisting of a 

Poaceae and either a Brassicaceae or a Fabaceae, were seldom assessed. 

Linear mixed models with study as fixed effect and the interaction of study and 

experiment as random effect were fitted using the package lme4 v1.1-15 (Bates et al. 2015, 

p. 4) in R v3.4.3 (R-Core Team 2013) and R-Studio v1.1.423 (RStudio 2013). Graphs were 

produced with the packages ggplot2 v2.2.1 (Wickham 2009) and cowplot v0.9.2 (Wilke 

2017) with estimates from emmeans v1.1 (Lenth 2018) and percentages calculated with plyr 

v1.8.4 (Wickham 2011). As variance or related parameters were not reported in several 

studies, the observations were weighted by the number of replicates in each experiment 

with the weights-statement in the lmer function (all studies had a balanced design). 

Different models were compared using ML estimation, whereas the final models were fitted 

with REML. The structure of the fitted models and the F-tests obtained with the package 

lmerTest v2.0-36 (Kuznetsova et al. 2016) are provided in Supplementary Material S5.3, 

sample R code in Supplementary Material S5.4. 

There was a large variance in and among the published studies due to differences in 

climate, site conditions, experimental set-ups and management, but also substantial intra-

study heterogeneity. Because of missing factor combinations (e.g., not all cover crops were 
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grown with fertilization or tillage), we encountered some difficulties in accounting for 

interactions of factors. In some cases, we opted to use models with fewer interactions and a 

higher punctuation by Aikaike’s Information Criterion (AIC) in order to be able to use a 

greater part of the dataset, under the condition that this did not substantially distort the 

model output. For the same reason, the moderating variables were tested in separate 

models. Main crop yield and P content do not represent exactly the same dataset, because 

not all studies reported both variables. In the studies with wetland rice, only Fabaceae were 

used as cover crops, so the yield and P uptake of this main crop were calculated separately. 

 

5.4 Results of the Meta-Analysis 

6 Cover crop biomass and P content 

From the analysis of the aggregated data from the studies included in the meta-analysis 

it can be seen that the selection of cover crop was a relevant factor. Cover crop type 

determined the biomass produced and the tissue P concentration (Fig. 5.3, Supplementary 

Material S5.3.1: Models 1.1-3.3). Biomass and P concentration were not correlated, 

resulting in differing C:P ratios: Poaceae cover crops produced the most biomass, but had 

the lowest P concentration; Polygonaceae had the lowest biomass and Fabaceae and 

Brassicaceae had rather high P concentrations. 
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Figure 5.3 Cover crop dry matter biomass [t ha-1], shoot phosphorus (P) content [kg ha-1] and 

concentration of P in biomass [g kg-1]. The points represent the modeled median (+/- 95 % CI) of the 

different cover crop treatments. On the left are displayed the number of observations. The letters 

indicate significant differences among cover crop types with a Tukey post-hoc test (p<0.05). The 

corresponding models can be found in Supplementary Material S5.3.1 
 

7 Crop rotation 

The integration of cover crops into crop rotations generally increased main crop yields 

(Fig. 5.4; Supplementary Material S5.3.2: Models 2.1 and 4.2). Main crop yield benefit was 

determined by main crop species, cover crop type, and their interaction. Maize was most 

responsive to cover cropping.  Other main crops (i.e. Glycine max (soybean) and cereals) 

tended to respond positively, but the increases were not significant. Wetland rice yields 

were significantly enhanced by Fabaceae cover crops (Supplementary Material S5.3.2: 

Model 2.3). Brassicaceae, vegetables, and cotton (aggregated as other main crops) were 
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tested in few studies with little response to cover cropping. The interaction cover crop type 

x main crop type improved the model significantly, although the F-test was not significant. 

Main crop P uptake was closely related to yields (Fig. S7.5). 

 

Figure 5.4 Change in main crop yield and shoot biomass following cover crops from different families. 

The points represent the modeled median (+/- 95 % CI), relative to the respective controls. On the left 

are displayed the number of observations. The lower-case letters indicate, for a single main crop type 

with a Tukey post-hoc test (p<0.05), significant differences among cover crop types (including the 

control) and the upper-case letters between cover cropping in general and the controls. The 

corresponding models can be found in Supplementary Material S5.3.2 
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The effect of cover cropping varied also at the species level, as shown for Fabaceae (Fig. 

5.5; Supplementary Material S5.3.3: Model 3), with the tropical legumes Lablab purpureus 

and Mucuna pruriens resulting in the greatest yield increases. Lupinus sp. performed 

intermediately among the Fabaceae, but the yield increases were not significant. 

 

 

Figure 5.5 Change in main crop yield and shoot biomass after different Fabaceae cover crop genera 

and species. The points represent the percentage change of the modeled median (+/- 95 % CI), 

relative to the respective controls. On the left are displayed the number of observations. The letters 

indicate significant differences among cover crop species with a Tukey post-hoc test (p<0.05). Species 

with only one or two observations were aggregated as “other Fabaceae”: Anthyllis vulneraria, 
Tephrosia purpurea, Stylosanthes guianensis, Pueraria phaseoloides, Psophocarpus tetragonolobus, 
Mucuna cochinchinensis, Dolichos lablab, Cassia tora, Canavalia ensiformis, Cajanus cajan, Trifolium 
sp., and Arachis hypogaea. The corresponding model can be found in Supplementary Material S5.3.3 
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8 Soil biological variables 

To understand the mechanisms by which cover crops might stimulate P cycling and yield 

of the main crop, we explored the soil microbial community after application of different 

cover crop types. The effects on abundances of AMF, Pmic, and on extracellular P-cycling 

enzymes (phosphatases) were tested (Fig. 5.6, Supplementary Material S5.3.5: Models 5.1-

5.8). Datasets for the soil biological variables included data from seven studies with 60 

observations for mycorrhizal abundance, four studies with 53 observations for phosphatase 

activity, and two studies with 30 observations for Pmic. Abundance of AMF spores and root 

colonization increased after mycorrhizal cover crops (cover crop mixtures, Fabaceae and 

Poaceae), but did not change or increased only slightly after non-mycorrhizal cover crops 

(Brassicaceae and Lupinus sp.). Tillage did not significantly decrease mycorrhizal abundance 

in the present dataset. Cover cropping generally increased Pmic significantly; with Poaceae, 

Fabaceae, and Lupinus sp. resulting in the greatest increases, around 25 %, but only the 

effect of Poaceae was significant. Microbial biomass P showed no relationship with main 

crop yield or P uptake (data not shown). Extracellular phosphatase activity increased around 

20 % after cover cropping, with Brassicaceae treatments tending to result in the smallest 

increases over the control, and with Fabaceae, lupins, and Poaceae having the largest effect. 

Phosphatase activity did not affect main crop growth performance (data not shown). 

Standard soil P testing (i.e. Olsen P or similar) was conducted in many studies after cover 

cropping in order to predict P availability to the main crop. Overall, cover crops had minor 

effects on the pools measured with these methods, with the exception of Lupinus sp., which 

increased Pa markedly. There was no evident relationship between Pa after cover cropping 

and main crop yield or P uptake. 
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Figure 5.6 Soil biological parameters: change in percent abundance of arbuscular mycorrhizal fungi 

(AMF), microbial biomass phosphorus (P) content, and phosphatase activity as well as available P 

after different cover crops, relative to the respective controls. On the left are displayed the number of 

observations. The lower-case letters indicate, for a single main crop type with a Tukey post-hoc test 

(p<0.05), significant differences among cover crop types (including the control), and the upper-case 

letters between mycorrhizal cover crops, nonmycorrhizal cover crops and the controls. The 

corresponding models can be found in Supplementary Material S5.3.5 

 

9 Cover crop effects under different soil P conditions  

We intended to explore the effect of cover cropping on soils differing in soil P status by 

classifying soil Pa into low and high. The majority of studies were conducted in soils with a 

low Pa. Cover crops had more pronounced effects on main crop performance in these soils 

compared with systems with abundant labile P (Fig. 5.7; Supplementary Material S5.3.6: 

Models 6.1 and 6.2). Additionally, under conditions of low Pa, the cover crop benefit was 

greatest. Cover crop effects on soil microbial parameters were also influenced by soil P 
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status, reflected in a much stronger increase in AMF abundance in soils low in Pa compared 

with high-Pa soils (Fig. 5.8; Supplementary Material S5.3.7: Model 7). 

 

 

Figure 5.7 Main crop yield and phosphorus (P) uptake as affected by cover cropping in soils with low 

and high available P (Pa). The points represent the percentage change of the modeled median (+/- 95 

% CI) of the cover crop treatments relative to the controls without cover crops. On the left are 

displayed the number of observations. The letters indicate significant differences among groups with 

a Tukey post-hoc test (p<0.05). The corresponding models are presented in Supplementary Material 

S5.3.6 
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Figure 5.8 Effect of cover crops on arbuscular mycorrhizal fungi (AMF) in soils with different P 

availability. The points represent the percentage change of the modeled median (+/- 95 % CI) of the 

cover crop treatments relative to the controls without cover crops. On the left are displayed the 

number of observations. The letters indicate significant differences among groups with a Tukey post-

hoc test (p<0.05). The corresponding models are presented in Supplementary Material S5.3.7 

 

5.5 Discussion 

We performed a meta-analysis to explore the importance of different plant P-acquisition 

strategies and to explain the benefit of cover crops on yield of main crops based on 

modified plant-microbe interactions during P cycling. 

Main crops differ in their response to cover cropping 

Our meta-analysis showed that cover crops have the potential to enhance both yield and 

P uptake of main crops in a variety of agroecosystems and under different management 

regimes, although the variance is very high. Main crops differ in their ability to profit from 

the P-benefit of cover crops, and this is related to their P-acquisition strategies. Maize and 

wetland rice yields increased more than soybean, cereals or 
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vegetables/cotton/Brassicaceae. The response of maize to other cover crop benefits, 

especially Fabaceae, has also been seen in other meta-analyses (Alvarez et al. 2017), but the 

modelled high response in the present dataset may be explained by the inclusion of several 

studies conducted in low-input agroecosystems. The yield response of wetland rice is not 

directly comparable with that of other main crops due to the practice of flooding and the 

fact that all studies were conducted with Fabaceae cover crops. The limited benefit of cover 

crops to some main crops, i.e. canola, vegetables, and cotton, can be attributed in part to 

the reduced number of trials and possibly to greater management challenges (i.e. cover 

crop residues interfering with seedbed preparation) compared with other, more robust, 

arable crops. 

 

10 Mechanisms underpinning the P benefit of cover-crop families 

The main crop response was related to both the cover crop species used and the varying 

mechanisms of plant-microbial interactions. Fabaceae was overall the most effective cover 

crop family across all conditions and systems (Figs 7.4 and 7.6). This family combines several 

of the mechanisms of P benefit: P uptake and carry-over in an abundant biomass with a high 

P concentration that facilitates release in synchrony with the main crop (Fig. 5.3), and a 

lasting effect on the soil microbial community (especially for mycorrhizal abundance and 

phosphatase activity) (Fig. 5.6). The N provided by symbiotic fixation provides an additional 

advantage through the acceleration of residue mineralization. 

The separation of Lupinus sp. into a group distinct from other Fabaceae is justified: while 

Pmic and phosphatase activity were similar, the other (mycorrhizal) Fabaceae were clearly 

more favorable to mycorrhizal fungi than Lupinus sp. The most striking difference, however, 

was the effect on the pool of Pa (Fig. 5.6). The biochemical modification of the rhizosphere 

of Lupinus sp. increased the abundance of labile P under the main crop also, but its low 

biomass and low to intermediate P concentration probably limited its benefit to the main 

crops. 

The absence of increases in main crop yield or at least Pa with pure stands of 

Polygonaceae, mainly Fagopyrum esculentum (buckwheat), was not expected in our meta-

analysis, as buckwheat is used as a P-mobilizing species (Boglaienko et al. 2014). Whether or 
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not buckwheat’s potential could be improved  with other main crops, in a mixture with 

other cover crop species, or if its beneficial effects were limited by the low biomass 

observed in the studies included in the meta-analysis, warrants further investigation.  

Asteraceae had intermediate positive effects on the main crops, but were tested 

exclusively as a cover crop for cereals. The species used in the experiments are all 

potentially mycorrhizal (Wang and Qiu 2006), but we lack detailed data on the soil biological 

parameters. The high biomass produced by these species is favorable as long as  P 

concentrations are not too low. 

Pure stands of Brassicaceae did not improve P nutrition of the main crop as much as 

most other families. This was possibly connected to a rather low interaction with the soil 

microbial community: neither mycorrhizal abundance, nor Pmic or phosphatase activity were 

increased significantly under the main crop. For species with high biomass production, such 

as Brassicaceae and Poaceae, P-cycling via the residue pathway is more important than for 

other cover crops.  

Despite large amounts of P cycled through the biomass of Poaceae cover crops (Fig. 5.3), 

yield benefits for the main crops were limited (Fig. 5.4). Poaceae were most successful in 

increasing mycorrhizal abundance and microbial P, and they also enhanced phosphatase 

activity; negative effects on P-related soil biological parameters could therefore be ruled 

out. Poaceae produced the greatest quantities of biomass, but had the lowest mean P 

concentration of the cover crops, averaging 2 g P kg-1.  

 

11 Decomposition of cover crop residues 

In spite of their high biomass production and positive effects on soil microbial properties, 

pure stands of Poaceae were among the least successful cover crop families regarding P 

benefits for the main crops. This was possibly connected to P immobilization (Eichler-

Löbermann et al. 2008), but may have involved other mechanisms as well, as, e.g., 

incomplete termination or problems with seedbed preparation. 

Cover crop biomass and P concentration determine the amount of P cycled through the 

biomass, which can range between 1 and 30 kg P ha-1, although 3 to 10 kg P ha-1 is more 

typical, depending on cover crop species and P-availability (Fig. 5.3). The root:shoot 
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partitioning of P in cover crops is variable, with 16 to 65 % of the total plant P in the roots 

(Franchini et al. 2004). The threshold concentration of P in residues that determines 

immobilization/mineralization is 2-3 g P kg-1. The P contained in plant residues can be 

divided into available Pi and a recalcitrant Porg pool. The chemical composition of the plant 

parts changes with the developmental stage of the plant and with P availability. Cover crop 

residues are different from harvest residues, as cover crop plants do not reach maturity and 

Pi is the major pool in the cells (~70 %) (Damon et al. 2014). 

With tillage, 70-80 % of the P in legume cover crop residues is released after six months, 

with roots being slightly more recalcitrant (Talgre et al. 2012). The processes responsible for 

the decomposition of cover crop residues are related to the mineralization of other pools of 

Porg in the soil. Cover crops increase phosphatase activity in the soil under a main crop. 

Although Poaceae, Fabaceae, and lupins tended to increase enzymatic activity more than 

Brassicaceae did, the plant type seems less important than the practice of cover cropping 

itself (Fig. 5.6). 

In soils with sufficient P availability, microbial P mineralization is not driven by microbial 

P requirements, but rather by release of plant-available P as a by-product of carbon 

mineralization (Spohn and Kuzyakov 2013b). Current modeling approaches assume that 

microbial biomass releases P upon death, and is connected to the decay of the residue 

biomass through the availability of C substrates. A single pool for Pmic and residue Porg is 

used, assuming the same decay coefficients (Damon et al. 2014; Varela et al. 2017). Some 

authors argue that many studies on the decomposition of cover crop residues have used 

unrealistically large quantities of finely-ground residues and have not taken into account 

modification of the rhizosphere by the cover crops (Cavigelli and Thien 2003). Additionally, 

high concentrations of decomposing legume residues transiently increase the pH in soils 

with low pH and SOM, potentially leading to increased P availability (Vanzolini et al. 2017). 

Further field studies on residue decomposition dynamics with tight sampling frequencies 

are necessary. Different experimental set-ups can shed light on the relative importance of 

the transfer of P via the (shoot) cover crop biomass, e.g., removing the cover crop shoots, or 

by applying cover crop residues to previously unplanted soil (Rutunga et al. 2008; White and 

Weil 2010; Buyer et al. 2010). 
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The mechanisms by which the soil microbial community determines P dynamics during 

crop residue decomposition are not fully understood (Maltais-Landry and Frossard 2015), 

nor are the interactions between the microbial community and particular cover crops with 

their subsequent decomposition dynamics. The decomposer community adjusts to the 

cover crop species, as decomposable plant residues are produced over the entire growing 

period by senesced leaves or dead root hairs. Together with root exudates, this constant 

input of substrates constitutes a driver for shifts in microbial community structure, 

increasing the numbers of fast-growing copiotrophic microbes. Due to the strong impact of 

nutrient availability, phylogenetic diversity decreases in the vicinity of plant roots (Marilley 

and Aragno 1999); nevertheless, overall species richness in the field is expected to increase 

due to increased spatial heterogeneity. In a litterbag study in Brazil, mixtures containing 

Raphanus sativus with Secale cereale or Avena sativa showed peculiar dynamics, with a 

delayed increase of Pmic associated with RNA that could not be explained by the chemical 

characteristics of the residues alone (Oliveira et al. 2017). The soil microbial community also 

influences suppression of weed germination by cover crop residues through selective 

decomposition of phytotoxic compounds (Moonen and Bàrberi 2006). The positive effects 

of cover crops on soil fauna (Blanchart et al. 2006) increase decomposition rates and 

nutrient cycling, probably persisting into the main crop phase. Although we focused on the 

soil microbial community, the importance of soil fauna (i.e. earthworms) for the shifts in P 

dynamics after cover crops should not be underestimated (Roarty et al. 2017). 

The relationship between nutrient stoichiometry of the soil, microbial biomass, and plant 

residues determines microbial colonization and mineralization patterns. Fungi and other 

microorganisms capable of filamentous growth, unlike unicellular life forms, are capable of 

translocating nutrients between different compartments (i.e. soil-litter) to compensate for 

nutrient limitations. This has been demonstrated for C and N (Frey et al. 2003), and seems 

also plausible for P. Therefore, and bearing in mind the reduced damage to hyphae by 

reduced soil disturbance, fungal-driven decomposition probably dominates in no-till 

systems, where residues have less direct contact with the soil. Although no-till significantly 

increases fungal abundance, the interaction between the factors tillage and cover crop had 
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no significant effect on the ratio of saprotrophic fungi:total bacteria in a long-term 

experiment under continuous cotton in Tennessee, USA (Mbuthia et al. 2015).  

Nutrients other than P also need to be taken into account (Weerakoon et al. 1992), as 

residue mineralization dynamics and P release can be driven by N availability. An increased 

supply of N from a leguminous cover crop may permit the main crop to exploit its P-

acquisition potential, resulting in increased P uptake. In field experiments, this effect is 

difficult to control, especially when a significant proportion of nutrients is contained in the 

cover crop root biomass. Cover crops can cycle substantial amounts of nutrients (potassium 

(K), magnesium (Mg), and calcium (Ca)) in their biomass (Wendling et al. 2016), and increase 

the availability of K (Cardoso et al. 2013). Descriptions of negative effects on plant nutrition 

are scarce and remain hypothetical. In some situations, the biomass pathway described in 

this paper could increase availability of potentially toxic elements, e.g., manganese (Mn), 

and lead to growth depression (Horst et al. 2001). Other researchers have considered the 

possibility that  high levels of NaHCO3-Pi near the surface could induce copper (Cu) and zinc 

(Zn) deficiencies in conservation agriculture systems (Dube et al. 2014). 

 

12 Arbuscular mycorrhizal fungi: early colonization assists crop P uptake by soil 

exploration 

The strong increase, around 50 %, in AMF abundance after mycorrhizal cover crops (Fig. 

5.6), is important for the mechanisms of P benefit to the main crop. Most crops, with some 

notable exceptions, i.e. Brassicaceae, Polygonaceae, and Lupinus sp., can form symbioses 

with AMF with multiple benefits (Koide and Mosse 2004). AMF hyphae provide some of the 

functions of root hairs, especially in plant species with thick roots and very few or short root 

hairs, leading to exploration by plants of an increased volume of soil (Smith et al. 2011). 

Some functions and mechanisms of AMF symbioses are well known, although several 

fundamental issues remain unanswered. In AMF-colonized plants, the fungi are usually 

involved in P uptake with inhibition of a direct pathway via roots, and there may not always 

be positive growth responses (Smith et al. 2015; Ryan and Graham 2018).  

 some agroecosystems There is no conclusive evidence that AMF-colonized plants are 

able to take P from soil sources that cannot be accessed by the roots themselves; rather 
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they increase the soil volume from which the same P pools can be acquired (Smith et al. 

2015). Direct release of phosphatases by AMF with a significant contribution to plant P 

uptake is under discussion (Joner et al. 2000). However, the substantial C input from plants 

through mycorrhizal hyphae extends our concept of a modified rhizosphere to a much 

greater soil volume, and the microflora of the mycorrhizosphere may play a critical role in P 

acquisition (Bending et al. 2006). 

Mycorrhizal cover crops tended to increase main crop yield and P uptake more than non-

mycorrhizal plant species did (Fig. 5.4), and AMF abundance is positively related to main 

crop yield and P uptake (S3.9 Models 9.1 and 9.2). With phosphatase activity, this direct 

relationship was not found. However, methodological deficiencies and the small number of 

studies may have resulted in a high variance. Due to sorption and stabilization onto soil 

particles, the enzymatic activity of a soil also reflects the recent history of a soil. This must 

be taken into account when interpreting the results of the meta-analysis. Samples were 

taken after termination of the cover crop or under the main crop. Therefore, the enhanced 

activity relative to that of the fallow control treatments corresponded either to residual 

phosphatases released by the cover crop roots, to changes in abundance or structure of the 

soil microbial community, or to an overall substrate-driven increase in phosphatase activity 

due to P-rich cover crop residues in the soil. Increases in phosphatase activity mirrored the 

effect of cover crops on microbial biomass P, indicating a potential microbial origin of the 

enzymes. 

A mycorrhizal cover crop can transfer its ability to access P in the soil to the main crop in 

the form of mycorrhizal inoculum (hyphae or spores in the soil). Although the AMF-plant 

symbiosis is unspecific and larger plants may be simultaneously colonized by different 

mycorrhizal fungal species, there are some plant-AMF genotype combinations that are more 

efficient than others (Jansa et al. 2011). Molecular techniques make it possible to describe 

AMF diversity associated with specific cover crops (Sharrock et al. 2004), and increases in 

richness in the main crop have been reported (Ramos-Zapata et al. 2012). However, current 

knowledge gaps regarding the connection between AMF community assemblage and 

species function constrains the effective translation of this information into specific cover 

crop species recommendations. 
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The build-up of AMF inoculation potential benefits only AMF-competent main crops, and 

the ability of the main crop to take advantage of earlier increased mycorrhization by 

previous cover crops determines the P benefit (Bittman et al. 2006). For maize, a positive 

relationship between mycorrhizal colonization and plant biomass or P content was found in 

both our aggregated dataset and several single studies (White and Weil 2010; Njeru et al. 

2014). Cavigelli and Thien (2003) reported Lupinus albus unexpectedly decreased sorghum P 

uptake in a pot experiment, although P uptake and biomass was the highest of the tested 

winter cover crop species;  a possible explanation was that lupin was the only non-

mycorrhizal crop in the study. However, the lower potential for AMF inoculation cannot 

have been the only reason, as non-mycorrhizal Brassicaceae performed better, whereas 

mycorrhizal Poaceae combined poorly. 

It is important to bear in mind that non-mycorrhizal crops have evolved special strategies 

for P acquisition. Non-mycorrhizal families can be broadly classified into Brassicaceae and 

Proteaceae groups, which evolved in P-rich and severely P-impoverished environments, 

respectively (Lambers and Teste 2013). Raphanus sativus var. oleiferus (oilseed radish) 

exudes large amounts of acid phosphatase and other rhizodeposits into the rhizosphere 

(Kunze et al. 2011); the exceptional P-mining strategies of Lupinus sp. have been described 

above. The impact of these P-acquisition strategies must be considered when designing site-

specific crop rotations that include cover crops. 

The meta-analysis also showed an unexpected slight tendency toward increased 

mycorrhizal abundances, after non-mycorrhizal cover crops.  However, species of plant 

families labeled as “non-mycorrhizal” can be infected at low levels by AMF (Lambers and 

Teste 2013). Another possibility is that higher herbicide usage in the control treatments 

decreased AMF abundance because of direct toxic effects (Trappe et al. 1984; Giovannetti 

et al. 2006) or by fewer weeds acting as mycorrhizal hosts (Oehl et al. 2003). 

The use of cover crops to build up the inoculum potential of beneficial microorganisms, 

including AMF, has the capacity to considerably improve soil fertility (Galvez et al. 1995; 

Boswell et al. 1998; Bagayoko et al. 2000; Kabir and Koide 2002; Lehman et al. 2012), 

although apparently not in all agroecosystems (Sorensen et al. 2005; Higo et al. 2014). In a 

study in USA, 31 years of Vicia villosa cover cropping decreased mycorrhizal abundance 
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relative to wheat or no cover crop, with some responses associated with high N rates 

(Mbuthia et al. 2015). Also, in fields with a history of mycorrhiza-enhancing cropping 

techniques (i.e. rotation dominated by mycorrhizal crops, no-till), cover crops may not 

increase the mycorrhization of the main crop further (Turmel et al. 2011). In agricultural 

soils very low in mycorrhizal abundance, cover crops may fail to increase the inoculum 

potential above a minimum threshold necessary to benefit plant growth (Douds et al. 2011). 

On the other hand, cover crop mixtures and a strategic AMF-build-up may be especially 

important in this context (Lehman et al. 2012). 

Weeds growing during the off-season may also result in benefits for the main crop; e.g., 

Taraxacum officinale (dandelion) is a good host for overwintering mycorrhizal fungi (Kabir 

and Koide 2000). However, some weeds induce negative changes in the microbial 

community (i.e. a decrease in AMF) and enhance their own competitive advantage over the 

crops (Wortman et al. 2013). Costs of seeds and labor for cover crop establishment have to 

be included in evaluating their potential to outperform weeds, and, above all, their easy 

termination (Wang et al. 2008). Also, management and application form of cover crops 

determines their effect on AMF, as fresh red clover residues, directly incorporated or used 

as a mulch layer, result in greater abundance of AMF compared with processed residues 

(biogas slurry, compost) (Elfstrand et al. 2007). The discovery of significant advantages to 

seedlings conferred by early establishment of symbioses with mycorrhizal fungi or P-

solubilizing bacteria has prompted the development of commercial and on-farm produced 

inocula for plant growth promotion (Douds et al. 2010). Also, combining cover crops with a 

simultaneous inoculation of microorganisms has been investigated (Cui et al. 2015). 

It is experimentally challenging to separate the direct benefits of improved P availability 

from other plant-microbial interactions and indirect plant growth-promoting effects. 

Microbes have multiple effects on plant health via plant pathogen suppression as well as on 

nutrient cycling and plant nutrition (Bagayoko et al. 2000; Bashan et al. 2013). Cover crop 

species differ substantially in their root-associated fungal communities (Benitez et al. 2016), 

suggesting opportunities for management of beneficial and pathogenic fungi, although 

contradictory evidence has been reported (Turrini et al. 2016). Nutrient uptake and crop 

yield are often limited by biotic stress. Increased aboveground biodiversity (i.e. by cover 
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cropping) can suppress soil pathogens, thus promoting plant growth. Some cover crop 

species can be used for specific pest management, whereas others may serve as hosts for 

pests (Ratnadass et al. 2012). In view of the multiple ecosystem functions of soil microbes, 

Festers & Sawers (2011) advocated a holistic approach of increasing biodiversity through 

agronomic management as opposed to a reductionist approach focusing on single species.  

 

13 Microbial P as a significant pool 

Increases in microbial P of around 25 % with Poaceae and Fabaceae cover crops (Fig. 5.6) 

are worth further discussion, because Pmic constitutes an important pool in soil due to its 

relatively fast turnover and subsequent availability for plants. However, due to the small 

number of studies, we did not detect a significant effect of Pmic on main crop yield and P 

uptake. Interestingly, the mycorrhizal cover crop types tended to enhance Pmic more than 

the non-mycorrhizal species. The pool of Pmic in agricultural soils typically constitutes 5–70 

kg P ha-1, with turnover times of a few months, depending on management and C inputs 

(Oehl et al. 2001). 

Phosphorus in microbial cells is present mostly in the form of nucleic acids, but also as 

small P-containing esters, free Pi, and phospholipids of cell membranes. The nucleotide 

content can vary greatly, depending on the growth rate of the cell; surplus P can be stored 

as polyphosphates (Harold 1966; Stewart and Tiessen 1987). When comparing the nutrient 

stoichiometry of soils, microbial biomass, Pmic appears to be closely linked to overall 

microbial biomass (Cleveland and Liptzin 2007). However, in agricultural soils, the microbial 

C:P stoichiometry may, in response to soil fertility and management, exhibit some plasticity 

and be affected by the availability of P for the main crop.  

Cover-cropping frequency is a greater driver of increases in microbial biomass than 

compost application, increasing the abundances of Pseudomonas and Agromyces species, 

including species that are important biological control agents and plant growth-promoting 

rhizobacteria (Brennan and Acosta-Martinez 2017). In a study in semi-arid Kenya, microbial 

C, N, and P were strongly increased by different Brachiaria species (Gichangi et al. 2016). In 

another study, cover cropping was far more important than the measured environmental 

variables (moisture, temperature, pH) in controlling soil microbial community structure 
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(Buyer et al. 2010). Relative abundance of Gram-positive bacteria was decreased by cover 

cropping, probably connected to their lower ability to use labile C-inputs compared with 

other microbial groups. In a field experiment in Sweden, direct incorporation of a red clover 

crop enhanced and sustained microbial biomass and soil enzyme activities more than did 

processed forms of green manure applied as biogas slurry or compost (Elfstrand et al. 2007). 

The application of isotopic dilution methods has revealed that microbial immobilization 

and remineralization, rather than mineralization of non-living organic P, represents most of 

the gross organic P mineralization flux (Bünemann 2015). Sorption/desorption processes 

dominate in agricultural soils low in microbial biomass. Immobilization/mineralization 

dynamics are closely linked to overall microbial growth, but trophic interactions should not 

be overlooked, as amoebae and other bacteria-grazing microfauna are responsible for the 

remineralization of Pmic (Cole et al. 1977). Cover crops increase the abundance and diversity 

of microfauna (Blanchart et al. 2006) which restricts long-term microbial immobilization 

during the decomposition of plant litter. Given the close relationship between Phaseolus 

vulgaris yield and Pmic, microbial biomass P was proposed as an indicator of soil P availability 

on P-sorbing Andosols in Japan, instead of the widely used Truog-P (Sugito et al. 2010). 

Mobilized and mineralized P is often intercepted by microorganisms before plant roots 

can take it up (Joner et al. 2000). Although in managed agroecosystems crop yield is the 

primary objective, some interactions between crops and other organisms, seen  as 

competitive and undesirable in the short term, may have, in principle, longer-term favorable 

properties (i.e. SOM build-up, pathogen resistance). Competition for available nutrients 

determines the outcome of the plant-microbe relationship at all levels,  from the more 

opportunistic microbes  in the rhizosphere to the mutualists, as even AMF-symbioses can 

range from being highly beneficial for both partners to ‘parasitic’ (Johnson et al. 1997). In 

addition to mycorrhizal fungi, there are many other plant-associated organisms that affect P 

uptake. One example of the very complex interactions between microorganisms and plants 

are mycorrhiza-helper bacteria, which facilitate the establishment of the symbiosis (Frey-

Klett et al. 2007). 
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14 Cover crops under different soil-management strategies 

The effects of cover crops vary greatly, and some studies report no or even negative 

effects (Kuo et al. 2005; Takeda et al. 2009b; Rick et al. 2011). This has been due, in some 

cases, to intrinsic agronomic conditions related to low cover crop biomass or absence of a 

significant P limitation on experimental plots. Rick et al. (2011) did not find effects of cover 

crops on labile soil P fractions, wheat biomass, or P concentration, despite differing biomass 

and P concentrations of the cover crops. However, as neither cover crops nor rock 

phosphate fertilization resulted in substantial yield responses, it is possible that the lack of 

positive results was due to a combination of moderately high soil P levels, N limitation, and 

low precipitation. Also, studies in Brazil on strongly P-sorbing acidic soils, where cover crops 

often increase labile and moderately labile P pools while decreasing residual P, did not 

always show the expected increases in terms of P uptake (Almeida and Rosolem 2016). After 

three years in a Brazilian Hapludox under no-till,  Avena strigosa (black oat), Vicia sativa 

(common vetch), and Raphanus sativus (fodder radish) as cover crops cycled P from the 

non-labile and moderately labile P pools through their biomass without reducing labile P 

fractions; maize yields were also not affected (Pavinato et al. 2017). Increased P availability 

was also not consistently translated into improved main crop performance (Pavinato et al. 

2017). In other studies, however, although labile P fractions were not affected, yields were 

increased (Murungu et al. 2011b; Dube et al. 2014), or traditional soil P tests failed to detect 

the shift in P dynamics by cover crops (Takeda et al. 2009a, b). Reasons for this variability in 

response are manifold, and reflect both methodological limitations when assessing P 

dynamics and the diversity of the studies’ designs, as well as abiotic and biotic factors. This 

points to practical problems in agricultural management that often hamper the successful 

exploitation of cover crop benefits. Recurrent calls for genetically-engineered crops for 

improved P efficiency, e.g., in Hunter et al. (2014) overestimate our understanding of the 

complex rhizosphere processes involved, while existing agricultural management options 

are underrated. 

The importance of site conditions and agricultural management in controlling both 

growth of cover crops and main crops and the complex mechanisms of their interactions 

with  P explains some of the variation in results of the studies included in the meta-analysis. 
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However, knowledge of the impact of soil P status and different management approaches 

will not only aid in the interpretation of field experiments, it will also provide many tools for 

adapting cover crop effects to the specific needs of  local agroecosystems. Cover-cropping 

management can be used according to site conditions in many ways, e.g., by appropriate 

combinations of cover crop species/mixtures with the crop rotation (e.g., Oliveira et al. 

2017), and by fertilization and tillage (e.g., Mbuthia et al. 2015; Teles et al. 2017). Other 

management decisions, such as seeding rate (Brennan et al. 2009), seeding and termination 

date (Nascente et al. 2013), and termination technique (Dorn et al. 2013), extend the 

opportunities for fine-tuning cover crop performance and P effect. However, as cover crops 

provide multi-functional tools when enhancing performance for a given function, there can 

be trade-offs with other functions (Mirsky et al. 2012). For example, on soils with low P 

availability, a highly efficient scavenging cover crop with an extensive rooting system that 

takes up P from the same pools as the main crop could lead to soil P immobilization when 

the easily-available P is depleted and immobilized in recalcitrant plant residues. 

Management options could include selection of a different cover crop species/mixture or a 

later sowing/earlier termination date to reduce the recalcitrance of cover crop residues. 

15 Soil P and fertilization 

Phosphorus dynamics, and the effect of cover crops on them, are strongly influenced by 

the soil, specifically by the size of easily- and sparingly-available P pools. The meta-analysis 

supports the hypothesis that cover crop P benefits are more evident in soils poor in Pa than 

on sites with higher Pa (Fig. 5.7). Also, interactions between cover crops and the soil 

microbial community are influenced by soil P status: the increase in AMF abundance after 

mycorrhizal cover crop use is much greater in soils low in Pa (Fig. 5.1); phosphatase activity 

shows a similar pattern (data not shown). These results are promising, and the P-mobilizing 

properties of different cover crop species should be further investigated, specifically in soils 

high in Pt, but low in Pa. However, soils very low in Pa often also have other fertility 

problems. Soil quality affects the beneficial effects of cover crops in several ways. Although 

very fertile or well-managed soils are difficult to improve further with cover crops (Turmel 

et al. 2011), cover crops require adequate initial soil fertility to effectively improve P cycling 

and inputs may be necessary to obtain a functional cover crop (Jensen et al. 2005). 
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Examples of useful soil quality parameters are available P, microbial biomass C (Cmic), and 

the Cmic:C ratio (Koné et al. 2008). Depending on local economic circumstances, a good use 

of expensive inorganic P fertilizer might be to apply P sources to cover crop legumes; this 

would improve their ability to benefit from existing soil N as well as residually applied P 

(Carsky et al. 2001). There are substantial synergies between P application and N fixation by 

leguminous cover crops (Weerakoon et al. 1992). 

Several studies that did not find a consistent effect of cover crops on soil P pools led 

some authors to argue that the P-mobilizing properties of legumes are more efficient for 

low-input agriculture on soils with low P availability than for systems where P availability is 

higher and P limitation weaker (Maltais-Landry et al. 2015). We agree with this line of 

reasoning and suggest consideration of P reserves to complement the labile P assessed in 

standard soil P testing when selecting and evaluating cover crops. The classification into 

high- and low-P soils is a simplification, which becomes clear when treating soils high in Pt 

but very low in Pa, as in southern China or Andosols in Chile and Japan. On these soils, P-

mobilizing cover crops would be of particular interest. Because cover crop P benefit reflects 

mainly biological processes, these may not be assessed properly with methods designed to 

predict the effects of inorganic P fertilization. In high-input systems with high P availability, 

tillage, and additional P fertilization, cover crops often do not increase yields significantly 

over the control (data not shown). 

A positive interaction of cover crops with P fertilization is in part related to the fertilizer 

type used. Cover crops may increase the availability of the P contained in organic fertilizers 

or phosphate rock (Ca-P/apatite). In particular, proton- and organic anion-exuding plants 

such as Fagopyrum esculentum or legumes, but also green manure from Tithonia 

diversifolia, dissolve calcium (Ca)-P, which is important for organic farmers on calcareous 

soils (Arcand et al. 2010) and farmers relying on phosphate rock on acid soils (Somado et al. 

2003; Ikerra et al. 2006; Oikeh et al. 2008; Opala et al. 2010). However, this effect has not 

always been found (Rick et al. 2011). Plant-microbial interactions likely play a role in 

fertilizer effects (Bah et al. 2006). Indications of an interaction between P-fertilizer type 

(soluble P vs rock phosphate) and cover cropping has also been shown in some studies 

(Almeida and Rosolem 2016), but was not considered in the present meta-analysis. Plant 
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species respond differently to fertilizer types. Brassica oleracea showed a dramatic response 

to an otherwise unreactive, Fe-rich, igneous phosphate rock, but this source was ineffective 

for leguminous cover crops and maize; the following maize yield was not increased by 

cabbage (Weil 2000). Aluminium phosphate is naturally present in some rock phosphates 

and soils, but may be inadequate for plants that rely on proton exudation for P-acquisition, 

as pointed out by Pearse et al. (2006), comparing wheat and lupin in a pot experiment. The 

interactions between fertilizer type, cropping system and soil are complex (Romanyà and 

Rovira 2009), and require, therefore, site-specific recommendations. 

Some studies have shown a more efficient use of P when added with organic 

amendments (Eichler-Löbermann et al. 2008; Maltais-Landry et al. 2015), but not others 

(Takeda et al. 2009a). Under the condition of added C sources,  effects of direct competition 

for Pa by microbial immobilization are at variance with a rate increase in cycling of organic P. 

The properties of the amendment must be taken into account when selecting the cover 

crop. Fertilizers with high levels of Pa should be combined with species such as Raphanus 

sativus oleiformis (oil radish) that maximize uptake and biomass production; species with 

mobilization traits, such as phacelia would be suitable for sites with less-available P sources 

(Bachmann and Eichler-Löbermann 2010). 

Continuous developments in alternative and innovative cover-crop systems have the 

potential to increase sustainability of intensive systems such as high-input horticulture 

(Brennan 2017). In systems with substantial organic inputs (i.e. manure), P availability is 

usually not a concern, and other cover crop effects are desired (prevention of nutrient 

leaching, weed suppression, C input). An overlooked property of cover crops regarding P 

dynamics is connected to the inherent imbalance of the N:P ratio in animal manure: legume 

cover cropping permits lower rates of manure application by supplying N to subsequent 

crops (i.e. supporting P-based application rates), reducing the P excess of N-based organic 

fertilization (Kleinman et al. 2001; Cherr et al. 2006). A special, but not uncommon, situation 

is the management of large quantities of manure from industrial animal farms by field 

application in combination with cover crops (Rowe et al. 2006). 

Cover crops can be used in watershed management for the reduction of P-runoff (Villamil 

et al. 2006; Geleta et al. 2006). Legumes are generally appreciated for their ability to 
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mobilize poorly-available P, whereas grasses are more often used as “catch crops”, 

scavenging the available nutrients and reducing losses (Maltais-Landry et al. 2015). The 

authors concluded that, in soils with low P-sorbing capacity, P transfer via the cover crop 

biomass of grasses is more effective than that of legumes, which more strongly modify their 

rhizosphere. Systems at risk of P losses usually also have problems with N losses (Sharpley 

and Smith 1991; Aronsson et al. 2016; Brennan 2017), making a focus on grasses instead of 

legumes meaningful. 

 

16 Cover crop mixtures 

Cover crop mixtures are, in terms of main crop performance, superior to monoculture 

cover crop species (Figs 5.4-5.6); however, most studies used maize as a main crop, which is 

highly responsive to cover cropping, and also the total number of trials was low. It is 

difficult, therefore, to draw general conclusions about cover crop mixtures due to the 

inherent differences in systems depending on the specific components. Mixtures frequently 

outperform single species in terms of biomass production and P uptake (Li et al. 2007, 2014; 

Messiga et al. 2016), in addition to the positive influence plant biodiversity exerts on soil 

biology. Other plants growing in close association with P-mobilizing plants confer additional 

benefits through intercropping or undersowing, and may also increase access to sparingly-

soluble P (Li et al. 2007). Cereal-legume mixtures are among the most widely used and 

studied (Tarui et al. 2013), due to both their ecological importance and to the availability of 

practical management expertise with these combinations, because of  their use in fodder 

production. An important benefit of this association is increased N-fixation by the legume 

driven by the N-demand of the cereal (Høgh-Jensen and Schjørring 1997), N transfer 

(Brophy et al. 1987), and facilitative interactions via root exudates, as detected between Zea 

maize and Vicia faba (Li et al. 2016). In cereal-legume mixtures, the cereal component 

benefited more from the intercropping association than the legumes, reflected in the 

observed shift in composition towards a higher proportion of grasses over time (Maltais-

Landry 2015). However, the legume productivity may also be enhanced by intercropping, 

because Zea maize improved Fe nutrition of Arachis hypogaea (peanut) in a calcareous soil 

(Zuo et al. 2000; Zuo and Zhang 2008). In mixtures, there are several trade-offs that have to 
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be balanced; e.g., easily decomposable cover crop residues improve nutrient availability for 

the main crop, but result in lower weed suppression and less SOM production in comparison 

with more recalcitrant plant residues (Tarui et al. 2013). 

Desirable mixtures of species with complementary functions have a huge potential to 

increase the benefit of cover cropping, as, e.g., Brassica napus (fodder rape) and Lupinus 

albus (Little et al. 2004). There is also the advantage of the biofumigant properties of 

Brassica species and its biomass, as well as the P mobilization of Lupinus sp. (although a 

mycorrhizal component could enrich the combination). The combined use of a mixture of 

rye and oat as winter-hardy and winter-killed species also yielded positive results in 

temperate climates (Kabir and Koide 2002). The transfer of nutrients from dying roots to 

living roots via AMF, as suggested by Newman and Eason (1989), should also be taken into 

consideration. 

In the meta-analysis, AMF abundance following mixtures containing non-mycorrhizal 

Brassicaceae tended to be only slightly less than that with pure Poaceae or Fabaceae stands. 

This suggests that one mycorrhizal partner in a mixture is capable of compensating for the 

lack of mycorrhizal association of the other. An experiment in mid-Atlantic USA showed that 

a pure stand of Raphanus sativus var. longipinnatus (forage radish) did not have a negative 

effect on AMF-colonization, but a pure stand of rye showed a higher rate of colonization 

than the mixture rye-forage radish. Further research is necessary to determine whether or 

not Brassicaceae inhibit the extent to which Poaceae are colonized by AMF (White and Weil 

2010). As for potentially adverse effects resulting from nonmycorrhizal and mycorrhizal 

plant species, there are indications that members of the Proteaceae type exhibit fewer 

competitive interactions than Brassicaceae types (Gardner and Boundy 1983; Lambers and 

Teste 2013; Lambers et al. 2018). 

The plethora of possible combinations and proportions in cover crop mixtures is difficult 

to handle experimentally. Even studies with more than four species are scarce, although a 

systematic and simultaneous screening would be important for the selection of appropriate 

mixture candidates (Horst et al. 2001; Oikeh et al. 2008; Wendling et al. 2016). The selection 

and testing of innovative cover crop species requires more large-scale projects, such as 

OSCAR (Crossland et al. 2015), or the 2017 started EU-project REMIX. There is substantial 
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variation, even among genotypes, regarding P-uptake efficiency and subsequent main crop 

growth (Jemo et al. 2006; Rose et al. 2010a; Pang et al. 2018b). Likewise, site conditions are 

important, because in an acidic soil, root growth determined P uptake, whereas in an 

alkaline soil malate exudation was probably the more important parameter (Rose et al. 

2010a). With respect to soil biological properties, a truly novel and strategic experimental 

approach is necessary to assess the multiple combinations of cover crop mixtures. 

The systematic use of plant traits that interact with P dynamics, as proposed by Wendling 

et al. (2016), is already used for other cover crop functions (Damour et al. 2014), and 

constitutes an important step toward increasing the comparability of trials.  

 

17 Interactions of cover crops and tillage 

Cover cropping tends to have greater positive effects on main crop performance in 

systems under reduced tillage/no-till than under conventional tillage (Fig. S5.6). Systems 

using reduced tillage benefit from the inclusion of cover crops due to weed control, nutrient 

release, and improved soil structure, together with synergies between both practices 

regarding soil biological activity. Tillage regime can vary in intensity (shallow/ non-inversion) 

and frequency (up to no-till), affecting, mainly in two ways, the processes by which cover 

crops influence soil P dynamics. First is litter distribution; tillage mixes plant residues into 

the soil, whereas no-till leaves the nutrient-rich residues on the top. Second, tillage regime 

changes the soil biota, because organisms differ in their sensitivity to soil perturbation. 

Cover crops and no-till benefit soil fauna, which are important for residue 

decomposition, because their feeding activity fragments and buries litter, increasing the 

surface for microbial decay. Earthworms increase P availability and their interaction with 

cover crops deserves further attention (Vos et al. 2014). In tropical and arid areas, termites 

fulfill important functions in nutrient cycling (Rückamp 2011). On the other hand, under 

conventional tillage, the greater area of plant residue contact with soil increases the 

decomposition rate, but can lead to P sorption (Tiecher et al. 2012b). The choice of cover 

crop can have additional effects, e.g., with the release of isothiocyanates by tilled residues 

of Brassica juncea (Indian mustard) used as biofumigants, possibly increasing negative 
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effects on mycorrhizal-inoculum potential (Njeru et al. 2014). Under no-till, a forage radish 

cover crop did not negatively affect mycorrhization of maize (White and Weil 2010). 

Balota et al. (2014) found that several microbial parameters increased under cover crops, 

both under no-tillage and under conventional tillage in a Brazilian oxisol. There was a 

greater relative increase with cover cropping under conventional tillage, although total 

microbial abundance and activity remained higher under no-tillage when the entire profile 

was taken into account. The higher metabolic efficiency (lower qCO2–values) indicated that 

winter cover crops and zero tillage resulted in a more stable system. In the USA, no-till plots 

increased levels of Gram-positive bacteria, actinomycetes, AMF, and enzymatic activity, 

whereas tillage enhanced the abundance of saprotrophic fungi and provided a greater total 

microbial biomass. The cotton yield was greatest after Vicia villosa under no-till (Mbuthia et 

al. 2015). 

One of the principal reasons for the inclusion of cover crops in temperate 

agroecosystems is the alleviation of soil compaction, which in turn expands the effective 

rooting zone, benefiting main crops possessing weaker root systems (Calonego and Rosolem 

2010). In this context, the property of Raphanus sativus, the so called “tillage radish”, 

deserves further attention, as it produces a strong taproot that decays during the winter 

and leaves distinct biopores in the surface soil, potentially leading to locally greater P-

availability (White and Weil 2011). 

Cover crop residues at the soil surface can delay soil warming in spring, and, therefore, 

the onset of microbial activity; this constrains the use of mulches in cold climates 

(Sarrantonio and Gallandt 2003). The increased soil water content under mulch layers can 

also constitute a problem in wet years (White and Weil 2010). Some studies suggest that 

cover crops have only limited potential to decrease P losses under the wet and cold climatic 

conditions of northern Europe, as dissolved organic P leaching over winter may outweigh 

reductions in erosion losses when plant residues experience several freeze-thaw cycles in 

the field (Bergström et al. 2015; Aronsson et al. 2016; Kirchmann and Wessling 2017). 

However, cover crops that were incorporated into the soil during winter did not increase P 

leaching in a study in Belgium (Vanden Nest et al. 2014); similarly, at least in milder Nordic 

climates, winter-hardy cover crops could be an option. 
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18 The termination method  

When cover crops do not die off via natural causes (e.g., frost or drought), a termination 

step is required. The most widespread method is a termination herbicide, usually 

glyphosate. However, this practice has been criticized because of undesirable side effects on 

the agroecosystem and the environment (Johal and Huber 2009; Yamada et al. 2009; Mamy 

et al. 2016). Glyphosate may also reduce main crop yields when applied too close to the 

main crop seeding date (Nascente et al. 2013) or it may interact with P-fertilizer application 

(Rose et al. 2018). Termination can also be mechanical, by tillage of varying degrees of 

intensity, mixing the plant residues with the soil, or by flailing, disking or rolling the shoot 

biomass, resulting in a mulch layer that covers the soil surface. The use of roll-choppers 

requires exact timing to be effective, but can be an adequate alternative to glyphosate 

(Creamer and Dabney 2002; Dorn et al. 2013). The termination step interacts with the 

temporal dynamics of the residue mineralization, important for synchronization of nutrient 

release with the requirements of the main crop (Zibilske and Makus 2009; Murungu et al. 

2011a; Damon et al. 2014). The achievement of desirable C:N:P ratios with timely 

termination may be constrained by field accessibility related to soil water content 

(Odhiambo and Bomke 2007). The cover crop species should be adapted to variations in 

sowing and termination dates in order to achieve high biomass and nutrient content, which 

does not necessarily follow a linear pattern (Anugroho et al. 2009). Cover crops are usually 

terminated between one and a few weeks before planting the main crop in cases where 

they are not winter-killed. With chemical termination, a certain time for pesticide 

inactivation needs to be taken into account.  

In some rotations, a cover crop (e.g., white clover before maize) may simply be clipped 

and permitted to regrow as living mulch, conferring high AMF inoculation potential and 

improving P nutrition (Deguchi et al. 2007). An interesting approach for integrated crop-

livestock systems consists of cover crop termination by grazing (Clark 2008), which can 

increase P efficiency under adequate management (Costa et al. 2014). Nutrient transfer by 

cut and carry use of green manure cover crops on improved fallow fields may lead to 

nutrient impoverishment in low-input systems. Shrub species with high litter and root 

production, such as Tithonia diversifolia, may be advantageous in these situations (Rutunga 
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et al. 2008). Burning of bulky cover crop biomass, as practiced by some resource-limited 

smallholder farmers, reduces fertility benefits and increases nutrient losses (Oikeh et al. 

2008).  

 

19 Cover cropping: long-term effects and adoption 

Contrary to our expectations, the published studies found no strong evidence that cover 

crop effects on P nutrition of the main crop increase with time after introduction into the 

cropping system. The few long-term studies available (Kuo et al. 2005; Abdollahi and 

Munkholm 2014; Mbuthia et al. 2015; Mukumbareza et al. 2015) did not report 

substantially better results regarding P benefit than short-term experiments over one or 

two years. This indicates that cover crop management and selection of appropriate species 

could be more important than time since adoption of cover cropping, although more long-

term trials are warranted. However, all the aforementioned studies and more (Balota et al. 

2014) reported increases in microbial biomass and enzymatic activity. Regarding P pools, 

cover crops increased mainly the Porg and Pmic pools over time (Maltais-Landry et al. 2015; 

Mukumbareza et al. 2015) which may have been related to overall increases in SOM 

(Blanco-Canqui et al. 2015). Another study found no changes in soil P fractions after nine 

years of cover cropping in a temperate system with high P availability (Kuo et al. 2005). 

Cover cropping tends to provide better results in tropical than in temperate climates 

(data not shown). However, the numerous studies that show important main crop P 

benefits by cover cropping in temperate systems suggest that perhaps not only climate 

makes a difference, but also the prevailing agroecosystem. Studies in the tropics often 

involve low-P soils receiving fertilizer treatments, and are therefore more responsive to 

cover cropping compared to the northern countries whose mouldboard-ploughed fields are 

high in Pa. Additionally, given the management challenges of cover cropping, the greater 

experience with cover crops in the tropical regions may be an additional factor. However, 

except for regions with the limiting factors of water scarcity (as, e.g., in Mediterranean 

climates or with further climate change) and the short vegetation periods of cold areas, 

which strongly influence both plant growth and decomposition dynamics, cover cropping 

has the potential to be a successful management option in most climates. 
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Cover cropping is one of many agricultural tools and must be integrated and adapted 

adequately into the management strategy of an agroecosystem. Evaluation of both the 

multiple benefits and  site-specific management needs of cover crops requires multi-faceted 

and whole-system approaches in research and extension (Cherr et al. 2006). Cover crop 

species relevant for the local farming system for other reasons than P nutrition should also 

be tested. Economic benefits may be indirect, e.g., from the possibility of reduced planting 

densities after cover crops (Wang et al. 2008). An interdisciplinary or multidisciplinary 

approach involving farmers and other practitioners at early stages of experimental design 

may increase the efficiency and practical relevance of scientific studies (Weil and Kremen 

2007; Reed 2008; Scopel et al. 2013; Smith et al. 2014). 

Despite its many benefits, the use of cover cropping  by farmers is often less utilized than 

is desirable. Barriers to adoption include the following: benefits are site- and soil-specific, 

establishment and management problems exist, and climatic variability can lead to 

uncertainty in outcome (Ro et al. 2016). Water use by the cover crop may be a problem 

under drought stress, resulting in lower yields and P uptake (Turmel et al. 2011). Economic 

considerations are necessary for adoption of a farming practice: in warmer climates there 

may be no off-season which means that cover crops compete directly with cash crops for 

the same space. To compensate for the income loss, the benefit over a continuous cropping 

system needs to be very high. Easily-manageable multi-purpose cover crops (edible seeds, 

fodder, wood) would be required to increase adoption by smallholder farmers in developing 

countries. Also, external factors, such as changes in land markets or novel pests, determine 

the adoption or abandonment of sustainable practices (Neill and Lee 2001). Reasons for low 

adoption of cover crops in temperate high-input systems are discussed by Brennan (2017).  

The yield and P effects of cover crops hold across both organic and conventional cropping 

systems, as the results from five studies with 45 observations using organic fertilizers and no 

chemical weed control were not significantly different from the nine studies with 103 

observations using conventional management practices (data not shown). In order to 

achieve widespread adoption of cover cropping, it is essential to overcome constraints to its 

adoption (e.g., insufficient experience for specific site conditions, unavailability of 

machinery, missing management alternatives in case of cover crop failure, and general 
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pressure by markets to externalize costs). Improved management, increased knowledge, 

and development of instruments to relieve farmers of socially and environmentally 

unsustainable short-term market pressures, as for example community supported 

agriculture (CSA), are important (Lass et al. 2003). With rising fertilizer prices and pressure 

to reduce environmental impacts, cover crops constitute a promising, multifunctional tool 

for sustainable intensification of agriculture, on the conditions that species selection and 

management match the agricultural goals (Blanco-Canqui et al. 2015). 

 

5.6 Conclusions 

Cover crops can be successfully used to stimulate main crop yield and P uptake. 

However, site conditions and agronomic management lead to varying results. Plants have 

different P-acquisition strategies, and main crops show varying abilities to take advantage of 

the cover crop legacy. Cover crops benefit the P nutrition of main crops by different, 

simultaneous processes: soil P (sometimes from sparingly-available pools) accumulates in 

the cover crop biomass, and the mineralization of P-rich litter provides available P for the 

main crop (plant-storage pathway). This pathway is most relevant for cover crops with high 

biomass such as Poaceae, Brassicaceae, and Fabaceae (Fig. 5.9). The P concentration of the 

cover crop biomass determines mineralization dynamics, which may partly explain the 

limited efficacy of Poaceae cover crops. Cover cropping enhances soil microbial community 

abundance (Pmic) and activity (extracellular phosphatase activity), and maize, in particular, 

benefits from increases in AMF abundance in soils with low available P (soil microbe 

pathway). Poaceae and Fabaceae have the greatest impact on soil microorganisms. Other 

cover crop species (e.g., Lupinus sp.) are capable of mining P pools, improving soil P 

availability even during the main crop phase (biochemical rhizosphere modification 

pathway).  
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Figure 5.9 Radar chart summarizing the properties of the cover crop families and their effects on soil. 

The lines correspond to the calculated quantile moment of each data point (R code provided in 

Supplementary Material S5.4). Grid lines correspond to the 0, 25, 50, 75, and 100-quantiles of each 

variable. Asteraceae and Polygonaceae had missing data points and could not be displayed here. 

 

 

Consideration of the abovementioned P-acquisition mechanisms, the interactions with 

the crop rotation, and the use of plant traits for the characterization of cover crop species 

would facilitate the generalization of the results of different studies. Further research is 

needed to elucidate the relative contributions of the different P-acquisition mechanisms, 

both to P uptake of the cover crop and their effects on the main crop, in order to optimize 

combinations. Soil P availability affects the P dynamics of the system and the mechanisms of 

cover crop benefit: generally, cover crops enhance main crop yield and P uptake in systems 

low in Pa more than in systems with abundant Pa, and have a greater effect on abundance of 

AMF.  

Cover crop benefits are greater with reduced tillage or no-till. Management determines 

the success of cover cropping in general, and it is possible to fine-tune P dynamics with 

appropriate techniques. Cover crops are used on a global scale under varying circumstances 

with successful examples in many regions and agroecosystems. However, cover crops may 
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not be the optimal solution for P management in all situations. Factors that limit the use of 

cover crops, i.e. adverse climatic conditions (water scarcity, short growing seasons, freeze-

thaw cycles), insufficient soil fertility, or problems with pests can be overcome by cover crop 

selection and management. However, for conventional high-input systems, though there is 

little likelihood of yield improvement, there is potential for environmental benefits. 

Finally, in many areas of the world, the principal reason to include cover crops into the 

rotation is erosion control, which is probably the most important global issue regarding P 

management and soil in general. We need to avoid perpetuating systems in which single 

characteristics are overemphasized, resulting in significant trade-offs in overall performance 

and sustainability of agroecosystems. The isolated effect of a management practice (cover 

crop) on a single nutrient (P), may make sense in situations with one dominating limiting 

nutrient. Yet a more comprehensive evaluation of the ecosystem is required in most 

situations (Schipanski et al. 2014). This is especially the case for complex systems that 

replace technological inputs with ecosystem services of biological components. We need to 

find a balance that takes advantage of the numerous contributions of cover crops to 

agroecosystem health. 

The effects of cover crops on P uptake of the main crop depend on many factors, offering 

opportunities for site-specific adoption and optimization of the system, but also restraining 

general agronomic recommendations. However, we can draw some broad conclusions 

about the potential for P management by cover-crop management and directions for future 

investigation: 

x The different mechanisms of cover crop P benefit we have discussed, i.e. P transfer 

via cover crop residues, organic anion exudates, root-exuded enzymes, and microbial 

interactions, may happen simultaneously and warrant further investigation. 

x Cover crop biomass determines in many cases the magnitude of its effect, because, 

in addition to the transfer of P in plant residues to the next crop, it affects the 

potential for rhizosphere modifications and microbial interactions. Appropriate 

management of the cover crop is required, acknowledging its importance to the 

overall return of the rotation. To determine suitable cover crop mixtures and 

management, more interdisciplinary projects are required. 
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x In order to advance our understanding of cover-crop-related effects, we suggest for 

future research that comparability among studies through the inclusion of 

appropriate controls and additional data be improved, i.e. biomass and P content of 

cover crops and main crops, as well as soil biological parameters and soil P pools.  

Bearing these suggestions in mind, scientists will be able to join farmers in moving 

towards cropping systems that also improve the soil, through relevant research on the 

benefits of cover cropping. 
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Supplementary Material S5.1 Overview of the studies used for the meta-analysis. Available 

at the public repository Open Science Framework (https://osf.io/nr7km/) 

 

Supplementary Material S5.2 Database of the meta-analysis. Available at the public 
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Supplementary Material S5.3 Structure of the fitted models and F-Tests of the ANOVAs of 

the fixed effects. Available at the public repository Open Science Framework 

(https://osf.io/nr7km/) 

 

Supplementary Material S5.4 Sample R-code of the statistical analysis. Available at the 

public repository Open Science Framework (https://osf.io/nr7km/ 

 

 

Figure S5.5 Change in main crop phosphorus (P) content after cover crops belonging to 

different families. The points represent the modeled median (+/- 95 % CI) relative to the 

respective controls, averaged over all main crops. On the left are displayed the number of 

observations. The lower-case letters indicate, for a single main crop type with a Tukey post-

hoc test (p<0.05), significant differences among cover crop types (including the control), and 

the upper-case letters differences between cover cropping in general and the controls. The 

corresponding models are presented in Supplementary Material S5.3.4 
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Figure S5.6 Main crop yield and phosphorus (P) uptake as affected by cover cropping under 

different management regimes: noninversion tillage plus fertilization; noninversion tillage 

without fertilization; conventional tillage plus fertilization and conventional tillage without 

fertilization. Care has to be taken in the interpretation of the results of the no-till plus 

fertilization treatments due to the low number of observations. The points represent the 

percentage change of the modeled median (+/- 95 % CI) of the cover crop treatments 

relative to the controls without cover crops. On the left are displayed the number of 

observations. The letters indicate significant differences among groups with a Tukey post-

hoc test (p<0.05). The corresponding models are presented in Supplementary Material 

S5.3.8. 
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6.1 Abstract 

Background and aims: The characterisation of plant-available phosphorus (P) pools and 

the assessment of the microbial community in the rhizosheath of cover crops can improve 

our understanding of plant-microbe interactions and P availability. 

Methods: Mustard (Sinapis alba), phacelia (Phacelia tanacetifolia) and buckwheat 

(Fagopyrum esculentum) were grown as cover crops before soybean (Glycine max) in an on-

farm experiment on a soil low in available P in southwest Germany. The cycling of P through 

the cover crop biomass and the enzyme-availability of organic P (Porg) pools in the cover 

crop rhizosheath were characterised. The soil microbial community (PLFA), activity (acid and 

alkaline phosphomonoesterase, as well as phosphodiesterase), and microbial P were 

assessed. The abundance of 16S-rRNA and phoD, coding for alkaline phosphomonoesterase 

in bacteria, were quantified using real-time qPCR. 

Results: Mustard contained the greatest amount of P in its large biomass. In the 

rhizosheath of all cover crops, the concentration of enzyme-labile Porg was higher than that 

in the control bulk soil, along with substantial increases of microbial abundance and activity. 

There were little differences among cover crop species, few changes in the bulk soil and 

only a limited carryover effect to soybean, except for fungi. 

Conclusions: Turnover of microbial biomass, especially saprotrophic fungi, increased by 

rhizodeposition of cover crop roots; this was likely responsible for the observed increases in 

enzyme-available Porg. Microbial function was correlated linearly with microbial biomass, 

and the data of enzyme activity and phoD did not suggest a difference of their specific 

activity between bulk and rhizosheath soil. 
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6.2 Introduction 

Conventional agricultural management requires a re-thinking to cope with externalities 

including environmental pollution, soil degradation, biodiversity loss and the exhaustion of 

mineable reserves of fertilisers (IAASTD 2009). Of great concern is the transgression of the 

planetary boundaries of nutrient cycles, with phosphorus (P) being one of the most 

prominent issues (Campbell et al. 2017). Agricultural production is the main driver of the 

global P cycle, and overapplication of P fertilisers led in rich countries to the accumulation of 

legacy P in many agricultural soils (Nesme and Withers 2016). 

Soil P is present in different inorganic (Pi) and organic (Porg) P pools of varying degrees of 

availability; therefore, the needed solutions are complex and require fundamental changes 

of the agricultural system. The adoption of agroecological farming techniques such as cover 

cropping provides an opportunity of a step in the right direction (Altieri 2018). Cover crops 

have potential for P management, reducing environmental hazards in systems with high P 

loads, and improving crop P nutrition in soils with low P availability (Oberson et al. 2006; 

Simpson et al. 2011).  

The use of cover crops can potentially alter soil P dynamics and the main crop may 

benefit by different mechanisms. These include uptake, storage and subsequent 

mineralisation of P from cover crop litter (plant biomass pathway), mobilisation of 

otherwise unavailable soil P pools via biochemical modification of the rhizosphere 

(biochemical pathway), and an increased capacity of the soil microbial community to cycle P 

(microbial pathway) (Hallama et al. 2019; Soltangheisi et al. 2020; Boselli et al. 2020). 

Especially the soil-plant-microbe feedback is complex and heavily influenced by several site-

specific factors including soil type and climate as well as agricultural management, for 

example, cropping sequence and fertilization regimes. In addition, in the case of cover 

crops, the plant species used, their root architecture and biomass (Kim et al. 2020a). Root 

exudates and –deposits are quickly used by microbes as C-source, increasing microbial 

abundance, and they shape the composition of the microbial community in the rhizosphere 

(rhizobiome). The enhanced microbial activity, together with accumulation of P in living 

microbial biomass or dead cells (necromass) (Hinsinger et al. 2011) increases microbial 
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nutrient cycling and can therefore be considered as a major trigger for soil – plant – microbe 

feedbacks (Jacoby et al. 2017). 

Cover crop species differ in their P uptake and effect on the soil (micro-)biology and 

chemistry, and therefore in their potential to contribute to a P benefit to the main crop. 

Some plants, for example, buckwheat (Fagopyrum esculentum), mobilise poorly-mobile Pi 

pools (Schelfhout et al. 2018). Mustard (Sinapis alba), a member of the Brassicaceae family, 

produces a large biomass with a high P concentration; a high rhizosheath phosphatase 

activity is thought to be part of its P-acquisition strategy (Hunter et al. 2014). Other species 

such as phacelia (Phacelia tanacetifolia), form mycorrhizas and their very fine root system is 

expected to interact strongly with the soil microbial community (Eichler‐Löbermann et al. 

2009). 

Since plant P nutrition depends not only on their own P-acquisiton strategies, but also on 

the potential of microorganisms to moblise P from different inorganic and organic sources, 

there is a need to study microbial-driven processes leading to mineralisation of Porg pools 

(George et al. 2018). The outlined three pathways of cover crop-derived P benefits always 

occur simultaneously. However, the relative importance of each pathway depends on 

multiple factors such as cover crop species and growth, as well as the soil microbial 

community and P pools. In the past, soil chemistry dominated agricultural sciences and 

plant nutrition studies, with much less attention for the role of microorganisms in cycling of 

Porg (Johnston and Bruulsema 2014). Information about the potential activity of 

phosphomonoesterases and phosphodiesterase as well as the quantification of Porg is 

available (Nuruzzaman et al. 2006; Maltais-Landry et al. 2014), while the inclusion of 

molecular tools to assess the genomic background of the microbiota that drive Porg 

transformation is still rare (Ragot et al. 2017; Fraser et al. 2017). 

The rhizosheath is the agglutination of soil particles around the roots, and is biologically 

the most active fraction of the rhizosphere (Ndour et al. 2020). Therefore, in addition to 

standard soil analyses, assessment of the rhizosheath under field conditions may allow us to 

improve our understanding of how cover crop-microbial interactions affect the 

ecophysiology of P dynamics, also regarding the persistence of these changes over time for 

the subsequent main crop. 
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The present study aimed to address the question of whether the availability of Porg pools 

in the soil can be increased by cover crops, in particular regarding the relevance of the 

enhancement of the abundance and activity of microbes in the rhizosheath. These insights 

could improve our understanding of underlying mechanisms regarding the potential of P 

mineralisation as one of the main processes for the supply of P to plants. An additional aim 

was to elucidate whether the observed changes of the microbial community persist in the 

soil and can still be detected in the rhizosheath of the following main soybean crop, a 

legume with a moderate capacity for P-acquisition (Belinque et al. 2015; Lyu et al. 2016). 

These questions were resolved by characterising the lability of soil Porg pools for 

phosphatases (Jarosch et al. 2019) in the cover crop rhizosheath. Further, we assessed the 

role of the different microbial groups as important sources for the activity of P-cycling 

enzymes, and quantified phoD, a gene coding for alkaline phosphomonoesterase in bacteria.  

The present study aimed to test the following hypotheses: 

1. The selected cover crops increase labile Porg derived from microbial necromass or 

rhizodeposition in their rhizosheath; 

2. Cover crop species differ in their plant-microbe interactions, leading to a distinct 

microbial community and activity in their rhizosheath; 

3. The cover crops shape their rhizobiome towards an increase in beneficial functions, 

e.g., by enhancing the specific enzymatic activity per unit of microbial abundance; 

4. Soybean as a subsequent main crop benefits from the increase in labile Porg and 

microbial activity by the cover crops. 

 

6.3 Materials and Methods 

Site description 

An on-farm field experiment was conducted in 2016-2017 near Wendelsheim in 

southwest Germany (48.5111°N, 8.9197°E). The soil is a Regosol in an region of loess-

derived soils (IUSS Working Group WRB 2015; Regierungspräsidium Freiburg, Landesamt für 

Geologie, Rohstoffe und Bergbau 2020) and has a clayey loam texture with a pH(CaCl2) of 7.4 

and a soil organic carbon concentration of 18 g kg-1 in 0-20 cm. The climate is temperate 

https://www.openstreetmap.org/#map=16/48.5111/8.9197
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with a mean annual temperature of 8.8ºC and 839 mm precipitation (monitoring station 

Wetterstation Unterjesingen, 5.6 km from the site). The field has been managed by a farmer 

using direct seeding for around 12 years without applying any P-containing fertilizers for the 

last 20 years. As a consequence of stratification, soil organic matter (including Porg) 

accumulated in the topsoil, while available Pi was probably depleted over the years. Soil P 

availability was low for the region, with an average content of resin-extractable P of 16 μg g-

1 at the beginning of the experiment. 

 

Experimental design 

The crop rotation for the experiment was spring barley (Hordeum vulgare var. Avalon)– 

cover crops– soybean (Glycine max var. Tourmaline). Fertilisers were not applied during the 

course of the experiment. An overview of soil cover and sampling dates is presented in Fig. 

6.1. 

 

 

Figure 6.1 Soil cover, sampling scheme and a view of the field experiment of Study #2. 
 

The cover crops were grown in plots of 8 m by 50 m in four randomised complete blocks 

(in total 16 plots). Four cover crop treatments were established: Fagopyrum esculentum 

(buckwheat), Sinapis alba (mustard) and Phacelia tanacetifolia (phacelia) were direct 

seeded with a row distance of 16 cm in August 2016 after harvesting the wheat, while the 

fallow treatment was left bare to serve as control. Representing a common practice among 

farmers in the region, the selected cover crops died at the start of the winter frosts in 

November/December. Consequently, the cover cropped plots were also fallow until 

soybean was sown in March 2017, albeit covered by the plant litter. 



Study #2: The role of microbes in the increase of organic phosphorus availability in the rhizosheath of cover crops

 

 74 

Soil samples were taken at the following times: August 2016, before seeding the cover 

crops, November 2016, at the end of the growing period of the cover crops, March 2017, 

before seeding the soybean crop, and June 2017, in the full soybean stand. In November 

2016 and in June 2017, in addition to the bulk soil samples, the cover crop and soybean 

rhizosheaths were sampled. As, by definition, there were no plants in the bare fallow plots 

in November, there was no rhizosheath sampling in the control treatment at this time. 

Later, in June, when soybean was growing on all plots, its rhizosheath was sampled in all 

treatments. 

Bulk soil samples were taken at 0-10 cm depth with an auger from around six locations 

inside each plot. For the rhizosheath sampling, 5-10 vigorous plants, depending on the size 

of the rooting system, were selected from each plot and dug out in a 25 x 25 x 10 cm block 

together with their intact roots and transported to the laboratory. The same day, the roots 

were gently separated and the attached soil (0-10 mm distance to the root) was removed 

with a toothbrush, resulting in rhizosheath samples. All soil samples were sieved at 5 mm 

and stored at -20ºC until analysis. 

 

Plant biomass and P content 

The roots and shoots of the cover crop plants sampled for their rhizosheath were 

separated and dried (60ºC for 72 h). The biomass of both compartments was determined 

and subsamples were ball-milled for the analysis of C, P and N. Soybean grains were 

collected after harvest and also analysed for C, P, N by dry combustion coupled with an 

Elemental Analyser or ICP-OES, respectively (VDLUFA 1995a, b). Due to a communication 

problem, the soybean yield could not be quantified. 

 

Enzymatic availability of organic P pools 

To characterise different Porg forms according to their lability for enzymatic degradation, 

an enzyme-addition assay was used (Bünemann 2008; Jarosch et al. 2015). The assay 

consists of adding substrate-specific enzymes to soil NaOH/EDTA-extracts to hydrolyse 
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specific Porg compounds. The increase in P compared with a control sample without added 

enzymes corresponds to the enzyme-labile Porg pool in the extract. 

Organic P was defined as the difference between total P (Pt) after wet digestion with 

persulfate (Bowman 1989), and molybdate-reactive P (Ohno and Zibilske 1991) in the 

NaOH/EDTA extract. Although the residual, molybdate-unreactive P may also include other 

(inorganic) P compounds (Gerke 2010), for the sake of simplicity, we considered it  Porg. 

For the measurement of the enzymatic availability of Porg, the oven-dried (60ºC for 72 h) 

and milled soil samples were extracted following a 31P-NMR extraction protocol (Bowman 

and Moir 1993), shaking for 16 h with 0.25 M NaOH and 0.05 M EDTA using a soil:extractant 

ratio of 1:10 (w/v). The suspensions were centrifuged for 10 min (2000 g) and filtrated 

(Whatman grade 40, ash-free paper). The extracts were transferred to transparent 96 well 

microplates, adding substrate-specific phosphatases and MES buffer adjusted to pH 5.2 in a 

final volume of 300 μl per well. Four distinct enzymes were used: 20 μl acid phosphatase 

(Sigma P1146, Sigma-Aldrich, St. Louis, USA: 50 units diluted in 15 ml H2O) alone or together 

with 20 μl nuclease (Sigma N8630, Sigma-Aldrich, St. Louis, USA; 0.167 mg diluted in 1 ml 

H2O), or 40 μl of a fungal phytase (Peniophora lycii, Ronozyme NP, Novozyme, Bagsværd, 

Denmark). The enzymes were added to wells containing 40 μl NaOH-EDTA extract and MES 

buffer adjusted to pH 5.2 with a concentration of 0.2 M in the final volume of 300 μl per 

well. All reagents were prepared with autoclaved H2O. The plates were incubated for 24 h at 

37ºC, while being horizontally shaken at 40 rpm. For the detection of released P, aliquots of 

25 μl were transferred to another plate with 175 μl of H2O and 50 μl of malachite I in each 

well (Ohno and Zibilske 1991). After 10 min, 50 μl of malachite II was added and the 

absorbance was measured at 610 nm (HTX Synergy, BioTek Instruments, Winooski, USA). 

For each sample, three analytical replicates were analysed in separate runs. 

The addition of acid phosphomonoesterase alone hydrolysed non-phytate-monoesters, 

for which the term “monoesterase-labile Porg” is used. The addition of 

phosphodiesterase/nuclease mineralised “diesterase-labile Porg”. Since phosphodiesterase 

hydrolyses only the first of the two ester bonds in diesters, the combination with 

phosphomonoesterase was required to produce detectable phosphate. As preliminary tests 

revealed that the fungal phytase acts also as unspecific phosphomonoesterase and 
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mineralises non-phytate monoesters, the monoesterase-labile Porg pool had to be 

subtracted from the phosphate released by the phytase to obtain the “phytase-labile Porg” 

pool. As each of the four field replicates of each treatment was analysed in three separate 

runs, the individual analysis run was included as a random effect when averaging the 

analytical replicates. 

 

Microbial biomass P 

Phosporus in the microbial biomass (Pmic) was determined in fresh soil by hexanol 

fumigation and simultaneous extraction with anion exchange resin membranes (Kouno et al. 

1995). For that, 2.5 g dry weight of frozen soil was extracted with 20 ml deionised H2O and 

two resin strips that were charged with 0.5 M NaHCO3. Subsamples received either no 

treatment (Presin), 1 ml of 1-hexanol (Phex) or 1 ml of a solution with a known P content 

(Pspike) equal to 25 mg P kg-1 soil. Samples were shaken horizontally for 16 h at 150 rpm. 

Thereafter, the resins were transferred to another vial, shaken for 1 h with 1 M HCl to 

desorb the P from the resins and the orthophosphate-P concentration was measured 

colorimetrically at 610 nm (Murphy and Riley 1962). Microbial biomass P (Pmic) was 

calculated by  

 

 𝑃𝑚𝑖𝑐 = 𝑃ℎ𝑒𝑥−𝑃𝑟𝑒𝑠𝑖𝑛
𝑃𝑠𝑝𝑖𝑘𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

    

 

where Pspike recovery is the fraction of a recovered P spike compared with the untreated 

Presin subsample.  The Pspike recovery was calculated for each sampling date and soil 

compartment separately, ranging between 31% and 63%. A KP-conversion factor to account 

for incomplete extraction of microbial P was not applied, since it was not determined for 

this specific soil (Brookes et al. 1982; McLaughlin et al. 1986). 

 

Potential activity of extracellular enzymes 

Potential activities of acid phosphomonoesterase (EC 3.1.3.2), alkaline 

phosphomonoesterase (EC 3.1.3.1), phosphodiesterase (EC 3.1.4.1) and β-N-acetyl-
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hexosaminidase (EC 3.2.1.52) were determined using the corresponding compounds with 

fluorescent 4-methylumbelliferone based on Marx et al. (2001), modified by Poll et al. 

(2006). The substrates were obtained all from Sigma–Aldrich (St. Louis, USA), except for the 

phosphodiesterase substrate, which was obtained from Carbosynth (Compton, UK). 

For the analyses, 1 g of soil was ultra-sonicated with 50 J s−1 for 120 s in 50 ml of 

deionised H2O. Aliquots of 50 μl of soil suspension, 50 μl buffer (0.1 M MES-buffer, pH 6.1) 

and 100 μl MUF-4-methylumbelliferyl-substrate dissolved in the buffer were pipetted on 

microplates and incubated at 30°C. For alkaline phosphomonoesterase a modified universal 

buffer (pH 11) was used (Schinner et al. 1993). The increase in fluorescence over time 

(slope) was measured in five 30-minute intervals over 180 min at 360/460 nm on a 

Microplate Fluorescence Reader (FLX 800, Bio-Tek Instruments, Winooski, USA) and 

fluorescence calculated in nmol substrate g dry soil−1 h−1 using a sample-specific standard 

curve with 4-methylumbelliferone added to the soil suspension. 

 

Phospholipid fatty acids and neutral lipid acids 

The structure of the soil microbial community was characterised by the extraction and 

analysis of specific phospholipid fatty acids (PLFA) (Frostegård et al. 1993, modified 

according to Kramer et al. 2013). Fatty acids were extracted from 2 g soil (Bardgett et al. 

1996), based on the method of Bligh and Dyer (1959) and modified by White et al. (1979). 

Fatty acid methyl-esters were stored at -20ºC until identification by chromatographic 

retention time and comparison with a standard mixture of qualitatively defined fatty acid 

methyl-esters ranging from C11 to C20 (Sigma Aldrich, Darmstadt, Germany). Specific 

biomarker fatty acids allow the quantification of different microbial groups (Ruess and 

Chamberlain 2010; Willers et al. 2015). The PLFAs i15:0, a15:0, i16:0, and i17:0 were used as 

biomarkers for Gram-positive, cy17:0 and cy19:0 for Gram-negative bacteria. The sum of 

these fatty acids, together with 16:1ω7 and 15:0 can be used as general bacterial 

biomarkers. The PLFA 18:2ω6,9 was considered as biomarker for fungi (Frostegård and 

Bååth 1996). The sum of the bacterial and fungal markers, together with the general 

microbial PLFA 16:1ω5, were used as a proxy for microbial biomass.  
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DNA extraction 

DNA was isolated from 380-400 mg rhizosheath and bulk soil samples using the 

FastDNA™ SPIN Kit for Soil (MP Biomedicals, Irvine, USA) and the Thermo Savant FastPrep® 

120 Cell Disrupter (Thermo Scientific, Waltham, USA) according to the manufacturer’s 

instruction. An additional washing step with 0.5 ml 5.5 M guanidine thiocyanate (Sigma-

Aldrich, St. Louis, USA) was added to reduce soil contaminants. DNA quantity and quality 

was assessed using the NanoDropTM 2000 spectrophotometer (Thermo Scientific, Waltham, 

USA). The isolated DNA was stored at −20°C until further analysis. Additionally, a negative 

control of the extraction procedure was performed without soil. 

 

Quantitative real-time PCR (qPCR) 

Bacterial 16S rRNA genes were targeted using primer pairs 341F (5’–CCT ACG GGA GGC 

AGC AG–3’) and 515R (5’–ATT ACC GCG GCT GCT GGC A–3’) (López-Gutiérrez et al. 2004) For 

the alkaline phosphomonoesterase gene (phoD) the primers phoD-FW (5’–TGT TCC ACC TGG 

GCG AYW MIA THT AYG–3’) and phoD-RW (5’–CGT TCG CGA CCT CGT GRT CRT CCC A–3’) 

(Bergkemper et al. 2016) were used. The bacterial 16S rRNA gene was quantified with 

Power SYBR™ Green PCR Master Mix using the 7500 Fast Real-Time PCR System (software 

version 2.3; Applied Biosystems) with a standard sequence from Verrucomicrobium 

spinosum (DSMZ 4136) according to protocols given in detail in Ditterich et al. (2013). 

The qPCR for the phoD gene was performed in a reaction volume of 15 µl with 

10 pmol·µl-1 of each primer, 2.5% (v/v) T4 Gene 32 Protein, and 5 ng DNA. The thermal 

profile was optimised to following conditions: 10 min at 95°C, 5 cycles: [15 s at 95°C, 30 s at 

65°C (-1°C per cycle), 45 s at 72°C], 40 cycles: [15 s at 95°C, 30 s at 60°C, 45 s at 72°C, 30 s at 

81°C (measurement of fluorescence)]. The standard sequence for phoD originates from 

Bradyrhizobium japonicum. A PCR amplicon was obtained with the primers phoD-FW and 

phoD-RW using genomic DNA from the host strain prior to ligation into the vector pCR®-

Blunt and cloning in E. coli competent cells. The purified plasmid was transformed into E. 

coli JM109 (Promega, Madison, USA) to obtain the final strain for standard preparation. The 

insert sequence was confirmed by Sanger-sequencing (GATC Biotech, Ebersberg, Germany). 
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A 10-fold serial dilution of the standard, ranging from 101–108 copies·µl-1, was used for 

quantification. Amplification efficiency was accepted when exceeding 85%. 

 

Statistical analyses 

To account for the complete block design with sampling date and soil compartment 

(rhizosheath vs bulk) as repeated measurements, we used linear mixed models with block 

and the interaction of cover crop treatment, soil compartment and date as fixed effects, and 

block x soil compartment and block x date as random effects (Piepho et al. 2003). The 

models were fitted using the package lme4 v1.1-26 (Bates et al. 2015), in R v3.5.0 (R-Core 

Team 2013) and R-Studio v1.1.453 (RStudio 2013) and reduced by elimination of the 

random effects with a standard deviation of 0. The residuals were checked using Q-Q-plots 

and histograms (Schützenmeister et al. 2012; Kozak and Piepho 2018) and log or square root 

transformation was applied where appropriate. The complete R code along with the 

structure of the fitted models and the F-tests is provided in Supplementary Material 6.2. The 

following packages were used in the analyses: here v1.0.1 (Müller 2020), readxl v1.3.1 

(Wickham and Bryan 2018), writexl v1.3.1 (Ooms 2020), plyr v1.8.6 (Wickham 2011), 

kableExtra v1.3.4 (Zhu 2021), stringi v1.5.3 (Gagolewski 2018), tidyverse v1.3.0 (Wickham et 

al. 2019a), cowplot v1.1.1 (Wilke 2017) as well as RColorBrewer v1.1-2 (Neuwirth 2014) and 

viridis v0.5.1 (Garnier 2018), pbkrtest v0.5.1 (Halekoh and Højsgaard 2014) and LmerTest 

3.1-3 (Kuznetsova et al. 2017). The figures were produced with estimated means using 

emmeans v1.5.4 (Lenth 2018) and multcomp v1.4-16 (Hothorn et al. 2008). 

 

6.4 Results 

 

Crop biomass and nutrient content 

Mustard produced by far the most biomass of any cover crop (6500 and 1300 kg ha-1 

shoots and roots, respectively) and, with a P concentration of 2.5 and 1.8 g kg-1 in shoots 

and roots, respectively, cycling around 18 kg P ha-1 through its total biomass (Figs 6.2a-c). 
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Phacelia produced less biomass, but exhibited a higher P concentration in its shoots. 

Buckwheat produced the smallest amount of biomass of the three cover crops and had the 

lowest shoot P concentration, resulting in only 2.7 kg P ha-1 cycled through the plant 

biomass. 
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Figure 6.2 Cover crop shoot and root parameters: a) plant biomass; b) phosphorus (P) 

concentration and c) plant P content. Displayed are the estimated marginal means of the 

four field replicates; error bars indicate the modelled 95% CI. The underlying data is provided 

in Supplementary Material S6.1, the structure of the fitted models and the F-tests in 

Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 
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The P concentration of harvested soybean grains was not significantly changed and 

tended to slightly decrease by the cover crops and there were no differences among the 

tested cover crop species (Fig. S6.4). 

 

Soil P pools  

Organic and inorganic P pools were assessed in the rhizosheath of the cover crops and in 

the fallow control in November 2016. For the interpretation of the effects of cover crops on 

soil P turnover, it is necessary to outline the soil P status. Generally, total P ranged from 922 

to 1384 mg kg-1 soil (Fig. 6.3a). Organic P prevailed, with Pi accounting for only around 25% 

of the total P concentration. Between 174-328 mg P kg-1 soil (representing around 30% of 

the Porg) could be mineralised by added enzymes. Of the added enzymes, phytase released 

the greatest amount of phosphate, more than the sum of the phosphomonoesterase- and 

phosphodiesterase-labile pools (Fig. 6.3b). 

The enzyme-labile Porg pools tended to be higher in the rhizosheath of cover crops 

compared with the fallow control (Fig. 6.3b). This was most evident for total enzymatically-

available Porg and its components monoesterase-labile Porg, and diesterase-labile Porg. The 

rhizosheath P pools showed no differences among the tested cover crop species. 
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Figure 6.3 Soil phosphorus (P) pools in rhizosheath soil of buckwheat, mustard and phacelia as cover 
crops and bulk soil of the fallow control: a) inorganic, enzyme-stable organic P (Porg) and enzyme-
labile Porg in NaOH-EDTA soil extracts; b) detailed characterisation of the enzyme-available Porg 
available for phosphodiesterase, phosphomonoesterase and fungal phytase [µg P g-1 soil). The 
enzyme addition assay was conducted with rhizosheath samples of the cover crops and bulk soil of 
the fallow control in November 2016. The bars represent the estimated marginal means of the four 
field replicates, the error bars the 95% CI. Letters indicate significant differences by Tukey HSD. In 
the legend, the p-value for the main effect of the cover crop treatment is given (n.s. = not 
significant). The underlying data is provided in Supplementary Material S6.1, the structure of the 
fitted models and the F-tests in Supplementary Material S6.2 and the complete R code in 
Supplementary Material S6.3 

 

In general, Presin, representing the water-soluble readily-available P pool, showed no 

consistent shift in the cover crop rhizosheath in November, but was affected by the plant 

species (Fig. S6.5, Supplementary Table S6.6). In June of the following year, we detected a 

strong positive effect of the growing soybean crop on Presin in the rhizosheath. However, 

despite overall slightly higher values in the plots where cover crops had been grown over 

the winter, under soybean there were no differences among the cover crop species.  

The recovery of an added phosphate spike increased in the rhizosheath of cover crops 

and decreased in the rhizosheath of soybean (Fig. S6.7, Supplementary Table S6.6) 

compared to bulk soil, but the variability was generally high. 

Microbial P was increased in the rhizosheath of cover crops compared with that in the 

bulk soil, but we detected no differences among the plant species (Fig. 6.4, Supplementary 
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Table S6.6). We also found large increases of microbial P in the rhizosheath compared with 

that in bulk soil in June under soybean. 

 

 

Figure 6.4 Microbial biomass phosphorus (P) in g P g-1 bulk (black) and rhizosheath (white) soil of 
the cover crop treatments over the course of the experiment. Displayed are the estimated marginal 
means of the four field replicates; error bars indicate the modelled 95% CI. The underlying data is 
provided in Supplementary Material S6.1, the structure of the fitted models and the F-tests in 
Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 

 

Microbial community structure 

The abundance of PLFA biomarkers for Gram-positive and Gram-negative bacteria was 

enhanced in the rhizosheath of cover crops in November (Figs 6.6.5a+b, Supplementary 

Table S6.6) compared with that in the surrounding bulk soil or the fallow control. The 

different cover crops had apparently little influence on the bacterial abundance in the 

rhizosheath and we found no effect in the bulk soil. In June under soybean, bacterial PLFA 

were also increased in the rhizosheath, but not in the bulk soil. The abundance of fungal 

PLFA was markedly increased in the rhizosheath of the cover crops in descending order of 
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buckwheat>phacelia>mustard (Fig. 6.5c). In the phacelia-cropped plots, this increase was 

also found in the bulk soil in November. 

In the soybean rhizosheath, fungi were increased relative to the surrounding bulk soil. 

Under soybean, fungal biomass tended to be higher in the plots where formerly phacelia 

had been grown, but fungal abundance in the other plots had returned mostly to 

background levels. 

Figure 6.5 Abundance of microbial groups: a) Gram-positive bacteria [PLFAs i15:0, a15:0, i16:0, and 
i17:0], b) Gram-negative bacteria [PLFAs cy17:0 and cy19:0], and c) saprotrophic fungi [PLFA 
18:2ω6,9] in nmol of fatty acids per gram bulk (black) and rhizosheath (white) soil of the cover crop 
treatments over the course of the experiment. Displayed are the estimated marginal means of the 
four field replicates; error bars indicate the modelled 95% CI. The underlying data is provided in 
Supplementary Material S6.1, the structure of the fitted models and the F-tests in Supplementary 
Material S6.2 and the complete R code in Supplementary Material S6.3 
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The abundance of bacterial 16S rRNA genes per gram soil and the phoD gene, coding for 

alkaline phosphomonoesterase, assessed in November, were more abundant in the 

rhizosheath of the cover crops than in the bulk soil (Figs 6.S8 and S9). 

 

Microbial activity 

Potential enzyme activities were higher in the rhizosheath of cover crops than in the bulk 

soil (Figs 6.6a-d, Supplementary Table S6.10). The cover crops showed different activities of 

N-acetyl-hexosaminidase and acid and alkaline phosphomonoesterase in the following 

order: buckwheat >mustard >phacelia, but this trend was not significant for the the P-

cycling enzymes. A positive rhizosheath effect was also found under soybean. The legacy 

effects of the cover crops were not straightforward, with the enzyme activities generally in 

the order phacelia >mustard =control >buckwheat. 

The specific enzyme activity per Pmic of akaline phosphomonoesterase and 

phosphodiesterase (Figs 6.S11b+c) was lower in the rhizosheath than in the bulk soil, while 

the specific acid phosphomonoesterase activity was not influenced by soil compartment 

(Fig. S6.11a).  
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Figure 6.6 Potential activities of extracellular enzymes: a) acid phosphomonoesterase; b) alkaline 
phosphomonoesterase; c) phosphodiesterase and d) N-acetyl-hexosaminidase in nmol (MUB= 
fluorescent methylumbelliferone) product per gram dry soil per hour in bulk (black) and rhizosheath 
(white) soil of the cover crop treatments over the course of the experiment. Displayed are the 
estimated marginal means of the four field replicates; error bars show the modelled 95% CI. The 
underlying data is provided in Supplementary Material S6.1, the structure of the fitted models and 
the F-tests in Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 
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Correlation of microbial community structure and function  

The abundance of phoD copies per g soil was positively correlated with alkaline 

phosphomonoesterase activity (Fig. 6.7a, R2=0.39, p<0.001) and the abundance of bacterial 

PLFAs (Fig. 6.7b, R2=0.42, p<0.001). Alkaline phosphomonoesterase activity was positively 

correlated with bacterial PLFAs (Fig. 6.7c, R2= 0.29, p<0.001). The abundance of phoD was 

positively correlated with the abundance of 16S rRNA under mustard and buckwheat, but 

not under phacelia or in the control (Fig. 6.7d, pcover crop=0.046). The N-acetyl-

hexosaminidase activity was strongly correlated with fungal abundance in the rhizosheath, 

but not at all in the bulk soil (Fig. S6.12, R2= 0.6 and 0.0003, p<0.001 and 0.9, respectively). 

The potential activity of acid phosphomonoesterase and phosphodiesterase activity were 

positively correlated with their corresponding labile Porg pools (Figs. 8a+c), while alkaline 

phosphomonoesterase activity showed no significant correlation with Porg available for 

added phosphomonoesterase (Fig. 6.8b). 

 

Figure 6.7 Relation of the measured potential alkaline phosphomonoesterase activity with phoD, 
coding for alkaline phosphomonoesterase (a); bacterial PLFA with phoD (b); bacterial PLFAs with 
alkaline phosphomonoesterase activity (c); and abundance of the bacterial gene phoD with the 
abundance of bacterial 16S (d). MUB=Methylumbelliferone, corresponding to product of hidrolysis. 
Figure (c) has more data points than the other figures, because enzyme activity and PLFA were 
assessed at all sampling dates, while phoD abundance was quantified only in November. The 
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underlying data is provided in Supplementary Material S6.1, the structure of the fitted models and 
the F-tests in Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 
 
 

 
Fig 6.8 Relation of measured potential enzyme activities of a) acid phosphomonoesterase, b) alkaline 
phosphomonoesterase and c) phosphodiesterase the corresponding enzyme-labile organic 
phosphorus (P) (amount Porg mineralised by the addition of phosphomonoesterase or 
phosphodiesterase in the enzyme addition assay). The underlying data is provided in Supplementary 
Material S6.1, the structure of the fitted models and the F-tests in Supplementary Material S6.2 and 
the complete R code in Supplementary Material S6.3 

 

6.5 Discussion 

In this study, we compared soil microbial properties of three cover crops and their effects 

on soybean regarding soil P pools and P-cycling potential. In the rhizosheath of the cover 

crops, we observed an increased abundance of enzyme-labile Porg, as well as microbial 

biomass (PLFAs, Pmic, 16S rRNA, phoD) and enzyme activity relative to that in the bulk soil. 

Differences among the cover crop species were limited to the abundance of Gram-negative 

bacteria and fungi, as well as N-acetylhexosaminidase activity. Fungal abundance was 

correlated with the activities of phosphatases, which likely played an important role in the 

cycling of Porg. We observed only a little influence of cover crops on bulk soil or the 

subsequent soybean crop. 

 

Soil P pools in the cover crop rhizosheath 

The characterisation of soil Porg pools as a potential pool for plant nutrition was one of 

the principal objectives of this study. The amount of total P, and particularly Porg, in the field, 

was rather high compared with the values reported in a review by Harrison (1987), despite 
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the absence of P fertilization for over 20 years. This may be attributed to soil type and 

fertilisation in previous times. Considering their proportion in the P pools, organic P forms 

likely play an important role in soil P dynamics at this site which might also be the result of 

the long-term no-till management (Tiecher et al. 2012a). The amount of enzyme-labile Porg 

as quantified in the enzyme addition assay was high in comparison with that in other studies 

(Jarosch et al. 2015), although to our knowledge this is the first time this method was 

applied to rhizosheath soil. The large enzyme-labile Porg pool indicates a high potential for 

soil microorganisms to have access to this fraction. Despite these high absolute pool sizes, 

the proportion of enzymatically available Porg of the total Porg was similar to that in other 

arable soils (Jarosch et al. 2015). In summary, the soil contained little Pi, and the Porg pool 

was remarkably large with a typical proportion of mineralisable Porg. 

The quantity of enzyme-labile Porg in the rhizosheath of the cover crops was increased by 

about 25% compared with fallow bulk soil, driven mainly by the increases in monoesterase- 

and diesterase-labile Porg pools. The P pools were the same among the cover crop species. In 

November, when the sampling was carried out, buckwheat had already been killed by frost 

several nights before, while mustard and phacelia were reaching the end of their growing 

period. It is possible that rhizodeposits or dead roots contributed to the enzyme-labile Porg 

fraction. However, since we did not find a plant-specific effect, we expect that this effect 

was small. 

The prediction of a rhizosheath effect on the depletion/accumulation of P in low-P soils is 

not trivial (Hinsinger 2001), and much less so for the abundance of mineralisable Porg. The 

rhizosheath with its higher enzyme activity (and mineralisation rate of Porg) might have 

made us expect a lower abundance of enzyme-labile Porg. On the other hand, it is possible 

that a substantial amount of the detected enzyme-labile Porg was derived from the 

necromass of soil microorganisms. The addition of C sources to soil may increase organic P 

forms, even without addition of inorganic P (Bünemann et al. 2008) and the use of 

rhizodeposits as C sources by microorganisms can be expected to follow similar mechanisms 

(Aerts et al. 1992). The detected increases of Pmic support this, but are not unequivocal 

proof, because the method we used for quantification detects P, and not specifically Porg in 

the microbial biomass (Kouno et al. 1995). 
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The pools of enzyme-labile Porg were positively correlated with their corresponding 

enzymes in the case of acid phosphomonoesterases and phosphodiesterase, but not for 

alkaline phosphomonoesterase. In other studies, phosphodiesterase activity correlated 

better with the availability of its substrate (Jarosch et al. 2019; Hallama et al. 2021) than 

acid phosphomonoesterase, while alkaline phosphomonoesterase has not yet been 

compared with the phosphomonoesterase-available pool. In accordance with this, Spohn 

and Kuzyakov (2013a) concluded that alkaline phosphomonoesterase is not related to 

rhizodeposits. One reason for these results might be that microsite conditions around roots 

with exudation of carboxylates and protons could decouple the alkaline 

phosphomonoesterase activity from the availability of its substrate. 

 

The microbial community structure and functional potential in the rhizosheath of cover crops 

The results of Pmic, microbial PLFAs and 16S rRNA show that the microbial abundance in 

the rhizosheath of cover crops was increased by a factor of 2.2, 1.9 and 1.7 respectively, 

compared with values of the bulk soil. This rhizosheath effect corresponds to most other 

results of the assessed microbial properties, i.e. enzyme activity, and we suggest that 

microbial P cycling was responsible for the increased availability of the organic P pools. 

Fungi seemed to be promoted most by cover crops, both in the rhizosheath and in the 

bulk soil, resulting in a persistent shift of the microbial community structure. Overall, the 

increase of fungal biomass in the rhizosheath of cover crops followed the order 

buckwheat>phacelia>mustard. Soil fungi reportedly respond to cover cropping and are 

sensitive to the plant species grown (Benitez et al. 2016). In our experiment, for phacelia the 

increase of fungal biomass could even be detected 30 weeks later under the main soybean 

crop. This prominent effect on saprotrophic fungi is likely connected with the particular 

capacities of the members of this kingdom. Their hyphal network allows fungi to connect 

islands of available nutrients (Ritz 1995) and water (Guhr et al. 2015), as well as enhance 

internal recycling and relocation of nutrients. These abilities of fungi are especially 

pronounced in heterogeneous soils such as under long-term no-till management (Young and 

Ritz 2000). The general conditions of the studied field harboured a potential for fungal 

growth that materialised in the rhizosheath of cover crops with the input of easily-available 
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rhizodeposits, leading to a large increase in fungal biomass and turnover. An observed 

enhancement of fungal abundance with cover crops was also found in other studies (Benitez 

et al. 2016) and is especially interesting in view of a potential for increased soil C storage 

(Six et al. 2006) and other ecosystem functions (Frąc et al. 2018). Our results suggest that 

the trend towards bacteria-dominated soil ecosystems in more conventional 

agroecosystems (Frey et al. 1999) can be reversed with the use of appropriate agricultural 

management techniques (e.g., no-till and cover cropping). 

The increases in fungal abundance involve an enhanced turnover of their biomass. Fungi 

are the main producers of N-acetylhexosaminidase in soils, using this enzyme for the 

internal recycling of the chitin contained in their cell walls. The large increase in the 

rhizosheath indicates a fast turnover and quick metabolism of fungal hyphae in this soil 

compartment (Staddon et al. 2003), probably mainly by fungi (Miller et al. 1998). During the 

turnover of microbial biomass, the contained nutrients are released into the soil solution 

and can become temporarily available for plants (Bünemann 2015). 

It is often assumed that plants shape their rhizobiome to a certain extent and that this 

maximises benefits in terms of ecosystem function, and there is indeed evidence to support 

this contention (Sasse et al. 2018). However, the present results support the notion that the 

observed increase in microbial activity involves a generally enhanced microbial abundance, 

as we did not find a specific enrichment of specific microbial functions (i.e. potential enzyme 

activity or phoD abundance per microbial biomass), despite having used phylogenetically 

very different plant species. The combined assessment of bacterial phoD, corresponding to 

the genetic potential for the production of alkaline phosphomonoesterase, and bacterial 

16S rRNA, together with enzyme activities and PLFA data allow us to examine the relation 

among these variables. We had expected a specific enrichment of a phoD–harbouring 

population of bacteria in the rhizosheath (i.e. more phoD copies per bacterial 16S rRNA 

copies) (Figs 6.7b and d), an increased expression of the gene (i.e. more alkaline 

phosphomonoesterase activity per phoD) (Fig. 6.7a), or an increased specific enzyme activity 

per unit of microbial abundance (Figs 6.7c and S6.11b), as plants would benefit from the 

increased mineralisation potential. However, there was no effect of soil compartment on 

the correlation between phoD and bacterial PLFA or phoD and alkaline 
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phosphomonoesterase. This suggests a general effect of an increased bacterial abundance 

being responsible for the observed enzyme activity in the rhizosheath. However, the 

relation could still be more complex. It needs to be borne in mind that phoD is quite 

ubiquitous among different microbial groups (Bergkemper et al. 2016) and our primers did 

not target fungal or archaeal phoD. Also, there are other genes that code for alkaline 

phosphomonoesterases, such as phoX (Ragot et al. 2017). Although the rhizosheath 

apparently had little effects on specific phoD gene abundance or expression, the 

observation that cover crop species affect the concentration of phoD per bacterial 16S rRNA 

(Fig. 6.7d) deserves further attention in future studies. 

The interpretation of the results of the phoD gene is supported by the specific activity of 

phosphatases (the enzyme activity per unit of microbial biomass, here Pmic). Microbial 

activity, as well as microbial abundance was higher in the rhizosheath. The specific enzyme 

activities per µg Pmic of alkaline phosphomonoesterase were lower in the rhizosheath than 

in bulk soil (Fig. S6.11b). Lower specific activity in the rhizosheath following the general 

increase of the microbial biomass makes sense in that not all microbes that benefit from the 

availability of rhizodeposits contribute equally to enzyme production. Notably, there were 

no significant rhizosheath effects for the specific activity of acid phosphomonoesterase, 

possibly because the plant roots themselves act as a substantial source of this enzyme 

(Tadano and Sakai 1991). 

 

Cover crop roots and extension of the rhizosheath 

Cover crops improve P availability through the cycling of P through their biomass 

(biomass pathway), the enhancement of the soil microbial community (microbial pathway) 

and the mining of sparingly-available P forms (biochemical modification pathway). The plant 

biomass P pathway is quite easily evaluated by measuring the P content of the cover crop 

biomass, at least when C:P and mineralisation rates are favourable (Damon et al. 2014). 

High plant yields would provide the greatest benefit, as cover crop biomass varies more 

among plant species than P concentration. 

When it comes to soil-related processes (i.e. utilisation of soil P pools), the issue becomes 

more complex. Regarding the soil microbial pathway, the P contained in the microbial 
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biomass constitutes an important pool for plant uptake (He et al. 1997), but also microbial 

activity and Porg availability are factors to consider. Even when only quantifying pool sizes, 

calculations of kg per ha values are hampered by the large differences between rhizosheath 

and bulk soil. Without an estimation of the specific rhizosheath volume and more 

information about its compartments, as can be obtained, e.g., with X-ray tomography 

(Vetterlein et al. 2020), it is not possible to quantitatively compare the different pathways of 

the potential cover crop-derived P benefit for the main crop under field conditions. 

Although buckwheat might have had a notable effect on microbial properties and P pools 

in its rhizosheath, the plants had a small root biomass and, consequently, the proportion of 

rhizosheath volume in relation to the total bulk soil was very small in comparison with that 

of the other cover crops. This could explain the trend of a lower microbial abundance and 

activity after buckwheat compared with those after phacelia and mustard. Therefore, to 

assess the effect of cover crops on the following main crop, not only the magnitude of 

change in their rhizosheath needs to be considered, but also the size of the rhizosheath 

(Nannipieri et al. 2008). In addition to being affected by root biomass, rhizosheath volume 

depends on root architecture (root length density) and the distribution of roots (Honvault et 

al. 2020). When exclusively considering root morphology, mustard’s rhizosheath might be 

underestimated in terms of rhizosphere-driven changes on a field soil, because of its 

abundant root hairs and release of root exudates, which is common for Brassicaceae 

(Marschener 1998; Dechassa et al. 2003) and affect the size of the rhizosheath (Ndour et al. 

2020; Burak et al. 2021). Moreover, their large shoot and root biomass and substantial 

rhizodeposits (Hunter et al. 2014) might outweigh their “unfavourable” root architecture. It 

may be time to revisit the widespread conception that Brassicaceae do not interact strongly 

with the microbial community, an idea that may be biased by their non-mycorrhizal nature. 

 

The present matters: soybean roots dominate the soil, rather than preceding cover crops 

The changes observed in the cover crop rhizosheath were rather transient and did not 

carry over to the main soybean crop, with the notable exception of fungal abundance. There 

are reports of cover-crop-induced changes of the microbial community in the main crop 

rhizosheath using molecular methods (Maul et al. 2014; Ortega et al. 2021). However, in the 
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present experiment the microbial properties in the soybean rhizosheath were dominated by 

the growing soybean roots, and to a lesser extent by the winter cover crops that were 

growing on the plots before. The ecological concept of “hot spots and hot moments”, 

coined by McClain et al. (2003) is useful to classify the importance of observed changes in 

the cover crop rhizosheath for the agroecosystem. In the present case, the magnitude 

and/or durability of the changes induced by the cover crop were not large enough to affect 

the soil ecosystem as a whole or the new hot spots around soybean roots. In grasslands, the 

observed mechanisms would probably be more important due to the permanent plant 

cover (Kandeler et al. 2006). Root turnover depends on climate, species and root diameter, 

with an estimate for temperate grasslands at a similar latitude as the present experimental 

field of around 0.4-0.6 yr-1 (Gill and Jackson 2000). 

The effects of cover crops on soil microbes and nutrient cycling likely depend on the 

starting point and crop management. In soils with abundant microbial communities such as 

the present field with a long history of no-till management, cover crops might not enhance 

the microbial community further, while for biologically poorer systems (i.e. minimum vs 

conventional tillage) the relative gain could be greater (Balota et al. 2014). However, when 

comparing systems, the opposite can also be observed, with conventional tillage obtaining 

the greatest relative improvement (Wittwer et al. 2017).  

Soybean belongs to Fabaceae, a family in which many species reduce the pH of the 

rhizosheath associated with N fixation (Hinsinger et al. 2003) and some release carboxylates 

and increase plant-available P fractions (Nuruzzaman et al. 2006). The expression of this 

mechanism is supported by the decreased P-sorption capacity in the rhizosheath of soybean 

(Prec, Fig. S6.7), associated with an increased concentration of plant-available phosphate 

(Presin, Fig. S6.5). This biochemical rhizosheath modification might involve a close interaction 

with the microbial community, but this is not necessarily the case (Weisskopf et al. 2006; 

Spohn and Kuzyakov 2013a). 

 

Soybean performance 

The field where the experiment was conducted was selected because of expected large 

effects of cover crops on main crop nutrition due to a low concentration of available P. The 
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P concentration of the soybean grains in this experiment was in the lower range of values 

reported by Xie et al. (2017), but soil P availability was probably not the most important 

limiting factor. Agronomically, the main crop did not benefit from the preceding cover crops 

in terms of P concentration. This absence of a positive effect on the main crop makes it 

difficult to draw conclusions about the relative importance of the pathways of P benefits 

outlined in the introduction. In the present study, the plant biomass pathway was 

apparently not very important, as the considerable amount of P cycled through the mustard 

biomass did not affect soybean P concentration. A shorter timespan between cover crop 

death and sowing of the main crop might have improved the synchronisation of P release 

from the plant litter (Damon et al. 2014) This highlights the dependence of cover crop 

results on management (Wittwer et al. 2017) and site conditions (Blanco-Canqui et al. 

2015), while the potential of enhanced P-transformation in agroecosystems by increasing 

above- and belowground biodiversity might require time to unfold (Oelmann et al. 2021). A 

fact that could be relevant for the (agronomic) results of this study is that the main crop was 

a legume and the cover crops were not. A different combiation with a (non-legume) main 

crop might well have had greater benefits from the cover crops (Tonitto et al. 2006). 

 

6.6 Conclusions 

This on-farm experiment evaluated the correlation between the availability of Porg, the 

microbial community and P-cycling enzymes in the bulk and rhizosheath soil of buckwheat, 

mustard and phacelia as cover crops and in the following soybean crop on a soil low in 

plant-available Pi, but with abundant Porg. Our findings confirm our first hyptothesis, as 

cover crops greatly enhanced the amount of enzymatically-available Porg, as well as microbial 

abundance and activity in their rhizosheath, showing a potential to increase the cycling of 

Porg. Our second hypothesis was not confirmed, as the fact that most microbial properties 

did not differ greatly among the tested cover crop species indicates that the sheer presence 

of a living plant was more important than the nature of the species. The large effects of 

cover crop species on fungi indicate that the potentially important role of fungi in P cycling 

deserves more attention. This is to be understood in the context of our observation that 
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currently in the scientific community there seems to be more attention on the development 

of sophisticated methods targeting bacteria, rather than fungi or other soil biota. 

We found no evidence for a specific enrichment of microbes providing beneficial 

functions such as an overproportional increase of a phoD-harbouring bacterial populations 

or the specific enzyme activity per unit of microbial biomass. Contrary to our third 

hypothesis, the observed increases in microbial function in the rhizosheath of cover crops 

might therefore be related more to an overall increase of the microbial abundance and its 

turnover due to the availability of rhizodeposits than to specific shifts of the microbial 

community. 

The observed cover crop-induced changes to bacterial abundance and activity of several 

P-cycling enzymes were spatially and temporally restricted and, contrary to our fourth 

hypothesis, soybean grain P concentration was not affected by cover cropping. The 

differentiation between the rhizosheath and bulk soil indicates that the rhizosheath volume 

(i.e. root density and architecture) needs to be taken into account when estimating 

potential cover crop effects.  

It is important to bear in mind that the current management of the field without 

application of any fertilisers, but nutrient export with harvest, represents a form of P-mining 

that can only be sustained during a limited timespan until the sparingly-available P reserves 

will become exhausted. However, to decrease pressure on the limited mineable P reserves 

and reduce environmental hazards from the overapplication of fertilisers, it might be worth 

to investigate the management options to extend this period. 

In summary, we confirmed that cover crops can be used to locally modify plant-available 

P pools, and their enhanced rhizobiome affects different functions involved in P cycling. 

Organic P is an important component of the cycling of terrestrial P, and should be taken 

more into consideration. 

 

6.7 Acknowledgements 

We thank Doreen Berner, Sabine Rudolph, and Heike Haslwimmer for assistance in the 

laboratory, as well as Hans-Peter Piepho for statistical support. We want to especially 

mention the two farmers, Alfons Bunk and Tobias Heumesser, for their support with 



Study #2: The role of microbes in the increase of organic phosphorus availability in the rhizosheath of cover crops

 

 98 

fieldwork. Additional gratitude goes to Julie Christensen for helpful comments during the 

pre-submission review. Moritz Hallama received funding from the European Union's Horizon 

2020 research and innovation program under grant agreement No 677407 (SoilCare 

project). The field experiment formed part of the project Konservierender Ackerbau 

(Conservation Agriculture), funded by the Ministry of Agriculture and Consumer Protection 

of Baden-Wuerttemberg, Germany. 

 

6.8 Supplementary Material 

Supplementary Material S6.1 Excel file with the full dataset. Available at the public 

repository Open Science Framework (https://osf.io/yh5ra/) 

Supplementary Material S6.2 Details of the fitted models and full ANOVA tables. Available 

at the public repository Open Science Framework (https://osf.io/yh5ra/) 

Supplementary Material S6.3 R-code of the statistical analyses. Available at the public 

repository Open Science Framework (https://osf.io/yh5ra/) 

  

https://osf.io/yh5ra/
https://osf.io/yh5ra/
https://osf.io/yh5ra/


Study #2: The role of microbes in the increase of organic phosphorus availability in the rhizosheath of cover crops

 

 99 

 

Figure S6.4 Phosphorus (P) concentration of harvested soybean grains in mg P kg-1. 

Displayed are the estimated marginal means of the four field replicates; error bars show the 

modelled 95% CI. The underlying data is provided in Supplementary Material S6.1, the 

structure of the fitted models and the F-tests in Supplementary Material S6.2 and the 

complete R code in Supplementary Material S6.3 

 

 

Figure S6.5 The concentration of resin-extractable available phosphorus (Presin) [µg P g-1 soil] 

in bulk (black) and rhizosheath (white) soil of the cover crop treatments over the course of 

the experiment. Displayed are the estimated marginal means of the four field replicates; 

error bars indicate the modelled 95% CI. The underlying data is provided in Supplementary 

Material S6.1, the structure of the fitted models and the F-tests in Supplementary Material 

S6.2 and the complete R code in Supplementary Material S6.3 
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Supplementary Material S6.6 Overview of the p-values for main effects and interactions of the fitted models of Presin (resin-extractable 

inorganic phosphorus (P)), Pmic (microbial biomass P), Prec (recovery of added P spike, indicates P-sorption capacity) and abundances of fatty 

acid biomarkers of different microbial groups. The factor levels were: soil compartment (rhizosheath vs bulk soil), cover crop treatment 

(buckwheat, mustard, phacelia and fallow control), date (August and November 2016, March and June 2017). The underlying data is provided 

in Supplementary Material 1, the structure of the fitted models and the F-tests in Supplementary Material 2 and the R-code in Supplementary 

Material 3 

Main effects and interactions Presin Pmic Prec Gram-positive 

bacteria 

Gram-negative 

bacteria 

Fungi AMF PLFA 16:1 ω5 

Soil compartment (Rhizo) 0.008 0.007 n.s. 0.004 0.0004 <0.0001 0.006 0.006 

Cover Crop (CC) 0.15 n.s. n.s. n.s 0.01 0.008 n.s n.s 

Date <0.0001 0.049 n.s. 0.02 <0.0001 0.002 <0.0001 0.07 

CC:Rhizo n.s. n.s. n.s. n.s n.s n.s n.s n.s 

Rhizo:Date <0.0001 n.s. 0.001 n.s n.s <0.0001 0.051 n.s 

CC:Date 0.11 n.s. n.s. n.s n.s 0.003 n.s n.s 

CC:Rhizo:Date n.s. n.s. n.s. n.s n.s 0.038 n.s n.s 
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Figure S6.7: Recovery of added phosphorus (P) spike in %, the inverse of soil P-sorption 

capacity in bulk (black) and rhizosheath (white) soil of the cover crop treatments over the 

course of the experiment. Displayed are the estimated marginal means of the four field 

replicates; error bars indicate the modelled 95% CI. The underlying data is provided in 

Supplementary Material S6.1, the structure of the fitted models and the F-tests in 

Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 

 

Fig S6.8 Bacterial 16S rRNA per gram soil soil in bulk (black) and rhizosheath (white) soil of 

the cover crop treatments in November 2016. Displayed are the estimated marginal means 

of the four field replicates; error bars indicate the modelled 95% CI The underlying data is 

provided in Supplementary Material S6.1, the structure of the fitted models and the F-tests 

in Supplementary Material S6.2 and the complete R code in Supplementary Material S6.3 
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Figure S6.9 Bacterial phoD gene abundance in copy numbers per gram dry soil in bulk (black) 

and rhizosheath (white) soil of the cover crop treatments in November 2016. Displayed are 

the estimated marginal means of the four field replicates; error bars indicate the modelled 

95% CI. The underlying data is provided in Supplementary Material S6.1, the structure of the 

fitted models and the F-tests in Supplementary Material S6.2 and the complete R code in 

Supplementary Material S6.3 
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Supplementary Material S6.10 Overview of the p-values for main effects and interactions of the fitted models of different enzyme activities 

presented in Fig. 6.6. The factor levels were: soil compartment (rhizosheath vs bulk soil), cover crop treatment (buckwheat, mustard, phacelia 

and bare fallow control), date (August and November 2016, March and June 2017). The underlying data is provided in Supplementary Material 

1, the structure of the fitted models and the F-tests in Supplementary Material 2 and the R-code in Supplementary Material 3 

Main effects and interactions Acid phosphomonoesterase Alkaline phosphomonoesterase Phosphodiesterase N-acetyl-hexos-aminidase 

Soil compartment (Rhizo) 0.0006 0.072 <0.0001 0.005 

Cover Crop (CC) n.s. n.s. n.s. n.s. 

Date n.s. <0.0001 0.07 n.s. 

CC:Rhizo n.s. n.s. n.s. 0.043 

Rhizo:Date n.s. 0.078 0.0036 <0.0001 

CC:Date n.s. n.s. n.s. 0.10 

CC:Rhizo:Date 0.093 n.s. 0.079 0.013 
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 Figure S6.11 Ppotential activities of extracellular phosphatase enzymes per microbial 

biomass phosphorus (P): a) acid phosphomonoesterase; b) alkaline phosphomonoesterase 

and c) phosphodiesterase in nmol of (fluorescent) substrate µg Pmic per hour in bulk (black) 

and rhizosheath (white) soil of the cover crop treatments over the course of the experiment. 

Displayed are the estimated marginal means of the four field replicates; error bars show the 

modelled 95% CI. The underlying data is provided in Supplementary Material S6.1, the 

structure of the fitted models and the F-tests in Supplementary Material S6.2 and the 

complete R code in Supplementary Material S6.3 
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Figure S6.12 Relation of the abundance of fungal PLFA 18:2ω6,9 with measured potential N-

acetyl-hexosaminidase (NAGase) activity. The underlying data is provided in Supplementary 

Material S6.1, the structure of the fitted models and the F-tests in Supplementary Material 

S6.2 and the complete R code in Supplementary Material S6.3 
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7.1 Abstract 

Aims: An essential task of agricultural systems is to improve internal phosphorus (P) 

recycling. Cover crops and tillage reduction can increase sustainability, but it is not known 

whether stimulation of the soil microbial community can increase the availability of soil 

organic P pools. 

Methods: In a field experiment in southwest Germany, the effects of a winter cover crop 

mixture (vs. bare fallow) and no-till (vs. non-inversion tillage) on microbial P-cycling were 

assessed with soybean as the main crop. Microbial biomass, phospholipid fatty acids 

(PLFAs), P cycling enzymes, and carbon-substrate use capacity were linked for the first time 

with the lability of organic P pools measured by enzyme addition assays (using 

phosphodiesterase, non-phytase-phosphomonoesterase and fungal phytase). 

Results: Microbial phosphorus, phosphatase, and fatty acids increased under cover crops, 

indicating an enhanced potential for organic P cycling. Enzyme-stable organic P shifted 

towards enzyme-labile organic P pools. Effects of no-till were weaker, and a synergy with 

cover crops was not evident. 

Conclusions: In this experiment, cover crops were able to increase the microbially 

mediated internal P cycling in a non-P-limited, temperate agroecosystems. 

 

7.2 Introduction 

Crop production depends on a sufficient supply of major nutrients such as phosphorus 

(P). Improving the internal recycling of P in agroecosystems is needed and this is especially 

urgent in agroecosystems with a long history of P fertilisation, in order to reduce 

dependence on diminishing mineable P resources (Carpenter and Bennett 2011; Schröder et 

al. 2011), and to reduce detrimental effects that losses of excess P to other ecosystems can 

have (Ceulemans et al. 2014; Sharpley 2016). In soil, P is present either in inorganic (Pi) or 

organic (Porg) forms. Typically in agricultural temperate soils, only about 5% of total soil P is 

dissolved in soil solution and thereby available for plant uptake in the form of ortho-

phosphate (Stutter et al. 2015). Consequently, the soil solution has to be continuously 

replenished with orthophosphate, either by desorption processes from the soil mineral 

phase or by mineralization of organic P. 
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In industrialised countries, past organic and mineral fertilizer applications to agricultural 

soils have led to an accumulation of “residual P” or “legacy P”, which is composed of 

inorganic and organic P of limited availability (Stutter et al. 2015; Lemming et al. 2019). The 

residual P can be considered as a potential resource and its improved use could reduce 

dependence of modern agriculture on fertilizer inputs (Menezes-Blackburn et al. 2018). In 

recent years, management of soil organic P dynamics has received particular attention 

(George et al. 2018), since soil organic P can comprise between approximately 30 and 80% 

of total soil P (Harrison 1987). A large proportion of organic P in soil is bound as monoesters 

in supramolecular structures (McLaren et al. 2015), phytates, non-phytate monoesters, and 

diesters (Turner et al. 2007). Plant-available orthophosphate can be released from Porg in a 

process catalysed by different phosphatase enzymes produced by soil biota (Harrison 1987). 

Phosphomonoesters (e.g., inositol phosphates/phytates, sugar phosphates, and 

mononucleotides) are dephosphorylated by phosphomonoesterases, whereas for diesters 

(e.g., nucleic acids and phospholipids) an initial hydrolysation by a phosphodiesterase is 

required. Phytases represent a specialized form of phosphomonoesterases additionally 

capable of initiating the cleavage of higher-order inositols (Konietzny and Greiner 2002). 

While some plants are capable of producing phosphomonoesterases, they do not release 

significant amounts of phosphodiesterases or phytases (Turner and Haygarth 2005), making 

soil microorganisms the main source of these enzymes and therefore the key drivers of 

mineralisation of organic P compounds (Bünemann et al. 2007; Richardson and Simpson 

2011). The mobilisation of Pi and Porg is affected by the production and degradation of P-

mobilising compounds by microbes (Jones and Oburger 2011). Additionally, soil microbes 

affect the P nutrition of plants via antagonistic effects on plant pathogens (Finckh et al. 

2019), as well as production of phytohormones that modify both root growth and 

architecture (Hayat et al. 2010). Among these microbes, arbuscular mycorrhizal fungi (AMF) 

are the most studied, and their abundance can be directly related to improved P nutrition 

for plants, especially in P-limited agroecosystems (Jansa et al. 2011; Cozzolino et al. 2013). 

Cropping systems that enhance soil microorganisms’ capacity to improve the efficient 

management of nutrients and the use of residual P by mobilising Pi and mobilising and 

mineralising Porg pools can be an option for a wide range of agroecosystems, from nutrient 
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limited soils in the tropics to heavily fertilized temperate agroecosystems (Oberson et al. 

2006; Wendling et al. 2016). Conservation agriculture, consisting of cover cropping in 

combination with tillage reduction, is such an option, providing multiple benefits to both 

soil fertility and to the environment (Hobbs et al. 2008; Büchi et al. 2018), as well as closing 

gaps in P cycling. Recently, Hallama et al. (2019) described three pathways of cover crop-

derived P benefit for the main crop in a meta-analysis. First, nutrients are taken up from the 

soil and stored in the cover crop plant tissues, released after their mineralisation in spring. 

Second, cover crops interact with the soil microbial community, shaping its abundance, 

structure and functions, potentially increasing the P supply to the main crop (Deubel and 

Merbach 2005; Oberson et al. 2006). Finally, some cover crops, especially lupines, can 

modify the soil chemistry in their rhizosphere, mobilizing P sources that are otherwise 

limited (Lambers et al. 2013). Previous studies of P-cycling in agroecosystems focused either 

on chemical or microbiological soil properties, whereas the complex interactions between P-

cycling microorganisms and the lability of different P fractions in soil have been less well 

studied (Frossard et al. 2000; George et al. 2018). 

In order to test the validity of the pathways of cover crop-derived P-benefit mentioned in 

Hallama et al. (2019), the aim of the current study was to clarify whether conservation 

agriculture, with its component cover crops and no-till, stimulates microbial abundance and 

function and changes the lability of the Porg fractions. Under conservation agriculture, an 

enhanced microbial community may lead to increased storage of P in living and dead 

biomass, resulting in a shift from Pi and Porg fractions with limited availability to more labile 

Porg fractions. Thus, we hypothesize that under conservation agriculture (cover crop/no-till): 

(1) soil P shifts towards more available pools; (2) a stimulated microbial community with 

enhanced functions is associated with changed P pools, and; (3) cover crops and no-till may 

have synergistic effects on soil microbial biomass, microbial community structure, and P-

cycling capacity. 

To evaluate P dynamics under field conditions and to gain a more detailed understanding 

of the link between the function of P cycling microorganisms and the potential lability of 

organic P compounds, an enzyme addition assay (EAA) was used. This biochemical method 

consists in the addition of enzymes targeting specific P classes and quantifies the 
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hydrolysabilty of specific Porg classes by substrate specific enzymes (Bünemann 2008). The 

relationship between enzyme activities and the soil microbial community was investigated 

by quantifying the total microbial P pool as well as the different microbial groups of soil 

organisms by analysis of neutral and phospholipid fatty acids. 

 

7.3 Materials and Methods 

Site description 

The field experiment was conducted at the Tachenhausen Experimental Farm near 

Stuttgart, Germany (48.649800 N, 9.387500 E, 330 m a.s.l.) and was established in autumn 

2012. The soil is a Stagnic Cambisol (IUSS Working Group WRB 2015) with a very fine sandy 

loam texture. The field has an average pH(H2O) of 6.5, a soil organic carbon content of 14 g kg-

1 soil and a rather high PCAL, averaging 108 mg kg-1 soil. The climate is temperate with a 

mean annual temperature of 8.8º C and 809.3 mm precipitation (monitoring station 

Wetterstation Tachenhausen HfWU, 200 m from the site, 1961-1990). The field has a history 

of conventional agriculture, with a crop rotation consisting mainly of cereals and winter 

oilseed rape. The crop rotation for the experiment was winter wheat – cover crop mixture – 

soybean. An overview of climate and management is presented in Fig. 7.1; a detailed list 

with field observations and the agronomic management can be found in Supplementary 

Material S7.7.1. 
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Figure 7.1 Climate and management of the field experiment. Top: climate chart (left y-axis: monthly average 

air temperature [°C], right y-axis: cumulative monthly precipitation [mm]). Bottom: sampling (February and 

October 2015), soil cover and management (RT: reduced tillage). Further management details are listed in 

Supplementary Material S7.1 

 

In the field trial, the effects of tillage and soil coverage on soil properties were compared 

in a full factorial design. Tillage consisted of either reduced (non-inversion) tillage (RT) or no-

till/direct seeding (NT), while soil coverage included either a bare fallow or a cover crop 

mixture. The field trial was replicated with three complete blocks. To simplify handling of 

field operations, the experiment was set up in a split-plot design, with the levels of tillage 

randomly allocated to two main plots within each of the three blocks and the levels of cover 

crops randomized as two subplots (strips of 6 m by 100 m) within each main plot, resulting 

in a total of 12 plots. Conservation agriculture management consists of the simultaneous 

use of direct seeding and cover crops. Although tillage effects probably would have been 

greater with the extreme comparison of deep inversion tillage and no-till, the more modern 

non-inversion tillage approach was used as a control, as it is becoming standard in the 

region. In the cover crop treatments, a commercially available mixture (Terra Life Beta 

Maxx®  2014 provided by Deutsche Saatveredelung AG, Germany), containing Trifolium 

alexandrinum, Pisum arvense, Vicia sativa, Lupinus angustifolius, Guizotia abyssinica and 

Phacelia tanacetifolia was direct seeded at a rate of 45 kg ha-1. This specific mixture 

including legumes was considered a compromise between positive effects on soil structure, 
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N supply, winter-killing and only a minor risk of pathogens for the main crops. At the end of 

the vegetation period in November 2014, the cover crop biomass of RT and NT was rather 

low with 1114 and 1689 kg dry mass ha-1, respectively. The field emergence and biomass 

production of the cover crop species in the mixture can be found in Table S1. Despite 

repeated applications of herbicides, weed pressure was generally high. Rabbits, mice and 

snails constituted an additional problem for the cover crops. 

Soil samples were taken in February 2015, after frost-death of the cover crops, and 

October, at soybean harvest, at 0-5 and 5-20 cm depths with an auger, from around eight 

locations inside each of the twelve plots and pooled per plot and depth. The samples were 

sieved at 5 mm and stored at -20º C until analysis. For the chemical determination of 

calcium-acetate-lactate extractable P (PCAL), a standard method to estimate soil P status for 

crops, soil samples were dried (60º C for 72 h), milled and extracted with calcium-acetate-

lactate (VDLUFA 2012). 

 

Enzymatic availability of organic P pools 

An enzyme addition assay was used to characterize different organic P forms in an 

alkaline soil extract, depending on their lability for enzymatic degradation (Bünemann 2008; 

Jarosch et al. 2015). In principle, substrate-specific enzymes are added to hydrolyse specific 

Porg compounds in soil NaOH/EDTA-extracts. The increase in molybdate-reactive P compared 

to an untreated control sample yields the quantity of the corresponding enzyme-labile Porg 

pool in the extract. 

Organic P was defined as the difference between total P (Pt) after wet digestion with 

persulphate (Bowman 1989), and molybdate-reactive P (Ohno and Zibilske 1991) in the 

NaOH/EDTA extract. Although molybdate-unreactive P may also include other (inorganic) P 

compounds (Gerke 2010), in this study we consider it  Porg for the purpose of simplification. 

The enzyme addition assay was performed as described in Jarosch et al. (2015). In short, 

soil NaOH/ETDA extracts (0.25 M NaOH and 0.05 M EDTA) were incubated alone or in 

combination with substrate specific phosphatase enzymes. The enzymatic characterisation 

of the NaOH-EDTA extracts was performed under the same conditions for all enzymes in 

transparent 96 well microplates, adding enzymes to the NaOH-EDTA extract and MES buffer 
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adjusted to pH 5.2, in a final volume of 300 μl per well. The plates were incubated for 24 h 

at 37º C horizontally shaking at 40 rpm, transferred into another plate with malachite green 

and absorbance was measured as above. Two replicates of each sample were analysed in 

separate analysis runs. 

The addition of acid phosphatase (Sigma P1146) alone quantifies non-phytate-monoester 

Porg, for which term “monoester labile Porg” is used (Formula 1).  

 

Monoesterase labile P𝑜𝑟𝑔 = P𝑜𝑟𝑔 hydrolysed by acid phosphatase 

(Formula 1) 

 

Phosphodiesterase-labile Porg was quantified by the addition of 

phosphodiesterase/nuclease (Sigma N8630) in combination with acid phosphatase (Formula 

2), since in phosphodiesterase hydrolyses only the first of the two ester bonds in diesters, 

such that a phosphomonoesterase is also required to produce detectable phosphate. 
Diesterase labile P𝑜𝑟𝑔

= P𝑜𝑟𝑔 hydrolysed by nuclease in combination with acid phosphatase

−  monoesterase labile  P𝑜𝑟𝑔  

(Formula 2) 

Two phytases, a fungal (Peniophora lycii, Ronozyme NP, Novozyme, Denmark) and a 

commercial bacterial phytase (E. coli, Quantum blue, ABVista, USA), that target overlapping 

phytase-labile Porg pools, were used in order to reflect the activities of different microbial 

groups (Formula 3 and 4). The pool of monoesterase labile Porg must be subtracted from the 

phosphate released by the phytases, as the added phytases also mineralise non-phytate 

monoesters. 

Fungal phytase labile P𝑜𝑟𝑔 = P𝑜𝑟𝑔 hydrolysed by fungal phytase − monoesterase labile P𝑜𝑟𝑔  

(Formula 3) 
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Bacterial phytase labile P𝑜𝑟𝑔 = P𝑜𝑟𝑔 hydrolysed by bacterial phytase − monoesterase labile P𝑜𝑟𝑔  

(Formula 4) 

However, for the characterisation of the enzyme-labile and enzyme-stable Porg pools, 

only the fungal phytase was used (Formulas 5 and 6), as this specific enzyme has been 

employed in other studies (Annaheim et al. 2013; Jarosch et al. 2015). 
Enzyme − labile P𝑜𝑟𝑔

=  fungal phytase labile P𝑜𝑟𝑔 +  diesterase labile P𝑜𝑟𝑔 +  monoesterase labile P𝑜𝑟𝑔  

(Formula 5) 

 

Enzyme − stable P𝑜𝑟𝑔 = Total  P𝑜𝑟𝑔 − Enzyme − labile P𝑜𝑟𝑔  

(Formula 6) 

Since the calculations are based on several subtractions of P concentrations in enzyme-

treated and untreated extracts, as well as background concentrations in enzyme 

preparations, unrealistic values were sometimes obtained. When more than three of the 

five analytical replicates (i.e., wells of microtiter plates) had very low or even negative 

values, the entire pool was set to NA (data in S2). The individual analysis run (each of the 

three field replicates of each treatment was analysed in two separate runs) was included as 

a random effect in the statistical model. 

 

Microbial biomass P 

Phosphorus bound in the microbial biomass (Pmic) was determined on field-moist, 

unfrozen soil by hexanol fumigation and simultaneous extraction with anion exchange resin 

membranes (Kouno et al. 1995). For this, 2.5 g dry weight base frozen soil was extracted 

with 20 ml deionised H2O and two resin strips that were charged with 0.5 M NaHCO3. 

Subsamples received either no treatment (Presin), 1 ml of 1-hexanol (Phex) or 1 ml of a 

solution with a known P spike (Pspike) equal to 25 mg P kg-1 soil. Samples were shaken 
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horizontally for 16 h at 150 rpm. Thereafter, the resins were transferred to another vial, 

shaken for 1 h with 1 M HCl to desorb the phosphate from the resins, and the P 

concentration was measured colorimetrically according to Murphy-Riley at 610 nm (Murphy 

and Riley 1962). The difference between the fumigated and the unfumigated samples 

(Formula 7) was used as a proxy for microbial biomass P (Pmic), since the high recovery rate 

of Pspike revealed a very low sorption of released phosphate  

 

 𝑃𝑚𝑖𝑐 = 𝑃ℎ𝑒𝑥 − 𝑃𝑟𝑒𝑠𝑖𝑛    

(Formula 7)  

 

A KP-conversion factor to account for incomplete extraction of microbial P (Brookes et al. 

1982) was not applied since it has not been determined for this specific soil (McLaughlin et 

al. 1986). 

 

Microbial biomass carbon 

Substrate-induced respiration (SIR) was determined to estimate microbial biomass (Cmic) 

(Anderson and Domsch 1978) using automated electrolytic microrespirometry (Respiration 

Measurement System, ETS, Darmstadt, Germany) (Scheu 1992). Four grams of frozen soil 

were weighed in plastic cups and acclimatized over 48 h at room temperature. Four μg 

glucose g soil-1 were added in aqueous solution (100 μl g−1 soil fresh weight) and the 

samples were incubated for the respiration measurement at 22 °C. The initial respiration 

rate (average of the three lowest values within the first eight hours) was used to estimate 

Cmic using a conversion factor of 38 (Beck et al. 1997). 

 

Potential activity of extracellular enzymes 

Potential activities of acid phosphomonoesterase (EC 3.1.3.1), phosphodiesterase (EC 

3.1.4.1), β-D-glucosidase (EC 3.2.1.21) and N-acetyl-glucosaminidase (EC 3.2.1.52) were 

determined using fluorescent 4-methylumbelliferone substrates based on Marx et al. 

(2001), modified by Poll et al. (2006). The substrates were obtained from Sigma–Aldrich, St. 
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Louis, USA, except for the phosphodiesterase substrate, which was obtained from 

Carbosynth, Compton, UK. 

For the analysis, 1 g of soil was ultra-sonicated at 50 J s−1 for 120 s in 50 ml of autoclaved 

H2O. Fifty μl of soil suspension, 50 μl MES buffer (0.1 M MES-buffer, pH 6.1) and 100 μl 

substrate were pipetted onto microplates and incubated at 30 °C. The increase in 

fluorescence over time (slope) was measured at 5 intervals over 180 min at 360/460 nm on 

a Microplate Fluorescence Reader (FLX 800, Bio-Tek Instruments, USA) and converted into 

nmol substrate g soil−1 h−1 using a sample-specific standard curve with 4-

methylumbelliferone added to the soil suspension. 

 

Phospholipid fatty acids and neutral lipid acids 

The structure of the soil microbial community was characterized by extraction and 

analysis of specific phospholipid fatty acids (PLFA) and neutral fatty acids (NLFA) (Frostegård 

et al. 1993, modified according to Kramer et al. 2013). Fatty acids were extracted from 2 g 

soil (Bardgett et al. 1996), based on the method of Bligh and Dyer (1959) and modified by 

White et al. (1979). Fatty acid methyl-esters were stored at -20 º C until identification by 

chromatographic retention time and comparison with a standard mixture of qualitatively 

defined fatty acid methyl-esters ranging from C11 to C20 (Sigma Aldrich, Germany). Specific 

biomarker fatty acids permit quantification of different microbial groups (Ruess and 

Chamberlain 2010; Willers et al. 2015). The PLFAs i15:0, a15:0, i16:0, and i17:0 were used as 

biomarkers for Gram-positive (Gram+), and cy17:0 and cy19:0 for Gram-negative (Gram-) 

bacteria. The sum of these fatty acids, together with 16:1ω7 and 15:0, can be used as 

general bacterial biomarkers. The PLFAs 18:2ω6,9 and 18:3ω6,9,12 were used as general 

markers for fungi (Frostegård and Bååth 1996). The sum of the bacterial and fungal markers, 

together with the general microbial PLFA 16:1ω5, was used as a proxy for microbial 

biomass. The neutral fatty acid (NLFA) 16:1ω5 was used as a marker for arbuscular 

mycorrhizal fungal abundance (Olsson 1999). 
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Substrate use capacity expressed as metabolic potential diversity 

The capacity of microbial communities to mineralise different substrates characterises 

functional diversity. In this study, Biolog EcoPlates (Biolog Inc., Hayward, CA) were used, in 

which soil suspensions are added to commercially available microplates containing a 

standardised set of carboxylic acids, carbohydrates, polymers, amines/amides and amino 

acid substrates and a colouring agent in the wells (Insam 1997; Insam and Goberna 2004). 

Colour development is observed when microorganisms inoculated into the wells utilize the 

substrates (Frąc et al. 2012).  

Soil suspensions were prepared from 1 g frozen soil in 99 ml of sterile saline peptone 

water, shaken for 20 minutes at 20 °C and incubated at 4 °C for 30 minutes for the 

sedimentation of soil particles. Each well of the EcoPlates was inoculated with 120 μl of soil 

solution. The EcoPlates, covered by lids, were incubated at 25 °C in the dark (Gryta et al. 

2014). Absorbance was measured at 590 nm at time intervals of 24 h for 9 days in a Biolog 

Microstation (Biolog Inc., USA). The microbial response in each well of microplates, 

regarded as substrate utilization, was expressed as the average well colour development 

(AWCD). Shannon-Weaver’s diversity index (H) was calculated from the number of oxidized 

C substrates at the threshold of 0.25 (Gomez et al. 2006). For calculations, the average of 

the measurements after 72, 96 and 120 h of incubation was used. 

 

Statistical Analysis 

To account for the split-plot design (three field replicates per treatment), linear mixed 

models with block and the interactions with depth and date as fixed effects and the 

interaction of mainplot and subplot with depth and date as random effects (Piepho et al. 

2003) were fitted using the package lme4 v1.1-19 (Bates et al. 2015), in R v3.5.0 (R-Core 

Team 2013) and R-Studio v1.1.453 (RStudio 2013). Interactions with random factors were 

considered random according to Piepho et al. (2003). The complex structure of the models 

was reduced by elimination of the random effects with a standard deviation of 0, afterwards 

applying the step function in R to reduce the fixed effects but keeping the block effects. The 

residuals were checked using Q-Q-plots and histograms (Schützenmeister et al. 2012; Kozak 

and Piepho 2018). The structure of the fitted models and the F-tests are provided in 
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Supplementary Material S7.3, R code in Supplementary Material S7.4. The following 

packages were employed: readxl (Wickham and Bryan 2018), openxlsx (Schauberger and 

Walker 2019), dplyr (Wickham et al. 2019b), stringi (Gagolewski 2018), tidyverse (Wickham 

et al. 2019a), pbkrtest (Halekoh and Højsgaard 2014) and LmerTest (Kuznetsova et al. 2017). 

The figures were produced with estimated means and 95 % confidence intervals using 

emmeans (Lenth 2018) and multcomp (Hothorn et al. 2008) with ggplot2 (Wickham 2009), 

cowplot (Wilke 2017) as well as RColorBrewer (Neuwirth 2014). The radar chart was 

elaborated using the package fmsb (Nakazawa 2018). The figures were produced with the 

estimated means of the full models in order to be able to show also non-significant factors, 

while the F-tests of the significant effects were calculated with the respective reduced 

models. 

To simultaneously visualise and test the responses of multiple properties that 

characterise microbial community composition and function to the treatments, linear 

discriminant analysis (LDA) was used. In this dimensionality reduction technique, multiple 

microbial properties are loaded on the linear discriminant axes that maximise the 

separation between the four groups (treatments). For microbial community structure, 

abundances of single fatty acid biomarkers were used, while for microbial activity, enzyme 

activities and carbon substrate group utilisation data were used (R code in Supplementary 

Material S7.4). 

 

7.4 Results 

Treatment effects were more pronounced in the topsoil (0-5 cm) than in the deeper soil 

layers (5-20 cm). Consequently, the presentation of the results was focused on the upper 0-

5 cm of the soil. Data on soil properties of 5-20 cm can be found in Supplementary Material 

S7.2. 

 

Cover crops increase enzymatic availability of organic P pools 

Total P in the NaOH-EDTA extracts ranged from 690-780 μg g-1 soil, of which around 60 % 

were Pi and the remaining 40 % Porg, (Fig. 7.2 a). Of the Porg pool, on average 98 μg Porg g-1 
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(around 40 % of total Porg) were enzyme-labile, with cover crops increasing the amount of 

enzyme-labile Porg in October in comparison to bare fallow treatments (Fig. 7.2 a, Table 7.1, 

Cover crop x Date p=0.012). The largest proportion of enzyme-labile Porg was available for 

phytase. Fungal phytase-labile Porg was highest under cover crops and RT (Fig. 7.2 b, Table 

7.1, Cover crop x Tillage p=0.015). A bacterial phytase hydrolysed slightly greater quantities 

of phytate than the fungal phytase and was highest under cover crops in October (Fig. S7.5). 

Phosphomonoesterase-labile P increased under cover crops in October (Fig. 7.2 b, Table 7.1, 

Cover crop x Date p=0.079). The pool of phosphodiesterase-labile P was the lowest and 

most variable of the pools, and showed no treatment effects (Fig. 7.2 b, Table 7.1). 

The standard soil P test PCAL tended to be highest in bare+NT (Fig. 7.3), whereas resin-P 

did not show any treatment effects (Fig. S7.6). The high values, generally above 100 mg PCAL 

kg-1 soil, suggest an excess availability of P for crops. 

 

Figure 7.2 Soil P pools at Tachenhausen field site in 0-5 cm. a) In the left figure, the top, middle and bottom 

bars correspond to inorganic P (Pi), enzyme-stable organic P (Porg) and enzyme-labile Porg., respectively b) The 

enzyme-labile P pool can be further subdivided into Porg hydrolysable for phosphodiesterase, non-phytase-

phosphomonoesterase and fungal phytase (bare= without cover crops, RT= reduced tillage, NT= no-till). The 

bars represent the estimated marginal means of the three field replicates; error bars show the modelled 95 % 

CI. The corresponding models and F-Tests can be found in Table 1 and Supplementary Material S7.3 
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Table 7.1 P-values for main effects and interactions of the fitted models of different P pools presented in Fig. 7.2. The factor levels were: cover crops (bare 
and cover crops), tillage (no-till and reduced tillage), date (Ferbuary and October) and depth (0-5 and 5-20 cm). The corresponding raw data can be found in 
Online Resource S2, models and full ANOVA tables in Online Resource S3, and the corresponding R code in Online Resource S4. Interactions where no 
significance was detected were omitted 
    Variable   

Main effects 

and interactions 
Pi 

enzyme-stable 

Porg 

enzyme-labile 

Porg 

fungal phytase-labile 

Porg 
monoesterase-labile Porg diesterase-labile Porg 

Cover crops (CC) n.s. n.s. n.s. 0.065 n.s. n.s. 

Depth n.s. n.s. n.s. n.s. n.s. n.s. 

Date <0.001 n.s. n.s. n.s. n.s. n.s. 

Tillage n.s. n.s. n.s. 0.012 n.s. n.s. 

CC x Depth     0.042  

CC x Date n.s. n.s. 0.012 n.s. 0.078 n.s. 

Date x Depth 0.045 n.s. n.s. n.s. n.s. n.s. 

CC x Tillage n.s. n.s. n.s. 0.015 n.s. n.s. 

CC x Date x Depth 0.011 0.05 n.s. n.s. 0.024 n.s. 

CC x Tillage x Date x Depth n.s. 0.041 n.s. n.s. n.s. n.s. 
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Figure 7.3 Calcium acetate lactate extractable phosphate (PCAL) under the different treatments at 0-5 cm (bare= 

without cover crops, RT= reduced tillage, NT= no-till). Displayed are the estimated marginal means of the three 

field replicates; error bars show the modelled 95 %. The corresponding model and F-test can be found in 

Supplementary Material S7.3 

 

Microbial carbon, microbial phosphorus and total PLFAs 

Microbial carbon (Cmic) and total PLFA concentrations were used as proxies for microbial 

biomass. Cover cropping enhanced microbial biomass in the topsoil (Fig. 7.4 a and b) by 

around 12 %. After the growing season of soybean in October, microbial biomass increased 

compared to February. The measured Pmic in February was highest in the cover crop 

treatment with NT, but in October the plots with RT had higher Pmic, regardless of cover 

cropping (Fig. 7.4 c). 
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Figure 7.4 Microbial biomass: a) microbial C measured as substrate induced respiration (SIR) [μg microbial C g-1 
soil], b) concentration of microbial PLFA biomarkers [nmol PLFA g-1] and c) microbial P [μg P g-1] by treatments 
at 0-5 cm (bare= without cover crops, RT= reduced tillage, NT= no-till, bare= without cover crops). Displayed 
are the estimated marginal means of the three field replicates; error bars show the modelled 95 % CI. The 
corresponding models and F-Tests can be found in Supplementary Material S7.3 
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Microbial community structure (PLFA pattern) 

Fatty acid biomarkers for Gram+ bacteria increased under cover crops (Fig. 7.5 a), 

whereas Gram- bacteria also increased in October under no-till (Fig. 7.5 b). Cover crops 

increased the abundance of fungal biomarkers, while reduced tillage showed a tendency 

toward further increase in comparison to no-till (Fig. 7.5 c). The abundance of AMF, based 

on the NLFA marker 16:1ω5, tended to increase under cover crops in the topsoil (Fig. 7.5 d). 

In the rooting zone (5-20 cm, Fig. S7.7) cover crops+NT had the highest content of 16:1ω5 

NLFA in February. In general, the content of the mycorrhizal biomarker was higher at 5-20 

cm and was more variable than in the topsoil, especially in October, after soybean growth. 
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Figure 7.5 Concentration of fatty acid biomarkers of microbial groups: a) Gram+ [PLFAs i15:0, a15:0, i16:0, and 
i17:0], b) Gram- bacterial [PLFAs cy17:0 and cy19:0], c) general fungal [PLFA 18:2ω6,9 and 18:3ω6,9,12], and d) 
arbuscular mycorrhizal biomarkers [NLFA 16:1ω5] in nmol of fatty acids per gram dry soil under the different 
treatments at 0-5 cm (bare= without cover crops, RT= reduced tillage, NT= no-till, bare= without cover crops). 
Displayed are the estimated marginal means of the three field replicates; error bars indicate the modelled 95 
% CI. The corresponding models and F-Tests can be found in Supplementary Material S7.3 
 

Potential C- and P-cycling enzyme activities and metabolic diversity 

Cover cropping increased the activities of phosphomonoesterases (Fig. 7.6 a), 

phosphodiesterases (Fig. 7.6 b), and β-glucosidases (Supplementary Material S7.3), 

especially in February and in combination with no-till. N-actyl-glucosaminidase activity was 

highly variable and did not exhibit any treatment effects (Supplementary Material S7.3). 

Cover crops also increased metabolic diversity, determined using a variety of C-substrates 
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calculated as average well colour development and Shannon-Weaver’s diversity index from 

the carbon source utilisation data (Figs S7.7 and S7.8). The use of Glucose-1-Phosphate and 

DL-α-Glycerol Phosphate as carbon sources was increased by cover crops above average 

compared to the other C substrates (Figs S7.9 and S7.10). 

When relating P-cycling enzymes with P pools in soils, the relation between enzymatic 

activity and enzyme-labile P pools was affected by the treatment (Fig. 7.7). 

Phosphomonoesterase activity, composed of phytases and other phosphomonoesterases, 

correlate negatively with the sum of the pools monoesterase- plus phytase-labile Porg in the 

topsoil in the no-till treatments (R2=0.36, p=0.038, Fig. 7.7a), whereas with non-inversion 

tillage or in the lower 5-20 cm there was no visible relation at all. Conversely, the relation of 

phosphodiesterase activity with phosphodiesterase-labile Porg was not influenced by depth, 

but interacted with cover cropping and date, with a significant negative correlation with 

cover crops in February (R2=0.43, p=0.041, Fig. 7.7b), but not later in the year in October. 

 



Study #3: Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture

 

 126 

 

Figure 7.6 Potential activities of extracellular enzymes: a) phosphomonoesterase and b) phosphodiesterase in 
nmol of substrate per gram dry soil per hour under the different treatments at 0-5 cm (bare= without cover 
crops, RT= reduced tillage, NT= no-till). Displayed are the estimated marginal means of the three field 
replicates; error bars show the modelled 95 % CI. The corresponding models and F-Tests can be found in 
Supplementary Material S7.3 
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Figure 7.7 Relation between enzymatic activity and the respective enzyme-available organic P pools for a) 

phosphomonoesterase and b) phosphodiesterase. The trend lines, R2 and p-values were calculated using a 

simple linear model. As the relation of enzymatic activity and Porg pools interacted with depth and tillage as 

well as date and cover crops in the case of phosphomonoesterase and phosphodiesterase, respectively, the 

trendlines were fitted to the corresponding subsets. Coefficients and R-code can be found in Supplementary 

Material S7.3 and S7.4, respectively. 
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Multivariate analyses of microbiological data 

Linear discriminant analysis (LDA) was used to assess whether the treatments resulted in 

distinct microbial community structures and activity and to obtain an overview of the 

properties that dominated the dissociation (coefficients are reported in Supplementary 

Material S7.3). 

Overall, the treatments resulted in differentiation of the soil microbial community 

structure and activity (Fig. 7.8). The effect of cover crops on community composition was 

most visible in October, indicated mainly by Gram+ and AMF biomarkers (Supplementary 

Material S7.3). Cover crops affected microbial activity already in February and the 

differentiation was dominated by enzymatic activities. Tillage had its greatest overall effect 

on microbial community structure and activity in October. 

In this experiment, both phosphomonoesterase and -diesterase activity showed a 

positive correlation with the abundance of Gram+ bacteria (Pearson’s R= 0.5 and 0.36; 

p=0.0002 and 0.012, Supplementary Material S7.3), Gram- bacteria (R=0.8 and 0.62; both 

p<0.0001), as well as fungi (R=0.4 and 0.37; p=0.003 and 0.008). 
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Figure 7.8 Impact of cover crops (green= cover crops, brown= fallow) and tillage (light= 

reduced tillage/RT, dark= no-till/NT) on microbial community structure (a, b; fatty acid 

biomarkers) and activity (c, d; extracellular enzyme activity and substrate use capacity), in 

February (left) and October (right) at 0-5 cm, grouped by treatment. The parameters of each 

plot are summarised to a single point using linear discriminant analysis (LDA). The ellipses 

represent the 95 % CI of each group. Coefficients and R-code can be found in Supplementary 

Material S7.3 and S7.4, respectively 

 

7.5 Discussion 

Cover crops influence P-cycling within soil-plant systems (Eichler‐Löbermann et al. 2009; 

Honvault et al. 2020). In this study, combined chemical, biochemical, and microbiological 

methods were used to elucidate whether the growth of cover crops in combination with no-

till might change microbial abundance and functions and lead to modifications in plant 

available P pools in soil. To interpret the data, first the impact of the treatments on soil P 

pools was characterised. Further, the role of the soil microbial community as a likely driver 
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for these changes is described and the mechanistic relationship of phosphatases to enzyme-

available Porg pools are discussed. Then, the multivariate response of microbial activity and 

microbial community structure is outlined. Finally, the potential synergies between cover 

crops and no-till and the effects of the treatments on soil phosphorus dynamics are 

summarised. 

 

Cover crops increase the enzymatic availability of organic P pools 

The cultivation of cover crops induced a shift in P dynamics in the soil that could help to 

explain the commonly observed P benefit with cover crops (Hallama et al. 2019). The 

enzymatic availability of the Porg pools was sensitive to management practices (Fig. 7.2 b), 

despite the abundant Pi and PCAL (Figs 7.2 a and 7.3) that dominated the P availability of the 

soil.  

We suggest that the decrease in PCAL (Fig. 7.3) was a result of both the uptake of P by 

cover crops, and by the immobilisation of P in the microbial biomass (Fig 7.4 c). This 

supports the concept that cover crops quickly take up labile P (Hallama et al. 2019) and that 

microbially-immobilised P contributes to the build-up of organic P in soil (Bünemann et al. 

2008). Overall, our results indicate that the increased availability of enzyme-labile P in soil 

with cover crops (Fig. 7.2, Table 7.1) represents a relative shift from inorganic phosphate 

towards organic P sources, confirming our first hypothesis. 

 

Conservation agriculture enhances the P-cycling capacity of the soil microbial community  

As microbes are the main drivers of soil organic P dynamics (Richardson and Simpson 

2011), the role of soil microorganisms underlying the observed shifts in labile Porg pools was 

investigated. The detected increases in enzyme-labile Porg pools with cover crops (Fig. 7.2) 

are concurrent with increases in microbial abundance (Figs 7.4 and 7.5, Supplementary 

Material S7.3) and activity (Fig. 7.6, Supplementary Material S7.3). The cover crop effect 

was, in most cases, greater than that of no-till, and treatment differences were more visible 

in the topsoil (0-5 cm) compared to the deeper soil layers (5-20 cm, data in Supplementary 

Material S7.2). Considerable treatment effects on microbial properties were already visible 

in February (Figs 7.4-7.6), whereas total enzyme-labile organic P increased in October. This 
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delayed response of the pools is logical if changes in the P pools are attributed to microbial 

activity. The observed cover crop effects may have resulted from the following processes: in 

February, the microbial community reflected mostly the direct effects of a living plant cover 

in the off-season (Kumar et al. 2013), although limited mineralisation of shoots and roots 

occurs during cold months (Kramer et al. 2013). In October, mineralisation of the cover crop 

biomass provided nutrients (Damon et al. 2014). Additionally, the rhizosphere of the 

soybean crop probably shaped the soil microbial community by rhizodeposition, altering the 

nutrient dynamics, as shown by Manna et al. (2007). 

Not only changes in available P pools were of interest, but also in microbial drivers of 

these processes. The abundances of both Gram+ and Gram- bacteria increased under cover 

crops (Figs 7.5a and 7.b), probably due to above- and belowground litter inputs and 

rhizodeposits from cover crops. Tillage had no effect on Gram+, but NT tended to increase 

abundance of Gram-. This effect could be related to organic matter inputs from cover crops 

that favoured predominantly Gram- bacteria (e.g., copiotrophic Proteobacteria). The finding 

that Gram+ bacteria were less enriched in the conservation agriculture treatments could be 

explained by the fact that members of the biggest group of Gram+ bacteria in bulk soil, 

Actinobacteria, utilize predominantly more oligotrophic life strategies (Uksa et al. 2015; Ho 

et al. 2017). The finding that fungi benefited most from cover crops in combination with RT 

instead of no-till was unexpected, as fungi are commonly considered to be more sensitive to 

tillage than bacteria due to the disruption of their hyphal networks with soil movement 

(Jansa et al. 2003). We suggest that non-inversion tillage resulted in an increase in the 

abundance of saprotrophic fungi with RT (Fig. 7.5c), because of the availability of substrate 

due to the mixture of cover crop litter with the soil. 

Increases in the activities of P cycling enzymes in cover crops+NT compared to the other 

treatments in February, were detected both in absolute values (Fig. 7.6) and per unit Cmic. 

The contributions of the different microbial groups to this increase were presumably 

unequal. Relating activities of P cycling enzymes to different groups of microorganisms 

showed that phosphomono- and -diesterase activities correlated positively with abundances 

of bacteria and fungi. The genetic potential for the production of acid and alkaline 

phosphatases is widespread in soil microorganisms (Bergkemper et al. 2016), but there are 
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no detailed studies of the abundance of single bacterial and/or fungal species‘ connections 

to in-situ activity of phosphatases. In our experiment, mainly bacteria might have increased 

the release of phosphatases to cover their demand for phosphate, while increasing 

microbial P immobilisation. 

In order to evaluate enzymes from the same family but produced by different groups of 

soil microorganisms (Menezes-Blackburn et al. 2013), a commercial bacterial phytase was 

included in addition to the fungally-derived phytase in the enzyme addition assay. The 

bacteria-derived phytase mineralised around 20 % more Porg than the phytase derived from 

fungi. However, the addition of the bacterial phytase had more variable results (Fig. S7.5). 

The different amounts of phosphate released by bacterial and fungal phytases indicate that 

the two enzyme families act on different but overlapping subpools of Porg (Hill and 

Richardson 2007). Apparently, the differences in terms of enzyme activity between the two 

phytases produced by these organisms may reside more in the environmental conditions 

(i.e., pH) of their location (Wyss et al. 1999) than on substrate specificity. Fungal phytase-

labile P was especially abundant in cover crops with reduced tillage (Fig. 7.2b), 

corresponding to the greatest fungal abundance (Fig. 7.5c). Therefore, it seems reasonable 

that phytate produced by fungal microorganisms (Turner 2007) contributed to the pool of 

fungal phytase-available Porg, representing a substrate that is located in micro-environments 

with favourable conditions for the activity of fungal phytases. 

Arbuscular mycorrhizal fungi are of particular interest in plant production due to their 

role in P nutrition for many crops, and enhanced AMF abundance after cover crops is 

positively related to phosphorus uptake (White and Weil 2010). In our experiment, the 

abundance of AMF biomarker NLFA 16:1ω5 tended to be greater under cover crops (Fig. 

7.5d), but tillage had apparently no effect on AMF. Possible explanations for the lack of an 

AMF abundance response to no-till could be that the dominant AMF species were resistant 

to tillage effects (Jansa et al. 2003) or to antagonistic relationships between different soil 

microorganisms (Li et al. 2020). Overall, our results add to the emerging body of literature 

that has shown the evident and positive effects of cover crops on microbial properties (Kim 

et al. 2020a) and relate these changes in microbial properties with soil P dynamics, 
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potentially increasing labile organic P pools. The effects of cover crops were more evident 

than those of no-till. 

 

Organic P compounds and phosphatase enzymes 

The approach of quantifying soil Porg pools according to their potential hydrolysability by 

adding substrate specific enzymes (phytase, phosphomonoesterase and phosphodiesterase) 

together with the assessment of soil enzymatic activity (phosphomonoesterase and 

phosphodiesterase activity) provides deeper insights into the dynamics of Porg cycling than 

have before been seen. The EAA method uses excess enzyme concentrations to measure 

the potential availability of different native Porg pools for enzymatic mineralisation, while 

methods analysing enzyme activities optimise the concentrations of Porg substrates to assess 

the amount of enzymes in the soil, i.e., the mineralisation potential of organic compounds. 

The association of monoesters and diesters, two of the most abundant chemical forms of 

Porg, with their respective enzymes, appeared to be influenced by the treatment. To 

interpret these findings, we must keep in mind the different processes that control the 

substrate-enzyme relation, as they affect each other mutually (Bünemann et al. 2011). The 

production and release of phosphatases by roots and microorganisms in soils is assumed to 

be controlled mainly by the requirements of the organisms and the concentration of 

available substrate (Quiquampoix and Mousain 2005). However, other factors, such as 

stabilisation and turnover times of P-cycling enzymes, as well as complexation of substrates, 

seem to be important for enzymatic turnover in-situ (Rao et al. 2000). The other side is the 

size of available substrate pools. Here, monoesters (including inositol-P) constitute most (in 

our case, around 80 %, Fig. 7.2b) of the enzyme-labile Porg, although chemical stability and 

sorption on particle surfaces limit their availability for mineralisation (Gerke 2015). Diesters, 

on the other hand, interact less with the soil matrix, but persist to a certain degree because 

of the low stability of the enzymes that degrade them (Lang et al. 2017; Jarosch et al. 2019; 

Müller et al. 2020). Counter-intuitively, phosphodiesterase activity may constitute a rate-

limiting step for mineralisation in a soil with Porg pools formed by abundant but 

enzymatically unavailable monoesters and less abundant, but more available diesters 

(Turner and Haygarth 2005). The absence of a clear main effect of enzymatic activity as a 



Study #3: Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture

 

 134 

covariate for ezyme-labile Porg may indicate that the soil was not in a steady-state, where 

enzymatic activity and organic P control each other mutually. Both enzymatic activity and 

organic P pools varied over time and depth and were affected by the addition and 

availability of fresh organic matter and microbial activity. 

The detected increases in phosphomonoesterase activity with cover crops are 

accompanied by an increased capacity of the microbial community to use specific 

phosphate-bearing substrates, such as glycerol-phosphate and glucose-1-phosphate (Figs 

S7.9 and S7.10). Besides a general increase in organic compounds and microbial 

mineralisation under cover crops, one explanation for this specific increase in the capacity 

to degrade phosphate-bearing substrates could be the presence of phosphate compounds 

in root exudates of cover crops and the adaptation of microbes to use these substrates 

effectively. Sugar phosphates are involved in intracellular carbohydrate metabolism and 

participate in co-transportation of plastid-localized sugar-phosphate in several species of 

plants (Flügge et al. 2011). Although import and export mechanisms of sugar phosphates 

into and from root cells are not characterized, these compounds are detected in plant 

exudates (Sasse et al. 2018). In addition, cover crops induce priming effects in the 

rhizosphere by influencing the turnover of soil organic matter (Dijkstra et al. 2013), hence 

altering soil nutrient content, including phosphorus. However, higher turnover of glycerol-

phosphate and glucose-1-phosphate could alternatively reflect the higher demand for P 

when microbial biomass is increased under cover crop treatment. Therefore, stimulation of 

phosphomonoesterase activity becomes plausible. Unfortunately, the biolog plates used in 

this study did not contain any substrates with phosphodiesters. 

The enhancement of enzyme activity under cover cropping can be explained by the 

increase in the availability of organic P substrates (Quiquampoix and Mousain 2005), the 

reduction of the concentration of Pi (i.e., product-inhibition) (Burns and Dick 2002), and the 

increase in microbial  abundance, as well as microbial production of phosphatases. With the 

detection of an association between the increase in abundance of various microbial groups, 

increased enzymatic activity and increased enzyme-available Porg pools, we confirm our 

second hypothesis, which assumed that a stimulated microbial community with enhanced 

functions would be associated with changed P pools. With our current understanding of soil 
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organic P dynamics, the changes in Porg pools can be expected to be driven by the 

stimulation of the microbial community (Richardson and Simpson 2011). However, 

simultaneous substrate-driven processes, e.g., increases in microbial activity due to greater 

availability of Porg from cover crops residues, may also take place. 

 

Multivariate response of microbial functions and microbial community composition to 

conservation agriculture 

The soil microbial community was affected by the conservation agriculture treatments, 

resulting in a differentiated community structure and activity (Fig. 7.8). In February, the 

treatments, especially cover cropping, affected microbial activity more than community 

structure, which is in line with other studies that have found microbial activity to be more 

sensitive than community composition to management changes (Bier et al. 2015). By 

October, both tillage and cover crops had resulted in distinct community compositions, 

though for microbial activity tillage was more important. The tillage operations in the RT 

treatments that were done after the sampling in spring likely were the reasons for the 

greater tillage effect in October. 

Functional diversity, calculated as Shannon-Weaver’s H from carbon substrate group 

utilisation, increased under cover crops and NT (Figs S7.7 and S7.8). It is commonly reported 

that cover crop mixtures increase microbial diversity (Kim et al. 2020a). In addition, tillage 

reduction may increase or preserve spatial heterogeneity that would be destroyed due to 

homogenisation by tillage. Besides potential pathogen suppressing effects (Weller et al. 

2002), a diverse community with a variety of nutrient acquisition strategies may have an 

advantage for the utilisation of different nutrient pools, leading to their increased 

availability to the community as a whole. This theory of resource partitioning also applies to 

organic P pools (Turner 2008). The characterisation of cover crops according to plant traits 

provides a promising approach to understand the cover crop effects on soil microbes and 

hence P availability (Wendling et al. 2016; Boeddinghaus et al. 2019). This perspective, 

applied to plant communities in the form of commuity mean traits (Garnier et al. 2007), 

could also help to predict the complex action of cover crop mixtures. 
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Conservation agriculture techniques: synergy between cover crops and tillage reduction? 

Cover crops and no-till are two techniques in agricultural management that are often 

used with the expectation of enhancing microbial abundance and activity, and consequently 

crop nutrition. Substrate inputs and protection by the living and dead cover crops sustain 

the soil biota (Mukumbareza et al. 2015). No-till increases soil heterogeneity both in the soil 

profile and at the aggregate scale, with profound impacts on the soil microbial community 

(Young and Ritz 2000). This in turn provides greater more opportunity for soil to rest and a 

concentration of nutrients and soil organic matter (SOM) at the surface (Kabiri et al. 2016). 

A synergy between both management techniques is often assumed and frequently found 

(Wittwer et al. 2017; Boselli et al. 2020), but there are also reports of a greater relative 

improvement of in microbial properties in under tillage treatments (Balota et al. 2014). 

Particularly to make the comparison between the no-till and reduced tillage, soil samples 

were taken at two different soil depths. The treatment effects in the deeper soil layer (5-20 

cm) were generally rather weak; this was the case both for cover crops and for tillage. One 

factor could be the chosen sampling depth: the tillage operations in RT were conducted only 

up to 10 cm soil depth, in some cases even less (Supplementary Material S7.1). Thus, cores 

taken at the 5-20 cm depth included some soil that was not affected directly by the tillage 

treatments. However, the concentration of the cover crop effects at the surface 

corresponds to litter placement of aboveground plant biomass from crops and cover crops, 

and we had expected also effects of cover crop roots and their exudates at the 5-20 cm 

depth (Austin et al. 2017; Schmidt et al. 2018). 

In our experiment, judging only by the results of the plots without cover crops, the 

positive effects of no-till on soil properties were rather limited. However, when comparing 

reduced tillage and no-till in the plots with cover crops, the picture gets more complicated. 

Fungal phytase-labile Porg (Fig. 7.2b) was greatest with cover crops and reduced tillage, while 

other properties, such as abundance of Gram- bacteria or phosphomonoesterase and 

phosphodiesterase activity in February (Figs 7.3 and 7.6) showed synergistic effects of the 

combination of cover crops with NT. Despite observed shifts in both microbial community 

composition and activity (Fig. 7.8), it is not possible to judge these differences in terms of 

agronomical relevance easily. We are still missing some of the causal relationships between 
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the different soil and plant P pools, microbial community structure, and their potential 

functions (George et al. 2018). Therefore, our third hypothesis about synergistic effects of 

cover crops and no-till on soil microbial properties and P-cycling capacity can be only 

partially confirmed. Further experiments, taking into account the influence of conventional 

management (Romdhane et al. 2019) and alternative management systems (Mulvaney et al. 

2017) are necessary.  

In summary, assessment of the treatment combinations revealed a clear enhancement in 

microbial abundance and activity under cover crops compared to bare fallow (Fig. 7.9). This 

potential for (micro-) biological P cycling came with an increase in organic P pools. However, 

available inorganic P (here measured as PCAL) was greatest in the bare fallow treatments. 

 

 
Figure 7.9 Radar chart summarizing the effects the four treatments of the experiments (bare vs cover crops and 

reduced tillage vs no-till), on several soil phosphorus pools and microbial P-cycling in February at 0-5 cm. The 

variables represent (clockwise from the top right): Microbial abundance (Gram+ and fungal abundance); Soil P 

pools (fungal phytase-labile organic P (Porg), calcium-acetate-lactate extractable P (PCAL), total Phospholipids 

(PLFAs), microbial biomass phosphorus; and enzyme activity (phosphodiesterase and phosphomonoesterase). 

Grid lines correspond to the 0, 25, 50, 75, and 100-quantiles of each variable over all dates and depths (R-code 

can be found in Supplementary Material S7.4)  
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7.6 Conclusions 

This study demonstrated that a cover crop mixture and no-till, as components of 

conservation agriculture, could enhance soil microbial abundance and activity and change 

the phosphorus dynamics in a temperate agricultural soil by stimulating organic P cycling. 

Cover cropping in particular shifted organic P towards pools of higher potential availability 

for enzymatic hydrolysis. Soil microbial abundance and activity were related to changes in P 

pools, highlighting the importance of soil microbes for nutrient cycling. More research is 

needed to study the drivers of the relation between enzymatic activity and organic P pools. 

Despite the fact that this experiment was conducted in a field where P availability was 

not a limiting factor, the system responded after only two seasons of cover cropping. In the 

bare fallow treatments, representing more conventional systems without cover crops, P 

dynamics appear to have been dominated by the abundant available inorganic P. Although 

this study represent only one site and has to be repeated for more sites, we elucidated 

these two distinct patterns that might explain why both systems work in practice on many 

farms in central Europe: On the one hand, the conventional input-based, yield-optimised 

approach with a lower complexity; and on the other hand, the concept of sustainable 

intensification, making use of biological functions and internal nutrient cycling.  

Cover crops are an important tool to mine P from the soil and hence to reduce the 

necessity to apply P as a mineral fertilizer. Tillage reduction also appears to have an impact, 

but the agroecosystem might need a longer time for a new measurable equilibrium to be 

achieved. These two components of conservation agriculture can help to reduce the current 

high consumption of P fertilizers and to decrease the environmental impact of agriculture. 

Cover crops constitute a promising, multifunctional tool for sustainable intensification of 

agriculture, provided species selection and management match the agricultural goals. 

Scientific efforts and agricultural policies should be directed to overcoming barriers to the 

widespread adoption of these soil improving cropping systems. 
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Available at the public repository Open Science Framework (https://osf.io/m9d5c/) 
 

Supplementary Material S7.4 R-code (.Rmd) used for statistical analysis and elaboration of 

figures. Available at the public repository Open Science Framework (https://osf.io/m9d5c/)  
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Figure S7.5 Organic P hydrolysed by added bacterial phytase under the different treatments 

(bare= without cover crops, RT= reduced tillage, NT= no-till). Displayed are the estimated 

marginal means of the three field replicates; error bars show the modelled 95 % CI. The 

corresponding model and F-test can be found in Supplementary Material S7.3 

Figure S7.6 Resin-P (Presin) in soil-water-extract under the different treatments (bare= 

without cover crops, RT= reduced tillage, NT= no-till). Displayed are the estimated marginal 

means of the three field replicates; error bars show the modelled 95 % CI. The corresponding 

model and F-test can be found in Supplementary Material S7.3 
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Figure S7.7 Shannon-Weaver’s diversity index of carbon substrate use capacity under the 
different treatments (bare= without cover crops, RT= reduced tillage, NT= no-till). Displayed 

are the estimated marginal means of the three field replicates; error bars show the modelled 

95 % CI. The corresponding model and F-test can be found in Supplementary Material S7.3 
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Figure S7.8 Average well color development (AWCD) of carbon substrate use capacity under 

the different treatments (bare= without cover crops, RT= reduced tillage, NT= no-till). 

Displayed are the estimated marginal means of the three field replicates; error bars show 

the modelled 95 % CI. The corresponding model and F-test can be found in Supplementary 

Material S7.3 

  



Study #3: Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture

 

 143 

 

Figure S7.9 Capacity of the soil microbial community to use Glucose-1-Phosphate as a 

carbon source under the different treatments (bare= without cover crops, RT= reduced 

tillage, NT= no-till). Displayed are the estimated marginal means of the three field replicates; 

error bars show the modelled 95 % CI. The corresponding model and F-test can be found in 

Supplementary Material S7.3 
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Figure S7.10 Capacity of the soil microbial community to use Glycerol-Phosphate as a carbon 

source under the different treatments (bare= without cover crops, RT= reduced tillage, NT= 

no-till). Displayed are the estimated marginal means of the three field replicates; error bars 

show the modelled 95 % CI. The corresponding model and F-test can be found in 

Supplementary Material S7.3 
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8 General discussion 

The studies presented in this dissertation provide evidence that cover crops constitute a 

promising multifunctional tool for more sustainable management of P in agriculture. 

Although there is still a long way to reach the estimated potential of 25 % of agricultural 

cropland with cover crops (Poeplau and Don 2015), adoption of this technique by farmers 

has increased greatly over the last decade, while at the same time, agricultural policies to 

support it are gaining momentum in many countries (Kanter and Brownlie 2019). The 

hazards of legacy P and the opportunities for its management are on the agendas of the 

Sustainable Phosphorus Alliance located in the USA and the European Sustainable 

Phosphorus Platform. 

 

8.1 How do cover crops increase the access of P to main crops? 

In this dissertation, a number of properties related to P-cycling and the microbial 

community were analyzed. With the resulting data we are now able to discuss and evaluate 

specific aspects of the proposed conceptual framework of cover crop-derived P benefits 

(Fig. 8.1). The three pathways of P benefit presented above (plant biomass, biochemical 

modification, and soil microbial enhancement) have varying degrees of relative importance 

in different agricultural contexts, utilizing distinct mechanisms and responding to controlling 

factors. In the following, we discuss how the results of our studies add to the general 

knowledge of the discipline and the extent to which they answer the research questions 

outlined in the Introduction. 
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Pathways of P benefit 

Plant biomass Microbial enhancement Biochemical modification 

   
Assessed properties 

Cover crop biomass P 

PLFA/NLFA 

Enzyme activity 

Pmic 

Enzyme-labile Porg 

phoD 

Presin 

Psorption 

Figure 8.1: The three proposed pathways of cover crop-derived P benefit to the main crop. Arrows in 
red illustrate the main movements of P, brown arrow represents the input of rhizodeposits and blue 
arrow the exudation of carboxylates that mobilize soil P of limited availability. Left: Via the plant 

biomass pathway, P is taken up and stored in the cover crop biomass. During litter decomposition 
the released P is potentially available to the main crop; center: Via the microbial enhancement 

pathway, cover crop’s rhizodeposition (brown arrow) increases microbial abundance and activity, 
facilitating access to enzyme-labile Porg for the main crop; right: Some cover crops perform a 
biochemical modification of their rhizosphere, increasing the availability of phosphate to the main 
crop. Pmic = microbial biomass; Pa = available phosphate; Pi = inorganic P pools; Porg = organic P pools 
 

In our experiments, cover crop biomass contained up to 25 kg P ha-1 that was released 

after growth termination during litter mineralization (Fig. 6.2). This quantity could have 

covered the totality of the main crops’ P requirements, underscoring the potential of the 

plant biomass pathway (Fig. 8.1 left). These results notwithstanding, even in situations with 

such an exceptionally high cover crop biomass, the assumption that all of the contained P is 

readily available for the main crop falters somewhat, since the time between cover crop 

termination and main crop establishment is often too long for the main crop to take 

advantage of available P. Most of the nutrients contained in cover crop litter are transferred 

to the soil in a matter of several weeks, not months (Damon et al. 2014). In contrast, the 
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highest total nutrient uptake of crops usually takes place in the grain filling stage, although 

earlier developmental stages can also be critical for yields (Grant et al. 2001; Pedersen et al. 

2021). This time lag makes it unlikely that a main crop can access a substantial part of the 

litter-derived P directly from the pool of available phosphate, although some more complex 

forms of Porg might be released more slowly. Most litter-derived P reaches the main crop 

after one or several cycles of incorporation and release via soil microbial biomass or other P 

pools (Bünemann et al. 2012). Carbon and other nutrients contained in the plant litter 

provide a good foundation for increasing microbial biomass and activity, affecting the 

availability of various inorganic and organic pools. Therefore, in the case of the plant 

biomass pathway, soil microbes may be pivotal in P-cycling.  

As mentioned above, some plant species use as their P acquisition strategy a particularly 

intensive modification of the soil chemistry in their rhizosphere, directly reducing the 

sorption capacity of P. With cover crops acting via this biochemical modification pathway, 

increased availability of phosphate could benefit the main crop (Fig 8.1 right). Nonetheless, 

although in Study #2 we detected a trend towards decreased P sorption capacity in the 

rhizosheaths of the cover crops (Fig. S6.7), the concentration of available phosphate under 

the main crop, measured as Presin, was not affected by cover cropping (Fig. S6.5). The 

absence of a detectable cover crop effect related to this pathway may be related to the 

choice of crop rotations. On one hand, in the meta-analysis of Study #1, this pathway was 

only found when Lupinus sp. was used as a cover crop. It is possible that some other cover 

crop species simply do not act via this mechanism. On the other hand, in both studies, 

soybean, a member of the Fabaceae family with its own considerable capacity to access less 

available P pools by exudation of carboxylates, was used as main crop (Maltais-Landry 

2015). Although in our studies we did not measure carboxylate exudation, the observation 

of increased Presin in the rhizosheaths of soybean compared to the surrounding bulk soil 

points in this direction (Fig S6.5). 

In both of the pathways discussed above, the choice of cover crop plant plays a major 

role. However, these pathways do not take into account the important role of Porg to P-

cycling in terrestrial ecosystems (George et al. 2018) and the potential of access to legacy 

Porg by cover crops to improve plant nutrition. As microbes play a key role in the cycling of 
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Porg, one of the main objectives of this dissertation was to elucidate specifically how 

complex plant-soil-microbe interactions are affected by cover crops and whether the soil 

microbial enhancement pathway increases the availability of Porg.  

The positive effects of cover crops on the soil microbial community were highly 

significant, both in the studies consulted in the meta-analysis as well as in our own field 

experiments. Microbial abundance increased in cover cropped plots compared to bare 

fallow treatments (Figs 6.5. and 7.4), as did the activity of P-cycling enzymes (Figs 6.6 and 

7.6). Microbial community structure was also affected, and analysis of fatty acid biomarkers 

revealed that microbial groups benefitted from cover crops in the order saprotrophic fungi > 

gram-negative bacteria > gram-positive bacteria > AMF (Figs 6.5 and 7.5). Regarding the 

effects on microbial groups, we consider two aspects especially noteworthy, both related to 

the fungal kingdom: we observed large and lasting increases in the abundance of 

saprotrophic fungi, but surprisingly limited effects on AMF. 

The disproportional increase in abundances of soil fungi with cover crops resulted in 

increased fungal:bacterial ratios. As conventional agricultural ecosystems are usually 

bacteria-dominated, management techniques that favour fungi might improve 

agroecosystem functions (Frey et al. 1999), including C storage (Six et al. 2006) and nutrient 

mobilisation (Ceci et al. 2018). Cover cropping has also been shown by other studies to 

enhance fungal abundance (Benitez et al. 2016). Historically, the degradation of labile 

organic matter has been considered the work of bacteria, although more recent studies 

indicate that fungi also participate in the early phases of litter decomposition (Kramer et al. 

2012). Cover crop litter used as an organic amendment in a controlled pot experiment 

increased fungal abundance while reducing potential pathogens (Clocchiatti et al. 2020). In 

the aforementioned study, the effects of cover crop litter amendment were rather 

transient, especially favouring members of the phylum Mortierellomycota (the so-called 

sugar fungi), while in our own experiments lasting increases in fungal abundance were 

observed. Further studies are necessary to evaluate the effects of cover crops on the 

composition of fungal community composition and its functions. 

It is frequently claimed that cover cropping increases the abundance of AMF, providing a 

benefit for main crops that depend on this symbiosis for pathogen control (Turrini et al. 
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2016) or P acquisition (White and Weil 2010). Previous work also demonstrated that high P 

availability supresses the formation of mycorrhizae (Thomson et al. 1986). However, the 

results of our field experiments regarding the cover crop effect on mycorrhizal fungi are 

ambiguous. In Study #2, conducted in a soil low in available P and with a high initial AMF 

abundance, the effect of the presence of cover crops on AMF lipid abundance was 

inconclusive (data in Supplementary Material S6.1), despite the fact that the cover crops 

tested represent plant families with drastically different degrees of mycorrhization (phacelia 

are highly mycorrhizal, while buckwheat and mustard are non-mycorrhizal). The 

concentration of the storage lipid NLFA 16:1ω5 was lower in the rhizosheath than in the 

bulk soil, but there was no effect of cover crop species. In contrast, the PLFA 16:1ω5, a 

constituent of the cell membranes of mycorrhizal fungi, was greater in the rhizosheaths of 

cover crops compared to the surrounding bulk soil. The consistently observed differences in 

the abundance of cell membrane lipids and storage lipids can be interpreted as representing 

spatially distinct foraging strategies, with a more active and dense hyphal network in the 

rhizosheath, and an established hyphal network with a storage function in the bulk soil 

(Gavito and Olsson 2003). However, in this case we would again anticipate detectable 

differences among mycorrhizal and non-mycorrhizal cover crop species. Additionally 

hampering our interpretation is the fact that the PLFA 16:1ω5 is also present in some other 

microorganisms (Ngosong et al. 2012) and the two types of fatty acids have distinct 

turnover times; PLFAs are used by microbes as P source, while NLFAs degrade more slowly 

(Bååth 2003). In Study #3, conducted in a soil with a relatively high concentration of 

available phosphate due to earlier mineral fertilization, AMF abundance tended to be 

positively affected by cover cropping (Fig 7.5). There was no observed increase due to tillage 

reduction in the no-till treatments, although other studies report that tillage affects AMF 

abundance negatively (Kabir 2005). Based on fatty acid biomarkers, our results indicated, 

therefore, that the effect of a cover crop on AMF depended mainly on the initial abundance 

of these fungi and was apparently unaffected by P availability and tillage. 

Plants of phylogenetically distant families have been shown to differ in their associated 

rhizobiomes and their effects on the soil microbial community (Maul and Drinkwater 2010). 

These findings notwithstanding, results of the field experiment of Study #2 did not confirm 
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this, as the effects of different plant species were less pronounced than expected, especially 

for AMF (Fig 7.5). It could be that the field experiment was conducted in a soil with existing 

quite high microbial abundance and activity, or due to the presence of weeds. Nonetheless, 

it must be kept in mind that the effects of cover crop species and plant biomass produced 

are prone to be confounded, especially when using broad methods such as PLFAs. Cover 

crops that produce high biomass will have also greater effects on the abundances of various 

soil microbial groups, as root exudation depends on the overall photosynthetic activity of 

the plants. 

Observed increases in soil microbial biomass could constitute an important nutrient pool, 

as its turnover provides a supply of available P (Bünemann et al. 2012). Rhizodeposits 

provide microbes with a C source, while nutrient mobilisation carried out jointly by plant 

roots and microbes provides good conditions for microbial growth. There is a certain 

competition between plants and microbes for the mobilized nutrients and a significant 

share of the mobilised nutrients is immobilized in microbial biomass. For the remobilization 

of P from microbial biomass, an active and diverse soil food web is required (Bonkowski et 

al. 2009). The remobilisation of immobilized P becomes even more important when we 

consider the great quantities of complex P forms in the supra- and macromolecular 

structures (McLaren et al. 2015), as these fractions could be derived to a significant extent 

from microbial necromass. In our experiments, soil fauna was not studied directly, although 

some fatty acid biomarkers suggest increases in the abundance of soil eukaryotes with cover 

crops (data not shown). Cover crops are generally expected to improve habitat conditions 

for soil fauna (Kaspar and Singer 2015), though research on specific functions of soil (micro-) 

fauna deserve greater attention.  

 

8.2 How are soil microbial functions and the enzymatic availability of Porg 

pools under cover crops connected? 

Field experiments of Studies #2 and #3 investigated whether stimulation of the soil 

microbial community is accompanied by an increase in P-cycling potential. It also explored 

the relationship between Porg substrate pools and their respective enzymes  by connecting 

measurements of enzyme activity, enzyme-available Porg, and microbial abundance. 
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As outlined in the review section of Study #1, different enzymes, mostly produced by 

microbes but to some extent also by plant roots, convert soil Porg compounds into plant-

available phosphate. To do so, phosphomonoesters are hydrolysed by 

phosphomonoesterases, whereas for diesters an initial dephosphorylation by a diesterase is 

required. Phytases represent a specialized form of monoesterases that are additionally able 

to initiate the cleavage of high-order inositols (Keller et al. 2012), but to date we lack 

generally accepted methods to measure the activities of these enzymes in soils. 

We found cover crops to result in a substantial increase in potential activity of the 

measured phosphatases, with a larger increase in Study #3 than Study #2 (Figs 6.6 and 7.6). 

Acid phosphomonoesterase activity was in all cases the enzyme with the highest activity, 

doubling (Study #2) or even quintupling (Study #3) the activity of phosphodiesterase. The 

concentration of available substrate is assumed to be one of the main factors that control 

the production and release of phosphatases (Quiquampoix and Mousain 2005). 

Our analyses revealed that the two sites contrasted in the composition of their P pools. 

The field in which Study #2 was conducted was dominated by inorganic P, while Porg was 

prevalent in the soil of Study #3 and the quantity of enzyme labile Porg was double that of 

Study #2 (Figs 6.3 and 7.2). Nevertheless, despite differences in P status of the two sites, 

added phytase was responsible for the largest release of phosphate, larger than the sum of 

phosphomonoesterase and phosphodiesterase. This is in line with the large proportion of 

recalcitrant phytate-P in soils compared to non-phytate monoesters and diesters (McLaren 

et al. 2020). Together, phosphomonoesters and especially phytates interact with particles 

and metal cations of the soil matrix (Giles et al. 2011), accumulating as a result of limited 

availability for enzymatic degradation. Phosphodiesters, mainly contained in nucleic acids 

and phospholipids, comprise the largest proportion of Porg in microbial biomass (Bünemann 

et al. 2008). However, although their mineralization is limited by the availability and 

ubiquity of diesterases (Lang et al. 2017; Jarosch et al. 2019), their inherent lability prevents 

accumulation in the soil. 

An increase in enzyme-labile Porg pools was determined in the rhizosheaths of cover 

crops in Study #2 (Fig 6.3), and in 0-5 cm bulk soil in Study #3 (Fig. 7.2). These findings were 

supported by data on other relatively available P pools, such as microbial biomass P and 
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total PLFAs in both field experiments (Figs 6.4 and 7.4) and in the meta-analysis (Fig. 5.6). 

Interestingly, the increases in enzyme-labile Porg changes were driven by 

phosphomonoesterase- and phosphodiesterase-labile fractions in Study #2 and by phytase-

labile fractions in Study #3. These findings could indicate that soil P characteristics lead to 

shifts in enzymatic availability under cover crops. However, more studies are necessary to 

identify the underlying processes. While the characterization of Porg pools according to their 

lability under added enzymes is a necessary step in understanding of soil Porg dynamics, 

open questions remain. For example, an increase in pool size could be due to several 

processes. Different mechanisms drive increased pool size; both increased production, and 

decreased degradation due to lower abundances of degraders or their activity 

(Guggenberger et al. 1996). Additionally, biochemical and physical processes may change 

the sorption dynamics of the soil and therefore the availability of specific Porg compounds. 

Soil properties also influence the relationship between substrates and enzymes, as 

enzyme kinetics suggest that phosphodiesterases have a slightly higher substrate affinity 

than phosphomonoesterases (Acosta-Martínez and Tabatabai 2011), but the catalytic 

efficiency of phosphatases seems to be quite sensitive to external factors (Perucci and 

Scarponi 1985). Other factors, such as stabilisation and turnover times of P-cycling enzymes, 

as well as complexation of substrates, may be important for enzymatic turnover in-situ (Rao 

et al. 2000). While sorption, stabilization and inactivation on soil particles is described for 

phosphomonoesterase (Kandeler 1990) and for phytases (Giaveno et al. 2010), the 

consequences of these processes have been less well studied for phosphodiesterases. 

Connecting the potential activities of acid phosphomonoesterase and phosphodiesterase 

with their respective substrates does not alone give a clear picture. In Study #3 the 

correlations between enzymes and their respective Porg substrates were consistently 

positive (i.e., higher enzyme production as a response to substrate availability, Fig. 7.7). In 

contrast, in Study #2 the enzyme-substrate-relation was more complex and was apparently 

influenced by the treatments and by soil depth (Fig. 6.8). These findings underscore the 

need for  more investigation into whether these differences were caused by soil properties 

or by other factors, such as agricultural management. 
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8.3 Agricultural management and plant-soil-microbe interactions 

Management decisions greatly impact the effects of agricultural practices on plant-soil-

microbe interactions. In the case of cover crops, one important factor is the choice of cover 

crop species, as outlined in Study #1, but secondary management decisions such as 

fertilization, tillage, termination method (mechanical or chemical, e.g., with glyphosate), or 

irrigation (Romdhane et al. 2019; Kim et al. 2020b; Ortega et al. 2021) are also important. 

Our findings show that agricultural management as well as crop species choice can be used 

to optimize the cover crop-derived P benefit. To determine the implications for soil ecology, 

a convenient perspective is to identify how these management decisions affect the quantity, 

quality, and placement of substrates, along with other physicochemical modifications of the 

soil that affect the soil biota. These factors all impact soil ecology more broadly. 

The plant biomass pathway, more important in settings with a high biomass-producing 

cover crop and in soils with low to moderate sorption capacity, is likely the pathway that is 

most directly affected by agricultural management. To improve the efficiency of this 

pathway, decomposition dynamics of cover crop litter and timing of the most important P 

uptake phases of the main crops need to be synchronized (Bünemann et al. 2004). The 

greatest potential for optimizing decomposition dynamics resides in both the choice of 

cover crop species, which controls litter C:N:P ratios, and management decisions such as 

termination method or residue management (i.e., tillage vs surface mulch layer), although 

soil chemistry and climate remain controlling factors. Study #1 revealed that cover crops 

with high C:P ratios, such as Poacea, frequently failed to increase yields or P content of the 

main crop (Fig. 5.4). Cover crop mixtures have potential, but single-species cover crops can 

also produce impressive amounts of biomass, as seen in the case of mustard, presented in 

Study #2 (Fig 6.2). 

The large number of potential cover crop species and crop rotations represents a 

challenge for the assessment of cover crop-related effects. An especially promising 

approach to deal with the plethora of possible combinations of cover crop mixtures and 

main crops is the use of plant functional traits to characterise plant species (Honvault et al. 

2020, 2021). In an exhaustive study conducted by Wendling et al. (2016), cover crop species 

were grouped according to nutrient uptake rates and plant properties. Shoot and root traits 



General discussion

 

 154 

rather than taxonomy were identified as the main drivers of this clustering. However, 

biochemical and microbial root P-acquisition strategies were not assessed, which might well 

be relevant in systems with limited P availability. 

Detectable cover crop effects on biological and chemical properties of the soil occurred 

mainly in the compartments directly in contact with the plants, namely around plant roots 

in the rhizosheaths (Study #2), and at the soil surface, the detritusphere (Study #3). In the 

bulk soil surrounding the rhizosheaths and in the deeper soil layers, cover crop effects were 

much lower. The observed effects on soil microbes due to differences in soil compartments 

highlight the need to estimate and take into account the extensions of the rhizosheaths. It 

appears that cover crops mainly affect the hotspots where soil microbial abundance and 

activity is already at a high level. Given this, the effects of soil heterogeneity at different 

scales must be determined in order to improve our ability to predict soil ecological 

processes at the field scale (Regan et al. 2014). 

Tillage and residue placement effects on nutrient release can be important, but seem not 

to be straightforward. Incorporation of residues may increase C mineralization rates, with 

water availability possibly one of the main limiting factors for microbial decomposition of 

surface-placed litter (McCourty et al. 2018), but this is probably of minor importance in a 

central European winter. Cover crops increased soybean residue decomposition in a no-till 

system in Brazil by 6-8 %, controlled by microbial biomass and activity, as well as soil 

moisture, but did not affect P release (Varela et al. 2014). These findings indicate that 

different drivers are responsible for C and P mineralization. The study also questioned the 

generality of a critical threshold for P immobilization, as P release occurred despite a 

relatively high C:P, which could be related to differences in climate and soil. To date, there is 

not enough data to draw solid conclusions about potential tillage effects on P release of 

plant residues (Damon et al. 2014). 
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9 Conclusions and Perspectives 

The findings presented here have broad implications for our understanding of soil Porg 

cycling with cover crops and beyond. We demonstrated that plants can shift P toward pools 

of increased availability in active soil compartments and confirmed the important role of 

microbes in these processes. From a basic research perspective, the characterisation  of Porg 

according to its availability to enzymes adds knowledge to our understanding of terrestrial P 

cycling. From an applied perspective, our results can be translated into relevant messages 

for farmers. Besides the potential to manage nutrients with cover crops, the conceptual 

framework of cover crop-derived P benefit offers an opportunity to consider both pre-crop 

effects and the rotational value of plant species as elements of a crop rotation (Marques et 

al. 2020). Additionally, this concept can be taken into account when building similar 

frameworks for other plant nutrients, such as silicon (de Tombeur et al. 2021). 

Given the scarcity of P, some have expressed the need to transition toward a circular P 

economy (Withers et al. 2018). Cover crops have the potential to convert the legacy P of 

past fertilizer applications into a usable resource (Menezes-Blackburn et al. 2018). To 

actually close the cycle of our limited P resources, it will be increasingly necessary to use 

recovered P from waste streams, which will be utilized frequently in organic forms. 

Therefore, understanding how plants access organic P forms is of vital interest for future 

plant production systems (Stutter et al. 2012). Integration of crop P acquisition strategies 

and root traits (Honvault et al. 2020), matching organic fertilisers (Nobile et al. 2019), 

mineralisation dynamics (Damon et al. 2014), effects on soil P sorption (Iyamuremye et al. 

1996), and spatial distribution of released P (Christel et al. 2016), together have great 

potential for more strategic nutrient management (Drinkwater and Snapp 2007). 

Besides its application in agricultural settings, the framework presented here can possibly 

be adapted to plant succession in natural ecosystems. While agroecosystems are clearly 

different from natural ecosystems, in particular regarding their reduced microbial diversity 

and complete succession in annual cropping systems, the described pathways of P benefit 

could still be important, also regarding the success of invasive exotic species (Chang and 

Turner 2019). The effect of a preceeding plant on P availability would likely be more 

important for P recycling ecosystems in soils with low  mineral P content (Lang et al. 2017). 



Conclusions and Perspectives

 

 156 

From a methodological point of view, characterisation of the Porg pools according to their 

availability for enzymes, as performed in this thesis, could be extended to other elements 

that exist in a significant share as organic forms, such as C and N. The recent developments 

of methods to study soil Porg (e.g., 31P NMR) permit greater insights into the chemical nature 

of these pools (McLaren et al. 2020). However, it has become increasingly evident that, in 

order to decipher the biogeochemical cycling of P in soils, we need to improve our 

understanding of microbial ecology, in particular related to the accessibility of Porg. My own 

perspective is that this somehow mirrors current discussions in the field of humics research; 

that soil organic matter is a heterogeneous continuum of components in decomposition 

rather than an assemblage of macromolecules (Baveye and Wander 2019). At the same 

time, it highlights the potential for characterising soil nutrient pools according to their 

availability to enzymes, intrinsically connected to degradability. It is plausible that, 

analogous to SOM, a significant amount of unidentified Porg in soils is associated with 

microbial necromass, which would explain the association of microbial biomass and 

turnover with Porg. 

Many opportunities remain to conduct research on microbial functions and their roles in 

the regulation of ecological processes. A more comprehensive strategy for understanding 

biological functions needs to include improvement of our analytical methods (Alteio et al. 

2021). This is especially evident for soil fungi, as the current molecular tools are heavily 

skewed towards bacteria, to the detriment of soil fungi. The role of soil biodiversity for the 

provision of ecosystem functions is increasingly acknowledged (Crotty et al. 2022), and 

management techniques such as cover crops are proposed for optimizing these functions 

(Vazquez et al. 2021). A study by Kim et al. (2020a) suggests that cover crops increase the 

abundance and activity of microbes more than the diversity of the soil microbial community, 

but further research is necessary. The development of novel omics approaches will improve 

our capacity to assess the functions of the soil microbiome (Bertola et al. 2021), 

contributions of the different microbial groups, and, hopefully, opportunities for 

(agricultural) management to optimize the provided functions. The structural inclusion of 

biological parameters into soil quality assessments has great potential both to improve our 
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knowledge of the underlying biological processes, and to increase our ability to predict the 

outcome of management changes (Bünemann et al. 2018). 

The inclusion of cover crops into the crop rotation is an important step in the route to 

more sustainable agriculture, as this inclusion might constitute an entry point for farmers to 

build their farming activity on the services provided by a healthy agroecosystem rather than 

by omitting (or even working against) these functions. As stated by José Graziano da Silva, 

Director General of the United Nations Food and Agriculture Organization (FAO) at the 

opening of the 2nd Agroecology Symposium 2018 in Rome, Italy, there is urgency “to get 

out of the trap of conventional, high-resource input systems with increasing productivity at 

any social and ecological costs, still not leading out of hunger for over 800 million people” 

(Flury 2018). Deeper and more fundamental structural changes are needed, including 

extension of the concept of agroecology from field management to factors such as land 

tenure and control over research and technologies (Wezel et al. 2020). 

Although agricultural production systems that rely on nature-based soil improving 

cropping systems and the ecosystem services they provide constitute probably a more 

sustainable and resilient option than reliance on technological inputs (e.g., agrochemicals, 

robots, …), there are two main obstacles that need to be addressed.  

First, the dependence on favourable climatic conditions for yield stability poses a looming 

threat for future food security (Knapp and van der Heijden 2018). It must  be acknowledged 

that, although cover crops represent a measure of adaption to some aspects of climate 

change, e.g., by increasing infiltration or reducing erosion caused by heavy rainfalls, cover 

cropping systems tailored to specific socio-environmental local conditions are still to be 

developed (Kaye and Quemada 2017). 

The second obstacle to greater cover crop adoption is related to the direct economic 

returns by switching to more sustainable agricultural practices (Bergtold et al. 2019). In this 

set of studies, we found clear indications that the shifting of soil Porg toward pools of greater 

availability constitutes an important mechanism of cover crop effects on nutrient cycling. 

But to what degree does this improved access to P benefit the following main crop? While 

the meta-analysis showed a positive trend, albeit with considerable variability, our own field 

experiments did not show an improvement in soybean P nutrition. This shows yet again the 
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complexity of on-farm experiments, since in Study #3, conducted on a more conventionally 

managed field, the cover crop-related shifts in soil biological properties persisted over time, 

while in Study #2 these effects were more transient. Site conditions, climate, and 

agricultural management are important factors that influence the outcome of cover 

cropping  (García-González et al. 2018). Notwistanding these factors, cover crop 

management is key for successful conservation agriculture (Mirsky et al. 2012), but the lack 

of this type of management experience results in higher risks and the potential to make 

mistakes with these knowledge-intensive systems (Zikeli and Gruber 2017). In practice, 

farmers who experiment with no-till techniques are increasingly adopting a modified 

approach coined as occasional tillage (Peixoto et al. 2020). This approach consists of very 

shallow non-inversion tillage (chisel plow) as an emergency measure in certain situations, 

e.g., when the cover crop emergence fails and/or high weed pressure appears. In 

combination with occasional tillage, the weed-suppressing abilities of cover crops offer the 

potential to reduce herbicide use substantially (Zikeli and Gruber 2017), which is currently a 

major demand of the public. 

To overcome these barriers to adoption of soil improving cropping systems, 

transdisciplinary, large-scale experiments, in full cooperation with practitioners, are 

required to develop working examples of best practices (Junge et al. 2020). External benefits 

for society, such as soil, water, and biodiversity protection, as well as increased C 

sequestration, which are currently not reflected in the market value of the crops, also need 

to be taken into account (Dendoncker et al. 2018). Inclusion of cover crops is also based on 

different rationales  for different cropping systems, and will result in varying benefits. For 

example, a cover crop mulch layer for vegetable production can result in similar economic 

returns as a conventional system and provide additional, non-monetary benefits (Creamer 

et al. 1996). 

Soil erosion is currently, and will continue to be in the near future, the greatest threat to 

agriculture, since it is responsible for impressive nutrient losses (Borrelli et al. 2020). One of 

the principal benefits of broad adoption of cover cropping may well be related to erosion 

reduction (Alewell et al. 2020). Cover crops can tackle multiple problems while 

simultaneously providing as side effects  positive outcomes on soil biological processes and 
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Porg cycling. This is fortunate, as some administrations are still rather unethusiastic 

concerning the consideration of other P forms than phosphate in their national frameworks 

for fertilizer recommendations (Tóth et al. 2014). 

In conclusion, our findings suggest that cover crops can increase access to P for main 

crops via different pathways. Our field experiments confirmed the potential cycling of P 

through the cover crop biomass and we were able to relate observed increases in the 

availability of Porg to microbial abundance and activity, with soil fungi playing an important 

role. The selection of cover crop species and management decisions can be optimized and 

adapted to local conditions. All in all, this new knowledge about soil phosphorus cycling in 

agroecosystems will help us to improve management of the limited P resource for a more 

sustainable agriculture. 
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