
Sar: Automatic Generation of Statistical Reports

Using Stata and Microsoft Word for Windows

Giovanni Luca Lo Magno

lomagno.gl@virgilio.it

Department of Economics, Business and Finance

University of Palermo

Currently under review by the Stata Journal

The workflow of data analysis

Cleaning data

Running analysis

Presenting results

Protecting files

Long, J. S. (2009), The Workflow of Data Analysis

A general scheme of automatic reporting

�
Automatic

report

Automation

commands

output

�Computational

engine

Automation

management
data

output

Formatting results: user-written Stata commands and other existing approaches

� listtex by Newson (2003)

� textab by Hardin (1995)

� estout by Jahn (2005)

� estab by Jann (2007)

� outreg by Gallup (1998)

� Automatic generation of documents,

discussed in Gini e Pasquini (2006)

General limits:

� Tex/Latex oriented

� Not easy to learn

� Not "what you see is what you get

approach" (WYSIWYG)

� Not complete solutions

What Stata automatic report (Sar) is

Sar is a software which allows you to

automatically obtain numerical results

from Stata in Word, making the

formatting of statistical results easier

Sar is not a Stata command, but a

macro for Microsoft Word written

in the Visual Basic for

Applications (VBA) programming

language

Current version of Sar is 1.0

How Sar works

Sar

Stata Automation

Sar
Stata commands

data

Stata Automation is a communication mechanism

between Stata and Microsoft Windows applications

(read www.stata.com/automation for details)

A quick look to Sar at work

Before executing Sar

- Temporary text placeholder

- Only comments with initials "sar" are processed by sar

After executing Sar

Data retrieved from Stata

- Only comments with initials "sar" are processed by sar

- The @print command replaces the temporary text placeholder with data retrieved from Stata

note: all Sar commands begin with @

How to correctly write quotation marks and apostrophes in Sar comments

Wrong!

Correct!

Hint: press Control+Z after you typed the wrong quotation mark or apostrophe in Word

What you need to use Sar

���� Software requirements

� Microsoft Word for Windows (Stata Automation only runs

on Windows)

� Stata (of course!)

� Manual settings

� You have to install the Stata Automation object

� You have to copy the Sar macro ("Stata automatic report

1.0.dotm") in the Word startup folder

� Optionally, you can customize the Word quick access toolbar

creating a button to easily execute the Sar macro

� You have to set user’s initials of Word comments to "sar"

Installing the Stata Automation object on a Windows Vista machine

1. Right-click on the Stata executable (on my machine the

executable file is westata.exe and it is located in the

C:\Stata10\ folder)

2. Choose "Create shortcut" (I suggest you to rename the

shortcut to "stata automation")

3. Right-click on the just created shortcut, choose "Property"

and change Target from "C:\Stata10\westata.exe" toand change Target from "C:\Stata10\westata.exe" to

"C:\Stata10\westata.exe /Register" (please check the

correcteness of your Stata path and its executable)

4. Right-click on the shortcut and choose "Run as

administrator"

(read www.stata.com/automation for more details and informations about

how to install the Stata Automation object on a Windows non-Vista machine)

Copying the Sar macro in the Word startup folder

In Microsoft Word:

File � Options � Advanced � File Locations…

Click on the "File Locations…" button to find out where the Word startup folder is and

copy the "Stata automatic report 1.0.dotm" macro file in it

Customize the Word quick access toolbar (Step 1 of 4)

Right click on the Sar macro file and choose Open,

then in Microsoft Word:

Customize Quick Access Toolbar � More Commands…

Customize the Word quick access toolbar (Step 2 of 4)

In Microsoft Word, after Step 1:

Choose "Macros" from the "Choose commands from" list � Select the Stata

automatic report macro � Click on the "Add" button

Customize the Word quick access toolbar (Step 3 of 4)

In Microsoft Word, after Step 2:

Select the Sar macro from the right list � Click on the "Modify…" button to chooce an

icon for the button which will be added to the quick access toolbar

Customize the Word quick access toolbar (Step 4 of 4)

In Microsoft Word, after Step 3:

Choose your favorite icon and change the display name to "Stata automatic report 1.0"

This is your Sar button on the quick

access toolbar. You can launch the Sar

macro by clicking on it

Setting user’s initials of Word comments to "sar"

In Microsoft Word:

Word Options � General � Set user’s initials to "sar"

Using the @print and the @format commands

Syntax

@print@print@print@print StataData
@format@format@format@format %StataNumericalFormat

Note: no leading spaces are added to the numerical output even

if they are expected according to the Stata formatting rules

Using the @filltable and @matrixrownames commands

Syntax

@filltable@filltable@filltable@filltable StataData startingRow startingCol [rowStep colStep]
@matrixrownames @matrixrownames @matrixrownames @matrixrownames StataMatrix startingRow startingCol [rowStep]

Using optional arguments of @filltable and @matrixrownames

Syntax

@filltable@filltable@filltable@filltable StataData startingRow startingCol [rowStep colStep]
@matrixrownames @matrixrownames @matrixrownames @matrixrownames StataMatrix startingRow startingCol [rowStep]

@beginstring @beginstring @beginstring @beginstring #string#
@endstring @endstring @endstring @endstring #string#

Sar programs

Roughly speaking, a Sar program is a list of Sar and Stata commands:

Syntax

@program @program @program @program myprog [arg1 arg2 … argN]
[…]
[my Sar and Stata commands]
[…]
@end@end@end@end

It can be defined:

� in a Word comment

� in a plain text file (called library in the Sar jargon)

It can be executed using the @do command:

Syntax

@do @do @do @do myprog [arg1 arg2 … argN]

Sar programs with arguments: an example

Program definition

@program outmatrix matrix

@matrixrownames §matrix§ 2 1

@matrixcolnames §matrix§ 1 2

@format %4.3f

@filltable §matrix§ 2 2

@end

Example of usage

program name

callbacks

argument

Example of usage

correlate price weight length
@do outmatrix r(C)

The compiled program

@program outmatrix r(C)

@matrixrownames r(C) 2 1

@matrixcolnames r(C) 1 2

@format %4.3f

@filltable r(C) 2 2

@end

Using a Sar program by defining it in a Word comment

You can use the just defined outmatrix program how

many times you want in your Word document

Using a Sar program by loading it from a library

Plain text file: c:\sar libraries\mylibrary.txt

Syntax

@loadlibrary @loadlibrary @loadlibrary @loadlibrary "pathOfTheLibraryFile"

@program outmatrix matrix
@matrixrownames §matrix§ 2 1
@matrixcolnames §matrix§ 1 2
@format %4.3f
@filltable §matrix§ 2 2
@end@end

A bit more complex program: the definition of the regressoutregressoutregressoutregressout program

@program regressout
matrix beta = e(b)'
mata: V = st_matrix("e(V)")
mata: V = st_matrix("sd", sqrt(diagonal(V)))

Plain text file: c:\sar libraries\mylibrary.txt

Syntax

@resetstring@resetstring@resetstring@resetstring

(no arguments are required)

Note:

When arguments of the

@filltable command are -1,

-2, etc… they indicate the

last row/column, the mata: V = st_matrix("sd", sqrt(diagonal(V)))
@format %10.1f
@filltable beta 2 2 1 0
@matrixrownames beta 2 1 1
@beginstring #(#
@endstring #)#
@filltable sd 3 2 1 0
@resetstring
@format %3.0f
@filltable e(N) -2 2
@format %4.3f
@filltable e(r2) -1 2
@end

Second last row

Last row

last row/column, the

second last row/column

and so on.

A bit more complex program: the regressoutregressoutregressoutregressout program in action

Note: Sar is not verbose!

blah,

blah, blah

Using Sar in interactive mode (Step 1 of 3)

Syntax

@interact@interact@interact@interact

(no arguments are required)

The execution of Sar will halt here, allowing the user to interact with Stata

Example: our goal is to create the well-known (X‘X)-1 matrix

The execution of Sar will halt here, allowing the user to interact with Stata

This matrix will be created

by the user in Stata

Using Sar in interactive mode (Step 2 of 3)

**
* *
* Stata session called from Sar *
* Warning: don't close this Stata window from here, it will cause the crash of Sar *
* Close this Stata window from the dialog window appeared in Word *
* *
**
sysuse auto
(1978 Automobile Data)
. * suppose you don't remember how to use the mkmat command
. help mkmat
. mkmat mpg weight, matrix(X). mkmat mpg weight, matrix(X)
. count

74
. matrix one = J(74, 1, 1)
. matrix X = X, one
. matrix mymatrix = invsym(X' * X)

This is our final matrix

This Stata window has to be closed from Word (see Step 3)

Commands typed

by the user in Stata

Using Sar in interactive mode (Step 3 of 3)

Don’t forget to click here

after interacting with Stata!

This dialog window will be opened in

Word after the execution of @interact

This is the final output:

Probably you will delete this Sar comment (it’s useless)

Calling do files from Sar

sysuse auto

summarize price

global mean: display %5.1f r(mean)

global nObs: display %2.0f r(N)

count if foreign==1

global nObsForeign: display %2.0f r(N)

Do file: c:\mydofile.do

Conclusions: approaches using Sar

�
do file

Creating automatic

reports

Using Sar in

interactive mode

Calling do files

from Sar

�
� There is no need to

edit your report if

data have changed

� The report is well

documented

You can obtain data

from Stata on the fly

� You can test your

do file in Stata

� You can store your

statistical analysis

in a do file

Conclusions: advantages of using Sar

� Automatic reports: documents which can auto-update

themselves if data have changed

� Self-explaining data analysis

� WYSIWYG approach exploiting all the functions of Word

� Ease of learning� Ease of learning

� Only 15 keywords

� Sar documents are not verbose

� Extensibility through Sar programs

Conclusions: some limits of Sar

� Sar only works in Windows

� Lack of "undo" function to erase all changes made by Sar on the

document

� The following Stata commands can not be used: program define,

while, forvalues, foreach and input (but they can be used in do

files)

� The command can not be used inside a Word table� The @print command can not be used inside a Word table

� Setting of global and local macros has no effect in Sar

� Word comments with Sar commands can not refer to the same portion

of a text

� You have to avoid to use the macro names "stataAutomaticReportValue"

and "stataAutomaticReportMatrix", because they are internally used by

Sar

Thank you for your attention

Appendix A – Automatic classwork

The problem

Students like copying from their schoolmates during statistics classwork

The solution

An automatic document created with Sar where numerical values of the exercises are

randomly sampled from a dataset. A code-seed is uniquely assigned to each student.

The teacher can use the code-seed to quickly reproduce the sampled dataset and

mark the schoolwork.

Appendix A – Automatic classwork

You should manually change

the seed in the comment and inthe seed in the comment and in

the document, launch Sar and

print the document: that’s very

boring if you have many

students. It’s better to use the

mail-merge functions by Word.

Appendix A – Automatic classwork

What is mail-merge?

It is a software function which allows you to create multiple documents from a template

How you can access the mail-merge functions of Word:

Appendix A – Automatic classwork

Step 1: Select the «letters» document type

Appendix A – Automatic classwork

Step 2: Create a new database

Appendix A – Automatic classwork

Step 3: Fill the database with your students’ names and a univocal ID

Click here to add the «ID» column

Appendix A – Automatic classwork

Step 4: Create the template

Don’t worry about this

incomplete command

(seed number is missing)

Don’t forget to use

the «clear» option

Appendix A – Automatic classwork

Step 5: Insert merge fields

Appendix A – Automatic classwork

Step 6: Preview results

Appendix A – Automatic classwork

Step 7: Add a page break at the end of the document

Appendix A – Automatic classwork

Step 8: Merge to a new document

Appendix A – Automatic classwork

Problem: an artifact is generated by Word in the «mail-merge» document

This artifact is automatically generated by Word in

each comment of the new «mail-merge» document.

It will generate an error if Sar tries to execute it.

Appendix A – Automatic classwork

Step 9: Correct the generated by Word artifact in the «mail-merge» document

Notes:

� The string you have to replace is «Page: 1 ^l», where «^l» is a special character for

«manual line break»

� Leave the «replace with» field void

Appendix A – Automatic classwork

Step 10: Launch Sar from the «mail-merge» document

and print the schoolwork for your students

Every student has got

a different schoolwork

Appendix A – Automatic classwork

Step 11: Create a Sar command (in a library) to mark the schoolwork

@program checkcompute seed
sysuse auto, clear
set seed §seed§
sample 7, count
encode make, generate(makeNumeric)
mkmat makeNumeric, matrix(make) rownames(make)
mkmat price, matrix(price)
mkmat weight, matrix(weight)
generate xy = price * weight
mkmat xy, matrix(xy)

Plain text file: c:\sar libraries\checkcompute.txt

mkmat xy, matrix(xy)
generate xQuad = price ^ 2
mkmat xQuad, matrix(xQuad)
generate yQuad = weight ^ 2
mkmat yQuad, matrix(yQuad)
summarize price
scalar sumPrice = r(sum)
summarize weight
scalar sumWeight = r(sum)
summarize xy
scalar sumXy = r(sum)
summarize xQuad
scalar sumXQuad = r(sum)
summarize yQuad
scalar sumYQuad = r(sum)
correlate price weight
scalar correlation = r(rho)
@end

Appendix A – Automatic classwork

Step 12: Create a checker template which is linked to the students’ database

Appendix A – Automatic classwork

Step 13: Select the student’s ID and launch Sar

Appendix A – Automatic classwork

Conclusions about automatic schoolwork:

� You can discourage students from copying during classwork

� By using «mailings» functions of Word, you can send by e-

mail to your students:

• automatic homework

• automatic solutions with calculations and formulas

� You can manage exercises in the classroom encouraging

students to work on their own

Appendix B – Highlighting subgroups with few observations

The problem

If the number of observations on which an estimate is based falls below a

minimum criterion, a warning should accompany the estimate

X Y

A 1.3

B 4.5*

The solution

An automatic document created with Sar where an asterisk is added to the

reported estimates which are based on a low number of observations

B 4.5*

C 3.2*

* The value is statistically unreliable

given the small sample size

Appendix B – Highlighting subgroups with few observations

Example:

A report with mean wage by industry

from the nlsw88.dta dataset. We want

to highlight estimates wich are based

on less then 30 observations

. sysuse nlsw88
(NLSW, 1988 extract)

. mean wage, over(industry)
(output suppressed)

. matrix N = e(_N)‘

. matrix list N

N[12,1]
r1

wage:_subpop_1 17
wage:Mining 4

wage:Construction 29
wage:Manufacturing 367

wage:_subpop_5 90
wage:_subpop_6 333
wage:_subpop_7 192
wage:_subpop_8 86
wage:_subpop_9 97
wage:_subpop_10 17
wage:_subpop_11 824
wage:_subpop_12 176

<30
<30
<30

<30

This matrix contains the number of

observations used in estimating

mean wages by industry

Appendix B – Highlighting subgroups with few observations

Step 1: create the genlownumbermatrix program and put it in a valid ADO path

(See the next slide to know how the genlownumbermatrix program works)

program genlownumbermatrix
syntax namelist(min=2 max=2)
local inputMatrix: word 1 of `namelist'
local outputMatrix: word 2 of `namelist'
confirm matrix `inputMatrix'
local nRowsOfInputMatrix = rowsof(`inputMatrix')
matrix `outputMatrix' = J(`nRowsOfInputMatrix', 1, .)
forvalues i = 1/`nRowsOfInputMatrix' {

if `inputMatrix'[`i', 1] < 30 {
local rowNames `"`rowNames' "*" "'

}
else {

// Void row name
local rowNames `"`rowNames' " " "'

}
}
matrix rownames `outputMatrix' = `rowNames'

end

Appendix B – Highlighting subgroups with few observations

How the genlownumbermatrixgenlownumbermatrixgenlownumbermatrixgenlownumbermatrix works

Syntax

genlownumbermatrixgenlownumbermatrixgenlownumbermatrixgenlownumbermatrix inputMatrix outputMatrix

Description

The genlownumbermatrix program creates an output matrix in which the matrix row

names are asterisks if the corresponding row value in the input matrix is less than 30

. matrix N = (12 \ 32 \ 8)

. genlownumbermatrix N lowN

. matrix list lowN

lowN[3,1]
c1

* .
.

* .

Example

asterisk
void

asterisk

Appendix B – Highlighting subgroups with few observations

Step 2: create a Sar automatic report which calls the genlownumbermatrix program

Appendix B – Highlighting subgroups with low number few observations

Conclusions about highlighting subgroups with low number of observations:

� Warning about statistics which are based on a small sample is a good practice

� Sar can be used to automate numbers and text as well (asterisks for example)

� You can improve the genlownumbermatrix program by:

• adding an argument which represents the threshold (a fixed threshold of

30 was used in the example)

• adding an argument which represents an alternative symbol to asterisk

Appendix C – Error management

!

Sar notifies you when an error occurred

Sar

!

Appendix C – Error management

The command in the

third paragraph of

comment 2 is wrong

(«@printtt» was typed

instead of «@print»)

Appendix C – Error management

Sar halts the execution of the commands where the error occurres:

you can open the Stata window to debug your Sar session

. count
0

* Sar internally uses the previous command "count" to synchronize with Stata.
* Don't worry about it.
sysuse autosysuse auto
(1978 Automobile Data)
summarize price

Variable | Obs Mean Std. Dev. Min Max
-------------+--

price | 74 6165.257 2949.496 3291 15906
confirm numeric format %5.1f
@printtt r(mean)
unrecognized command: @ invalid command name

Appendix C – Error management

Tip: use @viewlog and @interact to debug

� @viewlog@viewlog@viewlog@viewlog

When used (it does not matter in which Sar comment) it

leaves the Stata window open after Sar is executed, so you

can see the log of your session

� @interact@interact@interact@interact

It halts Sar execution and makes Stata at your disposal

Appendix D – Syntax and description of the Sar commands

@beginstring@beginstring@beginstring@beginstring

Syntax
@beginstring #string#

Description

The @beginstring command sets the string of characters you want to put before the numerical outputs of the

@filltable command.

The string must be specified between two sharps (#).

See also the @endstring command.

@@@@cleartablecleartablecleartablecleartable

SyntaxSyntax
@cleartable

Description

The @cleartable command clears the table associated with the comment where the command is written. It can

only be used within Word comments associated with a single table.

The command has no arguments.

@do@do@do@do

Syntax
@do SarProgram

Description

The @do command executes a program previously loaded by the @loadlibrary command or defined in a Word

comment through the @program/@end paradigm.

The SarProgram argument specifies the program which has to be executed.

Appendix D – Syntax and description of the Sar commands

@@@@endstringendstringendstringendstring

Syntax
@endstring #string#

Description

The @endstring command sets the string of characters you want to place after the numerical outputs of the

@filltable command.

The string must be specified between two sharps (#).

See also the @beginstring command syntax and description.

@filltable@filltable@filltable@filltable

SyntaxSyntax
@filltable StataData startingRow startingCol [rowStep colStep]

Description

The @filltable command inserts values from matrices in a table, Stata results, scalars and macros given by the

StataData argument in a Word table. It can be used only in Word comments associated with a single table.

StataData is the data retrieved from the Stata environment used by the command to fill the table. It can be a

matrix, a Stata result, a scalar or a macro.

startingRow and startingCol indicate, respectively, the row and the column of the table cell from which StataData

begins to be printed. They have to be nonzero integers. If these values are negative, -1 means last row/column, -2

means second-last row/second-last column and so on.

rowStep and colStep indicate, respectively, how many rows (columns) have to be skipped, between a row (column)

and the next row (column), filling the table. When rowStep/colStep equals 0, no blank row/column is left between

printed rows/columns. When rowStep/colStep equals 1, a blank row/column is left between printed rows/columns.

Generally, if rowStep/colStep equals n, then n blank rows/columns are left between printed rows/columns. These

arguments are optional and they have to be non-negative integers.

Appendix D – Syntax and description of the Sar commands

@format@format@format@format

Syntax
@format %fmt

Description

The @format command sets the numerical format of the output obtained by @print and @filltable commands.

The set numerical format is preserved for the following @print and @filltable commands.

The %fmt argument has to be a numerical format written using the same rules used in the Stata format command

(See help format in Stata).

@interact@interact@interact@interact

SyntaxSyntax
@interact

Description

The @interact command haltes the execution of Sar to make Stata at your disposal. So you can use Stata, interact

with it and create data objects (like scalars or matrices) that will be available in the Sar environment after your

Stata session has been closed. Remember to not manually close the Stata window: this will cause the crash of Sar.

You have to return to Word, where you will find a dialog window with a button to close Stata.

The command has no arguments.

@loadlibrary@loadlibrary@loadlibrary@loadlibrary

Syntax
@loadlibrary "pathOfTheLibraryFile"

Description

The @loadlibrary command loads programs defined in a Sar library file.

The path of the Sar library file has to be specified in the pathOfTheLibraryFile argument.

Appendix D – Syntax and description of the Sar commands

@matrixcolnames @matrixcolnames @matrixcolnames @matrixcolnames and @matrixrownames@matrixrownames@matrixrownames@matrixrownames

Syntax
@matrixcolnames StataMatrix stratingRow startingCol [colStep]
@matrixrownames StataMatrix startingRow startingCol [rowStep]

Description

The @matrixcolnames and @matrixrownames commands fill a Word table with, respectively, row-names and

column-names of a Stata matrix. They can be used only in Word comments associated with a single table.

StataData is the matrix retrieved from the Stata environment whose matrix row-names are printed by

@matrixrownames and whose matrix column-names are printed by @matrixcolnames. This argument has to be a

matrix.

startingRow and startingCol indicate, respectively, the row and the column of the table cell from which the row-

names/column-names of StataMatrix begin to be printed. They have to be nonzero integers. If these values arenames/column-names of StataMatrix begin to be printed. They have to be nonzero integers. If these values are

negative, -1 will indicate the last row/column, -2 will indicate the second-last row/second-last column and so on.

colStep is an optional argument for @matrixcolnames. It indicates the column step according to the table is filled.

The default value is 0. It has to be a non-negative integer.

rowStep is an optional argument of @matrixrownames. It indicate the row step according to the table is filled. The

default value is 0. It has to be a non-negative integer.

@print@print@print@print

Syntax
@print StataValue

Description

The @print command, launched from a Word comment associated with a portion of text (a temporary text

placeholder in the Sar jargon), replaces its placeholder with the value of a Stata result, a scalar or a macro retrieved

from the Stata environment. The @print command can not be used in a Word comment associated with a table.

The StataValue argument must be a Stata result, a scalar or a macro.

Appendix D – Syntax and description of the Sar commands

@program@program@program@program/@end /@end /@end /@end paradigm

Syntax
@program programName [arg1 arg2 … argN]
[…]
[Sar and Stata commands]
[…]
@end

Description

The @program/@end paradigm is used to define a Sar program. This paradigm can be used in a Word comment or in

a Sar library. Sar programs are, roughly speaking, a list of Sar and Stata commands. This list of commands is defined

between the @program and the @do commands. After the commands are loaded in the Sar environment, they can

be executed through the @do command.be executed through the command.

The programName argument is used to set the name of the program.

The optional arguments arg1, arg2, …, argN specify the arguments of the program defined by the @program/@end

paradigm. When you want to use the values passed as arguments in your program, you have to use the §arg1§,

§arg2§, …, §argN§ callbacks inside your program code: before executing the program Sar replaces every callback

with the corresponding values of arguments.

The @end command closes a program definition. It has no arguments.

The following commands can not be used in a Sar program: @do, @loadlibrary, @interact and the

@program/@end paradigm.

Appendix D – Syntax and description of the Sar commands

@resetstring@resetstring@resetstring@resetstring

Syntax
@resetstring

Description
The @resetstring command sets to an empty string the string of characters which is putted before and after the

numerical outputs of the @print and @filltable commands: when the @resetstring command is used no

characters are added before or after the numerical output. It’s equivalent to the couple of command

@beginstring ## and @endstring ##.

The command has no arguments.

See also @beginstring and @endstring syntax and description.

@viewlog@viewlog@viewlog@viewlog

Syntax
@viewlog

Description

The @viewlog command asks Sar to leave the Stata window open after the Sar macro was executed. This can be

useful to look at the log created by Stata computations.When @viewlog is used, in whatever word comment, a

dialog window is opened after the execution of the Sar macro, allowing you to close the Stata Window and

terminate the Sar macro.

The command has no arguments.

Disclaimer

The user is the only responsible for the accuracy ofThe user is the only responsible for the accuracy of

the statistical analysis and for possible damages

caused by Sar. It’s strongly recommended to save the

Word document before you launch Sar.

