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We present a new method for the identification of extensive air showers initiated by different primaries. The
method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of
secondary particle distributions together with a properly designed and trained artificial neural network. In the
present work the method is discussed and applied to a set of fully simulated vertical showers, in the experimental
framework of ARGO-YBJ, to obtain hadron to gamma primary separation. We show that the presented approach
gives very good results, leading, in the 1–10 TeV energy range, to a clear improvement of the discrimination power
with respect to the existing figures for extended shower detectors.

1. Introduction

The study of cosmic ray composition is crucial,
mainly in connection to the energy spectrum, for
the quest of primary particles origin and sources
nature (see e.g. [1]). Separating hadron-initiated
showers from gamma-initiated ones is the first
step, the next one being the estimate of the rela-
tive abundance of the different nuclei.

The aim of this paper is to introduce a sep-
aration technique, on an event by event basis,
based on the different topology of gamma and
hadron-initiated showers, both as far as the space
and time distribution in the shower front are con-
cerned. A detailed picture of the shower is there-
fore mandatory for the method to be applied. The
main idea is to exploit at best the differences in
the multifractal behaviour of the space distribu-
tion and the differences in the arrival time distri-
bution for showers initiated by different progeni-
tors.

Fractals and multifractals are used to model
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hierarchical, inhomogeneous structures in several
areas of astrophysics and multifractal analysis has
been used for the determination of the mass com-
position of cosmic rays [2], as well as a separa-
tion technique based on multifractal behaviour
[3]. For what concerns extensive air showers,
the multifractal analysis is motivated by the self-
similar nature of the interactions.

Our technique uses a multifractal-wavelet and
lacunarity based analysis similar to the one used
by Rastegaarzadeh and Samimi [3]. We improve
Rastegaarzadeh and Samimi method by introduc-
ing a lacunarity parameter on time arrival of the
showers and an artificial neural network that al-
lows better separation. The concept of lacunar-
ity was originally developed to describe a prop-
erty of fractals [4]. It quantifies the geometric
arrangement of gaps in solid objects (lacunae).
It can be extended to the description of distri-
bution of data sets including, but not restricted
to, those with fractal and multifractal distribu-
tions. In landscape ecology lacunarity was re-
cently adopted to describe gaps in habitat cover-
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age, providing a new way to quantify landscape
texture [5]. In our method, lacunarity is used to
describe gaps in time arrivals of showers. It is as-
sessed by calculating a type of variance-to-mean
ratio of the presence of a particle, repeated over
a range of time scale see [6].

The method applies at best in the experimental
framework where a detailed picture of the shower
front is given. We have been testing it using
the ARGO-YBJ detector [7]. ARGO-YBJ is a
compact array of RPC with a sampling area of
about 100×110 m2, consisting of a central carpet
of about 5600 m2 with 92% coverage, surrounded
by a guard ring with coarse sampling. Thus, in
the central carpet surface a fully detailed map of
the shower front can be worked out, with a space
resolution for multiple hit counting given by 7×56
cm2 (induction strip size) and a time resolution
of the order of 1 ns in a slightly larger unit (OR
of 8 adjacent strip covering a surface of 62×56
cm2).

Our plan: in section 2 we introduce wavelet
and (multi)fractal analysis; in section 3 we de-
fine lacunarity; section 4 is devoted to simulated
showers; in section 5 we describe our method for
spatial separation; in section 6 we describe our
method for time separation; in section 7 we in-
troduce the artificial neural network. Section 8 is
devoted to the result of a test run and section 9
to concluding remarks.

2. Wavelet methods and fractal analysis

The wavelet transform is, by definition, the de-
composition of a function on a basis obtained by
translation and dilation of a particular function
localized in both physical and frequency space.

A wavelet analysis of a density field associates
each point with a real number which represents
the smoothed local density contrast at a given
scale (see for example Pagliaro and Becciani [8],
Gambera et al [9]).

Fractal analysis, on the other hand, is con-
cerned with the measurement of the local smooth-
ness of the signals. The basic idea is that, most
often, the significant information in a signal does
not reside in its amplitude but in the local varia-
tions of its regularity (e.g.[4]).

A deterministic fractal is defined using the con-
cept of self-similarity: given a bounded set A
in a Euclidian n-space, the set A is said to be
self-similar when A is the union of N distinct
(non overlapping) copies of itself, each of them
scaled down by a ratio r. The fractal dimension
D is related to the number N and the ratio r:
D = logN/log(1/r) and plays a central role. It
is a measure of how the members are distributed
in space. Intuitively, the larger the fractal di-
mension, the rougher the texture. Self-similar
multifractals are geometrical objects invariant by
dilation. However, multifractality is not charac-
terized by a single fractal dimension, but by a
function.

The large numbers of interactions in showers
from the same progenitor are self-similar. For
this reason showers may be characterized by their
fractal dimension. Moreover, the distribution of
the shower particles near the core has a self-
similar character different from those far away.
Different physics is involved in production of dif-
ferent secondary particles. For these reasons, ex-
tensive air showers have a multifractal behaviour
and more than a fractal dimension.

In our method, for a distribution of particles
on a plane, the number of particles inside a ra-
dius R is computed. If a scaling law of the form
N(R) ∝ RD holds and D is a single non-integer
value, the distribution has a fractal distribution
with dimension D. Multifractal behaviour can
be revealed by studying the scaling laws for sec-
ondary particles at different core distances.

Wavelet transforms have been used as a natural
tool to investigate the self-similar properties of
fractal objects at different spatial locations and
length scales.

Holschneider [10] has shown that if a function
f has scaling law with exponent D around x0:
f(R(x0, λε)) ∼ λDf(R(x0, ε)) then the wavelet
transform W (s, t) =

∫
g(x; s, t)f(x)dx, where s

is the single dilation parameter (scale) and t is
the translational parameter, has the same scal-
ing exponent, if the wavelet g has a zero average
and decays fast at infinity. Thus the local scaling
behaviour is represented by W (s, t) ∼ sD(t).

Therefore for any distribution function f the
slope of the plot of log W (s, t) versus log s will
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give the fractal dimension of the distribution
around point t for the range of the scale s.

3. Lacunarity

Lacunarity is a counterpart to the fractal di-
mension that describes the texture of a fractal
(Mandelbrot [4], Lin and Yang [11], Gefen, Meir
and Aharony [12]). The properties and charac-
teristics of a fractal set are not completely deter-
mined by its fractal dimension D (it is easy to
construct a family of fractals that share the same
D but differ sharply). These sets have differ-
ent texture, more specifically, different lacunar-
ity. Lacunarity is a notion distinct and indepen-
dent from D; it is not related with the topology
of the fractal and needs more than one numeri-
cal variable to be fully determined. Lacunarity is
strongly related with the size distribution of the
holes on the fractal and with its deviation from
translational invariance.

As stated by Gefen, Meir and Aharony [12], la-
cunarity is the deviation of a fractal from transla-
tional invariance and can be extended to the de-
scription of spatial distribution of real data sets,
including those with multifractal distributions.
Lacunarity is defined as Λ = E( M

E(M) −1)2 where
M is the mass of the fractal set (defined as the
total number of points in the image) and E(M) is
the expected value of the mass computed for the
fractal. This measures the discrepancy between
the actual mass and the expected value. Lacunar-
ity is small when texture is fine and large when
texture is coarse. The mass of the fractal set is
related to the length by M(L) = kLD.

A number of algorithms have been proposed
to measure lacunarity. We adopt the intuitively
clear and computationally simple gliding box
method of Allain and Cloitre [13].

We decided to use lacunarity to quantify het-
erogeneity in time arrivals of showers, so adding a
third dimension to our spatial analysis. We assess
time pattern lacunarity by gridding each time ar-
rival array into squares as in McIntyre and Wiens
[6]. Squares that contains a particle were denoted
1, empty squares were denoted 0; lacunarity is
then computed following the gliding box proto-
col[13].

4. Simulated showers

To test our separation technique we analysed
simulated showers initiated both by gamma-rays
and protons. The showers were simulated by
means of the CORSIKA code with QGSJET
model [14], and the ARGO-G code [15],[16] to
simulate the pattern of the shower front hit as de-
tected in the ARGO-YBJ detector. The ARGO-
G detector simulation code, a tool developed
within the ARGO-YBJ collaboration and based
on the GEANT3 package [17], gives as an output
the space distribution of the particles hitting the
detectors modules, taking into account the space
resolution and the overall detectors efficiency, as
well as the arrival time distribution of particles.
A detailed description of the ARGO-YBJ detec-
tor performances is beyond our scope. A total
number of 1000 events were chosen for the anal-
ysis. The showers have zenith angles 0 < θ < 10
and primary energies:

• 8 < E < 10 · 1012eV for the proton gener-
ated ones;

• 4 < E < 5·1012eV for the gamma generated
ones.

Differences in energies ensure that the numbers
of hits on the analysis carpet are comparable.
The energy spectrum was generated according to
power laws with spectral index −2.7 for protons
and −2.5 for gammas. The spatial distribution of
the secondary particles at ARGO-YBJ altitude
(4300m a.s.l.) is used for the analysis. The time
analysis is performed on the shower from time
zero (first detection on the carpet of a secondary
particle) to time 2000 ns. The output of the sim-
ulated showers includes the effect of the detector
response as far as space and time distribution on
the carpet is concerned.

5. Spatial separation

Our spatial separation technique uses the dif-
ferences in wavelet based multifractal behaviours
of showers of different progenitors. These are: the
mean and the standard deviation of individual
Gaussian fits to the distributions of multifractal
dimensions.
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For each shower, the dependence with respect
to the distance from the shower core of the fractal
dimension is almost linear [3]. This has a con-
sequence: we need to specify the mean and the
standard deviation just for two different mean dis-
tances from the core. So we choose to analyze two
regions: a circle of fixed radius r0 centred at the
shower core (inner ring) and a ring with fixed in-
ner and outer radii ri and ro (outer ring). In our
analysis we choose the values: r0 = 7 m, ri = 9
m, ro = 12 m. The radii have been chosen such
that on average the two rings contain about an
equal number of hits.

Our shower core is computed on the wavelet
transform of the spatial map on the maximum
scale (s = 25). On that scale, in this analysis,
the shower core is found as the coordinates xcore
and ycore of the maximum value of the wavelet
coefficients.

The multifractal behaviour of each individual
shower is then specified by four quantities: the
mean of the Gaussian fit in the inner and the
outer ring (μI , μO), the standard deviation in the
inner and the outer ring (σI , σO).

The wavelet transform is a linear operator that
can be written as:

W (s, t) = 〈f |ψ〉

= s−1/2

∫ +∞

−∞
f(x)ψ∗

(
x− t

s

)
dx

where s(> 0) is the scale on which the analy-
sis is performed, t ∈ � is the spatial translation
parameter and ψ is the the Grossmann-Morlet
(1984, 1987) analyzing wavelet function.ψ(1,0)(x)
is called mother wavelet. It generates the other
wavelet function ψ(s,t)(x), s > 1.

We choose a mother wavelet similar to the Mex-
ican hat in order to use the à trous algorithm in
the following.

The set of scales are powers of two: s = 2r

and the first scale always corresponds to the size
of 1 pixel. The scale s may be considered as the
resolution. In other words, if we perform a calcu-
lation on a scale s0, we expect the wavelet trans-
form to be sensitive to structures with typical size
of about s0 and to find out those structures. We
choose to investigate on the scales 2 to 32 that

on the ARGO-YBJ carpet correspond to physi-
cal sizes ≈ 1.2 m and ≈ 20 m, respectively.

Our result is a set of matrices of wavelet coeffi-
cients, one matrix for each scale investigated. An
example is shown in Fig. 1

Figure 1. Matrices of wavelet coefficients for a
single photon event. One matrix for each scale
investigated. Scales shown are: top left: 4, top
right: 8, bottom left: 16, bottom right: 32. Our
shower core is computed on the wavelet transform
of the spatial map at the maximum scale

As seen in Sect.2, if a function f has
scaling law with exponent D around x0:
f(R(x0, λε)) ∼ λDf(R(x0, ε)) then the wavelet
transform W (s, t) =

∫
g(x; s, t)f(x)dx has the

same scaling exponent. Thus:

• The local scaling behaviour is represented
by W (s, t) ∼ sD(t).

• For any distribution function f , the slope
of the plot of log W (s, t) versus log s will
give the fractal dimension of the distribu-
tion around point t for the range of the
scale s.

We compute a log(W )/log(s) matrix for each
scale s on the two regions selected (inner and
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outer ring).

D = log(W )/log(s)

is the fractal dimension and has a Gaussian dis-
tribution. If μI , μO are the average values of
D in the region and σI , σO its standard devia-
tions we compute average values of μI , μO, σI , σO

on all the scales and obtain our parameters:
μI , μO, σI , σO. All these quantities have a nearly
monotonic dependence on the mass number of
the progenitor. However, they show large fluc-
tuations, prohibiting de facto mass separation.

So, to get a high-resolution separation tech-
nique, we need at least one more parameter and
then define and train an artificial neural network.

6. Time separation

Our separation technique on time arrival of the
shower use the lacunarity technique in the same
two regions as the spatial separation: the inner
and outer ring. First, we need to compute our
time array as T = Tmax − Tmin where Tmin is
the time arrival of the first secondary particle on
the carpet and is set to 0 and Tmax is the time
arrival of the last secondary particle we include
in our analysis. Maximum value of T is 2000 ns.
Then we need to define the time scale on which we
compute lacunarity. This is a crucial parameter.
We call it tlac and to compute T = Tmax − Tmin

A box of length tlac is placed at the origin of
the sets. The number of occupied sites within the
box (box mass k) is then determined. The box is
moved one space along the set and the mass is
computed again. This process is repeated over
the entire set, producing a frequency distribution
of the box masses n(k, tlac). This frequency dis-
tribution is converted into a probability distribu-
tion Q(k, tlac) by dividing by the total number of
boxes N(tlac) of size tlac.

Q(k, tlac) = n(k, tlac)/N(tlac)

The first and second moments of the distribu-
tion are computed, Z1 and Z2.

Z1(tlac) =
∑

k

k ·Q(k, tlac)

Z2(tlac) =
∑

k

k2 ·Q(k, tlac)

The lacunarity is now defined as:

Λ(tlac) = Z2/Z
2
1

Lacunarity is computed both in the inner and
the outer ring (ΛI , ΛO). By trial and error, we
find that 5 ns is a good choice for the tlac param-
eter.

7. Artificial Neural Network

We assume therefore that the mass of the pro-
genitor can be estimated with the use of an ar-
tificial neural network of the six variables. The
neural network is a standard three layer percep-
tron with only one output neuron (1=hadron,
0=gamma). The input layer consist of six neu-
rons each of them reading one of the parameters:

• Average of the fractal dimensions on the
spatial scales in the inner and outer region:

μI , μO

• Average of the standard deviation of the
fractal dimensions on the spatial scales in
the inner and outer region:

σI , σO

• Lacunarity of the time arrivals arrays in the
inner and outer region:

ΛI , ΛO

The neural network we choose is of the feed for-
ward type and it is made of three perceptron lay-
ers. The input is made of six neurons, the hidden
layer is made of four neurons, while the output
vector is defined in a one dimensional space and
it is trained to be 0 for gamma initiated events
and 1 for hadronic ones.

Network was implemented and optimized by
using the Stuttgart Neural Network Simulator
Tool (SNNS) [18]. SNNS is a simulator for neural
networks developed at the Institute for Parallel
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and Distributed High Performance Systems at the
University of Stuttgart. The network was trained
by using one thousand events from indipendent
samples.

8. Results for a test run

In Fig. 2 we present the results of applying our
method to 1000 simulated showers of two different
primaries (gamma and hadron). As is seen in
the histogram, the identification is achieved with
a very high resolution and almost no overlap is
present between showers from different primaries.
Almost 90% of the hadron showers have neural
network output neuron > 0.5 and almost 90% of
the gamma showers have neural network output
neuron < 0.5.

Figure 2. Gamma-hadron separation for our
test run with 1000 events (500 gammas and 500
hadrons)

The most important parameter in
gamma/hadron discrimination is the Q (qual-
ity) factor. The Q factor is defined as

Q =
εγ√

1− εh

where

• εγ is the fraction of showers induced by pho-
tons correctly identified by the discrimina-
tion criterion;

• εh is the fraction of showers induced by pro-
tons correctly identified by the discrimina-
tion criterion;

so that 1− εh is the background contamination
(fraction of events induced by protons and erro-
neously identified as gamma induced ones). In
our test run a value of Q ≈ 2.47 has been reached,
which is among the largest obtained in the field.

9. Summary and concluding remarks

A new technique for separating extensive air
showers initiated by different progenitors, based
on multifractal and lacunarity analysis, has been
developed.

It is well known that fractals are sets of points
that possess the property of being invariant by
dilation. When a fractal set is self-similar a cen-
tral role is played by a quantity called fractal
dimension, a measure of how the members are
distributed in space. Self-similar multifractals
are also geometrical objects invariant by dilation.
The large numbers of interactions in showers from
the same progenitor are self-similar. For this rea-
son showers may be characterized by their fractal
dimension.

Since, for each shower, the dependence with re-
spect to the distance from the shower core of the
fractal dimension is almost linear [3], we need to
specify the mean and the standard deviation of
the fractal dimension just for two different dis-
tances from the core. So we choose to analyze
two regions: a circle of fixed radius r0 centred at
the shower core (inner ring) and a ring with fixed
inner and outer radii ri and ro (outer ring).

On the other hand, lacunarity is a counterpart
to the fractal dimension that describes the texture
of a fractal. The properties and characteristics of
a fractal set are not completely determined by its
fractal dimension. These sets may have differ-
ent texture, more specifically: different lacunar-
ity. Lacunarity is not related with the topology
of the fractal and is strongly related with the size
distribution of the holes on the fractal and with
its deviation from translational invariance. In our
approach, lacunarity is used to describe gaps in
time arrivals of showers. We choose to compute
lacunarity on time arrival structure of the showers
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in order to exploit a third dimension in our anal-
ysis. The regions are the same as for multifractal-
wavelet analysis (inner ring and outer ring).

Finally, the multifractal behaviour and lacu-
narity time structure of each shower is repre-
sented by six variables: average of the fractal di-
mensions on the spatial scales in the inner and
outer ring, average of the standard deviation of
the fractal dimensions on the spatial scales in the
inner and outer ring, lacunarity of the time ar-
rivals arrays in the inner and outer ring.

Due to large shower to shower fluctuations, the
differences in any single one of these variables
have a very poor separation power [19]. So, on
these six quantities, a neural network analysis has
been performed. The neural network we choose is
a standard three layer perceptron with only one
output neuron of the feed forward type. The out-
put vector is defined in a one dimensional space
and it is trained to be 0 for gamma initiated
events and 1 for hadronic ones.

Network were implemented and optimized by
using the Stuttgart Neural Network Simulator
Tool, a simulator for neural networks devel-
oped at the Institute for Parallel and Distributed
High Performance Systems at the University of
Stuttgart, and trained by using several thousand
events from indipendent samples.

It is well known that the most important pa-
rameter in gamma/hadron discrimination is the
Q (quality) factor, defined as Q = εγ√

1−εh
where

εγ is the fraction of showers induced by photons
correctly identified by the discrimination criterion
and εh is the fraction of showers induced by pro-
tons correctly identified by the discrimination cri-
terion, so that 1− εh is the background contami-
nation (fraction of events induced by protons and
erroneously identified as gamma induced ones).

Our approach gives very good results, lead-
ing to a clear improvement of the discrimination
power with respect to the existing figures for ex-
tended shower detectors: the value Q ≈ 2.47 ob-
tained in our test run is among the largest ob-
tained in the field. The technique shows up to
be very promising and its application may have
important astrophysical prospects in the experi-
mental environment of extensive air shower study.
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