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Abstract

The main task of this paper is to develop the non-Platonist view
of mathematics as a science of structures I have called, borrowing the
label from Putnam, ‘realism with the human face’.

According to this view, if by ‘object’ we mean what exists indepen-
dently of whether we are thinking about it or not, mathematics is a
science of patterns (structures), where patterns are neither objects nor
properties of objects, but aspects (or aspects of aspects, etc.) of con-
crete objects which dawn on us when we represent objects (or aspects
of . . . ) within a given system (of representation).

Mathematical patterns, therefore, are real, because they ultimately
depend on concrete objects, but are neither objects nor properties of
objects, because they are dependent, both metaphysically and epis-
temically, on systems of representation.

Although the article has been written as a presentation of my view
of mathematics, and of some of its advantages, the reader should keep
in mind that this is essentially a ‘reply paper’, as is shown by the fact
that much of it is dedicated to the discussion of some issues which have
become the focus of critical attention. Such issues are well expressed
by the following questions: am I right in asserting that mathemati-
cal patterns are neither objects nor properties of objects? What is
the difference, if any, between mathematical patterns and other mind-
dependent entities such as the Cleveland Symphony Orchestra? Can
mathematical patterns be always assimilated to relations? Can what
I call ‘form of representation’ be assimilated to structure? Can the
standpoint I take on mathematics, which regards it as a science of
patterns, be correctly described as Aristotelian?
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1 Patterns, aspects, and infinity

The main task of this paper is developing the non-Platonist view of math-
ematics as a science of structures I have called, borrowing the label from
Putnam, ‘realism with the human face’.

According to this view, mathematics is a science of patterns (structures),
where (1) patterns are neither objects nor properties of objects (see on this
§§2–4), but (2) are, rather, aspects (or aspects of aspects, etc.) of concrete
objects which dawn on us when we represent objects (or aspects of...) within
a given system of representation.

At this point, before going any further in presenting my view, it is im-
portant to clarify some basic notions involved in the two theses above.

First of all, let me say that the notion of representation is rather complex,
and deserves much attention. However, for the purpose of this paper, it is
sufficient to know that what I mean by ‘representation of an object’ is a
description of the object which can be expressed by propositions.

Typical non-propositional descriptions of objects are those offered by
diagrams and maps. Take, for instance, the table below of the Turing left-
machine:1

0 a0 l 1
...

...
...

...
0 an l 1
1 a0 h 1
...

...
...

...
1 an h 1

Table 1: The Turing left-machine

This is a diagram—a [2(n + 1)] × 4 matrix, where n ∈ N—representing
a particular Turing machine,2 a diagram which can be transformed into
a description expressed by propositions of the type ‘the left-machine is a
Turing machine having the following characteristics: if the machine is in
state 0 and the symbol showing in the observed cell is a0, then the observing
device of the machine moves along the tape to the cell which is immediately
to the left of the observed cell and the machine goes into state 1, etc. etc.’

1The natural numbers 0 and 1 refer to the states of the machine, a0 is the symbol for
the empty cell, a1, . . . , an are the so-called ‘proper symbols’, ‘l’ stands for ‘move one cell
to the left of the observed cell’, and ‘h’ stands for ‘halt’.

2In contrast with what some authors believe about this (see [Hermes 1975], ch. 1,
§3.6, p. 44), my reason for saying that the matrix in Table 1 represents the Turing left-
machine, and does not actually coincide with it, is that the permutations of the set of
< 0, . . . , . . . , 1 > rows, and of the set of < 1, . . . , . . . , 1 > rows of the matrix produce
[(n+ 1)!]2 different [2(n+ 1)]× 4 matrixes which are tables of the same Turing machine.
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Here the concept of description is very important, because in order,
for instance, to have a representation of a dog (or of a Turing machine)
it is not sufficient to be acquainted with it, we also need a(n even non-
linguistic) way of identifying and re-identifying the object represented as
what is represented. Moreover, I say that a given representation of an object
is faithful just in case the proposition (or propositions) expressing it is (are)
true.

Secondly, a mathematical system of representation is most simply a
mathematical theory. And my reason for saying this is that mathemati-
cal theories, besides being what we might call ‘deductive engines’, provide
us with systems of representation.

To see this, consider that mathematical theories have an important rôle
in providing (linguistic) systems of representation as it is clearly exemplified
by a large number of cases like that of the representation, within analytic
geometry in R2, of a straight line r lying in a plane α by means of the
equation y = mx+ c.

Furthermore, mathematical theories happen to give a substantial con-
tribution to perceptual representations as well. This is made manifest by
those very frequent cases in which some concepts belonging to a mathemat-
ical theory T, very much like the Kantian pure a priori intuitions of space
and time, operate a pre-reflective structuring of perception which enables
us to see something as a square or as a triangle, etc.

Now, with regard to the plausibility of thesis (2)—that mathematical
patterns are aspects (or aspects of aspects, etc.) of concrete objects which
dawn on us when we represent objects (or aspects of...) within a given system
of representation—think about the following situation. On a table in a
room there are three marbles which an observer O, under normal conditions,
can see, in one case, as the vertexes of an equilateral triangle, if he knows
Euclidean geometry, and, in the other, as a set A of 3 elements, if he can
count and knows set theory.

In both cases the mathematical aspect that dawns on O depends on how
he relates to each other the marbles on the table: in the first case he does
so by using concepts like ‘x is a vertex’, ‘x is a triangle having sides equal
to each other in length’, etc.; and in the second case by using the concept
‘x ∈ A’ and counting.

Notice that, in both the cases mentioned above, O has criteria of identity
for the patterns that dawn on him. In the first case, the criterion of identity
is congruence between triangles, and in the second case is the idea that two
sets are equal if they have the same elements. It is very important that we
have criteria of identity for mathematical patterns, because, as Quine put
it: no entity without identity.

Of course, we can have patterns of patterns. If O subjects what he
sees as an equilateral triangle to rigid motions and reflections, and knows
some group theory, then he will be able to see the set of rigid motions and
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reflections of what he sees as an equilateral triangle as a group, i.e., the
dihedral group of order 6.3

Moreover, if, in seeing the marbles on the table as a set A of 3 elements,
O considers the possible permutations of the elements of such a set, then, if
he knows some group theory, he will be able to see the set of permutations
of what he sees as a set of 3 elements as the symmetric group of degree 3.

Also in the case of the two patterns of patterns mentioned above, O has a
criterion of identity: group isomorphism. Indeed, the two groups described
are isomorphic to each other, i.e., they are the same group.

If (2) is correct, it follows that mathematical patterns are real, because,
once I choose 2-dimensional Euclidean geometry as system of representation,
the faithfulness of representing what is on the table as the vertexes of an
equilateral triangle is something that would depend on the concrete objects
I am representing, and their relative positions.

But, having said so, it might be worth clarifying that the dependence of
mathematical patterns on concrete objects I refer to above is that typical of
a structure on the set of concrete objects, and relations defined on such a
set, that realize it. It, therefore, makes no sense to say that if one accepts
my position—that mathematical patterns are real, because they are ulti-
mately dependent on concrete objects—then, since the fictional characters
responding to the names of ‘Hamlet’, ‘Ophelia’ and ‘Falstaff’, depend on
the concrete object William Shakespeare who invented them, he should also
concede that Hamlet, Ophelia, and Falstaff are real.

A second question that needs to be addressed here, and which I have
already discussed in [Oliveri, 2007], Ch. 5, §12, is: if mathematical patterns
depend ultimately on concrete objects (and on mathematical systems of
representation), how do I deal with transfinite sets?

This is a very important question for the acceptability of my account
of mathematics, because, since the concept of infinity has a paramount rôle
in mathematics, if there were only a finite number of concrete objects in
the world, it would not be easy to see how ‘infinite mathematical patterns’
might be ultimately dependent on concrete objects, and be given to us.

The solution to the problem above originates from the consideration that
some patterns are patterns of patterns. Indeed, if I say ‘There are three
marbles on the table’, what I express in my use of the term ‘three’ captures
a numerical pattern of a set of concrete objects that is objectively given in
the sense that: (i) I can prove that there are three marbles on the table, and
that (ii) I have identity conditions for numerical patterns of sets (cardinal
numbers), identity conditions represented by bi-univocal correspondences
between sets.

Now, the fact that the pattern denoted by ‘three’ is objectively given
3The dihedral group of order 6 can also be individuated by means of a multiplication

table, and as the non-abelian group of order 6.
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is what, among other things, provides the necessary and sufficient condi-
tions for referring to the pattern denoted by ‘three’ as a member of another
pattern.

This is because, on the one hand, it justifies treating the number three
as an object and, on the other, it provides both a necessary and sufficient
condition for assigning a truth-value to the expression ‘3 ∈ A’, where A is a
given set.

Therefore, we have that whereas numerical patterns such as: one, two,
three, etc., may be considered as aspects of sets of concrete objects, or as
the outcome of operations on such ones,4 the introduction of the concept
of (actual) infinity comes about as a consequence of being able to see the
collection of all those numerical aspects as a whole.

It is important to notice that the phenomenon described here as ‘seeing a
collection as a whole’ is an instance of aspect-seeing in which we are dealing
with a pattern of patterns. The correctness of this view is confirmed by
the consideration that the ability to see the collection of (the set-theoretical
representations of) the natural numbers as a whole (complete totality or set)
depends on the system of representation adopted.

In fact, it is only through a modification of the Euclidean concept of
‘whole’—the whole is greater than the part (Euclid’s axiom 5)—and the
axiomatization of set theory which eliminates the known paradoxes, that
it becomes mathematically meaningful to see infinite collections not simply
as entities of unbounded growth, i.e., as instances of potentially infinite
collections, but as infinite totalities, i.e., as entities such that, given any two
of them, it makes sense to ask whether the number of elements of one is
lesser, equal, or greater than the number of elements of the other.

As a confirmation of this we have the exemplary case of Galileo. Galileo
found himself in an embarrassing situation when he observed that, if we
consider N as a completed totality, there appear to be as many squares of
natural numbers as there are natural numbers. This is the case, he argued,
because each natural number is the root of a square number and there are
as many squares of natural numbers as their roots.

The observation above was a source of embarrassment for Galileo, be-
cause, besides contradicting Euclid’s axiom 5, it seemed to conflict with the
other observation that the occurrence of perfect squares in the natural or-
dering of N becomes more and more rare the larger the initial segment of N
we consider.5 For, the latter observation suggested to him that most natural
numbers are not squares of natural numbers.6

4Interesting examples of the latter type of numerical patterns are the numbers 0 and

10101010

.
5In the first 100 natural numbers there are only 10 squares, in the first 10000 only 100,

in the first 1000000 only 1000, etc.
6[Galileo 1638], Giornata Prima, pp. 78–79:

Salv. Ma se io domanderò, quante siano le radici, non si può negare che elle non siano
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At this point Galileo, unable to deny Euclid’s axiom 5 and unwilling
to consider number theory to be inconsistent, to save the day, decided to
reject the notion of actual infinity in favour of the old Aristotelian concept
of potential infinity, and adopt an ad hoc, monster barring, deliberation
whereby:7

Salv. . . . attributes of equal greater and lesser are not appli-
cable to infinities, but only to finished [terminating, com-
pleted] quantities.

A couple of centuries later, armed with a different mathematical system
of representation which, among other things, got rid of Euclid’s axiom 5,
Dedekind operated a truly Kuhnian Gestalt switch when he saw the phe-
nomenon contemplated by Galileo not as a mathematical monstrosity en-
gendered by the perfidy of infinite collections, but as a particular instance
of a mathematically fruitful property which allows us to characterize infinite
sets as those collections which can be put in bi-univocal correspondence with
a proper subset.

At this point, taking for granted that the account given so far explains
how to deal with N, it is not difficult to see how to extend my account to
transfinite sets of any cardinality following the traditional limited compre-
hension principles of ZFC. I will here illustrate only the case regarding what
is known as the power set axiom.

If A is a set of mathematical patterns which ultimately depend on con-
crete objects (I am no longer going to repeat ‘and on a system of representa-
tion’), a subset B of A would exemplify a pattern of mathematical patterns
which ultimately depend on concrete objects and, therefore, the pattern ex-
emplified by B would ultimately depend on concrete objects as well. (Take
A = N and B = {x | x ∈ A and x is even}.)

Now, if this is the case, the ability to see the collection of all the subsets
of A, P(A), as a whole/set presents us with the exemplification of a pattern2

(of a pattern1 of a pattern0), which ultimately depends on concrete objects,
because pattern1 (and pattern0) ultimately depends on concrete objects.

quante tutti i numeri, poichè non vi è numero alcuno che non sia radice di qualche
quadrato; e stante questo, converrà dire che i numeri quadrati siano quanti tutti
i numeri, poichè tanti sono quante le lor radici, e radici son tutti i numeri: e pur
da principio dicemmo, tutti i numeri esser assai più che tutti i quadrati, essendo
la maggior parte non quadrati. E pur tuttavia si va la moltitudine de i quadrati
sempre con maggior proporzione diminuendo, quanto a maggior numeri si trapassa;
perchè sino a cento vi sono dieci quadrati, che è quanto a dire la decima parte esser
quadrati; in dieci mila solo la centesima parte son quadrati, in un milione solo la
millesima: e pur nel numero infinito, se concepir lo potessimo, bisognerebbe dire,
tanti essere i quadrati quanti tutti i numeri insieme.

7See [Galileo 1638], Giornata Prima, p. 79.
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Therefore, we can conclude that, if N is a set of mathematical patterns
which ultimately depend on concrete objects, we can say the same thing of
each element of the sequence:

P(N),P(P(N)), . . .

Notice that also what I called ‘the ability to see the collection of all the
subsets of A, P(A), as a whole/set’ strongly depends on the system of repre-
sentation you adopt. For, if instead of ZFC, you work within Gödel’s system
of constructible sets, then if X is a set in L (the universe of constructible
sets), the power-set of X is the set of all definable subsets of X, D(X),
which is usually smaller than P(X).

In bringing this section to a close, there is an important thing we should
notice which emphasizes the purely relational character of mathematical
patterns. If, in the thought experiment sketched at the beginning of this
section, our observer O had 3 coins, or 3 dice, etc. on the table instead
of three marbles, and if the coins, or the dice, etc. were to each other in
positions similar to the positions in which the marbles were to each other,
then, under normal circumstances, he could still see the coins, or the dice,
etc. as the vertexes of an equilateral triangle, in one case, and as the elements
of a set of 3 elements, in the other, etc.

This last consideration shows that what is relevant to the dawning of a
mathematical pattern is not the nature of certain objects, but the relation(s)
in which these objects are to one another.

2 Patterns, and systems of representation

In my book I defended the view that, if by ‘object’ we mean what exists
independently of whether we are thinking about it or not, then, given my
rejection of the Platonist belief in abstract objects, mathematical patterns
are neither objects nor properties of objects. (Thesis (1), §1, p. 2.)

The main reason why mathematical patterns are not objects is that they
depend, both metaphysically and epistemically, on systems of representation
produced by mathematicians.

To see this consider, first, that since no concrete object is a perfect
triangle, circle, square, etc. seeing something as—the process at the root
of the dawning of mathematical aspects—can neither be construed as an
act whereby a property, attribute of a concrete object is abstracted; nor as
the consequence of that type of selective attention paid to a concrete object
whose precondition is the existence of a system of representation.8

8Indeed, if, for the sake of argument, we assume that abstraction is a viable route to
concept formation, then properties of concrete objects that might be good candidates for
being ‘abstracted’ are those, for instance, of being transparent or opaque. In this case we
can see without the aid of any instrument—whose way of functioning would have to be

7



Secondly, since, as I have already said, there are no squares in nature,
a necessary condition for seeing something as a square has to be knowing
what a square is or, to put it in a different way, knowing what falls under
the concept ‘x is a square’.

Now, given that concepts may be distinguished into well founded (sharp)
and vague (fuzzy), and that in this paper I deal essentially with mathemat-
ical concepts, I am going to consider in what follows only well founded
concepts.

For the concept ‘x is a square’ to be well founded, besides knowing the
conditions that an object O must satisfy for O to be a square, we also need
to know when two squares are the same, i.e., we need to have a criterion
of identity for squares. An obvious candidate as criterion of identity for
squares is square congruence, i.e., the idea that two squares are equal if and
only if they can be made to coincide without deforming them.9

However, the very interesting thing that happens at this point is that,
as soon as we introduce square congruence as a criterion of identity for
squares, we produce a partition of all things we see as squares into equiv-
alence classes—for square congruence is an equivalence relation—and each
such an equivalence class is uniquely associated to an abstract structure,10

justified by a theory—that certain bodies let light through them, whereas others do not.
An example of a property of concrete objects of the second kind mentioned above

is, instead, that of having spin 1
2
. Clearly, in this case, it being impossible for human

beings to be directly acquainted with subatomic particles, we need a theory (system of
representation) for both postulating the existence of such entities and interpreting the
experimental evidence confirming their existence and properties, experimental evidence
deriving from the unavoidable use of instruments of observation.

Now, taking for granted the presence of a common agreement among the community of
experts about the fact that observer O is not dreaming, hallucinating, etc. when he sees an
object X, notice that an interesting philosophical difference ‘between things that we can
see without instruments and things that we can see only with the help of instruments’ is
that, if O is not directly acquainted with X, but needs, say, a telescope to see X, he might
still be asked, like Galileo once was, how does he know that X is not a mere ‘product’ of
the telescope generated by a defect in the lenses (or in the mirror) used etc. Of course, a
satisfactory answer to such a question can only be obtained from a theory which explains,
in particular, the ‘workings’ of the telescope.

Moreover, in contrast with what happens when O is directly acquainted with an object
X, scientists have to learn to look through a telescope, a microscope, and ‘into’ a bubble-
chamber. And such a leaning process is not like training the eye to see different types
of snow, but it involves, among other things, learning to take (interpreting) certain spots
of light to be stars, other images to be planets, etc. (The same considerations apply to
learning to use microscopes and bubble-chambers).

9Notice that neither knowing what a square is nor having identity conditions for squares
imply that there must be effective procedures able to determine in a finite number of steps
whether or not any object O is a square, or whether or not any two given squares α and
β are the same.

10The reason why the geometrical structure common to all the elements of a particular
equivalence class of squares is abstract is that, as it has been remarked several times, there
are no squares in the external world, i.e., in space-time.
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i.e., to the abstract geometrical structure common to all the elements of the
equivalence class.

Such an abstract geometrical structure uniquely associated with and
determined by the equivalence class of congruent squares is the mathematical
pattern we are going to call ‘the square of side r’, for r ∈ R+. This is
very much like what happens in set theory when we use the expression ‘the
cardinal number 3’ to refer to that abstract entity—mathematical pattern—
uniquely associated with and determined by the equivalence class of all sets
which can be put in bi-univocal correspondence with the set {∗, ∗∗, ∗ ∗ ∗}.

If this is correct, then, besides having here the beginning of an account
of the emergence of abstract mathematical patterns such as ‘the square of
side r’ and ‘the cardinal number 3’ from the cloud of our representations,
we can also say that, since without 2-dimensional Euclidean geometry there
is no concept of square, and, consequently, there are no criteria of identity
for squares; and since with no criteria of identity for squares there are no
equivalence classes of ‘congruent squares’ and, therefore, no mathematical
square-patterns uniquely associated with and determined by them; it follows
that without 2-dimensional Euclidean geometry there are no mathematical
square-patterns.

At this point, given that (1) seeing something as a square can neither be
construed as the outcome of an act of abstraction nor as that type of selec-
tive attention paid to a concrete object whose precondition is the existence
of a system of representation; and that (2) without 2-dimensional Euclidean
geometry there are no mathematical square-patterns, we can conclude that
the dependence of mathematical patterns on appropriate systems of repre-
sentation cannot simply be epistemic, but must also be metaphysical.

Lastly, with regard to the notion of mathematical system of representa-
tion, i.e., mathematical theory, it is important to observe that these mathe-
matical systems of representation are not given a priori in the mind, but are
rather the product of human activity. It is precisely this feature of mathe-
matical systems of representation (of being the product of human activity)
that led me to say that considering mathematics as a science of patterns is
a form of realism with the human face.

3 Patterns are not self-standing objects

Julian Cole objects to my definition of an object—as what exists indepen-
dently of whether we are thinking about it ot not—that:

First, it makes nonsense of a well established tradition of refer-
ring to such items as choirs, countries, and legal corporations as
social objects . . . Second, it flies in the face of a much more widely
accepted characterization of an object—roughly, an item that
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may legitimately fall within the range of the first-order quan-
tifiers of an appropriately formalized statement. Third, it fails
to distinguish between (mind-independent) objects and (mind-
independent) properties. ([Cole, 2008], p. 11.)

In reply to the points raised by Cole, I would like to say that the ra-
tionale behind my idea that if something is an object then it must exist
independently of whether we are thinking about it or not is the concern
about distinguishing what there is into two big classes: (A) what exists in-
dependently of human activity, and (B) what does not. Such a distinction is
very important for my project, because it is preliminary to, and supports the
‘(structural) realism with the human face’ I advocate about mathematics.

Therefore, my attitude towards objects should not be seen as part of an
attempt to weaken the classical logico-linguistic Fregean distinction between
saturated and unsaturated parts of a proposition, etc. For, it is only meant
to add a metaphysical flavour to it by saying that an object, besides being the
possible reference of a saturated part of a proposition, exists independently
of human activity.

However, for the sake of clarity, let us ask ourselves whether the predi-
cates ‘x is an object’, ‘x is soluble in water’, and ‘x is prime’ are analogous
to one another or not.

Well, at first sight we notice that whereas the predicates ‘x is soluble in
water’, and ‘x is prime’ are true, the first, of some concrete entities, and,
the other, of some abstract entities, the predicate ‘x is an object’ is not only
topic neutral, but is also ontologically neutral, because it is applicable to
abstract, and concrete entities alike.

The predicate ‘x is an object’ is, indeed, applicable to anything about
which we can say true or false things or, to put it in a different way, to
anything that falls under a concept.

The generality of the predicate ‘x is an object’, which is part and parcel
of its topic and ontological neutrality, speaks of its eminently logical nature.
This is the reason why, from now on, I will take an object to be simply an
element of the domain of discourse.

Furthermore, to dispel any possible source of misunderstanding on this
issue, I will say that a self-standing object is an object that exists indepen-
dently of whether we are thinking about it or not; and that mathematical
patterns are neither self-standing objects nor properties of self-standing ob-
jects.

If my remarks concerning the meaning of ‘a is an object’—in terms of ‘a is
an element of the domain of discourse D’—are correct, there is not only a way
of distinguishing, as we have already seen, between mathematical patterns
and self-standing objects, but there also is the opportunity to differentiate
between objects and mathematical patterns. This is an opportunity that
becomes available to us through the exploitation of the relativized notion of
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an object given above.
Indeed, through an opportune restriction to a given domain D, it is, now,

possible to distinguish between objects in D, i.e., all the as such that a ∈ D,
and the n-ary relations on D (for n ∈ N and n > 1), i.e., the sets of ordered
n-tuples of elements of D (subsets of Dn). Clearly, n-ary relations on D, for
n ∈ N and n > 1, are not objects in D.

Such a distinction between objects in D, and relations on D, is philo-
sophically relevant, because it keeps different things apart, and grounds the
transferability of relations on D to domains different from D—transferability
manifested, for instance, by the existence of different isomorphic models of
a consistent mathematical theory T—showing that what is mathematically
relevant, the study of relations, is independent of the nature of the objects
belonging to a particular domain.

A beautiful example illustrating, in a simple setting, the dramatic differ-
ence concerning the mathematical importance of the ‘geometrical’ relations
on D with respect to the purely perfunctory rôle of the objects in D is
provided by the following formal system.

Let a formal system T be given such that the language of T contains a
primitive binary relation ‘x belongs to a set X’ (x ∈ X), and its inverse ‘X
contains an element x’ (X 3 x).

Furthermore, let us assume that D is a set of countably many undefined
elements a1, a2, . . .; call ‘m-set’ a subset X of D; and consider the following
as the axioms of T:

Axiom 1 If x and y are distinct elements of D there is at least one m-set
containing x and y;

Axiom 2 If x and y are distinct elements of D there is not more than one
m-set containing x and y;

Axiom 3 Any two m-sets have at least one element of D in common;

Axiom 4 There exists at least one m-set.

Axiom 5 Every m-set contains at least three elements of D;

Axiom 6 All the elements of D do not belong to the same m-set;

Axiom 7 No m-set contains more than three elements of D.11

Now, since the language of T contains two different sorts of variables—
x, y andX—if x, y range over D = D1 = {A, . . . , G}, where a1 = A, . . . , a7 =
G; and X over D∗1, where D∗1 is a set whose elements are the subsets of D1

which appear as the columns of the matrix below; we have that D1 ∪ D∗1 is
the domain of the model of T represented in Figure 1.

11These axioms have been taken, with some minor alterations, from [Tuller, 1967], §2.10,
p. 30.

11



A B C D E F G
B C D E F G A
D E F G A B C

Figure 1: Model 1

On the other hand, if the variables x, y range over the set D = D2 =
{P1, . . . ,P7}, where a1 = P1, . . . , a7 = P7, the elements of which are 7
distinct points in a Euclidean plane α; whereas X ranges over the set D∗2
whose elements are the sets of Pi points, for i ∈ {1, . . . , 7}, lying on the sides
of, the bisectrices of, and on the circle inscribed in, the triangle below, we
have that D2 ∪D∗2 is also the domain of a model of T, a model represented
in Figure 2.
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Figure 2: Model 2

Looking at these two models of T, it is clear that: (D1∪D∗1)∩(D2∪D∗2) =
∅; the elements of D1 ∪ D∗1 are not even homogeneous with the elements of
D2 ∪D∗2; and that the two models are isomorphic to each other.12

The case of these two models of T brings out very clearly that the pat-
terns described by the axioms and theorems of T are independent of the
nature of the objects present in D1 ∪ D∗1 (the first seven letters of the En-
glish alphabet plus . . . ), and in D2∪D∗2 (seven distinct points in a Euclidean
plane α plus . . . ), showing that they have a different onto-logical status from
that of the elements of D1 ∪ D∗1 and of D2 ∪ D∗2. What this means is that
such patterns differ from the elements of D1∪D∗1 and D2∪D∗2 not only from

12The function Ψ : D1

S
D∗1 7→ D2

S
D∗2 such that Ψ(x) = f(x), and Ψ(X) = g(X)—

where f : D1 7→ D2 and g : D∗1 7→ D∗2 such that f(A) = P6, f(B) = P2, f(C) = P5, f(D) =
P4, f(E) = P7, f(F ) = P3, f(G) = P1 and g(xi, xj , xk) = (f(xi), f(xj), f(xk)), for i, j, k ∈
{1, . . . , 7}—shows that the two models are isomorphic to one another.

In fact, Ψ induces a bi-univocal correspondence between D1

S
D∗1 and D2

S
D∗2 , and

preserves the (two primitive) relations (∈ and 3), that is:

(x,X) ∈ ∈D1
S

D∗
1 iff (Ψ(x),Ψ(X)) ∈ ∈D2

S
D∗

2 (1)

(X,x) ∈ 3D1
S

D∗
1 iff (Ψ(X),Ψ(x)) ∈ 3D2

S
D∗

2 . (2)
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a logical point of view, but also with regard to what kind of entities they
are (ontic difference).

With regard to the logical difference existing between the patterns de-
scribed by T, and the objects (elements of D1 ∪D∗1 or D2 ∪D∗2), we need to
observe that whereas the relations that generate these patterns are expressed
by unsaturated parts of statements,13 the objects (elements of D1 ∪ D∗1 or
D2 ∪D∗2) are expressed by saturated parts of statements (designators).

Concerning the difference relating to what kind of entities patterns de-
scribed by T and objects (elements of D1∪D∗1 or of D2∪D∗2) respectively are,
it is sufficient to consider that, for n ∈ N and n > 1, an n-ary relation <n
on D1 ∪D∗1 does not belong to D1 ∪D∗1, but is an element of P((D1 ∪D∗1)n),
and that the first occurrence of D1 ∪D∗1 in von Neumann’s cumulative hier-
archy is lower down with respect to the first occurrence in the hierarchy of
P((D1 ∪D∗1)n), i.e., they are two different types of entities.

Therefore, although the relations that generate such patterns might be
elements of a domain D∗—and could be said to be objects in D∗—considering
them simply as objects blurs the vital onto-logical distinction between ob-
jects in D1 ∪ D∗1 (or D2 ∪ D∗2), and relations on D1 ∪ D∗1 (or D2 ∪ D∗2) I
mentioned above.

It is such a distinction that provides with genuinely original content
the view of mathematics as a science of patterns (and any other form of
structural realism about mathematics) with regard to more traditional non-
structuralist philosophies of mathematics.

4 Patterns are not properties of self-standing ob-
jects

Having made a case in favour of the idea that mathematical patterns are
not self-standing objects (from here on I shall write ‘object’ for ‘self-standing
object’), I am, now, going to show that mathematical patterns are not prop-
erties of objects either, by arguing that it is possible, in representing an object
(a given set of objects), to switch from a particular mathematical pattern
to a different one without any corresponding change taking place in the
object(s) represented.14

To see this latter point consider the following expression:15

13In contrast with what Frege says on these matters, I am going to use the concept of
statement rather than the metaphysically loaded concept of proposition.

14Notice that this is a generalization to all mathematical patterns of a point made by
Frege in [Frege, 1980] (Ch. II, §§21–25, pp. 27e–33e) when he answered in the negative
the question: Is Number a property of external things? The argument that follows in the
main text is also ‘Fregean’.

15Although, strictly speaking, the expression labelled by (*) is an artifact and, therefore,
it is not an object let me consider it such, for the sake of argument. We could easily
substitute for it a more cumbersome example of, say, five copses such that one of these
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(*) Quoque tu Brute fili mi.

If we want to describe numerically what is labelled by (*), i.e., if we want
to attribute a cardinal number to what is labelled by (*), we need to specify
the set of things that we intend to count. In order to do this, we have to fix
the property that characterizes such a set or list its elements.

Now, if within our system of representation we choose ‘Latin word’16 as
property/concept, then it will be true to say that the set whose elements
are the Latin words labelled by (*), and only those, contains 5 elements.

On the other hand, if within our system of representation we choose as
property/concept ‘letter belonging to the Latin alphabet’,17 then it will be
true to say that the set of letters belonging to the Latin alphabet containing
those, and only those, labelled by (*) has 19 elements.

It is interesting to notice that although, by changing concept, we can
say something true about what is labelled by (*) switching at will from 5 to
19, this phenomenon is not correlated to any physical change taking place
in what is labelled by (*).

However, if, to describe what is labelled by (*), we were to choose ‘colour’
or the ‘leftmost character occurring in what is labelled by (*)’, we would be
using concepts which refer to actual properties of what is labelled by (*).
For, we could not switch from one colour to another, or from one character
to a different one, and say something true about what is labelled by (*),
without any physical change occurring in the entity labelled by (*).

In spite of the arguments offered above in favour of the idea that math-
ematical patterns are neither objects nor properties of objects, an empiricist
philosopher of mathematics might object that ‘our systems of representa-
tion can reflect reality, and indeed that we are justified in thinking they do
reflect reality if they are empirically confirmed’.

First of all, let me say that the systems of representation I am considering
are mathematical systems of representation, i.e., mathematical theories; and
that, for a system of representation to be applied to reality, you need much
interpreting of the mathematical terms and concepts involved, as well as a
whole host of non-mathematical concepts such as mass, energy, charge, etc.

Moreover, since, as we have already stated, there are no concrete objects
that are perfect circles, squares, etc. the representations of a reality of
concrete objects that make use of circles, squares, etc. cannot in any case
be thought of as reflections (pictures) of concrete objects.

Indeed, such representations are, in my opinion, the outcome of the
production of models of a reality of concrete objects; these are models that

consists of six trees, one of five trees, one of four trees, and two of two trees each.
16In the copse example the property/concept playing the rôle of ‘Latin word’ would be

‘copse’.
17In the copse example the property/concept playing the rôle of ‘letter belonging to the

Latin alphabet’ would be ‘tree’.

14



arrange/order the phenomena in such a way as to simulate the portion of
reality that is the object of study allowing, at the same time, the possibility
of carrying out measurements, calculations, predictions, etc.

Therefore, the success of a model involving circles, squares, etc. in simu-
lating a certain portion of a reality of concrete objects should not be taken as
a confirmation of the fact that circles, squares, etc. are embodied in concrete
objects, but, rather, as what corroborates the correctness of the more mod-
est claim according to which circles, squares, etc. are good approximations
of the concrete objects they are modeling.

Furthermore, against the argument I produced above in support of the
view that mathematical patterns are not properties of objects, someone
might say that ‘numbers are properties of sets, so that, before assigning
a number, one has to specify a set. The phrase “the entity labelled by (*)”
does not specify a set because of the ambiguities pointed out, and so, unless
these ambiguities are resolved, we cannot assign a number to (*)’.

True, the impossibility of individuating one and only one number to be
associated to the entity labelled by (*) depends on the fact that numbers
are properties of sets, and on the fact that the phrase “the entity labelled
by (*)” does not specify a set, because it is a designator, not a concept.

However, I fail to understand how this would be incompatible with my
claim that numerical patterns are not properties of objects. Quite the op-
posite, I should think.

For, in the case of Quoque tu Brute fili mi, what we call ‘set’ (of Latin
words present in . . . , of characters belonging to the Latin alphabet present
in . . . ) is the product of an activity of segmentation of an object, activity
of segmentation which consists either in an application of brute force—i.e.,
we produce a list of the elements of our set, a list that is justified neither by
a concept nor by a rule—or in the use of a concept (x is a Latin word, x is
a character belonging to the Latin alphabet) or of a rule.

Such an activity of segmentation of an object O aims at seeing O as a
totality of elements; in other words, it is a way of describing O as a set of
a, b, c, . . .; and cardinality is, therefore, a property of a description (it is some
kind of second-order property), and not of an object (it is not a first-order
property).

At this point some considerations are in order:
First, an immediate consequence of this discussion is that there is no

‘natural’ numerical description of what is labelled by (*). This conclusion
is very important, because it is the deep reason behind the view that any
abstractionist account of numbers (and of mathematical entities in general)
has to be wrong.

Secondly, my assertion that mathematical patterns are neither objects
nor properties of objects (they are relations) aims at expressing that (i)
mathematical patterns (relations) are always defined on a domain D, and
that (ii) although mathematical patterns are real, they depend, both epis-
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temically and metaphysically, on mathematical systems of representation
(mathematical theories).

5 Patterns, structure, and form

In defending my view that mathematics is a science of patterns, where pat-
terns are aspects of concrete objects, or aspects of aspects of concrete ob-
jects, etc. I argued that mathematical patterns are neither objects nor
properties of objects. I claimed that mathematical patterns are, rather,
forms of either perceptual or linguistic representations.

In what I have been saying about these things, I have also tried to
emphasize that such forms of representation are abstract, relational entities,
and that my position on mathematics, which sees it as a science of patterns,
is a version of structural realism.

But, having stated this much, it is legitimate to wonder about the plausi-
bility of saying that abstract entities—mathematical patterns—might dawn
on us.

To address the worry above, we need to draw a distinction between iconic
and symbolic representations. A representation is iconic if it is a picture of
the object represented. On the other hand, a representation is symbolic if
it refers in a non-pictorial way to the object(s) represented. Examples of
iconic representations are diagrams and maps, whereas a typical example
of symbolic representation is offered by the way a variable represents the
objects of its domain.

Now, if a set PA is a picture (an iconic representation) of a set A, there
must exist an isomorphism, Ψ, between A and PA. For PA needs to preserve
the geometrical, topological, algebraic, etc. form of A.

Therefore, if PA is both one of our perceptual representations and a
picture of A, what is common to A and PA is precisely that abstract entity,
the form, which is the mathematical pattern that dawns on us when, for
instance, we see something as a square of side r, for r ∈ R+ (see on this
§2, p. 8). This is what, in particular, justifies saying that the mathematical
pattern that dawns on us is the form of our representation.

Furthermore, the possibility of dawning on us of the abstract, general,
square-pattern, i.e., the possibility of simply seeing something as a square, is
given by the ability to switch from a purely iconic/pictorial representational
function of, say, a diagram D to a situation in which D has both an iconic
and a symbolic representational function.18

18What is at work when we draw a diagram D is one of the most important functions of
language. Such a function consists in giving us the opportunity to free ourselves from our
subjective, perceptual representations by means of artifacts (diagrams) whose represen-
tational function is not the outcome of natural connections like those obtaining between,
say, a fire and the smoke produced by it, or between a concrete macroscopic object and
the shadow projected by it, etc. but of convention.
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This is precisely what happens when we use a diagram D to prove a
result which is true of any triangle, or of any square, etc. Indeed, in such
a case the diagram D we draw happens to represent iconically a particular
triangle, or a particular square, etc. even though it is used in the proof to
represent symbolically any triangle, or any square, etc.

The crucial thing to notice here is that the abstract, general, triangle-
pattern, or square-pattern, etc. becomes ‘visible’, dawns on us as a conse-
quence of the interplay between these two different modes of representation.

Having provided an explanation of how abstract mathematical patterns
dawn on us, what I need to do now in the remaining part of this section
is to show how the characterizations I offered of mathematical patterns in
terms of forms of perceptual or linguistic representations, and of abstract
structural entities, harmonize with one another.

It has been known for a long time that, in what we call ‘perceptual
representation’, we can distinguish between the perceptual content of the
representation—colours, sounds, smells, etc.—and the form of the represen-
tation, which is the outcome of a pre-reflective partition of the perceptual
input into what we might call ‘potential objects of attention’.

It is interesting to notice that the phenomenon known as aspect-seeing
is a form of perceptual representation in which the potential objects of at-
tention are what we see as triangles, squares, ducks, rabbits, etc. In the case
of aspect-seeing the form of our perceptual representation is the aspect that
dawns on us.

Linguistic representations, like perceptual representations, have form
and content. When I see a linguistic representation such as

(‡) y =
1
2p
x2

its form—the way the symbols are arranged within it—imposes, through
unique readability, an ordering among the meanings of the symbols present
in the expression. It is the form of the linguistic representation—the in-
tended aspect of the expression—which, revealing how the meanings of the
elementary parts of the expression should be composed with one another,
leads us to the understanding of the meaning of the expression.

Furthermore, all aspects are relational entities, i.e., all aspects are char-
acterized by a domain of objects O, and by a set of relations < defined on
O.

To see this take the example of the duck-rabbit figure below.
Here the duck aspect becomes salient (emerges), if we relate the parts of the
drawing (the objects of attention) to each other in such a way as to take the
drawing as facing left, the part protruding to the left as a bill, etc. In fact,
if we relate these objects to each other in a different way, i.e., if we take the
drawing as if it were facing right, consider the part protruding to the left as
a pair of ears, etc. the aspect that dawns on us is that of a rabbit.
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Figure 3: The duck-rabbit

These considerations apply to mathematical aspects/patterns as well,
and we can see this immediately in the case of the equation (‡), where the
intended aspect of the expression that dawns on us is a particular type of
binary relation in which the xs are to the ys.

A different type of argument in favour of the relational nature of math-
ematical aspects/patterns (from here on I will say just ‘patterns’) is the
following. Take a very simple mathematical pattern like the one that dawns
on us when we observe the sequence below

(i) 01010101 · · ·

Such a pattern is very interesting for us, because it is invariant under uniform
substitution in (i) of any two symbols a and b respectively for 0 and 1.

From this it follows that such a mathematical pattern has a relational
nature, because it is independent of what kind of things are the elements
that appear to be related to one another in such-and-such a way. This
argument can be easily generalized to any mathematical pattern using the
(appropriate) concept of isomorphism.

These considerations, if correct, provide an answer in the affirmative to
Bombieri’s question: Can mathematical patterns be always assimilated to
relations?

Another interesting consequence of what has been shown by the argu-
ment above is that, since the mathematical patterns that dawn on us are
independent of the nature of the objects represented as being related to one
another in such-and-such a way, the mathematical patterns that dawn on
us have to do only with the form of the representation.

Lastly, as is well known, mathematical structures are relational entities,
and usually, the properties of the relations defined on the domain of the
structure are specified by an appropriate set of axioms. Not only groups,
rings, fields, vector spaces, topological spaces, etc. are relational entities,
but so is also the finite geometry structure characterized by Axioms 1 to 7
of §4.19

19Such a structure can be expressed as the triple (D1 ∪D2,∈,3) such that x ∈ X and
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Therefore, also in the case of mathematical structures, what really mat-
ters from a mathematical point of view is the formal aspect of it, that is,
the relations defined on a given domain D not (the nature of) the objects
belonging to D.

This allows us to conclude that, in the mathematical case, the form
of a perceptual or linguistic representation—the mathematical aspect that
dawns on us when we see something as—ought to be understood in structural
terms.

Such a conclusion is very important, because, besides substituting a
precise concept—structure—for a vague one—form (of representation)—it
can be used to draw a clear distinction between my position and any kind
of Aristotelianism about mathematics along the following lines.

According to Aristotle, form is not, as for Plato, an abstract entity that
exists independently of being thought and separately from its (partial) re-
alizations in sensible objects. For Aristotle, form is an activity that indi-
viduates, specifies, actualizes, something that otherwise would exist only
potentially in matter.20

On the other hand, the idea I defend that mathematical patterns are
forms of perceptual or linguistic representations differs deeply from Aristo-
tle’s position on form. For, even though, according to such an idea, math-
ematical patterns are, both metaphysically and epistemologically, mind-
dependent entities, they are, nevertheless, abstract structures. And this
implies that mathematical patterns cannot be construed as activities lead-
ing to the actualization of potentialities.

However, independently of the considerations above, for Gillies,21 my
view of mathematical patterns commits me to a form of Aristotelianism
in the broad sense. According to Gillies, a philosophy of mathematics is
Aristotelian in the broad sense if it implies that ‘mathematical entities are
embodied in the material world, and so exist there’.

The reason that leads Gillies into thinking that my position on mathe-
matical patterns commits me to Aristotelianism in the broad sense must be

X 3 x are defined if and only if x is an element of D1 (x is an element of D) and X is an
element of D2 (X is an m-set).

20[De Ruggiero, 1967], vol. II, Ch. V, §4, pp. 35-36:

. . . the form of an entity is the act by means of which the entity is indi-
viduated and determined; its matter is, instead, what can be subjected to
such an act, and is in itself mere potentiality, that is, that lack of determi-
nation upon which the determining force of the act is exercised. Thus the
dyad matter-form intersects the dyad potentiality-act (δύναµις-’ενέ%γεια),
in which form, in contrast with Platonism, is revealed as an activity which
specifies matter.

21The points relating to Gillies’s criticism of my view of mathematics which I will be
addressing in what follows are contained in an unpublished manuscript of his on mathe-
matical realism and in private correspondence we have exchanged over the years.
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that, if mathematical patterns are, as I say, aspects, or aspects of aspects,
etc. of concrete objects, it seems to follow that the aspect of k that dawns
on me when I see k as a λ cannot exist separately from k.

Although I agree with Gillies that what he means by ‘Aristotelianism in
the broad sense’ captures an essential feature of Aristotle’s view of mathe-
matics, I do not think that what I call ‘mathematical pattern’ exists embod-
ied in a material object. And the reason for this is that, since mathematical
patterns are neither objects nor properties of objects, they cannot be em-
bodied in material objects.

It is possible to convince oneself that this is, indeed, the case, if we reflect
on the fact that, when we deal with mathematical patterns, the material
object we see as a square is not a (perfect) square, because its sides are not
perfectly straight, etc.; neither 19 nor 5 are properties of the material object
Quoque tu Brute fili mi ; etc.

Therefore, although mathematical patterns depend on material objects,
or on aspects of material objects, or on aspects of aspects of material objects,
etc.—as well as on systems of representation—they are never embodied in
material objects.

To see this more clearly consider (‡). (‡) is a material object, because
it consists of ink on paper; and what I called ‘the intended aspect of (‡)’
depends on (‡), and can be determined through the unique readability of
the formula.

However, to be able to read the formula (with understanding), we need
to know the meaning of its component parts, i.e., we need to know that ‘y’
is a symbol for a variable, ‘. . . = . . . ’ is a symbol for the equality relation,
etc. and we also need to have mastered a reading algorithm such as: start
reading the formula from its leftmost symbol then . . .

Now, since being-a-symbol-for-a-variable is not a natural property of the
material object y, i.e., to use Searle’s efficacious terminology, it is not a
brute fact that y is the symbol for a variable, but it is, rather, something
that has been established by convention (likewise for =, 1, 2, etc.), and since
also the reading algorithm that must be applied to (‡) is based on a given
convention relative to how to write well-formed formulae,22 the intended
aspect that dawns on us when we read (‡) (with understanding) depends on
(‡), but is neither embodied in it nor in any other material entity, because
the relation . . . refers to . . . that is at the root of any kind of convention
(coding) is not ipso facto natural, i.e., it is not a brute fact that ‘x refers to
x̄’ is true.

A very important consequence of what we have just shown, namely, that
mathematical patterns, although dependent on material objects (or on as-
pects of material objects, or on aspects of aspects of material objects, etc.),
are not embodied in material objects; and of the previously established fact

22Writing formulae in Polish notation leads to changes in the reading algorithm.
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that mathematical patterns are both metaphysically and epistemically de-
pendent on systems of representation (mathematical theories) is that math-
ematical reality is not made of Searlean brute facts, but it consists of mind
and world-dependent, abstract entities. These are entities that emerge as a
consequence of the invention of opportune systems of representation (math-
ematical theories).

But, if mathematical patterns are mind and world-dependent entities,
they are a fortiori mind-dependent entities, and since the realm of mind-
dependent entities contains different types of things, perhaps, as Cole ob-
serves, saying something about what distinguishes mathematical patterns
from other mind-dependent entities might help us in gaining a better un-
derstanding of the nature of mathematical patterns.

The problem of what distinguishes mathematical patterns from other
mind-dependent entities will be at the very heart of the next section where,
as a by-product of the discussion of such an issue, it should become clearer
how it is possible to reconcile the abstract nature of mathematical patterns
with the idea that they do not exist independently of us.

6 Mathematical patterns, and other mind-depen-
dent entities

Within the realm of mind-dependent things, we come across all sorts of en-
tities: money, countries, political parties, symphony orchestras, etc. But
not all these entities bear a strong resemblance to mathematical patterns,
because: (i) mathematical patterns become perspicuous to us as a conse-
quence of the purely representational function of language, whereas money,
countries, political parties, symphony orchestras, etc., are entities which
come into being as a consequence of the performative (and not simply rep-
resentational) function of language; (ii) mathematical patterns are univer-
sals, whereas money, countries, political parties are particulars; (iii) we can
causally interact with money, countries, political parties, and symphony or-
chestras, but we cannot causally interact with mathematical patterns; (iv)
the truth of statements about the existence and properties of mathemati-
cal patterns can be justified independently of experience, not so the truth
of statements relating to the existence and properties of mind-dependent
entities like money, countries, political parties, symphony orchestras, etc.

With regard to point (i) above, consider that the representational func-
tion of language is not sufficient for entities like money, countries, political
parties, symphony orchestras, etc. to come into existence. The reason for
this is that the mind-dependent entities mentioned above are, among other
things, consequences of social construction, social construction in which the
performative function of language, in the way of formal or informal, implicit
or explicit, agreements attributing certain functions to certain entities is
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essential.23

To see this more clearly consider that, since performing the rôle of money
is independent of the nature of the actual medium/vehicle chosen—paper,
metal coins, traces in computers’ memories, etc.—it follows that for some-
thing like money to exist people have to agree (formally or informally, im-
plicitly or explicitly) to attribute the function of money to certain bits of
paper or to . . . , and treat these things accordingly. (Similar considerations
apply to countries, political parties, symphony orchestras, etc.)

In the case of mathematical patterns, things are quite different. In fact,
although to see the object below as a square I need to know in advance what
a square is, the dawning of the square-aspect on me is not the outcome of a
formal or informal, implicit or explicit, agreement concerning the attribution
of squareness to the object below (see Figure 3). For, seeing something as a
square, besides being dependent on a system of representation being in place,
is also dependent on an object. In other words, under normal circumstances,
knowing what a square and a circle are, I could not see the object represented
in Figure 3 as a circle, and such an impossibility would be determined by
the object.

Figure 4:

To this someone might reply that, in contrast with what I have just ar-
gued, ‘a given mathematical system of representation, and associated math-
ematical structure(s), is always something to which the relevant portion of
the mathematical community agrees, even if only implicitly, much as a rele-
vant group of people must agree to take a particular piece of paper to be a
$20 bill’.

In responding to this objection, I want to dispute that what brings about
agreement in mathematics is much as what leads to ‘accepting a particular
piece of paper to be a $20 bill’. For, in mathematics, in most cases, the
source of agreement is proof, i.e., it is a consequence of the belief in the
truth of shared assumptions, and of the hardness of the logical ‘must’. And
in those situations where proof is not forthcoming—because, for instance,
we are dealing with axioms—paraphrasing what Gödel once said, the truth

23See on this [Searle, 1995], Ch. 1, The Assignment of Function, pp. 13-23.
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of such statements imposes itself upon us even in the face of strong, and
apparently overwhelming, opposition and/or consensus.24

I want to mention here two very well known cases. The first concerns
the introduction of a new axiom and the other he elimination of an old and
celebrated axiom.

The first case is that of the Axiom of Choice. As is well known, when
Zermelo introduced it in 1904 to prove the well ordering theorem the vast
majority of the mathematical community rejected it. But, after a while, the
opinion of most members of the mathematical community concerning the
Axiom of Choice changed as a consequence of the fact that the Axiom of
Choice, and some of its equivalents such as Zorn’s Lemma, unpredictably
proved to be invaluable in a large number of mathematical theories.

The unexpected mathematical ‘success’ of the Axiom of Choice and of
some of its equivalents showed to the mathematical community that, rather
than simply being a non-self-evidently true ad hoc hypothesis introduced to
fix the problem of proving the well ordering theorem, the Axiom of Choice
describes some important features of a very general mathematical structure,
i.e., it is true in such a structure.

The second case is that of Euclid’s fifth axiom: the whole is greater than
the part. This is a particularly intriguing case, because in spite of thousands
of years of unanimous and unquestioning support received by our axiom
from the mathematical community, in the 19th century it was eventually
discovered that Euclid’s fifth axiom is false in general and that, therefore,
it cannot be part of the set of principles which lie at the foundations of
mathematics.

What the two examples above show is that in mathematics it makes sense
to think of a situation in which, within the same mathematical community
using the same mathematical system of representation (mathematical the-
ory), one man can be right about, for instance, the introduction of the
Axiom of Choice or the rejection of Euclid’s fifth axiom while everyone else
is wrong.

From this it follows that whereas in mathematics the agreement to ac-
cept/reject certain principles as an integral part of mathematical theories
is the consequence of the truth/falsity of the statements expressing these
principles, on the other hand, the truth of statements like ‘That is a $20
bill’ is a consequence of the community’s agreement to treat that particular
piece of paper as a $20 bill.

Furthermore, what I called ‘the logical must’ is the source of what we
might call ‘mathematical obligation’, i.e., in mathematics we are obligated
to accept statement C, because we accept statements A and B, and because
C is a (proven) logical consequence of A and B. But, when it comes to

24What makes a statement belonging to a given system of representation true is, of
course, the structure associated to the system of representation.
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money, the source of the obligation to accept certain pieces of paper as $20
bills has nothing to do with truth and the relation of logical consequence,
but rather with the prescriptive nature of the relevant legislation which is
founded upon the community’s implicit/explicit agreement on the govern-
ment’s attribution of a normative function to what something must be like
to be a $20 bill.

One thing we should notice here is that this last point takes good care
of worries like the following: if proofs are only possible, because there is
prior agreement about what represents what, then this may have more in
common with the establishment of notes as currency than the case made
here can cope with.

To see this consider that, if the sources of obligation in mathematics
are truth and the relation of logical consequence, whereas in the case under
examination—‘That is a $20 bill’—the source of obligation is ultimately the
community’s implicit/explicit agreement on the government’s attribution of
a normative function to what something must be like to be a $20 bill, it
follows that, whatever mathematics and the regulated practice of dealing
with $20 dollar bills may have in common, this has to do neither with the
reasons why we correctly agree that, in one case, the statement ‘That is a
$20 bill’ is true and, in the other, that the statement ‘There are infinitely
many primes’ is true nor with the direction of the arrow between agreement
and truth in these two cases.

In fact, as I have argued above, whereas in the case of ‘That is a $20
bill’ the community’s implicit/explicit agreement on the government’s attri-
bution of a normative function to what something must be like to be a $20
bill is a necessary condition for the statement ‘That is a $20 bill’ to be true,
this is not the case for mathematical statements, e.g., for statements like
the Axiom of Choice or like ‘There are infinitely many primes’.

A second objection runs as follows, ‘we should acknowledge that just
as accepting such systems of representation as the US Constitution, and
the articles of incorporation of the Microsoft Corporation or the Cleveland
Symphony Orchestra are performative actions that are responsible for these
social-institutional entities existing, so, too, should we acknowledge that
accepting a particular mathematical theory that characterizes a certain type
of mathematical structure is a performative action that is responsible for
that structure existing’.

Now, it seems to me that the US Constitution is not a system of repre-
sentation, but rather a social contract in which basic functions are attributed
to certain offices, and parties, basic rights and obligations are established,
etc. The system of representation relevant to the US Constitution is that
part of the theory of justice that deals with what is touched upon in the US
Constitution.

Of course, the theory of justice relevant to social contracts need not
be expressed in text-book form or in academic publications. It can simply
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appear as part of a (an even oral) tradition which comes together with
religious myths, and other things as, for instance, in Sophocles’s Antigone.

If this is correct, it follows that in accepting the theory of justice relative
to the subjects touched upon in the US Constitution, and in the articles
of incorporation of the Microsoft Corporation and of the CSO there is no
performance of an action leading to the coming into existence of the US,
of the Microsoft Corporation, or of the CSO. These—the US Constitution,
etc.—are separate things, they are explicit acts or deeds.

With this I do not intend to deny that mathematical language is an in-
stitution. The thing I want to say is that, in contrast with what happens in
social-institutional cases, once we have taken on board a particular mathe-
matical system of representation, say classical number theory, the dawning
upon us of a particular aspect of, for example, the set of prime numbers—
that this is an infinite set—does not depend on anybody’s will, that is, it
depends neither on a contract nor on a majority’s vote or on a jury’s decision.

On the contrary, for such entities as the US, the Microsoft Corporation,
the CSO to come into existence you need the consensus, the agreement to
attribute certain functions to certain people, to respect such functions (and
people) in your daily dealings, the instruments (and institutions) to enforce
the respect of . . . etc.

To see this, consider a situation in which the consensus is withdrawn from
some such social construct, even before the relevant system of representation,
and the relevant legislation, have been modified. Well, in such a situation the
social construct de facto ceases to exist. Take the social construct of Public
Executioner in a country where the death penalty is officially contemplated
in current criminal law, but where no court of justice dares condemning
someone to death, because the vast majority of the citizens of this country
has come to abhor such a thing, etc.

The last objection to my argument in favour of (i) that I am going to
examine here is that ‘all that there is to there being a symphony orchestra
in front of me is there being a group of people in front of me who meet cer-
tain criteria—those specified by the social practices surrounding symphony
orchestras—just as, all that there is to there being a square in front of me
is there being a two-dimensional figure in front of me that meets certain
criteria—those specified within certain mathematical practices’.

Indeed, for an orchestra to be there in front of me, rather than being
there a group of worshippers of a strange musical religion whose behaviour
is indistinguishable from that of an orchestra, many things need to be in
place. These are things like shared decisions about the functions attributed
(conventionally) to some of the actions the players perform, etc. functions
which need to have nothing to do with the observable structure of their
behaviour. (Notice here how conventionally attributing functions to actions
that the players perform takes good care of the otherwise mysterious notion
of meaning.)
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Therefore, for an orchestra to be there in front of me, or for an orchestra
to exist, it would not be sufficient to have a group of people in front of me
whose behaviour satisfies certain criteria specified by the social practices
surrounding symphony orchestras. Not so with circles and squares. To see
something as a square, i.e., for the pattern ‘square’ to exist, it is sufficient,
under normal circumstances, to know what a square is, and to have a visual
experience of an object like the one in Figure 3.

Concerning point (ii) above, if by ‘particular’ we mean what occupies a
unique portion of space-time,25 it is clear that money, countries, political
parties, symphony orchestras, are particulars, because they occupy a unique
portion of space-time. Money is represented by physical objects such as
banknotes and coins, countries have a territory and borders, political parties
and symphony orchestras have members.

On the other hand, groups, rings, fields, vector spaces, topological spaces,
etc. are aspects (or aspects of aspects, etc.) of domains of objects which,
besides differing from one another in terms of the nature of their elements,
can occupy simultaneously different portions of space-time.

Imagine seeing a certain drawing on a piece of paper as an equilateral
triangle, and considering its possible rigid motions and reflections. Then
imagine seeing marbles on a table as the elements of a set of cardinality
3, and examining the possible permutations of this set. It makes sense to
say that you can see the rigid motions and reflections of what you see as
an equilateral triangle, and the permutations of what you see as a set of
three marbles, as two different (also spatially) simultaneous realizations of
the elements of the same abstract group, a group which has, therefore, the
status of a universal.

It is possible to attack this argument saying that ‘ “one dollar bill”,
“symphony orchestra”, etc. are abstract universals such that each of them
would not exist were it not for the existence of certain social practices. Thus,
they are within an abstract part of social-institutional reality’.

As a reply to the objection above, notice, first, that my claim made in
point (ii) is not: social-institutional reality consists of particulars; but the
more modest conjunction of the following: (1) money, countries, political
parties, and symphony orchestras are part of social-institutional reality; (2)
they are particulars;26 (3) although squares and prime numbers are—both

25Although I have used a conditional formulation, someone may still want to object to
my characterization of particulars that there are particulars which do not occupy a unique
portion of space-time. Unfortunately, there is no room here to argue this point.

26Someone might want to object to my treatment of money as a particular that ‘it
does not make sense to talk about the exact position in space-time of the money I have
in my bank deposit, because the bank has invested it elsewhere, i.e., exchanged it for
who-knows-what’.

Now, the answer to this objection is that when you pool your money together with the
money of the other bank account holders, the expression ‘your money at time t’ refers
to the actual banknotes and coins, that, all being well, will be eventually paid to you at
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metaphysically and epistemically—dependent on systems of representation,
they cannot be conceived as particulars, because they do not occupy a por-
tion of space-time.

Secondly, of course ‘one dollar bill’ is a universal! It is the property com-
mon to all and only the elements of the set 1DB = {x | x is a one dollar bill}.
But what is the relevance of this to the discussion?

It seems to me that the only thing that really matters here is that the
property of being a one dollar bill, although neither physical nor chemical,
exists in re (and not ante rem), and is realized by those concrete objects
which, as a consequence of the attribution of certain functions to them, have
become the pieces of one of our social games.

With regard to the fact that certain concrete objects actually realize
(have) the property of being a one dollar bill, consider that there are public
and objective criteria set in place by the monetary authorities which estab-
lish whether or not a certain piece of paper is a one dollar bill; and that
severe measures are taken to prevent the circulation of fake one dollar bills.

In contrast with what happens with properties like being a one dollar
bill, the properties of being a square, a prime number, etc. are realized by
no concrete object.

Thirdly, I might want to object to the idea that ‘one dollar bill’, ‘sym-
phony orchestra’, etc. belong in the abstract part of social-institutional
reality that the only thing that such abstract universals do is providing a
certain level of description of concrete objects, i.e., the concept ‘one dollar
bill’ provides a level of description of a concrete object as a piece of a partic-
ular social game, but, nevertheless, the same concrete object could also be
described in a different way (at a different level), if we chose, for instance,
concepts belonging to chemistry or (at yet another level) to physics.

Notice that inventing a social game in which we call certain concrete
things ‘one dollar bill’, i.e., stating the rules of the game, etc. neither, in and
of itself, conjures up or appeals to abstract entities—the Platonic one-dollar-
bill-form—nor does it obtain the one dollar bill concept via abstraction from
concrete entities, because being a one dollar bill is neither a physical nor
a chemical property of a concrete object. As Wittgenstein pointed out,
inventing a social game is simply matter of establishing public and objective
criteria for the correct use of the pieces/expressions of the game, etc.

A second objection against point (ii) goes as follows, ‘it is wrong to
identify countries with their citizens and landmasses, and political parties
with their members, etc. etc. (something which is a consequence of the
claim present in (ii) that they are particulars).’

time t, if you ask the bank to do so. Where such banknotes and coins are before time t,
and whether there is a way of determining their exact position in space-time before you
actually collect them (at time t) are intriguing, but, all the same, purely epistemologic
questions, which have nothing to do with the fact that, at any time t, such things occupy
a scattered but, nevertheless, unique portion of space-time.
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Now, it seems to me that a country may be regarded as a domain D of
different sorts of entities, a domain on which the game-relations belonging
to a given set <, i.e., the conditions for the correct use of the elements of
D within a game G, are defined. But, the fact that a country is an entity
which can be described by an expression having the form ‘(D,<,G)’ does
not imply that a country is an abstract entity, if the structure (D,<,G)
exists only in re. (A particular, besides consisting of a domain of more or
less scattered objects, has what I might call a ‘form’.)27

However, there is an important difference between in re structures, and
mathematical structures, besides that concerning the fact that mathematical
structures are neither in re nor ante rem. Such a difference has to do with
the consideration that whereas mathematical structures are stable over time
(they are not subject to change), in re structures are stable (internally and
externally) only for a certain interval of time.

‘But’, someone might ask, ‘if mathematical structures are stable over
time, whereas systems of representation are not, how can the latter sustain
the former?’. The long and the short of the reply to such a question is that
systems of representation do not change either. For, when we modify a given
system of representation S, not simply in the sense of making explicit all
the implicit assumptions used in proving the theorems of S, but, rather,
by generating extensions S+ (or restrictions S−) of S which alter the set
of theorems we can prove in S+ (or in S−) with respect to S, we actually
produce a new system of representation which then exists ‘alongside’ S.

One more difference—point (iii) above—existing between entities like
money, countries, political parties, symphony orchestras, etc. and mathe-
matical patterns is that you can causally interact with the former entities,
but not with the latter. For instance, you can employ or sack members of
an orchestra, and can donate money to a political party or vandalize some
of its buildings,28 but can in no way interact causally with mathematical
patterns, for instance, by altering their properties.

At this point someone might say ‘But, if we cannot causally interact with
mathematical patterns, how can we say that they are dependent, among
other things, on human activity?’ Well, they are dependent on human ac-
tivity, because they are dependent, both metaphysically and epistemically,
on systems of representation which are the product of human activity, i.e.,
if there were no systems of representation there would not be mathemati-

27This idea—that countries, Supreme Courts etc. are in re structures—provides an
elegant and satisfactory answer to both Uzquiano’s questions: (a) what sort of object is
the Supreme Court? and (b) what is the relation in which the set of justices serving as
Supreme Court Justices is to the Supreme Court? (See [Uzquiano, 2004], §1, p. 137.)
This is an answer that is along the same lines as the usual considerations paid to entities
such as groups, rings, fields, vector spaces, etc. in mathematics.

28It is interesting to notice that the interactions with this type of entities work both
ways. We can go to a concert given by the Cleveland Symphony Orchestra, buy things
with money, receive the citizenship of a country, etc.
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cal patterns either (see §2) and, therefore, there would be nothing to know
about them.

Having said so, we need to keep in mind that such a relation of depen-
dence, though a necessary condition for seeing something as . . . , is by no
means sufficient. It cannot, therefore, be conceived as what causes us to see
X as . . . , but as one of the reasons why we see X as . . .

Now, it is important to observe that, although we can causally interact
with our perceptual representations in all sorts of ways—by making pressure
on our eye balls, taking LSD, etc.—there is no conflict whatsoever between
this fact and my assertion that we cannot causally interact with mathemat-
ical patterns.

In fact, whereas a particular perceptual representation is an extensional
entity—it is realized by the firing of a certain cluster of neurons, etc.—the
mathematical pattern realized by the form of the perceptual representation
is, instead, an abstract entity, i.e., it is the geometric, algebraic, topological,
etc. abstract structure associated with the equivalence class of entities which
are isomorphic to the form of our perceptual representation (see §§2 and 5).

These considerations explain the common phenomenon according to whi-
ch, if we consider, for example, analytic geometry, we know that, within an
analytic geometry system of representation, we can learn to see things as
spheres, cylinders, etc. and we can easily prove that, for instance, the volume
of a sphere of radius r is 4

3πr
3; that the volume of a sphere of radius r is 2

3 the
volume of the circumscribed equilateral cylinder, etc. and although drugs,
powerful dictators, media moguls and mafia men, etc. have the power to
interfere with individual representations in all manners of ways (causing us
hallucinations, etc.), there is nothing they can do about the mathematical
patterns themselves, and their properties.

An objection against (iii) is that ‘we cannot causally interact, in a strict
sense, with countries, political parties, and symphony orchestras; we causally
interact with the members of political parties and symphony orchestras and
this causal interaction might result in a change in the properties of these
political parties and symphony orchestras’.

It seems to me that the claim that we do not causally interact with
countries, political parties, and symphony orchestras is clearly false, as wit-
nessed, for example, by the dramatic cultural, political, economical, etc.
changes caused to several European countries by the Napoleonic wars, and
by the solid, scholarly work of many reputable historians aimed at finding
the causes of the rise and fall of the Roman Empire, of the separation of
Pakistan from India, of Germany into West and East Germany at the end
of the Second World War, etc.

The programmes of political parties consist precisely of promises (not)
to cause certain changes to symphony orchestras, the military, financial
institutions, the university, etc. and the reason why we vote for such parties
is to make (im)possible for such changes to be brought about. It is common,
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daily experience that what governments do causes actual changes to such
entities as I have mentioned above.

Moreover, how come that a relevant interaction with the members of
the Cleveland Symphony Orchestra (hiring or sacking them) has no causal
efficacy on the orchestra? Surely sacking the whole lot of them, and stopping
any form of funding of the CSO, would cause (be sufficient to bring about)
the end of the orchestra, wouldn’t it?

According to another objection ‘we can interact with mathematical struc-
tures. We do so by causally interacting with the portions of the mathemat-
ical community that are responsible for developing or sustaining the mathe-
matical theory that characterizes the mathematical entities in question. As
is well known, the initial form of such theories/systems of representation
frequently differs significantly from their final form’.

To the above objection it is possible to reply that the fact that ‘the
initial form of such theories/systems of representation frequently differs sig-
nificantly from their final form’ is a consequence of the struggle that the
mathematical system of representation must engage against the anomalies
and puzzles generated by its introduction. This phenomenon has nothing
to do with psycho-sociological considerations, even though such factors play
the important rôle of catalysts.

Lastly—point (iv)—as is well known, the truth of assertions like (α) :

(α) eπi = cosπ + i sinπ,

can be justified, independently of experience, by means of a mathematical
proof.

But, the truth of assertions of type (β):

(β) The Cleveland Symphony Orchestra had more than one member on
the first of September 1999

can only be justified by procedures from which experience cannot be expu-
nged—you need to access the relevant records, etc.

To the claim that the truth of assertions like (α) can be justified indepen-
dently of experience, an empiricist philosopher might reply that ‘of course
we can give proofs of assertions like (α), but such proofs will always proceed
from some assumptions or axioms. So (α) will only be true if the assump-
tions/axioms used in its proof are true, and these assumptions/axioms will
need to be justified empirically’.

First, in §4 of my paper I argue (along Fregean lines) that any abstrac-
tionist account of numbers has to be wrong, because, in particular, there is
no natural numerical description of Quoque tu Brute fili mi.

But, now, if, by means of a generalization of the argument above—
a generalization based on the idea that mathematical patterns are neither
objects nor are they properties of objects—it is correct to say that there is no
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natural mathematical description of objects of our experience, it follows that
neither the axioms nor any other statement belonging to a mathematical
theory can be justified empirically.

Secondly, according to the position I defend, the axioms of a mathemat-
ical theory describe (are true in) an abstract structure which exists neither
in re nor ante rem. Such a structure is one of the inhabitants of a third
realm which very much resembles Popper’s Third World.29

Now, since the Peano axioms are verifiably true independently of expe-
rience, and thus justified independently of experience, in the abstract struc-
ture realized by the set of natural numbers (the so-called ‘standard model’),
the group axioms are verifiably true independently of experience, and thus
justified independently of experience, in the abstract structure realized by
the set of rigid motions and reflections of an equilateral triangle, the field
axioms are verifiably true independently of experience, and thus justified
independently of experience, in the abstract structure realized by the set of
complex numbers, etc. we have that the logical consequences of the Peano
axioms, of the group axioms, of the field axioms, etc. will also be true in
the same respective structures.30

If, in the light of what I have argued above, we return to the point from
which our discussion originated, we can conclude that the justification for
saying that certain statements are logical consequences of the Peano axioms
(or of the group-axioms, etc.), and, therefore, the justification for saying
that these very statements are true in all the structures in which the Peano
axioms are true (or the group-axioms are true, etc.), is provided by means
of mathematical proofs, i.e., it is independent of experience.

It is interesting to notice how points (iii) and (iv) strengthen each other.
In fact, on the one hand, the abstract nature of mathematical patterns, and
their being causally inert (point (iii)), explain why it is possible to establish
the truth (or the falsity) of statements about them by means of procedures
which do not appeal to experience (point (iv)).

Indeed, since the entities we are talking about are abstract, they do
not occupy portions of space-time and, therefore, cannot be perceived; from
this it follows that they cannot be objects of experience either, because
experience contains a non-eliminable perceptual residuum.31

29Concerning Popper’s notion of Third World see footnote 34.
30The remarks in the main text might give the impression that I take mathematics to

be ‘a collection of axiomatized theories’ or, to put it in a different way, that for me the ax-
iomatic method is the mathematical method. I, actually, entirely agree with what Yehuda
Rav says at the end of [Rav, 2008] where, after having examined the dispute between
Carlo Cellucci and me over the importance of the axiomatic method in mathematics (see
[Cellucci, 2005] and [Oliveri, 2005]), concludes that ‘as Cellucci has maintained, the ax-
iomatic method is not the mathematical method pace Hilbert. But, as Oliveri has argued,
we do need axioms; it only depends on what type of axioms and where and when do they
come in’.

31The notion of experience I use here is deeply rooted in the philosophical tradition. In-
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Moreover, since these entities are causally inert, there is no question of
investigating them indirectly through the study of their interactions with
entities of which we have experience, as it happens, instead, in astrophysics
with objects like the black holes.

Consequently, appealing to experience cannot be an essential ingredient
present in arguments aimed at establishing the existence and properties of
mathematical patterns.

On the other hand, if we can obtain knowledge concerning the existence
and properties of mathematical patterns independently of experience, it is
unreasonable to think that they must be causally efficacious extensional enti-
ties. For, if they were causally efficacious extensional entities, they would, in
particular, have to occupy portions of space-time and, thus, there would be
at least one question about them that could not be answered independently
of experience: what is their exact location in space-time?

Having argued points (i)–(iv), we are now in possession of some of the
reasons why mathematical patterns differ from other mind-dependent enti-
ties. And since our discussion of some of the differences existing between
mathematical patterns and other mind-dependent entities has increased our
knowledge of the nature of mathematical patterns, it is important to take
stock of what we have found so far about such matters before tackling other
issues.

According to the information gathered so far, mathematical patterns are:
(a) neither objects nor properties of objects (§§2–4); they are (b) universals
not instantiated in portions of space-time (point (ii) above).

Furthermore, if by ‘natural world’ we mean the set of objects that occupy
a portion of space-time and their properties,32 it follows that (c) mathemat-
ical patterns are not elements of the natural world, even though (d) they

deed, for Kant, ‘experience is knowledge by means of connected perceptions’ ([Kant, 1990],
Deduction of the pure concepts of the understanding, Section 2, §26, p. 171). This type
of knowledge radically differs from the knowledge we obtain when we study ‘relations of
ideas’, as it happens when we show that 7 + 5 = 12.

Having said so, it is important to notice that I do not intend to deny that, as Husserl,
Gödel, Parsons, and others have suggested, mathematical intuition produces genuine pre-
reflective representations of mathematical entities, e.g., of essences (for Husserl), of re-
lations between concepts (for Gödel), of types (for Parsons), etc. The important point,
though, is that, since for me mathematical entities (patterns) are abstract entities, the
pre-reflective intuition we have of them does not represent sensible objects and, therefore,
the knowledge we obtain about such entities cannot be obtained ‘by connecting percep-
tions’, as it happens with entities we are acquainted with. From this it follows that,
for me, mathematical knowledge is not empirical, under the technical Kantian notion of
experience I adopt.

32To put it in a different way, one could say that what I mean by ‘natural world’ is a
subset of the set of what Searle calls ‘brute facts’. According to Searle, brute facts are
portions of the real world which are totally independent of human agreement/opinion,
whereas this is not the case for institutional facts. An example of brute fact is that the
speed of light in the void is 299.790 km/s; whereas an example of institutional fact is that
Italy is a member-state of the European Union. See on this [Searle, 1995], Ch. 1, p. 2.
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depend on elements of the natural world (see point (i)).
Other intriguing properties of mathematical patterns that we have sin-

gled out in our discussion are that: (e) mathematical patterns are mind-
dependent entities which, in spite of being (f) forms of (possible) represen-
tations, (g) are causally inert intensional objects.

At this point, if we take into account the properties of mathematical
patterns listed above, we realize that properties (b), (c), and (g) imply
that mathematical patterns belong to a realm of reality which differs from
the natural world (property (c)), and that the relations obtaining among
mathematical patterns, and between mathematical patterns and elements
of the natural world, are not causal (property (g)).

Moreover, although mathematical patterns are mind-dependent entities,
the communicability and objectivity of statements about their existence and
properties—objectivity sustained by shared proof procedures—are sufficient
to demarcate between mathematical patterns and sensations.

Therefore, what all these considerations seem to suggest is that mathe-
matical patterns are the inhabitants of what Frege famously called ‘the third
realm’.33

However, properties (a), (d), and (f) make us realize that mathematical
patterns do not exist independently of the natural world and of the mind.
And this, of course, implies that, in contrast with what Frege thought about
this, the third realm does not exist independently of the first and the sec-
ond realms. On the contrary, the third realm comes into existence as a
consequence of that part of human activity directed to the production of
representations of regions of the first and of the second realm, and, with
this, to the creation of the so-called ‘space of reasons’.34

7 Some advantages of the main view

The position I defend about mathematics has many advantages with regard
to more traditional versions of structural realism. I shall mention here only
some of them.

First, since it is not an instance of Platonism about structures, like
the structural realism of Resnik and Shapiro,35 it is not affected by the

33For Frege, the first realm is populated by concrete objects, the second realm is the
object of description of the so-called ‘private language’ or ‘language of sensations’, and
the third is the realm of thoughts.

34My view of the third realm is similar to Popper’s ideas on what he calls the ‘Third
World’ (see on this [Popper, 1974a] and [Popper, 1974b]). Unfortunately, considerations
relating to the already forbidding length of this paper make me realize that this is not
the right place to engage in a discussion of my position on the third realm in relation to
Popper’s Third World.

35[Shapiro, 2000], Ch. 8, §4, p. 261:

It is surely correct to maintain that if there had never been any language (or
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traditional friction between an ontology of independently existing abstract
entities, and the various unhappy attempts to provide a satisfactory episte-
mology for such things.

Indeed, being patterns (aspects) forms of perceptual or linguistic rep-
resentations, they are given to us together with the representations. This
allows me to show the existence of a beautiful harmony between the ontology
of mathematical patterns, and the account of how we come to know them.

Secondly, in contrast with the views of Resnik and Shapiro on mathe-
matical structures, my position—as a consequence of considerations similar
to those produced in §2, and in §5, p. 16, concerning, in particular, the
interaction of iconic and symbolic modes of representation—can be easily
applied to structures described by non-categorical axiom systems like, for
instance, the group-axioms and the topology-axioms.

For, on the one hand, seeing the set of rigid motions and reflections of
an equilateral triangle as a group is very much like what I described in §§2
and 5 in terms of ‘seeing something as a square of side r’, for r ∈ R+.

Indeed, being the concept of group well founded there are, in particular,
identity conditions for groups. Now, since the identity conditions for groups
are provided by the relation of group-isomorphism this, being an equivalence
relation, partitions the class of all things we see as groups into equivalence
classes each of which is associated to (individuates) a unique, abstract, al-
gebraic structure that, in the case mentioned above, is the dihedral group of
order 6. Moreover, such a unique, abstract, algebraic structure is common
to all the elements of the same equivalence class, etc. etc.

On the other hand, the dawning on us of the abstract, general, group-
pattern (structure) is made possible by switching from a purely iconic/pic-
torial representational function of, for example, the multiplication table of
the dihedral group of order 6, to a situation in which the multiplication
table of the dihedral group of order 6 is used as having both an iconic and
a symbolic representational function.

Thirdly, my view of patterns provides a plausible account of mathe-
matical intuition (pre-reflective representation), and of the applicability of
mathematics to the empirical sciences.

It provides a plausible account of mathematical intuition, because since
patterns are real, and are forms of representation, we can also have pre-
reflective representations of them, and formulate conjectures about patterns,
independently of the possibility of proving them.

Concerning the problem of explaining the applicability of mathematics
to the empirical sciences, it is important to observe that: (1) the relational
nature of mathematical patterns, being independent of the nature of the

any people), there would be trees, planets, and stars. There would also be
numbers, sets of numbers, and Klein groups, if not baseball defenses. Such
is the nature of ante rem structures.
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objects belonging to the domain on which the relations are defined, provides
a plausible explanation of the possibility of applying these patterns to other
domains; (2) since patterns are aspects of concrete objects, or aspects of
aspects of concrete objects, etc. the link between mathematical patterns,
and the realm of concrete objects (applicability to the empirical sciences) is
established as part of the very act of bringing into existence mathematical
patterns.36

Lastly, an important objection against the traditional Platonist,37 whose
Platonism extends to cover set theory, goes as follows. For the traditional
Platonist, the Continuum Hypothesis (CH) must be either true or false of
set-theoretical reality. For, according to him, such a reality exists indepen-
dently of whether anybody thinks about it or not, and is the object of study
of mathematical theories in general, and of set theory in particular.

But since, as a consequence of the independence of CH from the axioms
of ZFC, it is perfectly legitimate to develop systems of set theory for which
CH is true, and systems of set theory for which CH is false, it follows that
traditional Platonism, besides being at a loss in dealing with propositions
like CH, conflicts also with mathematical practice. (The same considerations
apply to what has happened in geometry with Euclid’s fifth postulate, and
the introduction of non-Euclidean geometries.)

Traditional Platonism has great difficulties in dealing with propositions
like CH, because there is an insurmountable obstacle in its way of explaining
why and how CH and ¬CH give us information about mathematical real-
ity, an insurmountable obstacle represented by the inconsistency of the set
{CH,¬CH}.

Moreover, given that, for the traditional Platonist, CH and ¬CH cannot
be both true of mathematical reality, it follows that, for him, the practice
of developing both ZFC + CH and ZFC + ¬CH cannot be accounted for
satisfactorily.

Indeed, such a practice seems, rather, to support a formalist view of
mathematics according to which contributing to a mathematical theory is
like playing a formal game based on conventionally established rules: the
ZFC + CH game, or the ZFC + ¬CH game.

The traditional Platonist’s standard reply to the objection above is that
given by Gödel: the reason why CH is independent of ZFC is that this formal
system does not express all the essential features of set-theoretical reality.

36With regard to points (1) and (2) above, we should notice that there are views of math-
ematics alternative to mine which are entitled to share in the merits which find expression
in (1) and/or (2). For example, whereas any form of mathematical structuralism—and,
therefore, in particular a version of mathematical structuralism that differs from mine—
benefits from (1), a mathematical Aristotelianism à la Gillies benefits from (2).

37The term ‘traditional Platonism’ refers to all forms of Platonism, i.e., structural and
non-structural Platonism, alike with the exception of Plentiful Platonism. On Plentiful
Platonism see footnote 40.
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What mathematicians should do is discover new axioms that describe rele-
vant properties of set theoretical reality, add them to ZFC, and prove CH
from the extension so obtained.

In spite of its immediate appeal, I find this counter objection rather
unsatisfactory, because, taking for granted that the operation suggested by
Gödel can be carried out, there is no obvious reason why proving CH from an
extension of ZFC should make illegitimate, or detract mathematical interest
from, developing systems like ZFC + ¬CH.

On the other hand, the objection above not only can be easily answered
by my version of mathematical realism, but, in actual fact, provides a strong
support for it.

Since patterns, besides being dependent on concrete objects or on as-
pects of concrete objects (or on aspects of aspects of . . . ) depend also (epis-
temically and metaphysically) on systems of representation (mathematical
theories), there is no difficulty whatsoever in accounting for the reality of
both patterns describable by a system of representation in which CH is taken
to be true, and patterns describable by a system of representation in which
CH is taken to be false.

To see this consider that, if ZFC is consistent, the consistency of ZFC +
CH and of ZFC+¬CH ensures the possibility of describing the set-theoretical
reality which emerges in one case under the assumption that 2ℵ0 = ℵ1, and
in the other under the assumption that 2ℵ0 6= ℵ1.

As a confirmation of the correctness of talking here about the emergence
of set-theoretical reality under the assumption that 2ℵ0 = ℵ1 and under
the assumption that 2ℵ0 6= ℵ1, we have the existence of the forcing models
produced by Cohen, forcing models which are at the heart of his proof of
the independence of CH from ZFC. This—on the relevance of models to the
emergence of set-theoretical reality—is a deep point on which I must dwell
a little longer.

If we study the history of mathematics, we realize that, time and again,
models have been fundamental for the acceptance of a new mathematical
theory.38

38As is well known, the technique of finding models of mathematical theories was ex-

plicitly developed only in the 19th century as a consequence, among other things, of the
controversies generated by the introduction of the non-Euclidean geometries (relative con-
sistency proofs), and of the development of the axiomatic method (independence proofs).

However, there are important pre-19th century examples of this phenomenon which,
using an implicit notion of a model, aim at producing examples of entities postulated by
a new mathematical theory in terms of entities postulated by an already accepted mathe-
matical theory. Some notorious cases exemplifying this point are: (1) the representations
given by the Pythagoreans of the positive integers, and of operations defined on positive
integers like + and × in terms of, respectively, configurations of points (the so-called ‘tri-
angular’, ‘square’, etc. numbers), and operations defined on configurations of points; (2)
the representations given by the ancient Greek mathematicians of the time of Euclid of
the positive integers, and of operations defined on positive integers like + and × in terms
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There are very good reasons for this. One such reason is that (1) mod-
els provide consistency proofs of the new theory relative to an already ac-
cepted mathematical theory; and another important reason is that (2) mod-
els exhibit examples of (a) domains whose elements are already accepted
mathematical entities, and of (b) (already accepted) mathematical relations
defined on such domains, that satisfy the axioms of the theory in question
supplying in this way some kind of existence proof for the entities postulated
by the new theory.

It is the above condition (2) that is particularly important for us, because
the existence of a model of a new mathematical theory T shows that the
theorems of T are not a mere flatus vocis, but that they actually describe fea-
tures of the mathematical reality represented by the model. But, of course,
without a mathematical theory T there is no model of T ! (Metaphysical
dependence of mathematical patterns on systems of representation.)

There is, therefore, no conflict whatsoever between the version of math-
ematical realism I advocate, and the coexistence within mathematics of sys-
tems like ZFC + CH and ZFC + ¬CH, of systems of Euclidean and non-
Euclidean geometries, of systems of real analysis in which the Archimedean
property is true, and systems of real analysis in which the Archimedean
property is false, etc.39

However, in closing this section and the paper, it is important to realize
that this feature of my view of mathematics does in no way show that I
defend some form of Plentiful Platonism.40 For, an essential characteristic of
my position is that, in contrast to a tenet common to all forms of Platonism,
mathematical patterns do not exist independently of mathematical systems
of representation.
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conti, P. (eds.): 2004, Logic, Ontology
and Linguistics, Rubbettino Editore,
Soveria Mannelli.

of lengths of line segments, and of operations involving line segments (as in geometric
algebra); (3) the (much later) representations of the reals in terms of points of a line; (4)
the representations of the complex numbers as points in R2; etc.

39Notice that, since a mathematical formal system (like ZFC) can be seen as a mathe-
matical (set-theoretical) extension of first-order, second-order, etc. logic, it follows that, in
choosing a particular mathematical formal system, we, among other things, fix the limits
of its deductive apparatus, i.e., the limits of its logic.

40According to P. Maddy, Plentiful Platonism is ‘[T]he view that there exists an ob-
jective world of sets corresponding to each and every consistent theory in a first-order
language with ∈ as its sole non-logical symbol.’ 1n [Maddy, 1998], p. 162.

37



[Avellone et alii, 2002] Avellone, M. & Brigaglia, A. & Zap-
pulla, C.: 2002, ‘The Foundations of
Projective Geometry in Italy from De
Paolis to Pieri’, Arch. Hist. Exact.
Sci., vol. 56, pp. 363-425.

[Bombieri, 2008] Bombieri, E.: 2008, ‘The Shifting
Aspects of Truth in Mathematics’,
www.princeton.edu/∼fragroup/papers.html,
pp. 1–20.

[Cellucci, 2005] Cellucci, C.: 2005, ‘Mathemati-
cal Discourse vs. Mathematical In-
tuition’, in [Cellucci & Gillies, 2005],
pp. 137-165.

[Cellucci & Gillies, 2005] Cellucci, C. & Gillies, D. (eds.):
2005, Mathematical Reasoning and
Heuristics, King’s College Publica-
tions, London.

[Cole, 2008] Cole, J. C.: 2008, ‘Gianluigi Oliv-
eri. A Realist Philosophy of Math-
ematics. Texts in Philosophy; 6’,
Book Review, Philosophia Mathe-
matica, vol. 16, pp. 409–420; doi
10.1093/philmat/nkn012.

[Dales & Oliveri, 1998] Dales, H.G. & Oliveri, G. (eds.): 1998,
Truth in Mathematics, Oxford Uni-
versity Press, Oxford.

[De Ruggiero, 1967] De Ruggiero, G.: 1967, Storia della
Filosofia, Laterza, Bari.

[Frege, 1980] Frege, G.: 1980, The Foundations of
Arithmetic, transl. by J. L. Austin,
Second Revised Edition, Northwest-
ern University Press, Evanston, Illi-
nois.

[Galileo 1638] Galilei, G.: 1638, Discorsi e di-
mostrazioni matematiche intorno a
due nuove scienze in [Galileo 1844].

[Galileo 1844] Galilei, G.: 1844, Opere Complete
di Galileo Galilei, Societá Editrice
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